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Howe correspondence and Springer correspondence for dual
pairs over a finite field

A.-M. Aubert, W. Kraśkiewicz, and T. Przebinda

Abstract. We study the Howe correspondence for the unipotent representa-
tions of the irreducible dual reductive pairs (G′,G) = (GLn′ (Fq),GLn(Fq))

with n′ ≤ n, and (G′,G) = (Sp4(Fq),O
+
2n)(Fq), where Fq is a finite field

with q elements (q odd), and O+
2n is the Fq-split orthogonal group. We show

how to extract a “preferred” irreducible representation of G from the image
by the (conjectural in the second case) correspondence of a given irreducible
representation of G′.
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1. Introduction

In case of a dual pair (G′,G) defined over a finite field, the integral∫
G′

Θ(g′g)ΘΠ′c(g′) dg′ (g ∈ G),

where Θ is the character of the Weil representation and Π′c is the representation
contragredient to Π′, is a finite sum which obviously converges and defines a class
function on G. This class function decomposes into a sum of several irreducible
characters ΘΠ. In other words Howe correspondence often does not associate a
single irreducible representation of G to a given irreducible representation Π′ of G′

and the situation is quite complex.
Then the following question arises naturally: is there a “preferred” representa-

tion among the irreducible representations of G which correspond to Π′? It is the
aim of this article to propose a candidate for such a preferred irreducible represen-
tation, assuming that Π′ is unipotent.
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Let Fq be a finite field of q elements of characteristic p. As a consequence of
our main result (assuming here for the simplicity of the exposition that p of is large
enough), we obtain that, in the following situations

(1) the dual pair is of type II, i.e., (G′,G) = (GLn′(Fq),GLn(Fq)), and Π′ is
unipotent;

(2) the dual pair is (G′,G) = (Sp4(Fq),O
+
2n(Fq)), where O+

2n(Fq) denotes the
split orthogonal group, and Π′ is unipotent and belongs to the principal
series of G′,

the preferred representation is an irreducible representation Πpref of G that corre-
sponds to Π′ by Howe correspondence and is the unique such representation the
wave front set of which contains the wave front set of any irreducible representation
of G which correspond to Π′ (see Corollary 14).

More generally, we consider an irreducible dual pair (G′,G) over Fq, with p odd
(without further assumption on it). As shown in [AM93], Howe correspondence
for this pair induces a (non-bijective) correspondence between unipotent representa-
tions of G′ and G. This correspondence between unipotent representations has been
described in [AMR96, Théorème 5.5] in the case of (G′,G) = (GLn′(Fq),GLn(Fq)).
Recall that unipotent representations of G′ are parametrized by partitions of n′.
Assume that n′ ≤ n. We will prove that the unipotent representation of G, say
Πpref , that is parametrized by the joint partition μ′ ∪ (n − n′) (see Definition 1),
occurs in the image by the correspondence of the representation of G′, say Π′, that
is parametrized by μ′. Moreover, every representation Π of G which occurs in the
image of Π′ is parametrized by a partition of n which is larger than μ′∪ (n−n′) for
the usual order on partitions. It follows that the closure of the unipotent support
of each such representation Π contains the unipotent support of Πpref .

In the case of ortho-symplectic dual pairs, the correspondence between unipo-
tent representations has been described conjecturally in [AMR96, Conjecture 3.11]
in terms of a (in general non-bijective) correspondence between irreducible repre-
sentations of two Weyl groups.

In [KS05, Theorem 5.15], Kable and Sanat have proved the validity of the con-
jecture for the dual pair (Sp4(Fq), SO

+
2n(Fq)) in the case of unipotent representations

that belong to the principal series. Let O−
2n(Fq) denote the non-split orthogonal

group, and let ε = ±. The conjecture for the dual pair (Sp2n′(Fq),O
ε
2n(Fq)) has

been also confirmed computationally in [AMR96] for n, n′ ≤ 11 up-to a slight
ambiguity in the principal series case Oε

2n(Fq) (in which case we have only the
restriction of Weil Representation to Sp2n′(Fq) · SOε

2n(Fq)).
We will compute explicitly that correspondence between representations of

Weyl groups in the case where one of them is W2 = W(B2) (see Proposition 8), give
its translation into a correspondence between u-symbols and extract a bijective cor-
respondence which behaves well with respect to unipotent classes (see Theorem 10).

For instance, for unipotent representations in the principal series of split groups,
assuming the validity of the conjectural description of the correspondence in this
case, and that we have n ≥ 3 and n′ = 2, we prove that the representation of G, say
Πpref , that is parametrized by the pair of partitions (ξ′, η′ ∪ (n− n′)) of n, occurs
in the image by the correspondence of the representation of G′, say Π′, that is
parametrized by the pair of partitions (ξ′, η′) of n′. Moreover, every representation
of G which occurs in the image of Π′ is such that the closure of its unipotent support
contains the unipotent support of Πpref (see Corollary 12).
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2. Unipotent representations

Let G be the group of Fq-rational points of a connected algebraic reductive
group G over F̄q, defined over Fq, and let F : G → G be the corresponding Frobe-
nius map so that G = GF (fixed points by F ).

To each G-conjugacy class of pairs (T, θ) where T is an F -stable maximal torus
in G and θ is an irreducible character of T = TF , Deligne and Lusztig attached a
virtual character RG

T (θ) of G, [DL76].

Recall that the uniform class functions on G are, by definition, the complex
linear combinations of Deligne-Lusztig characters RG

T (θ). Recall also that an irre-
ducible representation of G is called unipotent if its character has non-zero scalar
product with RG

T (1) for some T. If G = GLn(Fq), then the uniform class functions
span the space of all class functions on G. For G arbitrary, it is not the case in
general: for instance, the character of the cuspidal unipotent representation θ10 of
the symplectic group Sp4(Fq) defined by Srinivasan is not uniform.

Because we will need to include the case of orthogonal groups, it is necessary
to extend the definition of RG

T (θ) to the case when G is a disconnected reductive

algebraic group. In this case, we put RG
T (θ) := IndGG◦(RG◦

T (θ)), where G◦ denotes
the identity connected component of G and G◦ := (G◦)F . We will call uniform
class functions all the linear combinations of RG

T (θ). An irreducible representation
of G is called unipotent if its character has non-zero scalar product with RG

T (1) for
some T.

Since the cyclic group Fq
∗ is of even order, |Fq

∗/Fq
∗2| = 2. Therefore there are

exactly two non-equivalent non-degenerate symmetric bilinear forms on the vector
space Fq

2n, see [Jac74, Theorem 6.9], one is split and the other one is not split.
Let O+

2n(q) = O+
2n(Fq) (resp. O−

2n(q) = O−
2n(Fq)) denotes the corresponding split

(resp. non-split) orthogonal group. See [DM91, sec. 15.3] for more details. Also,
we shall write Sp2n(q) := Sp2n(Fq).

We recall some results from [Lus80]. The group Sp2n(q) has a unipotent
cuspidal irreducible representation if and only if n is a triangular number, that is,
n = k2+k for some k ∈ N. The group Sp2(k2+k)(q) has a unique unipotent cuspidal

representation. Similarly, the group SOε
2n(q), with ε ∈ {−,+}, has a unipotent

cuspidal irreducible representation if and only if n is a square, that is, n = k2 for
some k ∈ N. The group SOε

2k2(q) has a unique unipotent cuspidal representation,
say Πk. It follows that Oε

2n(q) admits unipotent cuspidal representations if and
only if n = k2 for some k ∈ N, and that Oε

2k2(q) has exactly two unipotent cuspidal

representations, ΠI
k and ΠII

k . (Indeed, we have Ind
Oε

2k2 (q)

SOε
2k2 (q)

Πk = ΠI
k +ΠII

k . Both ΠI
k

and ΠII
k have the same restriction to SOε

2k2(q) and thus differ by tensoring with the
determinant character of Oε

2k2(q).) See [Lus77, Theorem 8.2] or [AM93, Theorem
5.1] for the details.

Let M := Sp2(k2+k) × T (resp. M := Oε
2k2 × T), where T is a split torus

of G = Sp2n (resp. G = Oε
2n), and let ΠM be a unipotent cuspidal irreducible

representation of M. The representation ΠM is the tensor product of the unipotent
cuspidal representation of Sp2(k2+k) (resp. Π

I
k or ΠII

k ) with the trivial representation
of T. On the other hand, M is an Fq-rational Levi subgroup of an Fq-rational
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parabolic subgroup P of G and the commuting algebra EndG(Ind
G
P (ΠM)) (where

the cuspidal representation ΠM of M is trivially extended to the unipotent radical
of P, that is, IndGP (ΠM), also denoted by RG

M(ΠM), is the usual Harish-Chandra
induction) is an Iwahori-Hecke algebra of type Bñ, with ñ := n − (k2 + k) (resp.
ñ := n − k2), see for instance [Lus80] or [AMR96, § 3.A]. Hence the irreducible

representations of G which occur in IndGP (ΠM) are in bijection with Irr(Wñ), where
Wñ = W(Bñ) = (Z/2Z)ñ�Sñ (cf. [Car93, Chapter 10] or [Lus84, Corollary 8.7]).

We will denote by ΠG
ΠM,ρ the irreducible representation of G which corresponds

to ρ ∈ Irr(Wñ) by this bijection.

We put

Sp := {Sp2n(q) : n ∈ N} and Oε := {Oε
2n(q) : n ∈ N}.

We call Sp (resp. Oε) a Witt tower of symplectic (resp. orthogonal) type. Let T ,
T ′ be two Witt towers, one is of symplectic type and the other one is of orthogonal
type.

For a finite group H let R(H) denote the free abelian group generated by the
irreducible characters of H. Thus the subset of the irreducible characters Irr(H) ⊆
R(H) is a base of R(H) over Z. Let G′

m′ be an element of T ′ and let Gm be
an element of T . Denote by ωm′,m the projection onto the space of the uniform
class functions on G′

m′ × Gm of the pullback of the character of the oscillator
representation (determined by one fixed character of the field Fq) via the map
G′

m′ ×Gm � (g′, g) → g′g ∈ Sp4m′m(q). By Howe correspondence for the dual pair
(G′

m′ ,Gm) we shall understand the map

(1) θGm : R(G′
m′) → R(Gm)

defined by

(2) ωm′,m =
∑

Π′∈Irr(G′
m′ )

Π′ ⊗ θGm(Π′).

(See [AMR96, (1.4)], where θGm(Π′) was denoted by ΘGm
(Π′).)

Let Π′ be a cuspidal irreducible representation of an element G′
m′ of T ′. Then

there exists Gm ∈ T such that θGm(Π′) is a cuspidal irreducible representation of
Gm, see [AMR96, Theorem 3.7]. Moreover (see loc. cit.), the image by Howe
correspondence for the dual pair (G′

m′+l′ ,Gm+l), with l′, l ∈ N, of each compo-

nent of the Harish-Chandra parabolic induced representation R
G′

m′+l′

G′
m′×T′(Π′) (where

T′ is a split torus in G′
m′+l′) belongs to the Harish-Chandra parabolic induced

representation R
Gm+l

Gm×T(θ
Gm(Π′)) (where T is a split torus in Gm+l).

Using the description of the uniform part of the restriction of Gm ×G′
m′ of the

Weil representation obtained by Srinivasan in [Sri79], Adams and Moy proved that
Howe correspondence sends unipotent representations to unipotent representations,
[AM93, Theorem 3.5], and that the unique cuspidal unipotent representation of
the group Sp2(k2+k)(q) corresponds to the representation ΠII

k of Oε
2k2(q) if ε is the

sign of (−1)k and to the representation ΠI
k+1 of Oε

2(k+1)2(q), where ε is the sign of

(−1)k+1, otherwise, [AM93, Theorem 5.2]. (In fact this defines the representations
ΠI

k and ΠII
k .)
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3. Dual pairs of type II

In this section we will consider the case of the dual pair (G′,G) = (GLn′(q),
GLn(q)). We assume that n′ ≤ n. The characters of the unipotent irreducible
representations of G are in bijection with the irreducible characters of the symmetric
group Sn, hence in bijection with the partitions of n. Let ρμ denote the irreducible
representation of Sn which corresponds to the partition μ of n. Define

(3) Rρμ
:=

1

n!

∑
σ∈Sn

ρμ(σ)R
GLn

Tσ
(1),

where Tσ is a maximal torus of type σ. Then Rρμ
is a unipotent irreducible

character of G, and each such character is of this form for some partition μ of n
(see for instance [DM91, sec. 15.4]).

Recall that a partition of a positive integer n is a finite sequence λ = [λ1 ≥
λ2 ≥ · · · ≥ λk ≥ 0] of integers λi such that

∑k
i=1 λi = n. Let ht(λ) denote the hight

of the partition λ (that is, the largest i with λi 
= 0). Flipping a Young diagram of a
partition λ of n over its main diagonal (from upper left to lower right), we obtain the
Young diagram of another partition tλ of n, which is called the conjugate partition
of λ. Thus, for λ = [λ1 ≥ λ2 ≥ · · · ≥ λk], we have tλ = [tλ1 ≥ tλ2 ≥ · · · ≥ tλl],
where l = λ1 and tλj = |{i : 1 ≤ i ≤ k, λi ≥ j}| for 1 ≤ j ≤ l.

If λ = [λ1 ≥ λ2 ≥ · · · ≥ λk] and μ = [μ1 ≥ μ2 ≥ · · · ≥ μh] are any partitions, we
write μ ⊂ λ if the followings holds: ht(μ) ≤ ht(λ) and μi ≤ λi for all 1 ≤ i ≤ ht(μ).
If we identify λ and μ with their Young diagrams, this means that the diagram of
μ is contained in those of λ. Removing the boxes of λ which belong to μ, we obtain
a skew diagram which we denote by λ− μ.

We will also need to consider the intersection partition of λ and μ:

λ ∩ μ :=
[
min(λ1, μ1), . . . ,min(λmin(k,h), μmin(k,h))

]
.

We have μ ⊂ λ if and only if λ ∩ μ = μ.
Let ν = [ν1 ≥ ν2 ≥ · · · ≥ νm] ⊂ λ∩μ. Then we denote by pλ=μ(ν) the partition

(νi){i:λi=μi} and we put

λ ∩= μ := pλ=μ(λ ∩ μ).

We will say that λ and μ are close if for each i we have |λi − μi| ≤ 1.
For later use, we will now introduce some more notation. If λ = [λ1 ≥ λ2 ≥

· · · ≥ λk] is a partition of n and μ = [μ1 ≥ μ2 ≥ · · · ≥ μh] is a partition of m,
by adding zero parts if necessary we can assume that h = k, and we define the
partition λ⊕ μ of n+m as

(λ⊕ μ)i := λi + μi, for 1 ≤ i ≤ k.

For a partition λ and for any integer i, let ni(λ) be the numbers of j ≥ 1 such that
λj = i.

Definition 1. Let λ ∪ μ be the unique partition of n+m such that

ni(λ ∪ μ) = ni(λ) + ni(μ), for each i ≥ 1.

We observe that t(λ ⊕ μ) = tλ ∪ tμ and t(λ ∪ μ) = tλ ⊕ tμ. Also, for any
L ∈ N, we have (L) ∪ μ = [μ1 ≥ · · · ≥ L ≥ · · · ≥ μl] (or [L ≥ μ1 ≥ · · · ≥ μl] or
[μ1 ≥ · · · ≥ μl ≥ L]).
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Consider R(S) :=
⊕

n≥0 R(Sn) (it is a free Z-module with basis
⋃

n≥0 Irr(Sn)),

and define a map θS : R(S) → R(S) by

ρμ′ �→
∑

tμ close to tμ′

f(tμ′ ∩= tμ) ρμ,

where, if ν = [ra1 , . . . , 1ar ], we have put f(ν) =
∏

i ai, and where the empty
partition is sent by f to 1 (in accordance with [AMR96, proof of Lemma 5.4]).

Theorem 2. [AMR96, Théorème 5.5] Howe correspondence between unipotent
characters of GLn′(q) and GLn(q) is given by the map

RGLn′
ρμ′ �→ RGLn

θS(ρμ′ )
.

The following result is a direct consequence of Theorem 2.

Theorem 3. Let (n′, n) be a pair of positive integers with n′ ≤ n. Let μ′

be a partition of n′. The unipotent representations of GLn′(q) and GLn(q) with
characters Rρμ′ and Rρμ′∪(n−n′) , respectively, correspond by Howe correspondence.

Moreover, any representation of GLn(q) which belongs to the image of Rρμ′ by

Howe correspondence is of the form Rρμ
where μ ≥ (μ′∪ (n−n′)), where ≥ denotes

the usual order on partitions.

Proof. We note that the unipotent representation Rρμ′∪(n−n′) occurs in the

image of Rρμ′ by Howe correspondence. Indeed we have

t(μ′ ∪ (n− n′)) = t(μ′)⊕ 1n−n′
,

the partitions t(μ′) and t(μ′ ∪ (n− n′)) are close, and, since

t(μ′) ∩= t(μ′ ∪ (n− n′)) = ∅,
we have f(t(μ′) ∩= t(μ′ ∪ (n− n′))) = 1.

Now, t(μ′∪(n−n′)) is the largest partition in the set of partitions of n which are
close to t(μ′). Hence, if Rρμ

belongs to the image of Rρμ′ by Howe correspondence

we have tμ ≤ t(μ′ ∪ (n− n′)), i.e., μ ≥ μ′ ∪ (n− n′). �

4. Ortho-symplectic dual pairs

4.1. A correspondence between Weyl groups. Let (n1, n2) be a pair of
positive integers. Let k be an integer such that 0 ≤ k2 + k ≤ n1 and k2 ≤ n2, and
let Πsp

k denote the unipotent cuspidal representation of Sp2(k2+k). We denote by

εk the sign of (−1)k.
It follows that:

– Howe correspondence for the dual pair (Sp2n1
(q),Oεk

2n2
(q)) induces a cor-

respondence between irreducible components of R
Sp2n1

Sp2(k2+k)×T(Π
sp
k ⊗1) and

irreducible components of R
O

εk
2n2

O
εk
2k2×T

(ΠII
k ⊗ 1),

– Howe correspondence for the dual pair (Sp2n1
(q),O

εk+1

2n2
(q)) induces a cor-

respondence between irreducible components of R
Sp2n1

Sp2(k2+k)×T(Π
sp
k ⊗1) and

irreducible components of R
O

εk+1
2n2

O
εk+1

2(k+1)2
×T

(ΠI
k+1 ⊗ 1).
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All these irreducible components are unipotent, see [Lus84, (8.5.1)].
Let k2 ∈ {k, k + 1}. We set

(4) Πor
k2

:=

{
ΠII

k if k2 = k,

ΠI
k+1 if k2 = k + 1,

(5) ñ1(k) := n1 − (k2 + k), ñ2(k2) := n2 − (k2)
2.

Then Howe correspondence for the dual pair (G,G′) = (Sp2n1
(q),O

εk2
2n2

(q)) induces

a correspondence, ΘG,G′

k , between Irr(Wñ1(k)) and Irr(Wñ2(k2)), defined as follows.

Definition 4. We will say that the representations ρ ∈ Irr(Wñ1(k)) and ρ′ ∈
Irr(Wñ2(k2)) correspond by ΘG,G′

k if the character of ΠG
Πsp

k ⊗1,ρ
⊗ ΠG′

Πor
k2

⊗1,ρ′ has a

non-zero scalar product with ωn1,n2
.

In particular, taking k = k2 = 0, we obtain a correspondence between Irr(Wn1
)

and Irr(Wn2
).

Let sgnCD,ñ : Wñ → {±1} denote the unique character whose restriction to the

normal subgroup (Z/2Z)ñ of Wñ is the product of the sign characters and that
is trivial on the subgroup Sñ. The kernel of sgnCD,ñ is isomorphic to the Weyl
group W(Dn). The restriction of the character sgnCD,ñ to the subgroup Wñ−1 of
Wñ equals the character sgnCD,ñ−1. Because of this, we will denote sgnCD,ñ simply
by sgnCD.

A conjectural description of the correspondence ΘG,G′

k was stated in [AMR96].
It can be formulated as follows:

Conjecture 1. The representations ρ ∈ Irr(Wñ1(k)) and ρ′ ∈ Irr(Wñ2(k2))

correspond by ΘG,G′

k if and only if ρ⊗ ρ′ has a non-zero scalar product with∑
0≤r≤N ′

∑
ρ∈Irr(Wr)

Ind
Wñ1(k)

Wr×Wñ1(k)−r
(σ ⊗ sgnCD)⊗ Ind

Wñ2(k2)

Wr×Wñ2(k2)−r
(σ ⊗ sgnCD)

(resp.
∑

0≤r≤N ′

∑
σ∈Irr(Wr)

Ind
Wñ1(k)

Wr×Wñ1(k)−r
(σ ⊗ 1)⊗ Ind

Wñ2(k2)

Wr×Wñ2(k2)−r
(σ ⊗ sgnCD)),

where k2 = k (resp. k2 = k + 1).

We put

(6) N ′ := min(ñ1(k), ñ2(k2)) N := max(ñ1(k), ñ2(k2)), and L := N −N ′.

In Conjecture 1, G stands for a symplectic group and G′ for an orthogonal group.
However we would like to consider Howe’s correspondence (1) in any of the two
directions. Therefore we will consider the following cases and keep in mind that
Conjecture 1 applies to any of them:

Case 1:

(a) G′ = Oεk
2(k2+N ′)(q) and G = Sp2(k2+k+N))(q).

(Here we have N ′ = ñ2(k) and N = ñ1(k).)
(b) G′ = Sp2(k2+k+N ′)(q) and G = Oεk

2(k2+N)(q).

(Here we have N ′ = ñ1(k) and N = ñ2(k).)
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Case 2: G′ = Sp2(k2+k+N ′)(q) and G = O
εk+1

2((k+1)2+N)(q).

(Here we have N ′ = ñ1(k) and N = ñ2(k + 1).)

Case 3: G′ = O
εk+1

2((k+1)2+N ′)(q) and G = Sp2(k2+k+N)(q).

(Here we have N ′ = ñ2(k + 1), N = ñ1(k).)

Let (ξ, η) be a pair of partitions of N , i.e., ξ and η are two partitions with
|ξ| + |η| = N . The irreducible representations of WN are parameterized by the
pairs of partitions of N (see [Lus77]). The trivial representation of WN corre-
sponds to ((N), ∅) while the sign representation corresponds to (∅, (1N )) and the
representation afforded by the character sgnCD = sgnCD,N corresponds to (∅, (N)).

Definition 5. We define θN
′,N : Irr(WN ′) → Irr(WN ) by

θN
′,N (ρξ′,η′) :=

{
ρξ′,(L)∪ η′ in Cases 1 and 2,

ρ(L)∪ ξ′,η′ in Case 3.

Theorem 6. If Conjecture 1 holds, then the representations ρξ′,η′ ∈ Irr(WN ′)

and θN
′,N (ρξ′,η′) correspond by ΘG,G′

k .

In order to prove Theorem 6, we will need to introduce some more combina-
torics.

Removing the boxes of λ which belong to μ, we obtain a skew diagram which
we denote by λ − μ. Then a generalized tableau of shape λ − μ is a filling of the
boxes of λ − μ with positive integers such that the entries are weakly increasing
from the left to the right along each row and strictly increasing down each column.
Tableaux of shape λ are examples of generalized tableaux. Let T be a generalized
tableau. Let ni = ni(T ) denote the number of occurrences of the integer i in T .
The weight of T is defined as the sequence (n1, n2, . . .). The word w(T ) of T is the
sequence obtained by reading the entries of T from right to left in successive rows,
starting with the top row. On the other hand, any sequence a = (a1, a2, . . . , al) with
ai ∈ {1, 2, . . . , N} is called a lattice permutation if, for 1 ≤ j ≤ l and 1 ≤ i ≤ N−1,
the number of occurrences of i in (a1, a2, . . . , aj) is not less than the number of
occurrences of i+ 1.

Let λ, μ, ν be partitions such that |λ| = |μ| + |ν|. The Littlewood-Richardson
coefficient cλμ,ν is defined as the number of generalized tableaux T of shape λ − μ
and weight ν such that w(T ) is a lattice permutation.

The Littlewood-Richardson rule (cf. for instance [GP00, 6.1.1, 6.1.6]) says that

IndSN

S�×SN−�
(ρμ ⊗ ρν) =

∑
λ

cλμ,ν ρλ,

where the sum runs over all partitions λ of N .

A similar rule occurs in the group Wn = W(Bn) (cf. [GP00, 6.1.3]):

(7) IndWN

W�×WN−�
(ρξ1,η1

⊗ ρξ2,η2
) =

∑
(ξ,η)

cξξ1,ξ2 c
η
η1,η2

ρξ,η,

where the sum runs over all pairs of partitions (ξ, η) with |ξ| = |ξ1| + |ξ2| and
|η| = |η1|+ |η2|.

Proposition 7. We have

(8) IndWN

W�×WN−�
(ρξ1,η1

⊗ 1) =
∑
ξ

ρξ,η1
,
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where the sum is over all partitions ξ of N − |η1| = N − � + |ξ1| whose Young
diagram is obtained from that of ξ1 by adding N − � boxes, with no two boxes in the
same column. In particular ρ(N−l)∪ξ1,η1

occurs in ( 8).
In a similar way, we have:

(9) IndWN

W�×WN−�
(ρξ1,η1

⊗ sgnCD) =
∑
η

ρξ1,η,

where the sum is over all partition η of N−|ξ1| = N−�+ |η1| whose Young diagram
is obtained from that of η1 by adding N − � boxes, with no two boxes in the same
column. . In particular ρξ1,(N−l)∪η1

occurs in ( 9).

Proof. As already mentioned, the trivial character of WN−
 corresponds to
the pair of partitions ((N − �), ∅). Hence we have to consider certain generalized
tableaux T of shape ξ− ξ1 and weight (N − �). The integer 1 occurs n1(T ) = N − �
times in T . It follows that all the entries of T are equal to 1 and so the condition of
w(T ) is empty. On the other hand, the fact that the entries of T have to be strictly
increasing down each column implies that there is at most one box in each column
of T . The first equality follows. The second equality is proved in an analogous way,
using the fact that sgnCD,n−
 = ρ∅,(N−
). �

The following special cases of Proposition 7 will be used in the proof of Propo-
sition 8.

Example 1. Assume � = 1 and N ≥ 2. We obtain

IndWN

W1×WN−1
(ρ(1),∅ ⊗ 1) = ρ(N),∅ ⊕ ρ(N−1,1),∅,

IndWN

W1×WN−1
(ρ∅,(1) ⊗ 1) = ρ(N−1),(1),

IndWN

W1×WN−1
(ρ(1),∅ ⊗ sgnCD) = ρ(1),(N−1),

IndWN

W1×WN−1
(ρ∅,(1) ⊗ sgnCD) = ρ∅,(N) ⊕ ρ∅,(N−1,1).

Example 2. Assume � = 2 and N ≥ 3. We obtain

IndWN

W2×WN−2
(ρ(2),∅ ⊗ 1) = ρ(N),∅ ⊕ ρ(N−1,1),∅ ⊕ ρ(N−2,2),∅,

IndWN

W2×WN−2
(ρ(12),∅ ⊗ 1) = ρ(N−1,1),∅ ⊕ ρ(N−2,12),∅,

IndWN

W2×WN−2
(ρ(1),(1) ⊗ 1) = ρ(N−1),(1) ⊕ ρ(N−2,1),(1),

IndWN

W2×WN−2
(ρ∅,(2) ⊗ 1) = ρ(N−2),(2),

IndWN

W2×WN−2
(ρ∅,(12) ⊗ 1) = ρ(N−2),(12),

IndWN

W2×WN−2
(ρ(2),∅ ⊗ sgnCD) = ρ(2),(N−2),

IndWN

W2×WN−2
(ρ(12),∅ ⊗ sgnCD) = ρ(12),(N−2),

IndWN

W2×WN−2
(ρ(1),(1) ⊗ sgnCD) = ρ(1),(N−1) ⊕ ρ(1),(N−2,1),

IndWN

W2×WN−2
(ρ∅,(2) ⊗ sgnCD) = ρ∅,(N) ⊕ ρ∅,(N−1,1) ⊕ ρ∅,(N−2,2),

IndWN

W2×WN−2
(ρ∅,(12) ⊗ sgnCD) = ρ∅,(N−1,1) ⊕ ρ∅,(N−2,12).

Proof of Theorem 6. It follows easily from the description given in Conjec-
ture 1, combined with Proposition 7. �
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In the case when N ′ = 2 we will describe Conjecture 1 in a more explicit

manner. For j ∈ {1, 2, 3}, and N ≥ 2, let θ2,Nj : Irr(W2) → Z Irr(WN ) be the

maps defined by (where in each case, the underlined representation ρξ,η is equal to

θ2,N (ρξ′,η′)):

θ2,21 :

ρ(2),∅ �→ ρ(2),∅
ρ(1),(1) �→ ρ(1),(1) ⊕ ρ(1),(1)
ρ(12),∅ �→ ρ(12),∅
ρ∅,(2) �→ ρ∅,(2) ⊕ 2ρ∅,(2) ⊕ ρ∅,(12)
ρ∅,(12) �→ ρ∅,(2) ⊕ ρ∅,(12) ⊕ ρ∅,(12)

,

θ2,22 :

ρ(2),∅ �→ ρ(2),∅ ⊕ ρ(1),(1) ⊕ ρ∅,(2)
ρ(1),(1) �→ ρ(1),(1) ⊕ ρ∅,(2) ⊕ ρ∅,(12)
ρ(12),∅ �→ ρ(12),∅ ⊕ ρ(1),(1)
ρ∅,(2) �→ ρ∅,(2)
ρ∅,(12) �→ ρ∅,(12)

,

θ2,23 :

ρ(2),∅ �→ ρ(2),∅
ρ(1),(1) �→ ρ(2),∅ ⊕ ρ(1),(1) ⊕ ρ(12),∅
ρ(12),∅ �→ ρ(12),∅
ρ∅,(2) �→ ρ(2),∅ ⊕ ρ(1),(1) ⊕ ρ∅,(2)
ρ∅,(12) �→ ρ(1),(1) ⊕ ρ∅,(12)

,

θ2,N1 :

ρ(2),∅ �→ ρ(2),(N−2)

ρ(1),(1) �→ 2ρ(1),(N−1) ⊕ ρ(1),(N−2,1)

ρ(12),∅ �→ ρ(12),(N−2)

ρ∅,(2) �→ 3ρ∅,(N) ⊕ 2ρ∅,(N−1,1) ⊕ ρ∅,(N−2,2)

ρ∅,(12) �→ ρ∅,(N) ⊕ 2ρ∅,(N−1,1) ⊕ ρ∅,(N−2,12)

, if N ≥ 3,

θ2,N2 :

ρ(2),∅ �→ ρ∅,(N) ⊕ ρ(2),(N−2) ⊕ ρ(1),(N−1)

ρ(1),(1) �→ ρ(1),(N−1) ⊕ ρ(1),(N−2,1) ⊕ ρ∅,(N) ⊕ ρ∅,(N−1,1)

ρ(12),∅ �→ ρ(12),(N−2) ⊕ ρ(1),(N−1)

ρ∅,(2) �→ ρ∅,(N) ⊕ ρ∅,(N−1,1) ⊕ ρ∅,(N−2,2)

ρ∅,(12) �→ ρ∅,(N−1,1) ⊕ ρ∅,(N−2,12)

, if N ≥ 3,

θ2,N3 :

ρ(2),∅ �→ ρ(N),∅ ⊕ ρ(N−1,1),∅ ⊕ ρ(N−2,2),∅
ρ(1),(1) �→ ρ(N),∅ ⊕ ρ(N−1,1),∅ ⊕ ρ(N−1),(1) ⊕ ρ(N−2,1),(1)

ρ(12),∅ �→ ρ(N−1,1),∅ ⊕ ρ(N−2,12),∅
ρ∅,(2) �→ ρ(N),∅ ⊕ ρ(N−1),(1) ⊕ ρ(N−2),(2)

ρ∅,(12) �→ ρ(N−1),(1) ⊕ ρ(N−2),(12)

, if N ≥ 3.
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Proposition 8. We assume that N ′ = 2, N ≥ 2 and that Conjecture 1 holds.
Then Howe correspondence for the dual pair (G′,G) is given by the map⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ2,N1 if G′ = Oεk
2(k2+2)(q) and G = Sp2(k2+k+N)(q),

θ2,N1 if G′ = Sp2(k2+k+2)(q) and G = Oεk
2(k2+N)(q),

θ2,N2 if G′ = Sp2(k2+k+2)(q) and G = O
εk+1

2((k+1)2+N)(q),

θ2,N3 if G′ = O
εk+1

2((k+1)2+2)(q) and G = Sp2(k2+k+N)(q).

Proof. We will consider the three cases listed after Conjecture 1 separately.

Case 1:
The combination of Conjecture 1 and Example 1 gives

ρ(2),∅ �→ IndWN

W2×WN−2
(ρ(2),∅ ⊗ sgnCD)

ρ(1),(1) �→ IndWN

W1×WN−1
(1⊗ sgnCD) ⊕ IndWN

W2×WN−2
(ρ(1),(1) ⊗ sgnCD)

ρ(12),∅ �→ IndWN

W2×WN−2
(ρ(12),∅ ⊗ sgnCD)

ρ∅,(2) �→ ρ∅,(N)⊕IndWN

W1×WN−1
(sgnCD ⊗ sgnCD)⊕IndWN

W2×WN−2
(ρ∅,(2) ⊗ sgnCD)

ρ∅,(12) �→ IndWN

W1×WN−1
(sgnCD ⊗ sgnCD) ⊕ IndWN

W2×WN−2
(ρ∅,(12) ⊗ sgnCD).

Using the computations done in Examples 1, 2, we obtain the map θ2,N1 .

Case 2:
The combination of Conjecture 1 and Example 1 gives

ρ(2),∅ �→ sgnCD ⊕ IndWN

W1×WN−1
(1⊗ sgnCD) ⊕ IndWN

W2×WN−2
(1⊗ sgnCD)

ρ(1),(1) �→ IndWN

W1×WN−1
(sgnCD ⊗ sgnCD) ⊕ IndWN

W2×WN−2
(ρ(1),(1) ⊗ sgnCD)

ρ(12),∅ �→ IndWN

W1×WN−1
(1⊗ sgnCD) ⊕ IndWN

W2×WN−2
(ρ(12),∅ ⊗ sgnCD)

ρ∅,(2) �→ IndWN

W2×WN−2
(ρ∅,(2) ⊗ sgnCD)

ρ∅,(12) �→ IndWN

W2×WN−2
(ρ∅,(12) ⊗ sgnCD).

Using the computations done in Examples 1, 2, we obtain θ2,N2 .

Case 3:
The combination of Conjecture 1 and Example 1 gives

ρ(2),∅ �→ IndWN

W2×WN−2
(ρ(2),∅ ⊗ 1)

ρ(1),(1) �→ IndWN

W1×WN−1
(1⊗ 1) ⊕ IndWN

W2×WN−2
(ρ(1),(1) ⊗ 1)

ρ(12),∅ �→ IndWN

W2×WN−2
(ρ(12),∅ ⊗ 1)

ρ∅,(2) �→ ρ(N),∅ ⊕ IndWN

W1×WN−1
(sgnCD ⊗ 1) ⊕ IndWN

W2×WN−2
(ρ∅,(2) ⊗ 1)

ρ∅,(12) �→ IndWN

W1×WN−1
(sgnCD ⊗ 1) ⊕ IndWN

W2×WN−2
(ρ∅,(12) ⊗ 1).

Using the computations done in Examples 1, 2, we get θ2,N3 . �
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4.2. Symbols and u-symbols. We will recall part of the formalism of sym-
bols due to Lusztig. (See [Lus84] and references there.)

A symbol is an ordered pair Λ =

(
A
B

)
of finite subsets (including the empty

set ∅) of {0, 1, 2, . . .}. The rank of Λ is defined to be

rank(Λ) :=
∑
a∈A

a+
∑
b∈B

b−
⌊(

|A|+ |B| − 1

2

)2
⌋
,

where for any real number r we denote by �r� the largest integer not greater than
r. The defect of Λ, to be denoted by def(Λ), is defined to be the absolute value of
|A| − |B|. There is an equivalence relation on such pairs generated by the shift(

A
B

)
∼

(
{0} ∪ (A+ 1)
{0} ∪ (B + 1)

)
.

We shall identify a symbol with its equivalence class. The functions rank(Λ) and
def(Λ) are invariant under the shift operation, hence are well-defined on the set

of symbol classes. A symbol Λ =

(
A
B

)
is said to be degenerate if A = B, and

non-degenerate otherwise. The entries appearing in exactly one row of Λ are called
singles.

There is also a notion of u-symbols due to Lusztig related to unipotent classes.

Let (ξ, η) be a pair of partitions of N . We ensure that ξ has exactly one more
part than η by adding zeros as parts where necessary. Let m denote the number of
parts of η. We then attach to (ξ, η), where ξ = (ξ1 ≥ ξ2 ≥ · · · ≥ ξm ≥ ξm+1) and
η = (η1 ≥ η2 ≥ · · · ≥ ηm), a symbol Λ = Λξ,η of defect 1 and two u-symbols Λu,sp

ξ,η

and Λu,or
ξ,η to be defined by

Λξ,η :=

(
ξm+1 ξm + 1 ξm−1 + 2 · · · · · · · · · ξ1 + m

ηm ηm−1 + 1 ηm−2 + 2 · · · η1 + m − 1

)
,

Λu,sp
ξ,η :=

(
ξm+1 ξm + 2 ξm−1 + 4 · · · · · · ξ1 + 2m

ηm + 1 ηm−1 + 3 · · · η1 + 2(m − 1) + 1

)
,

Λu,or
ξ,η :=

(
ξm+1 ξm + 2 ξm−1 + 4 · · · · · · ξ1 + 2m
ηm+1 ηm + 2 ηm−1 + 4 · · · η1 + 2m

)
,

where in the orthogonal case we arranged for the two partitions to have the same
length m+ 1. The symbol Λξ,η is called special if

ξm+1 ≤ ηm ≤ ξm + 1 ≤ ηm−1 + 1 ≤ ξm−1 + 2 ≤ · · · ≤ η1 +m− 1 ≤ ξ1 +m.

Similarly, Λu,sp
ξ,η is called distinguished if

ξm+1 ≤ ηm + 1 ≤ ξm + 2 ≤ ηm−1 + 3 ≤ · · · ≤ η1 + 2(m− 1) + 1 ≤ ξ1 + 2m,

and Λu,or
ξ,η is called distinguished if

ξm+1 ≤ ηm+1 ≤ ξm + 2 ≤ ηm + 2 ≤ · · · ≤ ξ1 + 2m ≤ η1 + 2m.

We observe that the fact that Λξ,η is special implies the distinguishness of Λu,sp
ξ,η .

The set of all the symbols (resp. u-symbols) which contain the same entries with
the same multiplicities as a given symbol (resp. u-symbol) is called the similarity
class of the latter. If Λ, Λ′ belong to the same similarity class, we will write
Λ∼simΛ

′. Each similarity class of symbols (resp. u-symbols) contains exactly one
special (resp. distinguished) element.
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We will now recall the algorithm described in [Car93, §13.3]. To each partition
λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) we attach the sequence of β-numbers
(10)

λ∗ = (λ∗
1 < λ∗

2 < · · · < λ∗
k), defined by λ∗

j := λk−j+1 + j − 1, for 1 ≤ j ≤ k.

For instance, we have

(N)∗=(N), (N−1, 1)∗=(1, N), (N−2, 2)∗=(2, N−1), (N−2, 1, 1)∗=(1, 2, N).

Recall that a partition λ is called symplectic (resp. orthogonal) if each odd
(resp. even) row occurs with even multiplicity. For N a given integer, let Psp(N)
(resp. Por(N)) denote the set of symplectic (resp. orthogonal) partitions of N .

Consider a symplectic or orthogonal partition λ of N and the corresponding
group GN . We ensure that the number of parts of λ has same parity as the defining
module of GN , by calling the last part 0 if necessary. Thus λ1 ≥ λ2 ≥ · · · ≥ λ2k

(resp. λ1 ≥ λ2 ≥ · · · ≥ λ2k+1) if GN = Sp2N (F̄q) or O2N (F̄q) (resp. GN =
O2N+1(F̄q)). We then divide λ∗ into its odd and even parts. Let the odd parts and
the even parts of λ∗ be

2ξ∗1 +1 < 2ξ∗2 + 1 < · · · < 2ξ∗k + 1 (resp. 2ξ∗k+1 + 1) and 2η∗1 < 2η∗2 < · · · < 2η∗k,

respectively. Then we have

0 ≤ ξ∗1 < ξ∗2 < · · · < ξ∗k (resp. ξ∗k+1) and 0 ≤ η∗1 < η∗2 < · · · < η∗k.

Next we define ξi := ξ∗k−i+1− (k− i) and ηi := η∗k−i+1− (k− i) for each i. We then
have ξi ≥ ξi+1 ≥ 0, ηi ≥ ηi+1 ≥ 0, and |ξ|+ |η| = n.

Thus we obtain a map

(11) ϕ : λ �→ (ξ, η)

from Psp(2N) or Por(2N) (resp. Por(2N + 1)) to the set of pairs of partitions of
N , which is injective.

A pair of partitions (ξ0, η0) of N is in the image of the map (11) of a symplectic
partition, say λsp

ξ0,η0
(resp. an orthogonal partition, say λor

ξ0,η0
) if and only if the

u-symbol Λu,sp
ξ0,η0

(resp. Λu,or
ξ0,η0

) is distinguished, see [Car93, page 420].

Definition 9. If (ξ, η) is not in the image of the map ϕ defined by ( 11), we put
λsp
ξ,η := λsp

ξ0,η0
(resp. λor

ξ,η := λor
ξ0,η0

), where Λu,sp
ξ0,η0

(resp. Λu,or
ξ0,η0

) is the distinguished

u-symbol in the similarity class of Λu,sp
ξ,η (resp. Λu,or

ξ,η ).

We will use the computations done in the following exeamples in the proof of
Theorem 10.

Example 3. Let N ≥ 2 and 1 ≤ h ≤ 2. We have

Λu,sp
(N−h,h),∅ =

(
h N − h+ 2

1

)
and Λu,or

(N−h,h),∅ =

(
h N − h+ 2
0 2

)
.

• Λu,sp
(N−1,1),∅ is distinguished. Because (N − 1, 1)∗ = (1, N) and ∅∗ = (0, 1),

we obtain λsp,∗
(N−1,1),∅ = (0, 2, 3, 2N+1), that gives λsp

(N−1,1),∅ = (2N−2, 12).

• Λu,sp
(N−2,2),∅ is not distinguished. The distinguished u-symbol in its similar-

ity class is (
1 N

2

)
= Λu,sp

(N−2,1),(1,0).
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Because (N−2, 1)∗ = (1, N−1) and (1, 0)∗ = (0, 2), we obtain λsp,∗
(N−2,1),(1,0)

= (0, 3, 4, 2N − 1), that gives λsp
(N−2,2),∅ = λsp

(N−2,1),(1) = (2N − 4, 22).

• For h=1, 2, the distinguished u-symbol in the similarity class of Λu,or
(N−h,h),∅

is (
0 2
h N − h+ 2

)
= Λu,or

∅,(N−h,h).

Because (02)∗ = (0, 1) and (N − h, h)∗ = (h,N − h+ 1), we obtain

λ∗,or
(02),(N−h,h) =

{
(1, 2, 3, 2N) if h = 1,

(1, 3, 4, 2N − 2) if h = 2,

that is,

λor
(N−h,h),∅ = λor

(02),(N−h,h) =

{
(2N − 3, 13) if h = 1,

(2N − 5, 22, 1) if h = 2.

Example 4.

Λu,sp
(N−2,12),∅ =

(
1 3 N + 2

1 3

)
and Λu,or

(N−2,12),∅ =

(
1 3 N + 2
0 2 4

)
.

• Λu,sp
(N−2,12),∅ is distinguished. Because (N − 2, 12)∗ = (1, 2, N) and (03)∗ =

(0, 1, 2), we obtain λsp,∗
(N−2,12),∅ = (0, 2, 3, 4, 5, 2N+1), that gives λsp

(N−2,12),∅
= (2N − 4, 14).

• Λu,or
(N−2,12),∅ is not distinguished. If N ≥ 3, the distinguished u-symbol in

its similarity class is(
0 2 4
1 3 N + 2

)
= Λu,or

∅,(N−2,12).

We have λor,∗
∅,(N−2,12) = (1, 2, 3, 4, 5, 2N), that gives λor

(N−2,12),∅ = (2N −
5, 15).

Example 5.

Λu,sp
(N−2),(12) =

(
0 2 N

2 4

)
and Λu,or

(N−2),(12) =

(
0 N
1 3

)
.

• Λu,sp
(N−2),(12) is distinguished if N ≥ 4, (N − 2, 0)∗ = (0, N − 1), (12)∗ =

(1, 2). Hence λsp,∗
(N−2),(12) = (1, 2, 4, 2N − 1) and λsp

(N−2),(12) = (2N −
4, 2, 12).

• Λu,or
(N−2),(12) is not distinguished if N ≥ 4. The distinguished u-symbol in

its similarity class is(
0 3
1 N

)
= Λu,or

(1),(N−2,1).

(1, 0)∗ = (0, 2), (N−2, 1)∗ = (1, N−1). Hence λor,∗
(1),(N−2,1) = (1, 2, 5, 2N−

2), and λor
(N−2),(12) = (2N − 5, 3, 12).

Example 6.

Λu,sp
(N−2),(2) =

(
0 N

3

)
and Λu,or

(N−2),(2) =

(
N − 2

2

)
.

• λsp,∗
(N−2),(2) = (4, 2N − 3), and λsp

(N−2),(2) = (2N − 4, 4), when N ≥ 3.
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• λor,∗
(N−2),(2) = (5, 2N − 4), and λor

(N−2),(2) = (2N − 5, 5).

Example 7.

Λu,sp
(N−1),(1) =

(
0 N + 1

2

)
and Λu,or

(N−1),(1) =

(
N − 1

1

)
.

• Λu,sp
(N−1),(1) is distinguished, λsp,∗

(N−1),(1) = (2, 2N − 1), and λsp
(N−1),(1) =

(2N − 2, 2).
• Λu,or

(N−1),(1) is not distinguished. The distinguished u-symbol in its similar-

ity class is Λu,or
(1),(N−1). We have λor,∗

(N−1),(1) = (3, 2N−2), and λor
(N−1),(1) =

(2N − 3, 3).

Example 8.

Λu,sp
(2),(N−2) =

(
0 4

N − 1

)
and Λu,or

(2),(N−2) =

(
2

N − 2

)
.

• Λu,sp
(2),(N−2) is not distinguished if N ≥ 6. Then the distinguished u-symbol

in its similarity class is(
0 N − 1

4

)
= Λu,sp

(N−3),(3).

We have (N − 3, 0)∗ = (0, N − 2) and (3, 0)∗ = (0, 4). Hence λsp,∗
(2),(N−2) =

(0, 1, 8, 2N − 3), and λsp
(2),(N−2) = (2N − 6, 6).

• λor,∗
(2),(N−2) = (5, 2N − 4), and λor

(2),(N−2) = (2N − 5, 5), N ≥ 5.

Example 9.

Λu,sp
(N−2,1),(1) =

(
1 N

2

)
and Λu,or

(N−2,1),(1) =

(
1 N
0 3

)
.

• Λu,sp
(N−2,1),(1) is distinguished if N ≥ 2, (N−2, 1)∗ = (1, N−1) and (1, 0)∗ =

(0, 2). Hence λsp,∗
(N−2,1),(1) = (0, 3, 4, 2N − 1), and λsp

(N−2,1),(1) = (2N −
4, 22).

• Λu,or
(N−2,1),(1) is not distinguished if N ≥ 4. The distinguished u-symbol in

its similarity class is(
0 3
1 N

)
= Λu,or

(1),(N−2,1).

Hence λor,∗
(1),(N−2,1) = (1, 2, 5, 2N − 2), and λor

(1),(N−2,1) = (2N − 5, 3, 12).

Example 10.

Λu,sp
(1),(N−2,1) =

(
0 2 5

2 N + 1

)
is not distinguished if N ≥ 5. The distinguished u-symbol in its similarity class is

Λu,sp
(N−3),(2,1) =

(
0 2 N + 1

2 5

)
.

We have λsp,∗
(N−3),(2,1) = (1, 2, 6, 2N − 3), and hence λsp

(1),(N−2,1) = (2N − 6, 4, 12).
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Example 11.

Λu,sp
∅,(N−2,2) =

(
0 2 4

3 N + 1

)
is not distinguished if N ≥ 4. The distinguished u-symbol in its similarity class is

Λu,sp
(N−3,1),(12) =

(
0 3 N + 1

2 4

)
.

We have λsp,∗
(N−3,1),(12) = (2, 3, 4, 2N − 3), and λsp

∅,(N−2,2) = (2N − 6, 23).

Example 12.

Λu,sp
∅,(N−2,12) =

(
0 2 4 6

2 4 N + 3

)
is not distinguished if N ≥ 3. The distinguished u-symbol in its similarity class is

Λu,sp
(N−3),(13) =

(
0 2 4 N + 3

2 4 6

)
.

Hence λsp,∗
∅,(N−2,12) = (1, 2, 3, 4, 6, 2N − 1), and λsp

∅,(N−2,12) = (2N − 6, 2, 14).

Example 13.

Λu,sp
(12),(N−2) =

(
1 3

N − 1

)
is not distinguished if N ≥ 5. The distinguished u-symbol in its similarity class is
Λu,sp
(N−3,1),(2). We have λsp,∗

(N−3,1),(2) = (0, 3, 6, 2N − 3). Hence λsp
(12),(N−2) = (2N −

6, 4, 2).

4.3. Howe correspondence and unipotent orbits. Let F̄q be an algebraic
closure of Fq, and let N (G) denote the set of unipotent classes of G. This set is

partially ordered by the relation O1 ≤ O2 meaning that O1 is contained in O2, the
closure of O2. The unipotent orbits in the corresponding algebraic groups over F̄q

are parameterized by partitions λ of the dimension of the defining module. The
partition λ is symplectic (resp. orthogonal) if G = Sp2N (F̄q) (resp. O2N (F̄q) or
O2N+1(F̄q)).

To the representation ρξ,η of WN we shall associate the u-symbol Λu,sp
ξ,η (resp.

Λu,or
ξ,η ) of the group G = Sp2N (F̄q) (resp. G = O

εk2

2N (F̄q)).

For the groups Sp2N (F̄q) and O2N+1(F̄q), we associate the representation ρξ,η
to the orbit O(λ), where (ξ, η) := ϕ(λ), with ϕ defined by (11).

Consider the group O2N (F̄q). In this case the unipotent orbits are parame-
terized by partitions λ of 2N where the even rows occur with even multiplicities.
We attach to such a partition λ the ordered pair of partitions (ξ, η) defined by
(ξ, η) := ϕ(λ). Then we associate to O(λ) the representation ρη,ξ.

Let S(G) denote the set of u-symbols attached to G. Let

ϑ2,2
1,a : S(O4(F̄q)) → N (Sp4(F̄q)) and ϑ2,2

1,b : S(Sp4(F̄q)) → N (O4(F̄q))
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Table 1. Unipotent classes and the corresponding similarity
classes of the u-symbols for Sp4(F̄q)

O(4) ↔ Λu,sp
(2),∅

|
O(22) ↔ {Λu,sp

(1),(1),Λ
u,sp
∅,(2)}

|
O(2, 12) ↔ Λu,sp

(12),∅
|

O(14) ↔ Λu,sp
∅,(12)

Table 2. Unipotent classes and and the corresponding similarity
classes of the u-symbols for O4(F̄q)

O(3, 1) ↔ {Λu,or
(2),∅,Λ

u,or
∅,(2)}

|
O(22) ↔ Λu,or

(1),(1)

|
O(14) ↔ {Λu,or

(12),∅,Λ
u,or
∅,(12)}

be defined by (where in each case, if the input symbol is indexed by ξ′, η′, then the

underlined orbit in the output corresponds to the representation θ2,N (ρξ′,η′))

ϑ2,2
1,a :

Λu,or
(2),∅ �→ O(4)

Λu,or
(1),(1) �→ O(22)

Λu,or
(12),∅ �→ O(2, 12)

Λu,or
∅,(2) �→ {O(22),O(14)}

Λu,or
∅,(12) �→ {O(22),O(14)}

, ϑ2,2
1,b :

Λu,sp
(2),∅ �→ {O(3, 1),O(22)}

Λu,sp
(1),(1) �→ {O(3, 1),O(22),O(14)}

Λu,sp
(12),∅ �→ {O(22),O(14)}
Λu,sp
∅,(2) �→ O(3, 1)

Λu,sp
∅,(12) �→ O(14)

.

Let

ϑ2,2
2 : S(Sp4(F̄q)) → N (O4(F̄q)) and ϑ2,2

3 : S(O4(F̄q)) → N (Sp4(F̄q))

be defined by

ϑ2,2
2 :

Λu,sp
(2),∅ �→ {O(3, 1),O(22),O(3, 1)}

Λu,sp
(1),(1) �→ {O(22),O(3, 1),O(14)}

Λu,sp
(12),∅ �→ {O(14),O(22)}
Λu,sp
∅,(2) �→ O(3, 1)

Λu,sp
∅,(12) �→ O(14)

, ϑ2,2
3 :

Λu,or
(2),∅ �→ {O(4),O(22)}

Λu,or
(1),(1) �→ {O(4),O(22),O(2, 12)}

Λu,or
(12),∅ �→ {O(22),O(14)}
Λu,or
∅,(2) �→ O(4)

Λu,or
∅,(12) �→ O(2, 12)

.
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If N ≥ 3, let ϑ2,N
1,a : S(O4(F̄q)) → N (Sp2N (F̄q)) be defined by

ϑ2,N
1,a :

Λu,or
(2),∅ �→ O(2N − 6, 6)

Λu,or
(1),(1) �→ {O(2N − 4, 4),O(2N − 6, 4, 12)}
Λu,or
∅,(2) �→ {O(2N − 2, 2),O(2N − 4, 2, 12),O(2N − 6, 23)}

Λu,or
(12),∅ �→ {O(2N − 2, 2),O(2N − 4, 2, 12),O(2N − 6, 2, 14)}

Λu,or
∅,(12) �→ O(2N − 6, 4, 2)

.

If N ≥ 3, let ϑ2,N
1,b : S(Sp4(F̄q)) → N (O2N (F̄q)) be defined by

ϑ2,N
1,b :

Λu,sp
(2),∅ �→ O(2N − 5, 5)

Λu,sp
(1),(1) �→ {O(2N − 3, 3),O(2N − 5, 3, 12)}

Λu,sp
(12),∅ �→ O(2N − 5, 3, 12)

Λu,sp
∅,(2) �→ {O(2N − 1, 1),O(2N − 3, 13),O(2N − 5, 22, 1)}

Λu,sp
∅,(12) �→ {O(2N − 1, 1),O(2N − 3, 13),O(N − 5, 12)}

.

If N ≥ 3, let ϑ2,N
2 : S(Sp4(F̄q)) → N (O2N (F̄q)) be defined by

ϑ2,N
2 :

Λu,sp
(2),∅ �→ {O(2N − 1, 1),O(2N − 5, 5),O(2N − 3, 3)}

Λu,sp
(1),(1) �→ {O(2N − 3, 3),O(2N − 5, 3, 12),O(2N − 1, 1),O(2N − 3, 13)}

Λu,sp
(12),∅ �→ {O(2N − 5, 3, 12),O(2N − 3, 3)}
Λu,sp
∅,(2) �→ {O(2N − 1, 1),O(2N − 3, 13),O(2N − 5, 22, 1)}

Λu,sp
∅,(12) �→ O(2N − 3, 13),O(2N − 5, 15)}

.

If N ≥ 3, let ϑ2,N
3 : S(O4(F̄q)) → N (Sp2N (F̄q)) be defined by

ϑ2,N
3 :

Λu,or
(2),∅ �→ {O(2N),O(2N − 2, 2),O(2N − 4, 4)}

Λu,or
(1),(1) �→ {O(2N),O(2N − 2, 12),O(2N − 2, 2),O(2N − 4, 22)}

Λu,or
(12),∅ �→ {O(2N − 2, 2),O(2N − 4, 2, 12)}
Λu,or
∅,(2) �→ {O(2N),O(2N − 2, 12),O(2N − 4, 22)}

Λu,or
∅,(12) �→ {O(2N),O(2N − 4, 14)}

.

Notice that in each case, for N ≥ 3, the underlined orbit is in the closure of
any orbit in the set.

Howe correspondence over finite fields is not bijective on the level of the irre-
ducible characters. Nevertheless, Theorem 10 below shows that it should be possible

to extract from ΘG,G′

k a bijective correspondence at least when N ′ = 2, given by

the map θ2,N introduced in Definition 5.

Theorem 10. We assume that N ′ = 2, N ≥ 2 and that Conjecture 1 holds.
Then Howe correspondence for the dual pair (G′,G) induces the map⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϑ2,N
1,a if (G′,G) = (Oεk

2(k2+2)(q), Sp2(k2+k+N)(q)),

ϑ2,N
1,b if (G′,G) = (Sp2(k2+k+2)(q),O

εk
2(k2+N)(q)),

ϑ2,N
2 if (G′,G) = (Sp2(k2+k+2)(q),O

εk+1

2((k+1)2+N)(q)),

ϑ2,N
3 if (G′,G) = (O

εk+1

2((k+1)2+2)(q), Sp2(k2+k+N)(q)).

Moreover, if N ≥ 3, then the following holds:
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Let ρξ′,η′ ∈ Irr(W2), and let ρξ0,η0
= θ2,N (ρξ′,η′). Then every irreducible rep-

resentation ρξ,η of WN which corresponds to ρξ′,η′ by ΘG,G′

k satisfies

(12) Oξ0,η0
≤ Oξ,η.

Remark 1. Proposition 8 and Theorem 10 are unconditional (since Conjec-
ture 1 is known to be true, see [AMR96, § 6]) for the following triples (G′,G, k):

• in Case 1. (a):
– (O−

6 (q), Sp2(N+2)(q), 1) where 2 ≤ N ≤ 9;

– (O+
12(q), Sp2(N+6)(q), 2) where 2 ≤ N ≤ 5;

• in Case 1. (b):
– (Sp8(q),O

−
2(N+1)(q), 1) where 2 ≤ N ≤ 10;

– (Sp16(q),O
+
2(N+4)(q), 2) where 2 ≤ N ≤ 7;

• in Case 2:
– (Sp8(q),O

+
2(N+4)(q), 1) where 2 ≤ N ≤ 7;

– (Sp16(q),O
−
22(q), 2);

• in Case 3:
– (O+

12(q), Sp2(N+2)(q), 1) where 2 ≤ N ≤ 9;

– (O−
22(q), Sp2(N+6)(q), 2) where 2 ≤ N ≤ 5.

Proof. We will use the examples studied in Section 4.2 and we will also need
the following additional computations:

• Λu,sp
(N),∅ =

(
N
−

)
. We have λu,sp

(N),∅ = (2N).

• Λu,sp
∅,(N) =

(
0 2

N + 1

)
∼sim

(
0 N + 1

2

)
= Λu,sp

(N−1),(1). Example 7

gives λu,sp
∅,(N) = (2N − 2, 2).

• Λu,sp
(2),(N−2) =

(
0 4

N − 1

)
∼sim

(
0 N − 1

4

)
= Λu,sp

(N−2),(2). Exam-

ple 8 gives λsp
(2),(N−2) = (2N − 6, 6).

• Λu,sp
∅,(N−1,1) =

(
0 2 4

2 N + 2

)
∼sim

(
0 2 N + 2

2 4

)
is dis-

tinguished if N ≥ 2. Example 5 gives λsp
∅,(N−1,1) = (2N − 4, 2, 12).

• Λu,sp
(1),(N−1) =

(
0 3

N

)
∼sim

(
0 N

3

)
= Λu,sp

(N−2),(2). Example 6

gives λu,sp
(1),(N−1) = (2N − 4, 4).

• Λu,or
(N),∅ =

(
N
0

)
∼sim

(
0
N

)
. Hence λor

N,∅ = (2N − 1, 1).

• Λu,or
∅,(N) =

(
0
N

)
. Hence λor

∅,N = (2N − 1, 1).

• Λu,or
(2),(N−2) =

(
2

N − 2

)
∼simΛ

u,or
(N−2),(2). Example 6 gives λor

(2),(N−2) =

(2N − 5, 5).

• Λu,or
(1),(N−1) =

(
1

N − 1

)
∼simΛ

u,or
(N−1),(1). Example 7 gives λor

(1),(N−1) =

(2N − 3, 3).

• Λu,or
(1),(N−2,1) =

(
0 3
1 N

)
. Example 9 gives λor

(1),(N−2,1) = (2N − 5, 3, 12).
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• Λu,or
∅,(N−1,1) =

(
0 2
1 N + 1

)
. Example 3 gives λor

∅,(N−1,1) = (2N − 3, 13).

• Λu,or
∅,(N−2,2) =

(
0 2
2 N

)
. Example 3 gives λor

∅,(N−2,2) = (2N − 5, 22, 1).

• Λu,or
(12),(N−2) =

(
1 3
0 N

)
= Λu,or

(n−2),(12). Example 5 gives λor
(12),(N−2) =

(2N − 5, 3, 12).

• Λu,or
∅,(N−2,12) =

(
0 2 4
1 3 N + 2

)
. Example 4 gives λor

∅,(N−2,12) = (2N−

5, 15).

We will consider the four cases above separately.

Case 1 (a): The map θ2,N1 induces the following correspondence between u-symbols:

(13)

Λu,or
(2),∅ �→ Λu,sp

(2),(N−2)

Λu,or
(1),(1) �→ {Λu,sp

(1),(N−1),Λ
u,sp
(1),(N−2,1)}

Λu,or
(12),∅ �→ Λu,sp

(12),(N−2)

Λu,or
∅,(2) �→ {Λu,sp

∅,(N),Λ
u,sp
∅,(N−1,1),Λ

u,sp
∅,(N−2,2)}

Λu,or
∅,(12) �→ {Λu,sp

∅,(N),Λ
u,sp
∅,(N−1,1),Λ

u,sp
∅,(N−2,12)}

, if N ≥ 3.

Here and in the rest of this proof the underlined symbols correspond to the repre-
sentations ρξ0,η0

= θ2,N (ρξ′,η′).

Combining the above computations with Example 10, Example 11, Example 12,
and Example 13, we obtain the following closure order on the unipotent classes of
Sp2N (F̄q) occurring in the above correspondence:

O∅,(N) = O(2N − 2, 2)

O(1),(N−1) = O(2N − 4, 4)

�������
�������

O(2),(N−2) = O(2N − 6, 6) O∅,(N−1,1) = O(2N − 4, 2, 12)

O
(12),(N−2)

= O(2N − 6, 4, 2)

������
���

O(1),(N−2,1) = O(2N − 6, 4, 12)

O∅,(N−2,2) = O(2N − 6, 23)

O∅,(N−2,12)
= O(2N − 6, 2, 14)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HOWE CORRESPONDENCE AND SPRINGER CORRESPONDENCE 37

Hence (13) induces ϑ2,N
1,a and the second assertion of the Theorem follows in the

case 1 (a).

Case 1 (b): The map θ2,N1 induces the following correspondence between u-symbols:

(14)

Λu,sp
(2),∅ �→ Λu,or

(N−2),(2)

Λu,sp
(1),(1) �→ {Λu,or

(N−1),(1),Λ
u,or
(N−2,1),(1)}

Λu,sp
(12),∅ �→ Λu,or

(N−2),(12)

Λu,sp
∅,(2) �→ {Λu,or

(N),∅,Λ
u,or
(N−1,1),∅,Λ

u,or
(N−2,2),∅}

Λu,sp
∅,(12) �→ {Λu,or

(N),∅,Λ
u,or
(N−1,1),∅,Λ

u,or
(N−2,12),∅}

, if N ≥ 3.

We obtain the following closure order on the unipotent classes of O2N (F̄q)
occurring in the above correspondence:

O∅,(N) = O(2N − 1, 1)

O(1),(N−1) = O(2N − 3, 3)

�������
����

������
������

O∅,(N−1,1) = O(2N − 3, 13)

������
������

O(2),(N−2) = O(2N − 5, 5)

������
������

O(1),(N−2,1) = O
(12),(N−2)

= O(2N − 5, 3, 12)

O∅,(N−2,2) = O(2N − 5, 22, 1)

O∅,(N−2,12)
= O(2N − 5, 15)

.

Hence (14) induces ϑ2,N
1,b and the second assertion of the Theorem follows in the

case 1 (b).

Case 2: The map θ2,N2 induces the following correspondence between u-symbols:

(15)

Λu,sp
(2),∅ �→ {Λu,or

(N),∅,Λ
u,or
(N−2),(2),Λ

u,or
(N−1),(1)}

Λu,sp
(1),(1) �→ {Λu,or

(N−1),(1),Λ
u,or
(N−2,1),(1),Λ

u,or
(N),∅,Λ

u,or
(N−1,1),∅}

Λu,sp
(12),∅ �→ {Λu,or

(N−2),(12),Λ
u,or
(N−1),(1)}

Λu,sp
∅,(2) �→ {Λu,or

(N),∅,Λ
u,or
(N−1,1),∅,Λ

u,or
(N−2,2),∅}

Λu,sp
∅,(12) �→ Λu,or

(N−1,1),∅,Λ
u,or
(N−2,12),∅}

, if N ≥ 3.
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We obtain the following closure order on the unipotent classes of O2N (F̄q)
occurring in the above correspondence:

O∅,(N) = O(2N − 1, 1)

O(1),(N−1) = O(2N − 3, 3)

������
������

��
������

�����
���

O∅,(N−1,1) = O(2N − 3, 13)

������
������

��
O(2),(N−2) = O(2N − 5, 5)

������
������

��

O
(12),(N−2)

= O(1),(N−2,1) = O(2N − 5, 3, 12)

O∅,(N−2,2) = O(2N − 5, 22, 1)

O∅,(N−2,12)
= O(2N − 5, 15)

.

Hence (15) induces ϑ2,N
2 and the second assertion of the Theorem follows in the

case 2.

Case 3: The map θ2,N3 induces the following correspondence between u-symbols:

(16)

Λu,or
(2),∅ �→ {Λu,sp

(N),∅,Λ
u,sp
(N−1,1),∅,Λ

u,sp
(N−2,2),∅}

Λu,or
(1),(1) �→ {Λu,sp

(N),∅,Λ
u,sp
(N−1,1),∅,Λ

u,sp
(N−1),(1),Λ

u,sp
(N−2,1),(1)}

Λu,or
(12),∅ �→ {Λu,sp

(N−1,1),∅,Λ
u,sp
(N−2,12),∅}

Λu,or
∅,(2) �→ {Λu,sp

(N),∅,Λ
u,sp
(N−1),(1),Λ

u,sp
(N−2),(2)}

Λu,or
∅,(12) �→ {Λu,sp

(N−1),(1),Λ
u,sp
(N−2),(12)}

, if N ≥ 3.
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We obtain the following closure order on the unipotent classes of Sp2N (F̄q) occur-
ring in the correspondence above.

O(N),∅ = O(2N)

O(N−1),(1) = O(2N − 2, 2)

������
������

�
������

������
��

O(N−1,1),∅ = O(2N − 2, 12)

�����
�����

���
O(N−2),(2) = O(2N − 4, 4)

�����
�����

���

O(N−2,2),∅ = O(N−2,1),(1) = O(2N − 4, 22)

O
(N−2),(12)

= O(2N − 4, 2, 12)

O
(N−2,12),∅ = O(2N − 4, 14)

Hence (16) induces ϑ2,N
3 and the second assertion of the Theorem follows in the

case 3. �

Property (12) shows that the map θ2,N plays a special role in Howe corre-
spondence. We will now restrict our attention to it and see how it relates to
[AKP13, (19)].

Let s̃gn := sgn⊗ sgnCD denote the product of the sign character sgn = ρ∅,(1N )

of the group WN by the character sgnCD = ρ∅,(N), i.e.:

s̃gn⊗ ρξ,η = ρtξ,tη.

Then, when k2 = k, let θ2,Ntwist be the map defined by

(17) θ2,Ntwist :=

{
sgn ◦ θ2,N ◦ sgn if G′ symplectic,

s̃gn ◦ θ2,N ◦ s̃gn if G′ orthogonal.

We obtain

(18) θ2,Ntwist(ρξ′,η′) =

{
ρ(12)⊕ξ′,η′ if G′ symplectic,

ρξ′,(12)⊕η′ if G′ orthogonal.

In the case where k = 0 and ε = +, we have ñ1(k) = n1, ñ2(k) = n2,
N = max(n1, n2) and N ′ = min(n1, n2). Hence Howe correspondence between
the irreducible components of the unipotent principal series of the groups G and G′

(where (G,G′) = (Sp2n(q),O
+
2n′(q)) or (G,G′) = (O+

2n′(q), Sp2n(q)) is given by the

correspondence ΘG,G′

0 between irreducible characters of the groups WN and WN ′ ,
and (18) coincides with [AKP13, (19)].
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5. Howe correspondence and wave front set

Recall (see [Lus92], [GM99], [AA07]) that for every irreducible character χΠ

of the Fq-points G = GF of a split connected reductive group G defined over Fq

(assuming that the characteristic p of Fq is “good for G”: for instance, if G a
symplectic group or a split special orthogonal group, then p must be odd) there is
a unique rational unipotent class OΠ in G which has the property that there exists
u ∈ OΠ(q) such that χΠ(u) 
= 0 and OΠ has maximal dimension among classes with
that property. The class OΠ is called the unipotent support of χΠ. It coincides with
the class defined in [Lus84, §13.3].

More precisely, suppose Π is unipotent. Then there exists an irreducible repre-
sentation ρ of the Weyl group W of G such that the scalar product between χΠ and
the almost character Rρ (which is defined as a certain linear combination of Deligne-
Lusztig generalized characters in [Lus84, page 347 and (4.24.1)], and coincides with
the virtual character in Eqn. (3) when G = GLn(q)) is non-zero. Moreover, if ρ′ is
another irreducible representation of W such that χΠ has non-scalar product with
Rρ′ , then ρ and ρ′ belong to the same family of characters of W (see [Lus84, Theo-
rems 5.25 and 6.17]). Thus, we can associate with χΠ a unique family of characters
of W, or equivalently, a unique two-sided cell in W. Let ρspe be the unique special
character in this family (for G of classical type a family of characters of W cor-
responds to a similarity class of u-symbols, and the symbol corresponding to ρspe
is the unique distinguished u-symbol in that family, [Lus84, (4.5.6)]). Then the
class OΠ coincides with the unipotent class corresponding to ρspe by the Springer
correspondence for the group W. In particular the unipotent class OΠ is always
special.

Moreover, every rational unipotent class O on which χΠ does not vanish (i.e.,
such that there exists u ∈ O(q) with χΠ(u) 
= 0) satisfies

(19) O ≤ OΠ,

see [AA07, Theorem 6.1].

Suppose Π is an irreducible unipotent representation of a split group G, such
as O+

2n(q) or Sp2n(q), which belongs to the principal series. The algebra of the
endomorphisms of the principal series which commute with the action of G is the
Iwahori-Hecke algebra, whose irreducible representations coincide with the irre-
ducible representations of the Weyl group W. Hence, as we remarked previously,
there is a one to one correspondence between the irreducible representations of W
and the irreducible representations of G which occur in the principal series. Given
an irreducible representation ρ of W we denoted by Πρ the corresponding represen-
tation of G. Furthermore, the almost character Rρ has a non-zero scalar product
with the character of Πρ. (This follows from [Lus84, Theorem 4.23]. For an explicit
argument see pages 297 and 298 in [Lus84].)

If the group G is disconnected and Π be an irreducible representation of G =
GF , we define the unipotent support of Π, denoted OΠ, to be the union of the
rational unipotent classes O ⊆ G of maximal dimension, such that O ∩ G has a
non-empty intersection with the support of the character χΠ.

Let Π = Πρξ,η
be an irreducible unipotent representation of O+

2n(q) which
belongs to the principal series, where (ξ, η) is a pair of partitions of n. Two cases
can occur: the restriction ΠSO of Π to SO+

2n(q) is either irreducible, or is the direct
sum of two nonequivalent irreducible representations ΠI

SO and ΠII
SO. The latter case
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arises if and only if the restriction of the representation ρξ,η to the Weyl group of
the special orthogonal group splits into the sum of two inequivalent representations,
i.e. the partition (ξ, η) is such that ξ = η, see [Car93, Prop. 11.4.4].

(∗) We recall (see for instance [Spa82]) that any rational unipotent class O in
O+

2n is either a rational unipotent class in SO+
2n or is the disjoint union of a rational

unipotent class O(u) in SO+
2n and a rational unipotent class O(sus−1) in SO+

2n,
with u ∈ SO+

2n(q) unipotent and some s ∈ O2n(q) \ SO2n(q). Both these classes
have the same dimension.

Lemma 11. If ΠSO is irreducible then

OΠ = OΠSO
.(20)

If ΠSO = ΠI
SO ⊕ΠII

SO, then

OΠ = OΠI
SO

∪ OΠII
SO
.(21)

In both cases, OΠ is a single unipotent class in O+
2n.

Proof. Let us assume first that ΠSO is irreducible. Then the restrictions of
the two characters χΠ and χΠSO

to SO2n(q) are equal. In particular, χΠSO
(g) =

χΠ(g) = χΠ(sgs
−1) = χΠSO

(sgs−1) for any g ∈ SO2n(q) and s as in (∗). Let O(u)
be a rational unipotent class in O+

2n, as in (∗). We see that, with the notation of
(∗), the restriction of χΠ to O(u)∩SO+

2n(q) is non-zero if and only if the restriction
of χΠ to O(sus−1)∩SO+

2n(q) is non-zero. But the classes O(sus−1) and O(u) have
the same dimension. Therefore, if that dimension is maximal among the unipotent
classes which have a non-empty intersection with the support of χΠSO

, we get a
contradiction. Thus the unipotent support of ΠSO is the unipotent class in O+

2n

which is also a single unipotent class in SO+
2n. Hence, (20) follows.

Assume now that ΠSO = ΠI
SO ⊕ ΠII

SO. In this case the representations ΠI
SO

and ΠII
SO are permuted via the action of the group element s, as in (∗), and so are

their unipotent supports. More precisely, χΠII
SO
(u) = χΠI

SO
(sus−1), OΠI

SO
= O(u),

OΠII
SO

= O(sus−1) and the right hand side of (21) is a single unipotent rational

class in O2n. (Since, as we noticed before, ξ = η, these classes have the same set of
elementary divisors and hence the same dimension, see [Car93, page 399]. They
are described explicitly in [Car93, § 13.3, Type Dl]).

Let u ∈ SO+
2n(q) ∩ OΠ be such that χΠ(u) 
= 0. Since χΠ(u) = χΠI

SO
(u) +

χΠII
SO
(u), we see that that χΠI

SO
(u) 
= 0 or χΠII

SO
(u) 
= 0. Hence, OΠ = OΠI

SO
∪

OΠII
SO
. �

Since (19) holds for the representations of SO2n(q), we see from Lemma 11 that
it also holds for the representations of O+

2n(q).

Corollary 12. Let Π′
ρξ′,η′ be an irreducible unipotent representation of G′ =

Sp4(q) (resp. G′ = O+
4 (q)) which belongs to the principal series of G′. Let n ≥ 3,

and let (ξ0, η0) := (ξ′, (n− 2) ∪ η′).
Assume that Conjecture 1 holds. Then every representation of G = O+

2n(q)
(resp. G′ = Sp2n(q)) which occurs in the image of Π′ by Howe correspondence for
the dual pair (G′,G) is such that the closure of its unipotent support contains the
closure of the unipotent support of Πξ0.η0

.
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Proof. This follows directly from (12) and from the fact that, for the map

ϑ2,n
1 with n ≥ 3, the underlined orbit in the output set is contained in the closure

of each orbit in that set. �
Recall Alvis-Curtis Duality DG : R(G) → R(G) ([Alv79], [Cur80], [Aub92]),

which is defined for representations of G = GF , when G is connected.
Let Π be an irreducible unipotent representation of O2n := O+

2n(q), as in
Lemma 11. If ΠSO is irreducible, define DO2n

(Π) to be the unique irreducible

representation Π̃ of O2n such that Π̃SO = DSO2n(Π̃SO). If ΠSO = ΠI
SO ⊕ ΠII

SO, let

DO2n
(Π) to be the only irreducible representation Π̃ of O+

2n(q) such that Π̃SO =
DSO2n(Π

I
SO) ⊕DSO2n(Π

II
SO). Then in both cases, DO2n

(Πρξ,η
) = Πρtη,tξ

. In other

words, DO2n
(Πρ) = Πρ⊗sgn, see [Lus84, (6.8.6)]. Hence, OΠ = Oξ,η if and only

if ODO2n
(Π) = Otξ,tη. Also, tensoring with the sign representation of the Weyl

group translates via Springer correspondence to an order reversing involution on
the special unipotent orbits, see [Car93, pages 389, 390]. By combining this with
Corollary 12, (18), (17) and [AKP13, Proposition 5], we deduce the following
theorem.

Theorem 13. Consider the dual pair (G′ = Sp4(q),G = O+
2n(q)) with n ≥ 4.

(This is a dual pair in the stable range with G′ the smaller member.) Assume that
Conjecture 1 holds.

Let π′ be an irreducible representation of G′ such that DG′(π′) is unipotent and
belongs to the principal series of G′. Then there is a unique irreducible represen-
tation πpref of G such that DG(πpref) corresponds to DG′(π′) via Howe Correspon-
dence for the pair (G′,G) and the unipotent support Oπpref

of πpref contains in its
closure the unipotent support of any irreducible representation π of G such that
DG(π) corresponds to DG′(π′).

Let λ′, λ′ be the partitions describing the rational unipotent class Oπ′ and
Oπpref

, respectively. Then λ is obtained from λ′ by adding a column of length 2N−4
to λ′, as in [AKP13, Theorem 1].

Lusztig has proved in [Lus92, Theorem 11.2], under the assumption that p
is large enough, that the closure of the unipotent support of Π coincides with
the wave front set (as defined by Kawanaka in [Kaw87]) of its dual. Recall that
DGLn(q) maps the unipotent character Rρμ

to the unipotent character Rρtμ
. Hence

Theorem 3 and Theorem 13 imply the following result.

Corollary 14. Let (G′,G) be one of the dual pairs (GLn′(q),GLn(q)) or
(Sp4(q),O

+
2n(q)) with n ≥ 4. In the latter case, we assume that Conjecture 1 holds.

Let Π′ be a unipotent irreducible representation of G′ that belongs to the prin-
cipal series of G′. Then there is a unique irreducible representation Πpref of G such
that Πpref corresponds to Π′ via Howe Correspondence for the pair (G′,G) and the
wave front set of Πpref contains the wave front set of any irreducible representation
Π of G such that Π corresponds to Π′.

Proof. Let (G,G′) = (Sp4(q),O
+
2n(q)). We put π′ := DG′(Π′). Since DG′ is

an involution, we have Π′ = DG′(π′). Then we apply Theorem 13 to the represen-
tation π′, and we set

Πpref := DG(πpref).

From Theorem 13, it follows that Πpref corresponds to Π′ by Howe correspondence,
and that the unipotent support Oπpref

of πpref contains in its closure the unipotent
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support Oπ of any irreducible representation π of G such that DG(π) corresponds
to DG′(π′) = Π′. Setting Π := DG(π), and using the fact that the closure of Oπ

coincides with the wave front set of DG(π) = Π, we get that the wave front set of
Πpref contains the wave front set of any irreducible representation Π of G such that
Π corresponds to Π′.

A similar argument using Theorem 3 instead of 13 gives the result when (G′,G)
is of type II. �
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and Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France

E-mail address: anne-marie.aubert@imj-prg.fr

Faculty of Mathematics, Nicolas Copernicus University, Chopina 12, 87-100 Toruń,
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