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THE CHARACTER CORRESPONDENCE IN THE STABLE RANGE

OVER A P-ADIC FIELD

HUNG YEAN LOKE AND TOMASZ PRZEBINDA

Abstract. Given a real irreducible dual pair there is an integral kernel operator which
maps the distribution character of an irreducible admissible representation of the group
with the smaller or equal rank to an invariant eigendistribution on the group with the
larger or equal rank. If the pair is in the stable range and if the representation is unitary,
then the resulting distribution is the character of the representation obtained via Howe’s
correspondence. This construction was transferred to the p-adic case and a conjecture was
formulated.

In this note we verify a weaker version of this conjecture for dual pairs in the stable range
over a p-adic field.
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1. Introduction.

For a real irreducible dual pair (G,G′) with the rank of G′ less or equal to the rank of G
[Prz00] provides an integral kernel operator Chc which maps the distribution character ΘΠ′

of an irreducible admissible representation Π′ of G̃′ to an invariant eigendistribution Θ′
Π′ on

the group G̃ with the correct infinitesimal character, [BP14]. If the pair is in the stable range
with G′ the smaller member and if the representation is unitary, then Θ′

Π′ = ΘΠ, where Π
is associated to Π′ via Howe’s correspondence, [Prz18]. The acronym Chc stands for the
Cauchy Harish-Chandra integral, because as explained in [Prz00] the construction gives a
direct link from the Cauchy determinantal identity through Harish-Chandra’s theory of the
semisimple orbital integrals to Howe’s correspondence. This construction was transferred to
the p-adic case in [LP21].

In this note we verify a weaker version of the conjecture formulated in [LP21] for dual
pairs in the stable range over a p-adic field. Let Z ′ ⊆ G′ denote the center and let G′◦ ⊆ G′

be the Zariski identity component of G′. Then Z ′G′◦ = G′ unless G′ is an even orthogonal
group.

Theorem 1. Suppose (G,G′) is an irreducible dual of type I in the stable range with G′ - the
smaller member. Then there is a non-empty Zariski open subset G′′ ⊆ G with the following
property.

Let Π′ be any genuine irreducible unitary representation of G̃′ and let Π be the represen-
tation of G̃ corresponding to Π′. Let ΘΠ denote the distribution character of Π. Recall the

distribution Θ′
Π′ on G̃, [LP21, (130)]. Assume that the character ΘΠ′ of the representation

Π′ is supported in Z ′G′◦. Then

ΘΠ(Ψ) = Θ′
Π′(Ψ) (Ψ ∈ Cc(G̃

′′)) .

The proof follows the argument used in [Prz18].

2. The Weil representation.

In this section we recall the Weil representation [Wei64] with the details suitable for
our computations following [AP14]. Fix a non-trivial unitary character χ : F → C× of the
additive group F with the kernel equal to oF, the ring of integers in F. We assume that the
Haar measure of oF is 1.

Let W be a finite dimensional vector space over F with a non-degenerate symplectic form
〈·, ·〉. Fix a lattice L ⊆ W and the corresponding norm

NL(w) = inf{|a|−1 : a ∈ F×, aw ∈ L} (w ∈ W) .

We shall assume that the lattice L is self-dual in the sense that

(〈w,w′〉 ∈ oF for all w′ ∈ L) ⇐⇒ w ∈ L .

For any subspace U ⊆ W we normalize the Haar measure µU on U so that the volume of the
lattice L ∩ U is 1. If V ⊆ U, then we normalized Haar measure µU/V so that the volume of
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the lattice (L ∩U + V)/V is 1. If q is a nondegenerate quadratic form on U, then we set

γ(q) = lim
r→∞

∫

u∈U,|u|<r

χ(
1

2
q(u)) dµU(u) and γWeil(q) =

γ(q)

|γ(q)|
.

Here χ(1
2
q(u)) is a Gaussian and γWeil(q) is the Weil factor of q, with γWeil(q)

8 = 1. In
particular if U = F and L ∩ U = oF we have

γ(a) = lim
r→∞

∫

u∈F,|u|<r

χ(
1

2
au2) du and γWeil(a) =

γ(a)

|γ(a)|
(a ∈ F×) .

The symplectic group Sp(W) ⊆ End(W) is the group of the isometries of the symplectic
form 〈·, ·〉. Define

det (g − 1: W/Ker (g − 1) → (g − 1)W) (o×F )
2 = det(〈(g−1)wi, wj〉1≤i,j≤m)(o

×
F )

2 ∈ F×/(o×F )
2 ,

where w1, . . . , wm are such that

W = Fw1 ⊕ · · · ⊕ Fwm ⊕Ker(g − 1)

and the summands on the right are NL-orthogonal, i.e.

NL(a1w1 + · · ·+ amwm + w) = max{NL(a1w1), . . . , NL(amwm), NL(w)} .

For g, g1, g2 ∈ Sp, let

Θ2(g) = γ(1)2 dim (g−1)W−2
[
γ(det(g − 1: W/Ker(g − 1) → (g − 1)W))

]2

C(g1, g2) =

√∣∣∣∣
Θ2(g1g2)

Θ2(g1)Θ2(g2)

∣∣∣∣ γWeil(qg1,g2),

where

qg1,g2(u
′, u′′) =

1

2
〈(g1 + 1)(g1 − 1)−1u′, u′′〉

+
1

2
〈(g2 + 1)(g2 − 1)−1u′, u′′〉

(u′, u′′ ∈ (g1 − 1)W ∩ (g2 − 1)W) .

The Metaplectic group is defined as

S̃p =
{
g̃ = (g, ξ) ∈ Sp× C, ξ2 = Θ2(g)

}

with the multiplication

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) .

Let W = X⊕ Y be a complete polarization. Set

Op: S∗(X× X) → HomC(S(X),S
∗(X)) , Op(K)v(x) =

∫

X

K(x, x′)v(x′) dµX(x
′).
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Recall the Weyl transform K : S∗(W) → S∗(X× X),

K(f)(x, x′) =

∫

Y

f(x− x′ + y)χ
(
1
2
〈y, x+ x′〉

)
dµY(y)

and an imaginary Gaussian on (g − 1)W

χc(g)(u) = χ
(
1
4
〈(g + 1)(g − 1)−1

︸ ︷︷ ︸
c(g)

u, u〉
)

(u = (g − 1)w, w ∈ W) .

Let

ρ = Op ◦ K : S∗(W) → HomC(S(X),S
∗(X)) . (1)

For g̃ = (g, ξ) ∈ S̃p, we define

Θ(g̃) = ξ, T (g̃) = Θ(g̃)χc(g)µ(g−1)W, ω(g̃) = ρ ◦ T (g̃) .

One could deduce from Lemma 5.11 in [AP14] that (ω,S(X)) is a representation of S̃p(W).
In addition by Theorem 5.26 in [AP14] (ω,L2(X)) is the Schrödinger model of the Weil

representation of S̃p(W) attached to the character χ. Furthermore, the cocycle

C(g1, g2) =
Θ(g̃1g̃2)

Θ(g̃1)Θ(g̃2)
(g̃1, g̃2 ∈ S̃p(W)) .

It turns out that Θ is the distribution character of ω. We shall refer to T (g̃) as a normalized
Gaussian. For future reference we notice that

trω(g̃)ρ(φ) = T (g̃)(φ) (φ ∈ S(W)) . (2)

Indeed, in terms of generalized functions, the left hand side is equal to

tr ρ(T (g̃))ρ(φ) =

∫

X

∫

X

K(T (g̃))(x, x′)K(φ)(x′, x) dx dx′

which is equal to the right hand side because of the definition of K and the Fourier inversion
formula.

3. A mixed model of the Weil representation.

For a subset S of Sp(W), we denote its inverse image in S̃p(W) by S̃. For g ∈ Sp(W), we

denote an element of the inverse image of g in S̃p(W) by g̃.
In this section we recall the explicit formulas for ω(g̃) for some particular elements g̃ ∈

S̃p(W). Recall the function

F× ∋ a→ s(a) := |a|F
γ(a)2

γ(1)2
=
γWeil(a)

2

γWeil(1)2
∈ C× .

This is a unitary character of F×/(F×)2.
For a subset M ⊆ End(W) let Mc = {m ∈ M : det(m− 1) 6= 0} denote the domain of the

Cayley transform in M.
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Proposition 2. Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and Y.
Set

det
−1/2
X

(m̃) = Θ(m̃)| det(
1

2
(c(m|X) + 1))|−1 (m̃ ∈ M̃c).

Then (
det

−1/2
X

(m̃)
)2

= s(det(m|X))
−1| det(m|X)|

−1 (m̃ ∈ M̃c) ,

the function det
−1/2
X

: M̃c → C× extends to a continuous group homomorphism

det
−1/2
X

: M̃ → C×.

For m̃ ∈ M̃ and v ∈ S(X), we have ω(m̃)v ∈ S(X). It is given by

ω(m̃)v(x) = det
−1/2
X

(m̃)v(m−1x) (x ∈ X).

Suppose W = W1 ⊕W2 is the direct orthogonal sum of two symplectic spaces. There are
inclusions

Sp(W1) ⊆ Sp(W), Sp(W2) ⊆ Sp(W) (3)

defined by

g1(w1 + w2) = g1w1 + w2

g2(w1 + w2) = w1 + g2w2 (gj ∈ Sp(Wj), wj ∈ Wj, j = 1, 2) .

Furthermore, the map

Sp(W1)× Sp(W2) ∋ (g1, g2) → g1g2 ∈ Sp(W) (4)

is an injective group homomorphism.

Assume that L∩W1⊕L∩W2 = L. Then we have two metaplectic groups S̃p(Wj), j = 1, 2.

(Here S̃p(Wj) is defined using the same Θ2.) It is not difficult to see that the embeddings
(3) lift to the embeddings

S̃p(W1) ⊆ S̃p(W), S̃p(W2) ⊆ S̃p(W).

It follows easily from the formula for the cocycle that

C(g1, g2) = 1 (gj ∈ Sp(Wj), j = 1, 2) .

Hence (4) lifts to a group homomorphism

S̃p(W1)× S̃p(W2) ∋ (g̃1, g̃2) → g̃1g̃2 ∈ S̃p(W) ,

with kernel equal to a two-element group. Moreover, in terms of the identification

S(W) = S(W1)⊗ S(W2) ,

we have
T (g̃1g̃2) = T1(g̃1)⊗ T2(g̃2) (g̃j ∈ S̃p(Wj), j = 1, 2) ,

where Tj(g̃1) is the normalized Gaussian for the space Wj , j = 1, 2. Hence,

ω(g̃1g̃2) = ω1(g̃1)⊗ ω2(g̃2) (g̃j ∈ S̃p(Wj), j = 1, 2) ,
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where ωj is the Weil representation of S̃p(Wj) for j = 1, 2.
Suppose from now on that Wj = Xj ⊕ Yj , j = 1, 2, are complete polarizations such that

X = X1 ⊕ X2 and Y = Y1 ⊕ Y2.

Then, in particular, we have the following identifications

S(X) = S(X1)⊗ S(X2) = S(X1,S(X2)). (5)

Corollary 3. Let mj ∈ Sp(Wj) for j = 1, 2. We assume that m1 preserves X1 and Y1. Then
for v1 ∈ S(X1), v2 ∈ S(X2), x1 ∈ X1 and x2 ∈ X2,

(ω(m̃1m̃2)(v1 ⊗ v2)) (x1 + x2) = det
−1/2
X1

(m̃1)v1(m
−1
1 x1)(ω2(m̃2)v2)(x2) .

Thus, in terms of (5),

ω(m̃1m̃2)v(x1) = det
−1/2
X1

(m̃1)ω2(m̃2)v(m
−1
1 x1) (v ∈ S(X1,S(X2)), x1 ∈ X1) .

Proposition 4. Suppose n ∈ Sp(W) acts trivially on Y
⊥
1 (= Y1 + W2). Then for v ∈

S(X1,S(X2)) and x1 ∈ X1,

ω(ñ)v(x1) = ±χc(−n)(2x1)v(x1) .

Proposition 4 is well known. If W2 = 0 then it coincides with [AP14, Proposition 5.28].
The general case may be verified via an argument similar to the one used there.

4. The Cauchy Harish-Chandra integral.

In this section we recall some results and a conjecture in [LP21].

For any Ψ ∈ C∞
c (S̃p(W)) the distribution

T (Ψ) =

∫

S̃p(W)

Ψ(g)T (g) dg ∈ S∗(W)

is a function that belongs to S(W) (times the measure dw) and the formula

Chc(Ψ) =

∫

W

T (Ψ)(w) dw

defines a distribution of S̃p(W).

Let D be a division F-algebra, with a possibly trivial involution σ fixing F pointwise. From
now on, all D-modules are right D-modules unless otherwise stated. For two D-modules V1
and V2, HomD(V1, V2) denotes the set of right D-module homomorphisms.

Let ǫ = ±1. Let V and V
′ be free D-modules of finite rank. Let (·, ·) be a non-degenerate

ǫ-hermitian form on V and let (·, ·)′ be a nondegenerate (−ǫ)-hermitian form on V
′. We set

G = {g ∈ EndD(V) : (gu, gv) = (u, v) for all u, v ∈ V} and (6)

G′ = {g′ ∈ EndD(V
′) : (g′u′, g′v′)′ = (u′, v′)′ for all u′, v′ ∈ V

′}.
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Then G · G′ ⊆ Sp(W) is an irreducible dual pair. Let H′ ⊆ G′ be a Cartan subgroup with
the split part A′ ⊆ H′. Let A′′ denote the centralizer of A′ in Sp(W ). It is shown in [LP21]
that (A′′,A′) is a dual pair. We prove the following lemma in [LP21, Section 4].

Lemma 5. For any Ψ ∈ C∞
c (Ã′′c), the distribution

T (Ψ) =

∫

Ã′′c

Ψ(g̃)T (g̃) dg̃ ∈ S∗(W) (7)

is a function on W. The formula

Chc(Ψ) =

∫

A′\WA′

T (Ψ)(w) d(A′w) (Ψ ∈ C∞
c (Ã′′c)) (8)

defines a distribution on Ã′′c which coincides with a complex valued measure. This measure

extends by zero to Ã′′ and defines a distribution Chc on Ã′′.

Let h̃′ ∈ H̃′
reg

. We define an embedding ι : G̃ → Ã′′ by ι(g) = gh′. The pullback of the

distribution Chc via ι to G̃ is well-defined. We will denote this pullback distribution on G̃
by Chch̃′ .

Let Π′ be an irreducible admissible representation of G̃′ which occurs in Howe’s corre-

spondence for the pair (G̃, G̃′) and let Π1 be the corresponding maximal Howe’s quotient

representation of G̃. Let ΘΠ′ denote the distribution character of Π′. We state the following
conjecture in [LP21, Section 5].

Conjecture 1. For Ψ ∈ Cc(G̃), we set

Θ′
Π′(Ψ) = CΠ′

∑

H′

1

|W (H′)|

∫

H′reg

Θ̌Π′(h̃′)|∆(h′)|2
1

volume(A′\H′)
Chch̃′(Ψ) dh̃′ , (9)

where Θ̌Π′(h̃′) = ΘΠ′(h̃′−1), ∆(h′) is the Weyl denominator and

CΠ′ = (the central character of Π′ evaluated at −̃1)−1 ·Θ(−̃1) .

Then Θ′
Π′ is a distribution on G̃. Moreover

Θ′
Π′ = ΘΠ1 . (10)

as distributions.

Our goal in this paper is to prove the above conjecture when (G,G′) is in stable range
where G′ is the smaller member.

5. The p-adic method of stationary phase.

In this section we recall [Hei85, Proposition 1.1], or rather more numerically explicit [LP21,
Lemma A.14], in a coordinate free formulation. Let Z be a finite dimensional vector space
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over F with a norm | · | and let Z
∗ be the dual vector space with the corresponding norm

denoted by the same symbol

|z∗| = max
z∈Z , |z|=1

|z∗(z)| (z∗ ∈ Z
∗) .

Lemma 6. [Hör83, Theorem 7.7.1], [Hei85, Proposition 1.1] Let U ⊆ Z be an open compact
subset and let f : U → F be a differentiable function such that

f(z0 + z) = f(z0) + f ′(z0)(z) +R(z0, z)(z)(z) (z0, z0 + z ∈ U) , (11)

where f ′(x0) ∈ Z
∗ is the derivative of f at z0 and R(z0, z) ∈ Hom(Z,Z∗) is a linear function

with
M := max

z0,z0+z∈U,|y|=1
|R(z0, z)(y)(y)| <∞ . (12)

We also assume that
δ := min

z0∈U
|f ′(z0)| > 0 . (13)

Denote by Br ⊆ Z the closed ball centered at 0, with radius r. Let φ ∈ S(U) and let m0 ∈ Z

be the minimum of the m ∈ Z such that there is a finite disjointed covering

U =
⊔

k

(zk +Bq−m) (14)

and φ is constant on each zk +Bq−m. (The covering exists because φ is locally constant and
U is open and compact.) Then

∫

U

χ(λf(z))φ(z) dx = 0 (λ ∈ F× , |λ| > max{qδ−2M, δ−1qm0}) . (15)

6. The restriction of the Weil representation to the dual pair.

Let D be a division F-algebra, with a possibly trivial involution σ fixing F pointwise. We
recall the right D-modules V, V′ and the irreducible dual pair (G,G′) in (6). We suppose
(G,G′) is in stable range where G′ is the smaller member.

The stable range assumption means that there is an isotropic subspace X(1) ⊆ V such that
dimV

′ ≤ dimX(1). We select an isotropic subspace Y(1) ⊆ V, complementary to X
⊥
(1). Let

V(2) ⊆ V be the orthogonal complement of X(1) ⊕ Y(1), so that V = X(1) ⊕ V(2) ⊕ Y(1).
The symplectic space may be realized as W = HomD(V,V

′) with

〈w′, w〉 = trD/F(w
∗w′), (16)

where w∗ ∈ HomD(V
′,V) is defined by (wv, v′)′ = (v, w∗v′), with v ∈ V and v′ ∈ V

′. The
group G′ acts on W by the post-multiplication and the group G by the pre-multiplication
by the inverse. Set

X1 = HomD(X(1),V
′), Y1 = HomD(Y(1),V

′) and W2 = HomD(V(2),V
′).

Then Y1 and X
⊥
1 are complementary subspaces of W. With respect to the symplectic

form (16), W2 is the orthogonal complement of W1 = X1 + Y1. We shall work in the

8



mixed model of the Weil representation adapted to the decomposition W = X1 ⊕W2 ⊕ Y1,
as explained in the Section 3.

Denote by iY1 : Y1 → X1 ⊕ W2 ⊕ Y1 the injection and by pX1 : X1 ⊕ W2 ⊕ Y1 → X1 the
projection. In particular, for z ∈ sp(W), we have a linear map pX1ziY1 : Y1 → X1. If z ∈ g

then the above map is bijective if and only if the map pX(1)
ziY(1)

: Y(1) → X(1) is bijective,
where iY(1)

: Y(1) → X(1) ⊕ V2 ⊕ Y(1) the injection and by pX(1)
: X(1) ⊕ V2 ⊕ Y(1) → X(1) the

projection. There is one case when there is no z ∈ g, such that pX(1)
ziY(1)

is bijective. This

happens if G is an orthogonal group (i.e. the involution σ is trivial and the form (·, ·) is
symmetric) and the dimension of X(1) is odd. By the stable range assumption dimX(1) ≥
dimV

′. Hence we may choose X(1) with dimX(1) = dimV
′, which is even. Thus the set of

elements z ∈ g such that the map pX1ziY1 : Y1 → X1 is bijective, or equivalently the form
qz,Y1(y, y

′) = 1
2
〈zy, y′〉 is non-degenerate on Y1, is not empty. We shall fix such a choice,

where pX1ziY1 : Y1 → X1 is bijective, for the rest of this article.
(By the way notice that up to this point, we need stable range if G is an orthogonal group

and dimX(1) is odd. Then we change X(1) such that dimX(1) = dimV
′ is even. For other

groups G, X(1) is arbitrary and there is no need for stable range. Of course we need stable
range for other reasons later.)

The complete polarization W1 = X1 ⊕ Y1 leads to the Weyl transform K1 : S
∗(W1) →

S∗(X1 × X1). Hence K1 ⊗ 1: S∗(W) → S∗(X1 × X1 ×W2). In order to shorten the notation
we shall write K1 for K1 ⊗ 1. Explicitly

K1(f)(x, x
′, w2) =

∫

Y1

f(x−x′+y+w2)χ
(1
2
〈y, x+x′〉

)
dy (f ∈ S(W), x, x′ ∈ X1, w2 ∈ W2) .

(This is a function on X1 × X1 ×W2.) For z ∈ End(W), we define χz(w) = χ(1
4
〈zw, w〉) for

w ∈ W.

Lemma 7. Let z ∈ gc be such that pX1ziY1 is invertible, with the inverse

(pX1ziY1)
−1 : X1 → Y1 .

Then for x, x′ ∈ X1 and w2 ∈ W2 we have

K1(T (c̃(z)))(x, x
′, w2) = Θ(c̃(z))γ(qz,Y1) (17)

χz(x− x′)χ(pX1ziY1 )
−1(x+ x′ − pX1(z(x − x′) + zw2))

χ(
1

2
〈zw2, x− x′〉)χz(w2) .

Let h ∈ G be the element that acts via multiplication by −1 on W1 and by the identity on
W2. Suppose that in addition det(hc(z)− 1) 6= 0 and let zh = c(hc(z)). Then

K1(T (c̃(zh)))(x, x
′, w2) = det

−1/2
X1

(h̃)K1(T (c̃(z)))(x,−x
′, w2) .

Equivalently,

K1(T (c̃(z)))(x, x
′, w2) = det

1/2
X1

(h̃)K1(T (c̃(zh)))(x,−x
′, w2) .

9



(Here h̃ is one of the two elements in the preimage of h chosen so that the right hand side
is equal to the left hand side.)

Proof. This is verified by the argument used to prove Proposition 5.29 in [AP14] applied to
an element g1 ∈ Sp(W1) such that g1 acts trivially on X1 and W1/X1 and the restriction of
c(−g1) to Y1 is equal to pX1ziY1 . �

Here is a technical lemma, analogous to [DP96, Lemma 4.3]. Recall that for a test function

Ψ ∈ C∞
c (G̃)

T (Ψ) =

∫

G̃

Ψ(g)T (g) dg

is a well defined distribution on W. Hence K1(T (Ψ)) is a tempered distribution on X1 ×
X1 ×W2. Fix a norm | · | on the F vector space End(V), see [Wei73, Definition 1, chapter II,
paragraph 1]. We may assume that

|z1z2| ≤ |z1||z2| (z1, z2 ∈ End(V)) . (18)

Given x ∈ X1 = HomD(X(1),V
′), we extend x trivially over Y(1) ⊕ V(2) so x ∈ HomD(V,V

′).
In particular we have x∗ ∈ HomD(V

′,V).

Lemma 8. There is a Zariski open subset G′′ ⊆ G such that for Ψ ∈ C∞
c (G̃′′) the distribution

K1(T (Ψ)) is a locally constant function on X1 ×X1 ×W2. Moreover, there is a constants CΨ

such that

K1(T (Ψ))(x, x′, w2) = 0 if (19)

|x∗x|+ |x′∗x′|+ |x∗x′|+ |x′∗x|+ |x∗w2|+ |x′∗w2|+ |w∗
2w2| > CΨ .

Proof. The function (17) is equal to the locally constant function Θ(c̃(z))γ(qz,Y1) 6= 0, times
χ(1

4
φx,x′,w2(z)), where

φx,x′,w2(z) = 〈z(x− x′), x− x′〉

+ 〈(pX1ziY1)
−1(x+ x′ − pX1(z(x − x′) + zw2)), x+ x′ − pX1(z(x − x′) + zw2)〉

+ 2〈zw2, x− x′〉+ 〈zw2, w2〉 .

In order to simplify the computations we introduce the following notation

A(z) = pX(1)
ziX(1)

, B(z) = pX(1)
ziY(1)

, C(z) = pY(1)
ziX(1)

, F (z) = C(z)−1,

D(z) = pV(2)
ziY(1)

, E(z) = pV(2)
ziX(1)

, z2 = pV(2)
ziV(2)

,

where

iX(1)
: X(1) → X(1)⊕V(2)⊕Y(1) , iY(1)

: X(1) → X(1)⊕V(2)⊕Y(1) , iV(1)
: X(1) → X(1)⊕V(2)⊕Y(1)

are the injections defined by the direct sum decomposition of V and

pX(1)
: X(1) → X(1)⊕V(2)⊕Y(1) , pY(1)

: X(1) → X(1)⊕V(2)⊕Y(1) , pV(1)
: X(1) → X(1)⊕V(2)⊕Y(1)
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are the corresponding projections. Set

g
′′ = {z ∈ g; (z − 1) , A(z) , C(z) , (zh − 1) , A(zh) , C(zh) , are invertible ,

E(z) 6= 0 , and E(zh) 6= 0} . (20)

This is non-empty Zariski open subset of g. From now on we shall assume that z ∈ U =
supp φ ⊆ g′′ and let m0 ∈ Z be the minimum of the m ∈ Z such that (14) holds. We shall
impose some more conditions on g′′ below.

By using the explicit description of the symplectic form, (16), and remembering that the
Lie algebra g acts on W via minus the right multiplication, we can view the A = A(z),
B = B(z), ..., F = F (z) as elements of End(V), so that (up to a fixed positive constant
multiple relating to trD/F and the symplectic form 〈·, ·〉)

−φx,x′,w2(z) = trD/F

(
(x− x′)∗(x− x′)B (21)

+ (x+ x′ + (x− x′)A+ w2E)
∗(x+ x′ + (x− x′)A+ w2E)F

+ 2(x− x′)∗w2D + w∗
2w2z2

)
.

The derivative (i.e. the linear part) of −φx,x′,w2(z), at z, viewed as a function of the variables
A, B, F , D, E, z2 is given by

−φ′
x,x′,w2

(z)(∆A,∆B,∆F ,∆D,∆E ,∆z2)

= trD/R

(
(x− x′)∗(x− x′)∆B

+ ((x− x′)∆A)
∗(x+ x′ + (x− x′)A+ w2E)F

+ (x+ x′ + (x− x′)A + w2E)
∗(x− x′)∆AF

+ (w2∆E)
∗(x+ x′ + (x− x′)A+ w2E)F + (x+ x′ + (x− x′)A+ w2E)

∗w2∆EF

+ (x+ x′ + (x− x′)A + w2E)
∗(x+ x′ + (x− x′)A + w2E)∆F

+ 2(x− x′)∗w2∆D + w∗
2w2∆z2

)
.

Notice that ∆AF = F (Ad(F−1)∆A). Also, by the structure of the Lie algebra g, the variables
∆A,∆B,∆F ,∆D,∆E,∆z2 are independent and fill out the corresponding vector spaces. The
norm |φ′

x,x′,w2
(z)| of the functional φ′

x,x′,w2
(z), see [Wei73, Corollary 3, chapter II, paragraph

1] can be estimated from below by taking ∆E = 0 and ∆F = 0. Furthermore, all norms on
a finite dimensional vector space are equivalent. Hence, with the appropriate choice of the
norm | · | on EndD(V),

|φ′
x,x′,w2

(z)| ≥ |(x− x′)∗(x− x′)| (22)

+ |(x− x′)∗(x+ x′ + (x− x′)A+ w2E)F |

+ |(x+ x′ + (x− x′)A+ w2E)
∗(x− x′)F Ad(F−1)|

+ 2|(x− x′)∗w2|+ |w∗
2w2| .
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Using the inequality |ab| ≥ |a||b−1|−1, which follows from (18), and the fact that |a∗| = |a|
we see that

|(x− x′)∗(x− x′)| ≥ |(x− x′)∗(x− x′)A||A|−1 ,

|(x− x′)∗(x+ x′ + (x− x′)A+ w2E)F | ≥ |(x− x′)∗(x+ x′ + (x− x′)A+ w2E)||F
−1|−1 ,

|(x+ x′ + (x− x′)A+ w2E)
∗(x− x′)F Ad(F−1)|

≥ |(x− x′)∗(x+ x′ + (x− x′)A + w2E)|Ad(F )F
−1|−1 ,

|(x− x′)∗w2| ≥ |(x− x′)∗w2E||E|
−1 .

Hence,

|φ′
x,x′,w2

(z)| ≥ C0(z)
(
|(x− x′)∗(x− x′)|+ |(x− x′)∗(x− x′)A|+

|(x− x′)∗(x+ x′ + (x− x′)A+ w2E)|+ |(x− x′)∗w2E|+ |(x− x′)∗w2|+ |w∗
2w2|

)
,

where

C0(z) = min(
1

2
, C00(z)) , C00(z) = min(

1

2
|A|−1, |C|−1 + |Ad(F )C|−1, |E|−1) .

Using the triangle inequality |a|+ |b| ≥ |a± b| we see that

|(x− x′)∗(x− x′)A|+ |(x− x′)∗(x+ x′ + (x− x′)A+ w2E)|+ |(x− x′)∗w2E|

≥ | − (x− x′)∗(x− x′)A+ (x− x′)∗(x+ x′ + (x− x′)A+ w2E)− (x− x′)∗w2E|

= |(x− x′)∗(x+ x′)|.

So,

|φ′
x,x′,w2

(z)| ≥ C0(z)
(
|(x− x′)∗(x− x′)|+ |(x− x′)∗(x+ x′)|+ |(x− x′)∗w2|+ |w∗

2w2|
)
.

Our computation applied to zh shows that

|φ′
x,x′,w2

(zh)| ≥ C0(zh)(|(x− x′)∗(x− x′)|+ |(x− x′)∗(x+ x′)|+ |(x− x′)∗w2|+ |w∗
2w2|) .

Recall that Lemma 7 provides another expression for the function we would like to estimate,
in terms φ′

x,−x′,w2
(zh). Indeed,

K1(T (c̃(z)))(x, x
′, w2) = det

1/2
X1

(h̃)K1(T (c̃(zh)))(x,−x
′, w2)

and as we have seen previously,

|φ′
x,−x′,w2

(zh)| ≥ C0(zh)(|(x+ x′)∗(x+ x′)|+ |(x+ x′)∗(x− x′)|+ |(x+ x′)∗w2|+ |w∗
2w2|) .
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By the triangle inequality,

|(x− x′)∗(x− x′)|+ |(x− x′)∗(x+ x′)| ≥ |(x− x′)∗2x| = |(x− x′)∗x| ,

|(x− x′)∗(x′ − x)|+ |(x− x′)∗(x+ x′)| ≥ |(x− x′)∗2x′| = |(x− x′)∗x′| ,

|(x+ x′)∗(x+ x′)|+ |(x+ x′)∗(x− x′)| ≥ |(x+ x′)∗x| ,

|(x+ x′)∗(x+ x′)|+ |(x+ x′)∗(x− x′)| ≥ |(x+ x′)∗x′| ,

|(x− x′)∗x|+ |(x+ x′)∗x| ≥ |x∗x| ,

|(−x+ x′)∗x|+ |(x+ x′)∗x| ≥ |x′∗x′| ,

|(x− x′)∗x′|+ |(x+ x′)∗x′| ≥ |x∗x′| ,

|(−x+ x′)∗x|+ |(x+ x′)∗x| ≥ |x′∗x| .

Therefore

|(x− x′)∗(x− x′)|+ |(x− x′)∗(x+ x′)|+ |(x+ x′)∗(x+ x′)|+ |(x− x′)∗(x+ x′)|

≥ max{|x∗x|, |x′∗x′|, |x′∗x|, |x∗x′∗|} ≥
1

4
(|x∗x|+ |x′∗x′|+ |x′∗x|+ |x∗x′∗|) .

Furthermore,

|(x− x′)∗w2|+ |(x+ x′)∗w2| ≥ |x∗w2| , |(x′ − x)∗w2|+ |(x+ x′)∗w2| ≥ |x′∗w2| .

Hence,

min
z∈U

|φ′
x,x′,w2

(z)| +min
z∈U

|φ′
x,−x′,w2

(zh)| ≥ min(min
z∈U

C0(z),min
z∈U

C0(zh))
1

4
m(x, x′, w2) , (23)

where

m(x, x′, w2) = |x∗x|+ |x′∗x′|+ |x∗x′|+ |x′∗x| + |x∗w2|+ |x′∗w2|+ |w∗
2w2| .

Therefore,

max(min
z∈U

|φ′
x,x′,w2

(z)|,min
z∈U

|φ′
x,−x′,w2

(zh)|) ≥
1

8
min(min

z∈U
C0(z),min

z∈U
C0(zh))m(x, x′, w2) .

We shrink g′′ by imposing the additional condition that both C0(z) and C0(zh) are finite and
let

G′′ = c(g′′) ⊆ G . (24)

With the notation of (21) let f(z) = −φx,x′,w2(z). Let x− = x − x′, x+ = x + x′. Then a
straightforward computation shows that for z0, z, z0 + z ∈ g′′

f(z0 + z) = f(z0) + f ′(z0)(z) +R(z0, z)(z)(z) ,
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where

R(z0, z)(z)(z) = trD/F
(
A∗x∗−(x+ + x−A0 + w2E0)F + E∗w∗

2(x+ + x−A0 + w2E0)F

+ (x+ + x−A0 + w2E0)
∗x−AF + (x+ + x−A0 + w2E0)

∗w2EF

+ A∗x∗−x−AF0 + A∗x∗−w2EF0 + E∗w∗
2x−AF0 + E∗w∗

2w2EF0

+ A∗x∗−x−AF + A∗x∗−w2EF + E∗w∗
2x−AF + E∗w∗

2w2EF
)
,

where the subscript 0 indicates that the corresponding element comes from z0. In order to
view this function as in Lemma 6 we set

R(z0, z)(y)(y) = trD/F
(
A∗

yx
∗
−(x+ + x−A0 + w2E0)Fy + E∗

yw
∗
2(x+ + x−A0 + w2E0)Fy

+ (x+ + x−A0 + w2E0)
∗x−AyFy + (x+ + x−A0 + w2E0)

∗w2EyFy

+ A∗
yx

∗
−x−AyF0 + A∗

yx
∗
−w2EyF0 + E∗

yw
∗
2x−AyF0 + E∗

yw
∗
2w2EyF0

+ A∗x∗−x−AyFy + A∗x∗−w2EyFy + E∗w∗
2x−AyFy + E∗w∗

2w2EyFy

)
,

where the subscript y indicates that the corresponding element comes from y. Since x∗−x+ =
x∗x + x∗x′ − x′∗x − x′∗x′, x∗−x− = ..., it is clear that there is a constant k(z0, z) depending
continuously on (z0, z) such that

max
|y|=1

|R(z0, z)(y)(y)| ≤ k(z0, z)m(x, x′, w2) ,

where m(x, x′, w2) is the function defined in (23). Hence there is a constant CU such that

CUm(x, x′, w2) ≥ max
z0,z0+z∈U

max
|y|=1

|R(z0, z)(y)(y)| . (25)

Similar analysis applies to f(z) = φx,−x′,w2(zh) with the resulting function Rh(z0z) so that
with the appropriately adjusted constant CU

CUm(x, x′, w2) ≥ max
z0,z0+z∈U

max
|y|=1

|Rh(z0, z)(y)(y)| .

Let CΨ be large enough to that for m(x, x′, w2) > CΨ

m(x, x′, w2) > (qCUm(x, x′, w2))
1
2

and

m(x, x′, w2) > qm0 ,

where m0 is given in Lemma 5. Then

max(min
z∈U

|φ′
x,x′,w2

(z)|,min
z∈U

|φ′
x,−x′,w2

(zh)|)

≥ max

(
max

z0,z0+z∈U
max
|y|=1

|R(z0, z)(y)(y)|, max
z0,z0+z∈U

max
|y|=1

|Rh(z0, z)(y)(y)|, q
m0

)
.

Therefore

min
z∈U

|φ′
x,x′,w2

(z)| ≥ max

(
max

z0,z0+z∈U
max
|y|=1

|R(z0, z)(y)(y)|, q
m0

)
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or

min
z∈U

|φ′
x,x′,w2

(zh)| ≥ max

(
max

z0,z0+z∈U
max
|y|=1

|Rh(z0, z)(y)(y)|, q
m0

)
.

Let φ(z) = Ψ(c̃(z))Θ(c̃(z))γ(qz,Y1). By Lemma 6, the first condition implies that
∫

U

φ(z)χ(φx,x′,w2(z)) dz = 0

and the second condition that ∫

U

φ(z)χ(φx,−x′,w2(zh)) dz = 0.

But Lemma 7 shows that one expression is a non-zero multiple of the other and the first one
is equal to K1(T (Ψ))(x, x′, w2). Hence, (19) follows. �

As an immediate consequence of Corollary 3 and Proposition 4 we deduce the following
lemma.

Lemma 9. Let Z ⊆ G be the subgroup that acts trivially on Y
⊥
1 . Then for ñ ∈ Z̃, v ∈

S(X1,S(X2)), x1 ∈ X1 and g̃′ ∈ G̃′,

ω(ñ)v(x1) = ±χc(−n)(2x1)v(x1) , (26)

and

ω(g̃′)v(x1) = det
−1/2
X1

(g̃′)ω2(g̃
′)v(g′−1x1) . (27)

7. The functions Ψ ∈ C∞
c (G̃′′) act on HΠ via integral kernel operators.

Given the polarization W2 = X2 ⊕ Y2 we have the map

ρ2 : S
∗(W2) → HomC(S(X2),S

∗(X2))

as in (1). Then

1⊗ ρ2 : S
∗(X1 × X1 ×W2) → S∗(X1 × X1)⊗HomC(S(X2),S

∗(X2)) .

In order to shorten the notation we shall write ρ2 for 1⊗ ρ2 and

K1(T (g̃))(x, x
′) = K1(T (g̃))(x, x

′, ·) (x, x′ ∈ X1) .

In these terms

ω(g̃)v(x) =

∫

X1

ρ2(K1(T (g̃))(x, x
′))(v(x′)) d

.
x
′

(g̃ ∈ G̃, v ∈ S(X1,S(X2)); x, x
′ ∈ X1) , (28)

i.e. ω(g̃)v is a function taking x ∈ X1 to S(X2). Let X
max
1 ⊆ X1 = HomD(X(1),V

′) be the
subset of the surjective maps. The stable range assumption implies that this is a dense

subset. Let Ψ ∈ C∞
c (G̃′′) as in Lemma 8. For fixed x, x′ ∈ X

max
1 the operator norm of

ρ2(K1(T (Ψ))(x, x′) ∈ HomC(L
2(X2),L

2(X2)) (29)
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is bounded by the Hilbert-Schmidt norm, which is finite. Indeed, Lemma 8 shows that

K1(T (Ψ))(x, x′, w2)

is a compactly supported function of x∗w2 and hence of w2, because x
∗ is an injective map

from V
′ to X1. Therefore

K1(T (Ψ))(x, x′, ·) ∈ L2(W2) ,

which means that the Hilbert-Schmidt norm of (29) is finite.
In general, we denote by σc the representation contragredient to σ and by Hσ a Hilbert

space where σ is realized.
The group G′ acts on X

max
1 , via the left multiplication, so that the quotient G′\Xmax

1 is
a manifold. If dx is a Lebesgue measure on X1, we shall denote by d

.
x the corresponding

quotient measure on G′\Xmax
1 . Let U be the Hilbert space of functions u : Xmax

1 → L2(X2)⊗

HΠ′c such that for all g̃′ ∈ G̃′

u(g′x) = (ω2 ⊗ det
−1/2
X1

Π′c)(g̃′)u(x) and

∫

G′\Xmax

1

‖ u(x) ‖2 d
.
x <∞ , (30)

where det
−1/2
X1

is as in (27).

Lemma 10. The representation Π is realized on the Hilbert space U define in (30). For

Ψ ∈ C∞
c (G̃′′), the operator Π(Ψ) is given in terms of an integral kernel defined on X

max
1 ×X

max
1

as follows

(Π(Ψ)u)(x) =

∫

G′\Xmax

1

KΠ(Ψ)(x, x′)u(x′) d
.
x
′

(u ∈ HΠ) ,

where

KΠ(Ψ)(x, x′) =

∫

G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′, ·))⊗ det
−1/2
X1

(g̃)Π′c(g̃) dg . (31)

Furthermore,

trKΠ(Ψ)(x, x′) (32)

=

∫

G′

∫

W2

T2(g̃)(w2)K1(T (Ψ))(g−1x, x′, w2) det
−1/2
X1

(g̃)ΘΠ′c(g̃) dw2 dg ,

where
∫
W2
T2(g̃)(w2)φ(w2) dw2 stands for T2(g̃)(φ).

Proof. We proceed as in [DP96, Proposition 4.8]. Define a map

Q : S(X1,S(X2))⊗HΠ′c → U

by

Q(v ⊗ η)(x) =

∫

G′

(ω ⊗Π′c)(g̃)(v(x)⊗ η) dg (x ∈ X
max
1 ). (33)
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Then (27) shows that

Q(v ⊗ η)(x) =

∫

G′

ω2(g̃)(v(g
−1x))⊗ det

−1/2
X1

(g̃)Π′c(g̃)η dg .

This last integral converges because |g−1x| is a constant multiple of the norm of g, as defined
in [Wal88, 2.A.2.4]. (The constant depends on x, which is fixed.) The argument used in the

proof of Lemma 3.11 in [DP96] shows that the range of Q is dense in U . The action of g̃ ∈ G̃

on U is defined via the the action of ω(g̃) on the v. We denote π(g̃) = det
−1/2
X1

(g̃)Π′c(g̃) and
have

Q(ω(Ψ)v ⊗ η)(x)

=

∫

G′

ω2(g̃)((ω(Ψ)v)(g−1x))⊗ π(g̃)η dg

=

∫

G′

∫

Xmax

1

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′))(v(x′))⊗ π(g̃)η dx′ dg (By (28).)

=

∫

Xmax

1

∫

G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′))(v(x′))⊗ π(g̃)η dg dx′

=

∫

G′\Xmax

1

∫

G′

∫

G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, h−1x′))(v(h−1x′))⊗ π(g̃)η dg dh d
.
x
′

=

∫

G′\Xmax

1

∫

G′

∫

G′

ω2(g̃h̃)ρ2(K1(T (Ψ))(h−1g−1x, h−1x′))(v(h−1x′))⊗ π(g̃h̃)η dg dh d
.
x
′

=

∫

G′\Xmax

1

∫

G′

∫

G′

ω2(g̃h̃)ω2(h̃)
−1ρ2(K1(T (Ψ))(g−1x, x′))(ω2(h̃)v(h

−1x′))⊗ π(g̃h̃)η dg dh d
.
x
′

=

∫

G′\Xmax

1

(∫

G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′))⊗ π(g̃) dg

)
Q(v ⊗ η)(x′) d

.
x
′
,

where by Lemma 8 all the integrals are convergent. This verifies (31).
Furthermore, the usual argument shows that K1(T (Ψ))(g−1x, x′, w2) is a differentiable

function of g and w2 so that the method of stationary phase applies to ensure the convergence
of the integrals below,

trKΠ(Ψ)(x, x′) = tr

∫

G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′, ·)⊗ det
−1/2
X1

(g̃)Π′c(g̃) dg (34)

=

∫

G′

∫

W2

T2(g̃)(w2)(K1(T (Ψ))(g−1x, x′, w2) det
−1/2
X1

(g̃)ΘΠ′c(g̃) dg dw2 .

Therefore (32) follows from (31).
Here is an explanation of the second equality in (34). If W2 = 0 then K1 = K,

K1(T (Ψ))(g−1x, x′, ·) = K1(T (Ψ))(g−1x, x′) is a scalar C∞
c function of g. Therefore, by
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Harish-Chandra

trKΠ(Ψ)(x, x′) = tr

∫

G′

K(T (Ψ))(g−1x, x′) det
−1/2
X

(g̃)Π′c(g̃) dg

=

∫

G′

K(T (Ψ))(g−1x, x′) det
−1/2
X

(g̃)ΘΠ′c(g̃) dg .

Suppose W2 6= 0. Then

tr

∫

G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′, ·)⊗ det
−1/2
X1

(g̃)Π′c(g̃) dg

= tr

∫

G′

tr(ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′, ·)) det
−1/2
X1

(g̃)Π′c(g̃) dg

= tr

∫

G′

∫

W2

T2(g̃)(w2)K1(T (Ψ))(g−1x, x′, w2) dw2 det
−1/2
X1

(g̃)Π′c(g̃) dg ,

where the last equality follows from (2). This coincides with the last expression in (34). �

8. The equality ΘΠ = Θ′
Π′ on a non-empty Zariski open subset of G̃′′ ⊆ G̃.

For φ, ψ ∈ S(W2), we set

φ♮ψ(w′) =

∫

W2

φ(w)ψ(w′ − w)χ(
1

2
〈w,w′〉)dw.

Assume that the union of the conjugacy classes of Cartan subgroups in G′ is dense in G′. Here

the subset G′′ ⊆ G was defined in (24). Fix a test function Ψ ∈ C∞
c (G̃′′). Lemma 8 implies

that all the consecutive integrals in the following computation are absolutely convergent:

ΘΠ(Ψ) = trΠ(Ψ) =

∫

G′\Xmax

1

trKΠ(Ψ)(x, x) d
.
x (By Lemma 10.)

=

∫

G′\Xmax

1

trKΠ(Ψ)(−x,−x) d
.
x

=

∫

G′\Xmax

1

∫

G′

∫

W2

T2(g̃)(w2)K1(T (Ψ))(−g−1x,−x, w2) det
−1/2
X1

(g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)

∫

G′\Xmax

1

∫

G′

∫

W2

T2((−1)̃g̃)(w2)K1(T (Ψ))(g−1x,−x, w2)

det
−1/2
X1

((−1)̃g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)

∫

G′\Xmax

1

∫

G′

(
T2((−1)̃)♮T2(g̃)♮K1(T (Ψ))(g−1x,−x, ·)

)
(0)

det
−1/2
X1

((−1)̃g̃)ΘΠ′(g̃−1) dg d
.
x

18



= χΠ′((−1)̃)Θ2((−1)̃)

∫

G′\Xmax

1

∫

G′

∫

W2

(
T2(g̃)♮K1(T (Ψ))(g−1x,−x, ·)

)
(w2)

det
−1/2
X1

((−1)̃g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)Θ2((−1)̃) det
−1/2
X1

((−1)̃)

∫

G′\Xmax

1

∫

G′

∫

W2

K1(T2(g̃)♮T (Ψ))(g−1x,−x, w2)

det
−1/2
X1

(g̃)ΘΠ′(g̃−1) dw2 dg d
.
x . (35)

Recall that with the appropriate notion of the tensor product we have S(W) = S(W1) ⊗
S(W2). It is easy to check that for φ1, ψ1 ∈ S(W1) and ψ2 ∈ S(W2),

(φ1 ⊗ δ)♮(ψ1 ⊗ ψ2) = (φ1♮ψ1)⊗ ψ2 ,

where the ♮ on the right hand side happens in S(W1). Hence, for x, x
′ ∈ X1 and w2 ∈ W2,

K1((φ1 ⊗ δ)♮(ψ1 ⊗ ψ2))(x, x
′, w2) =

∫

X1

K1(φ1)(x, x
′′)K1(ψ1)(x

′′, x′) dx′′ψ(w2)

=

∫

X1

K1(φ1)(x, x
′′)K1(ψ1 ⊗ ψ2)(x

′′, x′, w2) dx
′′ .

Hence by a linear approximation, for any ψ ∈ S(W),

K1((φ1 ⊗ δ)♮ψ)(x, x′, w2) =

∫

X1

K1(φ1)(x, x
′′)K1(ψ)(x

′′, x′, w2) dx
′′ .

For g ∈ GL(X) we can use φ1 to approximate T1(g̃). Since T1(g̃) is identified with T1(g̃)⊗ δ,
Proposition 2 shows that

K1((T1(g̃))♮ψ)(x, x
′, w2) =

∫

X1

det
−1/2
X1

(g̃)δ(g−1x− x′′)K1(ψ)(x
′′, x′, w2) dx

′′

= det
−1/2
X1

(g̃)K1(ψ)(g
−1x, x′, w2) .

Now we substitute T2(g̃)♮T (Ψ) for ψ and and −x for x′ to see that

K1(T1(g̃)♮T2(g̃)♮T (Ψ))(x,−x, w2) = det
−1/2
X1

(g̃)K1(T2(g̃)♮T (Ψ))(g−1x,−x, w2) .

Since T1(g̃)♮T2(g̃) = T (g̃), (35) is equal to

χΠ′((−1)̃)Θ2((−1)̃) det
−1/2
X1

((−1)̃)

∫

G′\Xmax

1

∫

G′

∫

W2

∫

Y1

T (g̃)♮T (Ψ)(x+ x+ y + w2)

χ(
1

2
〈y, x− x〉)ΘΠ′(g̃−1) dy dw2 dg d

.
x.
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and finally, the change of variable x to 1
2
x gives

= χΠ′((−1)̃)Θ((−1)̃)

∫

G′\Xmax

1

∫

G′

∫

W2

∫

Y1

T (g̃)♮T (Ψ)(x+ y + w2)

ΘΠ′(g̃−1) dy dw2 dg d
.
x , (36)

where the function under the integral is constant on the fibers of the covering map because
we assume that Π′ is genuine. Also, the integral over (G′\Xmax

1 ) × G′ is also absolutely
convergent. For a function f supported in Z ′G′◦, we apply the Weyl - Harish-Chandra
integration formula for G′

∫

G′

f(g′) dg′ =
∑

H′

1

|W (H′)|

∫

H′reg

∫

G′/H′

f(g′h′g′−1) d
.
g
′
|∆(h′)|2 dh′ (37)

(see appendix A) to the integral over G′ in (36) and see that

ΘΠ(Ψ) (38)

= χΠ′((−1)̃)Θ((−1)̃)
∑

H′

1

|W (H′)|

∫

G′\Xmax

1

∫

H′reg

∫

G′/H′

∫

W2

∫

Y1

T (g′h̃′g′−1)♮T (Ψ)(x+ y + w2)

ΘΠ′(h̃′−1) |∆(h′)|2 dy dw2 d
.
g
′
dh′ d

.
x

= χΠ′((−1)̃)Θ((−1)̃)
∑

H′

1

|W (H′)|

∫

H′\Xmax

1

∫

H′reg

∫

W2

∫

Y1

T (h̃′)♮T (Ψ)(x+ y + w2)

ΘΠ′(h̃′−1) |∆(h′)|2 dy dw2 dh
′ d

.
x

= χΠ′((−1)̃)Θ((−1)̃)
∑

H′

1

|W (H′)|

∫

H′\Xmax

1

∫

W2

∫

Y1

∫

H′reg

T (h̃′)♮T (Ψ)(x+ y + w2)

ΘΠ′(h̃′−1) |∆(h′)|2 dh′ dy dw2 d
.
x

= χΠ′((−1)̃)Θ((−1)̃)
∑

H′

1

|W (H′)|

∫

H′\Wmax

∫

H′reg

T (h̃′)♮T (Ψ)(w)

ΘΠ′(h̃′−1) |∆(h′)|2 dh′ d
.
w

= χΠ′((−1)̃)Θ((−1)̃)
∑

H′

1

|W (H′)|

∫

H′reg

ΘΠ′(h̃′−1) |∆(h′)|2 (39)

∫

H′\Wmax

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w dh′ .
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Let A′ be the F-split component of H′. Fix h′ ∈ H′reg and notice that
∫

A′\Wmax

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w =

∫

H′\Wmax

∫

A′\H′

∫

G̃

Ψ(g̃)T (h̃′g̃)(h1w) dg̃ d
.

h1 d
.
w

=

∫

H′\Wmax

∫

A′\H′

∫

G̃

Ψ(g̃)T (h−1
1 h̃′h1g̃)(w) dg̃ d

.

h1 d
.
w

=

∫

H′\Wmax

volume(A′\H′)

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w .

Hence
∫

H′\Wmax

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w =

1

volume(A′\H′)

∫

A′\Wmax

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w .

The integral on the right hand side
∫

A′\Wmax

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w =

∫

A′\Wmax

∫

G̃

Ψ(h̃′−1g̃)T (g̃)(w) dg̃ d
.
w

extends by the same formula to Ψ ∈ C∞
c (Ã′′c) as in [LP21, (127)]. By [LP21, Proposition

27] this extension has a unique restriction to G̃. Thus
∫

A′\Wmax

∫

G̃

Ψ(g̃)T (h̃′g̃)(w) dg̃ d
.
w = Chch̃′(Ψ) .

Therefore (38) shows that

ΘΠ(Ψ) =

χΠ′((−1)̃)Θ((−1)̃)
∑

H′

1

|W (H′)|

∫

H′reg

ΘΠ′(h̃′−1) |∆(h′)|2
1

volume(A′\H′)
Chch̃′(Ψ) dh′

= Θ′
Π′(Ψ) ,

Here the last equality is (9) This completes the proof of Theorem 1.

Appendix A. The Weyl - Harish-Chandra integration formula

In order to have the formula (37) we need to know that the union of the conjugacy classes
of all Cartan subgroups is dense in the group. Let F be the algebraic closure of F. Let E be
a connected reductive algebraic group defined over F. We define a Cartan subgroup of E(F)
as the centralizer of a Cartan subalgebra of the Lie algebra of E(F).

First we suppose E is a connected semisimple algebraic group defined over F. An element
g ∈ E(F) is strongly regular if its centralizer in E(F) is a Cartan subgroup. Since F is a
perfect field, the set R(F) of strongly regular elements in E(F) is a Zariski open dense subset
by [Ste65, Section 2.15]. Let W (F) = E(F) \R(F). This is a proper Zariski closed subset of
E(F) defined over F.
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Lemma A.1. The intersection R(F) = R(F)∩E(F) is a dense subset of E(F) in the F-analytic
topology.

Proof. By Proposition 2.5.2 in [Mar91], E(F) is a pure F-analytic manifold. Suppose R(F)
is not dense. Then there is a point x ∈ W (F) = E(F) \R(F) and an F-analytic open subset
Ux of E(F) such that x ∈ Ux and Ux ∩ R(F) = ∅. Hence Ux ⊆ W (F). Let µ be a Haar
measure on E(F). Then µ(Ux) > 0 so µ(W (F)) > 0. Now W =

⋃
Wi is a finite union of

irreducible subvarieties. This contradicts Proposition 2.5.3(i) in [Mar91] which states that
µ(Wi(F )) = 0. �

We return to our original setting where E is a connected reductive algebraic group defined
over F. Let S be the union of conjugates of Cartan subgroups of E(F).

Proposition A.2. The subset S is a dense subset of E(F) in the F-analytic topology.

Proof. We write E(F) = CEs(F) where C is the center of E(F) and Es(F) is a the semisimple
subgroup. By the last lemma R(F) is a dense subset of Es(F). Hence CR(F) is a dense
subset of E(F). The proposition follows because S contains CR(F). �

A.1. A member of an irreducible dual pair in a symplectic group defined over F is a the
set of the F rational points E(F) of an algebraic group E defined over F, which is connected
except the case of an odd orthogonal group. A Cartan subgroup of E(F) is equal to a Cartan

subgroup of the identity component together with the center Z of the group. Let Ẽ(F) be the

preimage of E(F) in the metaplectic group. Then Ẽ(F) is a double cover of E(F). Over the
algebraic closure F, E is either a symplectic group, an orthogonal group or a general linear

group. Then a Cartan subgroup of Ẽ(F) is the preimage of a Cartan subgroup of E(F). The

union of all of them is equal to the preimage S̃Z ⊆ Ẽ(F) of SZ.

Proposition A.3. The subset S̃Z is dense in Ẽ(F) if and only if E is not an even orthogonal
group.

The above proposition is equivalent to the next proposition.

Proposition A.4. The subset SZ is dense in E(F) if and only if E is not an even orthogonal
group.

Proof. If E is the symplectic group or the general linear group or an odd orthogonal group,
the proposition follows from Proposition A.2 by setting S = SZ.

If E is an odd orthogonal group. Then E(F) = E◦(F) × {±1} where E◦(F) is the special
orthogonal group. Let S be the union of conjugates of Cartan subgroups of E◦(F). Then

SZ = S × {±1}.

By Proposition A.2, S is dense in E◦(F) so SZ is dense in E(F).
If E is an even orthogonal group. Then E(F) is isomorphic to O(2n,F), the split orthogonal

group defined by split symmetric form

x1xn+1 + x2xn+2 + . . .+ xnx2n
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on F
2n
. Let T(F) be a Cartan subgroup E(F). We may further assume that T(F) is the

subgroup of diagonal matrices. Then T(F) ⊆ SO(2n,F). In particular S ⊆ SO(2n,F) and S
cannot be dense in E(F). �
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