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HOWE’S CORRESPONDENCE
FOR A GENERIC HARMONIC ANALYST

BY

M. MCKEE and T. PRZEBINDA (Norman, OK)

Abstract. The goal of this article is to explain Howe’s correspondence to a reader
who is not necessarily an expert on representation theory of real reductive groups, but
is familiar with general concepts of harmonic analysis. We recall Howe’s construction of
the oscillator representation, the notion of a dual pair and a few basic and general facts
concerning the correspondence.

1. Introduction. In the late seventies, the theory of pseudo-differential
operators was a hot topic in Wrocław. Paweł Głowacki was finishing his
PhD thesis, [Glo82]. There was a lively seminar frequented by advanced un-
dergraduates, including the second author. One had to know, for example,
that a pseudo-differential operator with symbol of order zero is bounded
on L2(Rn), [Hör85, Theorem 18.1.11]. Also, the symmetry properties of the
Fourier transform, [SW71, Chapter 4] and the philosophy of the coadjoint
orbits, [Kir62], were a must. This atmosphere of interest and excitement was
created and sustained, in a natural and seemingly effortless way, by Andrzej
Hulanicki.

At the time and place when the access to a Xerox machine was about
as difficult as is the process of obtaining a pilot license and renting a pri-
vate plane in Oklahoma, Andrzej distributed a few copies of Howe’s paper,
[How80], which ever since became one of our primary sources of information.
That article, together with [How88], provides a construction of the oscilla-
tor representation suitable for “a generic harmonic analyst”. We recall it in
Section 3.

In the following sections we introduce dual pairs and recall the defini-
tion of Howe’s correspondence. Further we focus on some properties of the
correspondence which might appeal to the reader we have in mind.

Anyone interested in the efforts to describe the correspondence in terms
of Langlands parameters might consult [Pau98], [Pau00] and [AB95]. There
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are connections with particle physics [How85] and the theory of automorphic
forms, [How79]. A good place to look for examples is [HT92].

2. Pseudo-differential operators and the wave front set of a dis-
tribution. In this section we recall some basic notions and facts from the
theory of pseudo-differential operators following [Hör85, Chapter 18].

A linear partial differential operator of order m, with C∞ coefficients, on
an open set X ⊆ Rn is an expression of the form

(1) P =
∑
|α|≤m

aα(x) Dα.

Here, α = (α1, . . . , αn) is a multi-index with the αj = 0, 1, 2, . . . , |α| =
α1+· · ·+αn, each aα ∈ C∞(X) and Dα = Dα1

1 . . .Dαn
n , where Dj = −i∂/∂xj .

In terms of the Fourier transform

(2) û(ξ) =
�

Rn

e−ix·ξu(x) dx (u ∈ L1(Rn), ξ ∈ Rn),

with x · ξ = x1ξ1 + · · ·+xnξn, the action of P on a test function u ∈ C∞c (X)
may be rewritten as

(3) Pu(x) = (2π)−n
�

Rn

eix·ξa(x, ξ)û(ξ) dξ,

where (with ξα = ξα1
1 . . . ξαn

n )

(4) a(x, ξ) =
∑
|α|≤m

aα(x)ξα (x ∈ X, ξ ∈ Rn).

The principal symbol of P is defined as

(5) Pm(x, ξ) =
∑
|α|=m

aα(x)ξα (x ∈ X, ξ ∈ Rn).

For a real number m let Sm(Rn × Rn) be the space of all the functions
a ∈ C∞(Rn×Rn) such that for all the multi-indices α and β, there are finite
constants Cα,β so that

(6) |Dα
ξD

β
x a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|α| ((x, ξ) ∈ Rn × Rn).

For each a ∈ Sm(Rn × Rn), the formula (3) defines a continuous endomor-
phism of the Schwartz space S(Rn), denoted by Op a. This is an integral
kernel operator

(7) Op a u(x) =
�

Rn

K(x, x′)u(x′) dx′,

where

(8) K(x, x′) = (2π)−n
�

Rn

ei(x−x
′)·ξa(x, ξ) dξ (x, x′ ∈ Rn).
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Suppose X is an n-dimensional manifold with a C∞ structure consisting
of homeomorphisms κ of open sets Xκ ⊆ X onto open sets X̃κ ⊆ Rn such
that all the transition functions

κ′κ−1 : κ(Xκ ∩Xκ′)→ κ′(Xκ ∩Xκ′)

are smooth and the patches Xκ cover X. A pseudo-differential operator of
order m ∈ R on X is a continuous linear map A : C∞c (X) → C∞(X) such
that for all the Xκ and all φ, ψ ∈ C∞c (X̃κ), the corresponding localization of
the lift of A is given by the formula (3) where a satisfies (6). In other words,

(9) φ((κ−1)∗Aκ∗)ψ ∈ Op Sm(Rn × Rn).

We see from (3) that the operator (9) is an endomorphism of S(Rn). Hence,
A extends to a continuous linear map from the space of compactly supported
distributions on X to the distributions on X:

(10) A : E ′(X)→ D′(X).

Denote by Ψm(X) the space of all the pseudo-differential operators of order
m ∈ R on X.

Recall the cotangent bundle T ∗X of X. Let Sm(T ∗X) ⊆ C∞(T ∗X) be
the space of all the functions a such that for each coordinate patch Xκ, the
pullback ãκ of a to T ∗(X̃κ) = X̃κ×Rn is in Smloc(X̃κ×Rn), i.e. φ(x)ãκ(x, ξ) is
in Sm(Rn × Rn) for any φ ∈ C∞c (X̃κ). One shows that for each A ∈ Ψm(X)
there is a unique am ∈ Sm(T ∗X), modulo Sm−1(T ∗X), such that for each
Xκ the pullback of A to X̃κ is given by the formula (3) in terms of the
function ãm,κ plus an operator with a smooth integral kernel. This leads to
the definition of the principal symbol

(11) Ψm(X) 3 A 7→ am + Sm−1(T ∗X) ∈ Sm(T ∗X)/Sm−1(T ∗X).

In particular, if X is an open subset of Rn and A = P is the differential
operator (1), then the principal symbol of A coincides with Pm, as in (5).

An operator A ∈ Ψm(X) is said to be non-characteristic at the image of
(x0, ξ0) ∈ X̃κ× (Rn \ 0) in T ∗X \ 0 if there is an open neighborhood U of x0

in X̃κ, an open cone V ⊆ Rn \ 0 containing ξ0 and two constants c and C
such that

(12) |ãm,κ(x, ξ)| ≥ c|ξ|m (x ∈ U, ξ ∈ V, |ξ| > C).

A point of the cotangent bundle is called a characteristic point if and only
if it is not a non-characteristic point. The set of all the characteristic points
of A is denoted by CharA. If X is an open subset of Rn and A = P is the
differential operator (1) then Char P coincides with the set of zeros of the
principal symbol Pm.
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Finally, A is said to be properly supported if for every compact subset
K ⊆ X there is another compact subset K ′ ⊆ X such that

(13) suppu ⊆ K ⇒ suppAu ⊆ K ′ and u = 0 in K ′ ⇒ Au = 0 in K.

Under this condition A extends to a map

(14) A : D′(X)→ D′(X).

For a distribution u ∈ D′(X) one may define the wave front set of u to
be the intersection of the characteristic sets of all the properly supported
pseudo-differential operators A ∈ Ψm(X) such that Au ∈ C∞(X):

(15) WF(u) =
⋂

CharA ⊆ T ∗X \ 0.

This definition does not depend on the order m. In what follows we shall
distinguish between Rn and the dual, Rn∗, without the identification via the
dot product we have used so far.

3. The oscillator representation of the metaplectic group. Here
we recall Howe’s construction of the oscillator representation, [How88], which
is rooted in Weyl calculus of pseudo-differential operators, where instead of
(8) one considers operators with the integral kernel

(16) K(x, x′) = (2π)−n
�

Rn

ei(x−x
′)·ξa((x+ x′)/2, ξ) dξ.

Since we are heading towards group representation theory it is reasonable to
switch to a coordinate free approach.

Let W be a vector space of dimension 2n < ∞ over R with a non-
degenerate symplectic form 〈 , 〉. Denote by Sp = Sp(W) ⊆ End(W) the
corresponding symplectic group, i.e. the group of isometries of the form 〈 , 〉,
and by sp = sp(W) ⊆ End(W) the Lie algebra of Sp. An element J ∈
End(W) is called a compatible positive complex structure if

(17)
〈Jw,w′〉 = 〈Jw′, w〉 (w,w′ ∈W),
〈Jw,w〉 > 0 (w ∈W \ 0),

J 2 = −I,
where I stands for the identity map on W. The first condition in (17) means
that J ∈ sp and the top two conditions say that 〈J , 〉 defines a symmetric
positive definite bilinear form on W. Such elements exist and form a single
orbit under the conjugation action of Sp.

For an arbitrary vector subspace U ⊆ W we normalize the Lebesgue
measure du on U so that the volume of the unit cube with respect to the form
〈J , 〉 is 1. (Since the determinant of any element of Sp is 1, the normalization
of dw, w ∈W, does not depend on the particular choice of J .) Multiplication
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by the Lebesgue measure defines an embedding of the Schwartz space on U
into the space of tempered distributions on U,

(18) S(U)→ S∗(U),

which we shall use without comments.
Fix the unitary character χ(r) = e2πir, r ∈ R. Pick a complete polariza-

tion

(19) W = X⊕ Y.

(Here X and Y are maximal isotropic subspaces of W.) Recall the Weyl
transform

K : S∗(W)→ S∗(X× X),

K(f)(x, x′) =
�

Y

f(x− x′ + y)χ
(

1
2
〈y, x+ x′〉

)
dy,

(20)

with the inverse given by
(21)

K(K)(x+y) = 2−n
�

X

K

(
x′ + x

2
,
x′ − x

2

)
χ

(
1
2
〈x′, y〉

)
dx′ (x, x′∈X, y∈Y).

Each elementK∈S∗(X×X) defines an operator Op(K) ∈ Hom(S(X),S∗(X))
by

(22) Op(K)v(x) =
�

X

K(x, x′)v(x′) dx′.

The map Op extends to an isomorphism of linear topological spaces S∗(X×X)
and Hom(S(X),S∗(X)). This is known as the Schwartz Kernel Theorem,
[Hör83, Theorem 5.2.1]. For suitable K, the operator Op(K) is of trace class
and

(23) trOp(K) =
�

X

K(x, x) dx.

For φ1, φ2 ∈ S(W), we have the twisted convolution,

(24) φ1 \ φ2(w′) =
�

W

φ1(w)φ2(w′ − w)χ
(

1
2
〈w,w′〉

)
dw (w′ ∈W),

which extends to some, but not all, tempered distributions. The Fourier
inversion formula shows that the map

(25) ρ = Op ◦ K : S∗(W)→ Hom(S(X),S∗(X))

is an isomorphism of linear topological vector spaces with

(26) tr(ρ(f)) = f(0)

for suitable f ∈ S∗(W).
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Recall the Cayley transform c(y) = (y + 1)(y − 1)−1. This is a rational
map from End(W) to itself, which restricts to a birational isomorphism of
Sp and sp. Let

(27) S̃p
c

= {g̃ = (g, ξ) ∈ Sp× C; det(g − 1) 6= 0, ξ2 = det(i(g − 1))−1}.

For each x ∈ sp, 〈x , 〉 is a symmetric bilinear form on W with the signature
sgn〈x , 〉 equal to the maximal dimension of a subspace where this form is
positive definite minus the maximal dimension of a subspace where this form
is negative definite. Set

(28) chc(x) = 2n|det(x)|−1/2exp
(
π

4
i sgn〈x , 〉

)
(x ∈ sp, det(x) 6= 0).

(This is a Fourier transform of one of the two minimal non-zero nilpotent
co-adjoint orbits in sp∗, [Prz00, Proposition 9.3] and [Hör83, Theorem 7.6.1].)
For two elements (g1, ξ1), (g2, ξ2) ∈ S̃p

c
, with c(g1) + c(g2) invertible, define

a product

(29) (g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2 chc(c(g1) + c(g2)),

and let

(30)
Θ : S̃p

c
3 g̃ = (g, ξ) 7→ ξ ∈ C,

T : S̃p
c
3 g̃ 7→ Θ(g̃)χc(g) ∈ S∗(W),

where, for x = c(g) ∈ sp, χx(w) = χ(1
4〈x(w), w〉).

Theorem 1. Up to a group isomorphism there is a unique connected
group S̃p containing S̃p

c
with the multiplication given by (29) on the indicated

subset of S̃p
c
× S̃p

c
. The map

S̃p
c
3 g̃ 7→ g ∈ Sp

extends to a double covering homomorphism

(31) S̃p 3 g̃ → g ∈ Sp.

The map T extends to a continuous injection T : S̃p→ S∗(W) and

T (g̃1) \ T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ S̃p
c
, det(c(g1) + c(g2)) 6= 0),(32)

T (1) = δ,(33)

where δ is the Dirac delta at the origin.
The composition ω = ρ ◦ T maps S̃p into the group of unitary operators

on the Hilbert space L2(X). The operators ω(g), g ∈ S̃p, preserve the subspace
S(X) ⊆ L2(X) and extend uniquely to endomorphisms of S∗(X).
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Moreover, Θ is the distribution character of ω in the sense that for any
φ ∈ C∞c (S̃p),

ω(φ) =
�

fSp

ω(g)φ(g) dg

is of trace class and

trω(φ) =
�

fSp

Θ(g)φ(g) dg,

where the last integral is absolutely convergent.

The title of this section refers to the unitary representation ω of the group
S̃p on the Hilbert space L2(X). The representation ω does not factor to a
representation of the symplectic group, hence it is necessary to consider the
double cover (31).

4. Dual pairs. A real reductive dual pair is a pair of subgroups G,G′ ⊆
Sp(W) which act reductively on the symplectic space W, G′ is the centralizer
of G in Sp and G is the centralizer of G′ in Sp, [How79]. We shall be concerned
with the irreducible pairs in the sense that there is no non-trivial direct sum
decomposition of W preserved by G and G′. For brevity we shall simply call
them dual pairs.

There are two kinds of such pairs. Either G,G′ coincides with GLn(D),
GLm(D), with D = R, C or H (the quaternions), or there is a (possibly
trivial) involution ι of D over R so that G,G′ are isomorphic to a pair of the
isometry groups of two non-degenerate hermitian forms over D of opposite
type.

Specifically, in the first case, there are two finite-dimensional left vector
spaces, V, V′ over D,

(34) W = Hom(V,V′)⊕Hom(V′,V),

viewed as a vector space over R, and

(35) 〈(A,B), (A′, B′)〉 = trD/R(AB′)− trD/R(BA′),

where A,A′ ∈ Hom(V,V′), B,B′ ∈ Hom(V′,V) and trD/R(C) is the trace of
C viewed as a linear map over R ⊆ D. The groups GL(V) and GL(V′) act
on W by

(36)
g(A,B) = (Ag−1, gB),

g′(A,B) = (g′A,Bg′−1) (g ∈ GL(V), g′ ∈ GL(V′)).

This action preserves the form (35) and gives the desired embeddings of
GL(V) and GL(V′) into Sp(W).
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In the second case there are two non-degenerate forms ( , ), ( , )′ on
V, V′ respectively and

(37) W = Hom(V,V′)

viewed as a vector space over R. In terms of the map

(38)
Hom(V,V′) 3 w 7→ w∗ ∈ Hom(V′,V),
(wv, v′)′ = (v, w∗v′) (v ∈ V, v′ ∈ V′),

the symplectic form is defined by

(39) 〈w,w′〉 = trD/R(w′∗w) (w,w′ ∈W).

The isometry groups G(V, ( , )) and G(V′, ( , )′) act on W by

(40)
g(w) = wg−1,

g′(w) = g′w (g ∈ G(V, ( , )), g′ ∈ G(V′, ( , )), w ∈W),

preserve the form (39) and consequently may be identified with the corre-
sponding subgroups of Sp(W). We collect the dual pairs in the following
table, where “+” indicates that the form is symmetric or hermitian and “−”
that it is symplectic or skew-hermitian.

Dual pair D ι ( , ) ( , )′ dim W

GLn(D), GLm(D) R, C, H 2nmdimR(D)

Op,q, Sp2n(R) R 1 + − 2n(p+ q)

Sp2n(R), Op,q R 1 − + 2n(p+ q)

Op(C), Sp2n(C) C 1 + − 4np

Sp2n(C), Op(C) C 1 − + 4np

Up,q, Ur,s C 6= 1 + − 2(p+ q)(r + s)

Spp,q, O∗2n H 6= 1 + − 8n(p+ q)

O∗2n, Spp,q H 6= 1 − + 8n(p+ q)

5. The correspondence for dual pairs with one member compact.
Recall that a unitary representation of a topological group G on a Hilbert
space H (with a countable basis) is a group homomorphism Π from G into
the group of unitary operators on H such that for all v ∈ H the map

G 3 g 7→ Π(g)v ∈ H

is continuous. Our basic example is G = S̃p, Π = ω and H = L2(X).
Two unitary representations (Π1,H1), (Π2,H2) are equivalent if and only

if there is a bijective isometry T : H1 → H2 such that

(41) Π2(g)T = TΠ1(g) (g ∈ G).
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The representation (Π,H) is irreducible if and only if the only Π(G)-closed
invariant subspaces are H and {0}. The set of the equivalence classes of the
irreducible unitary representations of G is usually denoted by Ĝ.

If G is compact, then any unitary representation (Π,H) decomposes into
the Hilbert direct sum of irreducible representations, [HR63, Theorem 27.44].
By grouping together the mutually isomorphic representations we obtain the
decomposition of (Π,H) into the isotypic components (Π,HΠ1):

(42) H =
⊕

HΠ1 .

(Here the summation is over a subset of Ĝ.)
In particular, if G is a compact member of a dual pair, then the preimage

G̃ of G in S̃p is also compact and

(43) L2(X) =
⊕

L2(X)Π,

where the summation is over a certain subset of ˆ̃G. Let us denote this subset
by R(G̃, ω).

Since the operators ω(g), ω(g′) (g ∈ G̃, g′ ∈ G̃′) commute, ω(G̃′) pre-
serves each subspace L2(X)Π. This way L2(X)Π becomes a unitary represen-
tation of G̃×G̃′. The point is that this representation is irreducible, [How89a].

As such, it is isomorphic to Π⊗ Π′ for some Π′ ∈ ˆ̃G′. Let us denote the set
of the equivalence classes of the resulting Π′’s by R(G̃′, ω). Furthermore,
different Π’s yield different Π′’s, [How89a]. The resulting bijection

(44) R(G̃, ω) 3 Π 7→ Π′ ∈ R(G̃′, ω)

is Howe’s correspondence in this case.
The decomposition (43) for the pair O2, Sp2(R) occurs, for example, in

[SW71, Sec. 4.1], and is used to express the Fourier transform in terms of
Bessel functions. For more information on such connections see [HT92]. An
explicit description of the decomposition (43) in terms of highest weights
is available in [KV78]. With very few exceptions the representations which
occur in (43) exhaust the so called unitary highest weight representations of
the groups involved (see [EHW83]).

6. The correspondence for a general dual pair. So far we did not
have to refer to any results of Harish-Chandra, but this is about to change.

Let V be a linear topological vector space and let G be a topological
group. A representation of G on V is a group homomorphism Π from G into
the group of continuous invertible endomorphisms of V such that for each
v ∈ V, the map
(45) G 3 g 7→ Π(g)v ∈ V

is continuous.
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Suppose G is a Lie group. Then V∞ ⊆ V is defined to be the subspace of
all the v ∈ V such that the maps (45) are smooth. For example, if G = S̃p
and V = L2(X) or S∗(X) (with the weak∗ topology), then V∞ = S(X).

The Lie algebra g of the Lie group G acts on V∞ by

(46) Π(x)v =
d

dt
Π(exp(tx))v

∣∣∣∣
t=0

(x ∈ g, v ∈ V∞).

This action extends uniquely to an action of the universal enveloping al-
gebra U(g) of the Lie algebra g. Let U(g)G denote the subalgebra of the
G-invariants in U(g). This may be a proper subalgebra of the center of U(g)
if the group G is disconnected. One may think of U(g)G as the algebra of
left and right invariant differential operators on G.

The representation (Π,V) is called quasisimple if there is an algebra
homomorphism

(47) γΠ : U(g)G → C

such that

(48) Π(z)v = γΠ(z)v (z ∈ U(g)G, v ∈ V∞).

Then γΠ is called the infinitesimal character of Π.
Suppose G is a real reductive group, [Wal88]. (Any member of a dual

pair or a finite cover of it is such a group.) Fix a maximal compact subgroup
K ⊆ G. Let Vo ⊆ V∞ be the subspace of all the vectors v such that the
linear span of Π(K)v is finite-dimensional. Then Vo is a g-module and a
representation of K. The following conditions hold:

(a) Vo is a direct sum of subspaces invariant and irreducible under the
action of K;

(b) the differential of the K-action coincides with the one obtained from
the inclusion k ⊆ g;

(c) the action of K on End(Vo) by conjugation preserves the image of g
in End(Vo) and coincides with the action of K on g.

One refers to Vo as a (g,K)-module, or the Harish-Chandra module of (Π,V).
Two representations (Π1,V1), (Π2,V2) are called infinitesimally equiva-

lent if and only if the corresponding (g,K)-modules (as defined above) are
isomorphic. The representation (Π,V) is called admissible if and only if each
K-isotypic component of Vo is finite-dimensional. These notions were intro-
duced by Harish-Chandra in [Har51a] (for a connected group G). In particu-
lar he proved that any irreducible unitary representation of G is admissible,
[Har53, Theorem 7], and that two irreducible unitary representations are
equivalent if and only if they are infinitesimally equivalent, [Har53, Theo-
rem 8]. Thus, without running into any contradictions, we may define R(G)
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to be the set of the infinitesimal equivalence classes of the irreducible admis-
sible representations of G and consider Ĝ to be a subset of R(G).

At this point it seems reasonable to mention that, thanks to the works of
R. Langlands, A. Knapp and G. Zuckerman (see [KV95] and [Wal88] for a
nice exposition and references) there is a description of the setR(G) in terms
of the so called Langlands’ parameters, but with a few exceptions ([Bar89],
[Vog86], [Vog94]) the location of Ĝ inside R(G) is not known.

For a member G of a dual pair, let R(G̃, ω) ⊆ R(G̃) denote the subset
of the representations which may be realized as quotients of S(X) by closed
G̃-invariant subspaces. Let us fix a representation Π inR(G̃, ω) and let NΠ ⊆
S(X) be the intersection of all the closed G-invariant subspaces N ⊆ S(X)
such that Π is infinitesimally equivalent to S(X)/N . This is a representation
of both G̃ and G̃′. As such, it is infinitesimally isomorphic to

(49) Π⊗Π′1

for some representation Π′1 of G̃′. Howe proved, [How89b, Theorem 1A], that
Π′1 is a finitely generated admissible quasisimple representation of G̃′, which
has a unique irreducible quotient Π′ ∈ R(G̃′, ω). Conversely, starting with
Π′ ∈ R(G̃′, ω) and applying the above procedure with the roles of G and
G′ reversed, we arrive at the representation Π ∈ R(G̃, ω). The resulting
bijection

(50) R(G̃, ω) 3 Π 7→ Π′ ∈ R(G̃′, ω)

is called Howe’s correspondence, or local θ correspondence, for the pair G,G′.
Furthermore, let R(G̃G̃′, ω) denote the set of the representations of G̃×

G̃′ which may be realized as quotients of S(X) by closed G̃G̃′-invariant
subspaces. Then R(G̃G̃′, ω) coincides with the bijection (50) in the sense
that it consists of the tensor products Π⊗Π′ where Π and Π′ occur in (50),
[How89b, Theorem 1]. Moreover, each such Π ⊗ Π′ may be realized as a
quotient of S(X) in a unique way, i.e. dimHomeGeG′(S(X),Π⊗Π′) = 1.

The space of tempered distributions, S∗(X), comes equipped with the
weak∗ topology. Therefore the space of continuous linear functionals on
S∗(X) coincides with S(X), [Rud91, Theorem 3.10]. For N ⊆ S(X) let
N⊥ ⊆ S∗(X) be the annihilator of N , and for R ⊆ S∗(X) let R⊥ ⊆ S(X)
be the annihilator of R. The Hahn–Banach Theorem, [Rud91, Theorem 3.7],
implies that N⊥⊥ = N and R⊥⊥ = R. Furthermore, (S(X)/N)∗ = N⊥.

Let Π ∈ R(G̃, ω) be realized on S(X)/N . Then the contragredient of Πc

of Π is realized on (S(X)/N)∗, which in turn is isomorphic to N⊥ ⊆ S∗(X).
Thus the contragredient of Π may be realized as a subrepresentation of the
space of tempered distributions. Similarly, the contragredient of Π′ and Π⊗Π′

may be realized as a subrepresentation of the space of S∗(X).
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Thus instead of talking of the quotients we might equivalently use subrep-
resentations to describe the correspondence (50) with the Π and Π′ replaced
by the contragredients, as follows.

LetRc(G̃, ω) ⊆ R(G̃) denote the subset of the representations which may
be realized as subrepresentations of S∗(X) on closed G̃-invariant subspaces.
Let us fix a representation π in Rc(G̃, ω) and let Rπ ⊆ S∗(X) be the sum of
all the closed G-invariant subspaces R ⊆ S∗(X) such that π is infinitesimally
equivalent to R. This is a representation of both G̃ and G̃′. As such, it
is infinitesimally isomorphic to π ⊗ π′1 for some representation π′1 of G̃′.
Howe’s Theorem says that π′1 has a unique irreducible subrepresentation
π′ ∈ Rc(G̃′, ω).

7. The correspondence of infinitesimal characters. Consider a real
reductive group G and a Cartan subgroup H ⊆ G with the Lie algebra h ⊆ g
and the subset of regular elements Hreg ⊆ H. Let πG/H denote any analytic
square root of the map

(51) Hreg 3 h 7→ det(Ad(h−1)− 1)g/h ∈ C.

Recall the algebra U(g)G of left and right invariant differential operators
on G. There is a bijective algebra isomorphism

(52) γg/h : U(g)G → U(h)W ,

where W is the corresponding Weyl group, such that for any test function
f ∈ C∞c (G) and any z ∈ U(g)G,

(53) (z f)|Hreg =
1

πG/H
γg/h(z)(πG/H · f |Hreg)

(see [Har56, Theorem 2] and [Har63, Lemma 13]; here |Hreg stands for the
restriction to Hreg).

For a dual pair G, G′ we shall define certain unnormalized moment maps

(54) τ : W→ g, τ ′ : W→ g′

as follows. If W is as in (34), then

τ((A,B)) = BA, τ ′((A,B)) = AB.

If W is as in (37), then

τ(w) = w∗w, τ ′(w) = ww∗.

These map intertwine the GG′-action on W with the adjoint action on the
corresponding Lie algebras:

(55)
τ(gg′(w)) = Ad(g)(τ(w)),
τ ′(gg′(w)) = Ad(g′)(τ ′(w)) (g ∈ G, g′ ∈ G′, w ∈W).
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Notice that we may view any element w ∈ W as an endomorphism of
V ⊕ V′. Indeed, if we are in the case (34), let

(A,B)(v, v′) = (Bv′, Av)
(A ∈ Hom(V, V ′), B ∈ Hom(V ′, V ), v ∈ V, v′ ∈ V′).

If we are in the case (37), let

w(v, v′) = (w∗v′, wv) (w ∈W, v ∈ V, v′ ∈ V′).

We shall say that an element w ∈ W is semisimple if it is semisimple as
an endomorphism of V ⊕ V′. There is one dual pair O1, Sp2n (over R or
C), where the only semisimple element of W is zero. For the moment, let us
exclude this case from our considerations. Then there is a finite collection
w1, . . . ,wm of vector subspaces of W such that any semisimple GG′-orbit
in W passes through one of the wj and distinct wj are not GG′-conjugate.
They are called Cartan subspaces in [Prz06]. Fix one such Cartan subspace
w ⊆W and define lin τ(w) to be the linear span of τ(w) and similarly for τ ′.
Then the relation

(56) {(τ(w), τ ′(w)); w ∈ w} ⊆ lin τ(w)× lin τ ′(w)

is an invertible function which extends to a linear bijection

(57) lin τ(w)→ lin τ ′(w)

(see [Prz06]).
Suppose the rank of G (the dimension of any Cartan subalgebra of g)

is less than or equal to the rank of G′. Then h = lin τ(w) is a Cartan
subalgebra of g, which we shall identify with a subspace of g′ via (57). Let
V′′ = {v ∈ V′; xv = 0 for all x ∈ h}. Then the restriction of the form
( , )′ to V′′ is non-degenerate, so that V′ = V′′⊥ ⊕ V′′ and, in terms of this
decomposition, the centralizer of h in g is equal to

(58) z′ = h⊕ z′′,

where z′′ is the Lie algebra of the isometry group Z′′ of (V′′, ( , )′). Let Z′

be the normalizer of z′ in G′. Then, according to (58),

(59) U(z′)Z′ = U(h)W ⊗ U(z′′)Z′′ ,

where W is the Weyl group as in (52). Fix any Cartan subalgebra h′′ ⊆ z′′.
Then h′ = h⊕ h′′ is a Cartan subalgebra of z′ and of g′.

Let εz′′ : U(z′′)→ C be the algebra homomorphism by which the algebra
of differential operators, U(z′′), acts on the constant functions on Z′′. In these
terms we have the following algebra homomorphism:

(60) C : U(g′)G′ −−−−−−−−→
γ−1

z′/h′◦γg′/h′
U(z′)Z′ −−−−→

1⊗εz′′
U(h)W −−−→

γ−1
g/h

U(g)G.
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The point is that for any two representations Π ∈ R(G̃, ω), Π′ ∈ R(G̃′, ω) in
Howe’s correspondence, as in (50), with the infinitesimal characters γΠ, γΠ′

respectively,

(61) γΠ′ = γΠ ◦ C
(see [Prz04, Theorem 5.6]). The relation (61) was computed in different terms
in [Prz96]. This was part of the second author’s PhD research under the
guidance of Roger Howe. The construction presented in [Prz04] is based on
the moment maps (54) and Harish-Chandra’s radial component map (53).

8. Characters. Let G be a real reductive group with a maximal compact
subgroup K. Every irreducible admissible (g,K)-module may be realized as
the Harish-Chandra module Vo of a representation Π of G on a Hilbert
space V. This representation does not have to be unitary. Harish-Chandra
proved, [Har51b, Theorem 2], that for any test function f ∈ C∞(G), the
operator

(62) Π(f) =
�

G

f(g)Π(g) dg

is of trace class and that the formula

(63) ΘΠ(f) = trΠ(f) (f ∈ C∞c (G))

defines a distribution ΘΠ on G. This is the distribution character of the
representation Π.

Let us identify T ∗G = G× g∗ by

(64) df(g) =
d

dt
f(gexp(tx))

∣∣∣∣
t=0

(f ∈ C∞c (G), g ∈ G, x ∈ g).

This way the fiber {g} × g∗ of T ∗G over any point of g ∈ G may be viewed
as g∗. In these terms the wave front set of the representation Π, WF(Π) ⊆ g∗,
is defined as the fiber of WF(ΘΠ) over the identity.

Rossmann proved, [Ros95, Theorem 3.4], that this is the largest fiber,
and even more, that it is equal to the closure of the union of the fibers of
the wave front sets of all the distributions

(65) tr(Π(f)T ) (f ∈ C∞c (G)),

where T varies through the space of all the trace class operators on V. This
last set was defined as the wave front set of the representation in [How81].

Since an irreducible representation is quasisimple, the character ΘΠ sat-
isfies the following system of differential equations:

(66) zΘΠ = γΠ(z)ΘΠ (z ∈ U(g)G).

We see from the definition of the wave front set (15) and from (66) that
WF(ΘΠ) is contained in the intersection of the sets of characteristic points
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of the differential operators

(67) z − γΠ(z) (z ∈ U(g)G).

In particular, WF(Π) is contained in the intersection of the zero sets of the
non-constant G-invariant polynomials on g∗, which is equal to the nilpotent
cone in g∗, [Wal88, Sec. 8.A.4.2].

Under an appropriate choice of the Killing forms on g and g′ we may
identify the unnormalized maps (54) with

(68)
τ : W→ g∗, τ(w)(x) = 〈xw,w〉
τ ′ : W→ g′∗, τ ′(w)(x′) = 〈x′w,w〉 (x ∈ g, x′ ∈ g′, w ∈W).

With some effort one can see from the formula (30) that these maps occur
naturally in the restriction of the oscillator representation to the dual pair.
Hence, as shown in [Prz93, Corollary 2.8],

(69) WF(Π) ⊆ τ(W ) (Π ∈ R(G̃, ω)).

Let IΠ ⊆ U(g) denote the annihilator of the Harish-Chandra module
of the representation Π. If we think of the universal enveloping algebra as
the algebra of left invariant differential operators on the group, then IΠ

consists of the operators which annihilate the character ΘΠ. In particular,
the intersection of the characteristic sets of all these operators contains the
wave front set of the character. Let us view the principal symbol of any
such operator as a function on the complexified cotangent bundle G × g∗C.
Then the joint zero set of the principal symbols is of the form G × V(IΠ).
The set V(IΠ) ⊆ g∗C is called the associated variety of the annihilator of the
Harish-Chandra module of Π. As we just noticed, WF(Π) ⊆ V(IΠ) is a much
rougher invariant of the character. In particular, it is relatively easy to show
that for any Π ∈ R(G̃, ω), Π′ ∈ R(G̃′, ω) in Howe’s correspondence,

(70) V(IΠ′) ⊆ τ ′τ−1(V(IΠ)),

where the moment maps (68) are extended to the complexifications of W, g∗

and g′∗ (see [Prz91, Theorem 7.1]).
The wave front set of the character Θ of the oscillator representation,

(30), is given by

(71) WF(Θ) = {(g, ξ) ∈ S̃p× sp∗; ξ ∈WF1(Θ), Ad(g)∗(ξ) = ξ},

where the fiber over the identity, WF1(Θ) = Omin, is one of the two minimal
non-zero nilpotent coadjoint orbits in sp∗, [Prz00, Lemma 12.2]. (It would be
interesting to know for which characters the formula (71) holds, without any
specific description of the fiber over the identity.) The formula is a key to
a construction of an operator from the space of invariant eigendistributions
on G̃ to the space of invariant eigendistributions on G̃′, [Prz00], [BP06],
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assuming that the rank of G is less than or equal to the rank of G′. We recall
it below.

A maximal compact subgroup K ⊆ G is determined by a Cartan in-
volution θ : G → G. (For example, if G = GLn(R) and K = On then
θ(g) = (gt)−1.) Specifically, K consists of the θ-fixed points in G. Let P ⊆ G
be the subset of the elements g ∈ G such that θ(g) = g−1. Then G = KP.

Any Cartan subgroup H ⊆ G is conjugate to one which is invariant
under θ. Thus let H be a θ-stable Cartan subgroup of G. Set A = H ∩ P.
This is called the vector part of H, [Wal88].

Denote by A′ ⊆ Sp the centralizer of A and let A′′ ⊆ Sp be the centralizer
of A′. There is a measure d .w on the quotient space A′′\W defined by

(72)
�

W

φ(w) dw =
�

A′′\W

�

A′′

φ(aw) da d
.
w.

Let Ã′ be the preimage of A′ in the metaplectic group. Recall the embedding
T : S̃p→ S∗(W) defined in Theorem 1. The formula

(73) Chc(f) =
�

A′′\W

�

fA′
f(g)T (g)(w) dg d

.
w (f ∈ C∞c (Ã′)),

where each consecutive integral is absolutely convergent, defines a distribu-
tion on Ã′, [Prz00, Lemma 2.9]. Fix a regular element h ∈ Hreg. Let h̃ be an
element in the preimage of h in the metaplectic group. The intersection of
the wave front set of the distribution (73) with the conormal bundle of the
embedding

(74) G̃′ 3 g̃ 7→ h̃g̃′ ∈ Ã′′

is empty (i.e. contained in the zero section), [Prz00, Proposition 2.10]. Hence
there is a unique restriction of the distribution (73) to G̃, denoted Chceh.

Harish-Chandra’s Regularity Theorem, [Har63, Theorem 2], implies that
the character of an irreducible representation coincides with a function multi-
plied by the Haar measure. Thus for Π ∈ R(G̃) we may consider the following
integral:

(75)
�

gHreg

ΘΠ(h̃−1)|det(Ad(h−1)− 1)g/h|Chceh(f) dh̃ (f ∈ C∞c (G̃′)).

In fact, this integral is absolutely convergent, [Prz00, Theorem 2.14].
Recall the Weyl–Harish-Chandra integration formula

(76)
�

eG
f(g) dg

=
∑ 1
|W(H,G)|

�

gHreg

|det(Ad(h−1)− 1)g/h|
�

eG/eH
f(gh̃g−1) d

.
g dh̃,
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where W(H,G) is the Weyl group of H in G and the summation is over a
maximal family of mutually non-conjugate (θ-stable) Cartan subgroups G̃.
In terms of (76), set

(77) Θ′Π(f)

= CΠ

∑ 1
|W(H,G)|

�

gHreg

ΘΠ(h̃−1)|det(Ad(h−1)− 1)g/h|Chceh(f) dh̃,

where CΠ is a constant. This is an invariant distribution on G̃′. In fact, with
the appropriate normalization of all the measures involved, [BP06, Theo-
rem 4], Θ′Π is an invariant eigendistribution whose infinitesimal character is
related to the infinitesimal character of ΘΠ by (61). There are reasons to
believe that (for an appropriate constant CΠ) Θ′Π coincides with the char-
acter of the representation Π′1, (49). Since quite often Π′1 = Π′, the above
construction could explain Howe’s correspondence on the level of characters.
However, there is no proof of the equality Θ′Π = ΘΠ′1

in general yet. For a
precise conjecture see [BP06].

9. Unitary representations. If a unitary representation Π ∈ R(G̃, ω)
occurs in the Hilbert space L2(X) then so does the corresponding repre-
sentation Π′ ∈ R(G̃, ω). In particular, Π′ is also unitary. This is interest-
ing if one has a different construction of Π′ from which the unitarity is
not clear. This idea was studied by J. Adams in [Ada83] for the pair Op,q,
Sp2n(R).

Conversely, for some pairs one may describe Howe’s correspondence com-
pletely in terms of Langlands’ parameters, identify the unitary duals of the
group involved and see how the correspondence relates to unitarity. For the
pair O2,2, Sp4(R) this was done in [Prz89], with the conclusion that the cor-
respondence maps unitary representations of the orthogonal group to unitary
representations of the symplectic group.

One says that a dual pair G, G′ of isometry groups is in the stable range
if the dimension of the defining module for G is less than or equal to the
dimension of the maximal isotropic subspace of the defining module for G′.
(For example the pair Op,q, Sp2n(R) is in the stable range if p+q ≤ n.) Jian-
Shu Li has shown that Howe’s correspondence maps a unitary representation
of G̃ to a unitary representation Π′ of G̃′ (without the assumption that
these representations occur in the Hilbert space L2(X)), [Li89]. This theorem
was generalized in [Prz93] and [He03], and none of these works appeals to
Langlands classification.

For the latest along these lines see [ABP+07, Theorem 1.5].
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