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1. Introduction

In the late seventies Roger Howe formulated his theory of rank for irreducible unitary 
representations Π of any connected cover of the symplectic group Sp2n(R), see [12]. The 
symplectic group has a maximal parabolic subgroup P with the Levi factor isomorphic 
to GLn(R) and the unipotent radical N isomorphic as a Lie group to the space of the 
symmetric n × n matrices with the addition. In particular any connected cover of N
splits. The Spectral Theorem implies that the restriction of Π to N is supported on the 
union of some GLn(R)-orbits in the dual of N, which may be viewed as the space of the 
symmetric forms on Rn. The rank of Π is the maximal rank of a symmetric form in this 
support.

A surprising result is that the representations Π of rank r < n are very special. The 
support of Π|N is a single GLn(R)-orbit of forms β of signature (p, q) with p + q = r. 
Furthermore, Π factors through a double cover S̃p2n(R) of Sp2n(R) and remains irre-
ducible when restricted to some other maximal parabolic subgroup P̃1 ⊆ S̃p2n(R). The 
Levi factor of P1 is isomorphic to GLr(R) × Sp2(n−r)(R) and the unipotent radical N1

is a two-step nilpotent group. The isometry group of a fixed form β is isomorphic to 
Op,q ⊆ GLr(R). According to [13, Theorem 1.3], there is an irreducible unitary repre-
sentation Π′ of Õp,q such that Π|P̃1

is induced from a representation involving Π′ of 
the subgroup (Õp,q × S̃p2(n−r)(R))N1 ⊆ P̃1. The argument is based on the Stone von 
Neumann Theorem [30], the theory of the Weil Representation [32] and the Mackey 
Imprimitivity Theorem, [20].

In particular the operators of Π|P̃1
are as explicit as the operators of Π′. However the 

remaining operators remain obscure. Fortunately there is a different description of the 
representations Π and Π′.

The groups (Op,q, Sp2(n−r)(R)) form a dual pair in Sp2n(R) and there is Howe’s cor-
respondence for all real dual pairs (G, G′), [14, Theorem 1]. As shown by Jian-Shu Li 
in his thesis, the representations Π and Π′ are in Howe’s correspondence. Li extended 
Howe’s theory of rank to all dual pairs of type I and proved that it provides a bijection of 
representations of G̃ and G̃′ equal to Howe’s correspondence, see [18] and [17]. The con-
dition of low rank is transformed to the dual pair being in the stable range, with G′ – the 
smaller member. Now the operators Π(g), g ∈ G̃, are much better understood because 
the Weil representation is known explicitly, see [23] or section 2 below, for a coordinate 
free approach.

Nevertheless an explicit description of all the Π(g), g ∈ G̃, seems out of reach. Instead 
one may try to describe the distribution character ΘΠ of Π, [8], in terms of ΘΠ′ . This 
approach has a solid foundation, because for the dual pair (Un, Un) the correspondence 
of the characters is governed by the Cauchy determinant identity, see [22, Introduction]. 
In fact [22, Definition 2.17] provides a candidate Θ′

Π′ for ΘΠ in terms of ΘΠ′ . (For a more 
precise version see [4, Formula (7)].) Let G′

1 ⊆ G′ be the Zariski identity component. 
Here is our first theorem.
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Theorem 1. Suppose (G, G′) is a real irreducible dual pair of type I in the stable range 
with G′ – the smaller member. Let Π′ be any genuine irreducible unitary representation 
of G̃′ and let Π be the representation of G̃ corresponding to Π′. Assume that either 
G′ = G′

1 or G′ �= G′
1, but the restriction of Π′ to G̃′

1 is the direct sum of two inequivalent 
representations. Then the restriction of ΘΠ to G̃1 is equal to Θ′

Π′ . (For a character 
equality in the exceptional case see (25) below.)

The proof looks as follows. As shown in [4, Theorem 4], Θ′
Π′ is an invariant eigendis-

tribution. Hence, by Harish-Chandra Regularity Theorem, [9, Theorem 2], it suffices to 
know that the two distributions are equal on a Zariski open subset G̃′′ ⊆ G̃. This is 
verified using the method developed in [6] combined with a localization which requires 
the notion of a rapidly decreasing functions on G̃, as defined in [31, 7.1.2].

Another invariant that tests our understanding of a representation is WF (Π), the wave 
front set of Π. This notion, adapted from the theory differential operators, [10, chapter 8], 
was introduced to representation theory by Howe in [11]. Since the wave front set of a 
representation of a reductive group is a union of nilpotent coadjoint orbits in the dual g∗
of the Lie algebra g of G, there are only finitely options for WF (Π). Nevertheless it is 
surprisingly difficult to compute it. In part for that reason, Vogan introduced the notion 
of an associated variety of the representation (or rather of its Harish-Chandra module) 
in [29]. As shown by Schmidt and Vilonen in [25], the two notions are equivalent via the 
Sekiguchi correspondence of orbits, [26].

In order to state our second theorem, which expresses WF (Π) in terms of WF (Π′), 
we need to recall that a dual pair (G, G′) is contained in the symplectic group Sp(W), the 
isometry group of a nondegenerate symplectic form 〈·, ·〉 on a finite dimensional vector 
space W over R. Hence, there are moment maps τg : W → g∗ and τg′ : W → g′∗ defined 
by

τg(z) = 〈z(w), w〉 (z ∈ g, w ∈ W) (1)

and similarly for g′.

Theorem 2. Suppose (G, G′) is a real irreducible dual pair of type I in the stable range 
with G′ – the smaller member. Let Π′ be any genuine irreducible unitary representation 
of G̃′ and let Π be the representation of G̃ corresponding to Π′. Then

WF (Π) = τg(τ−1
g′ (WF (Π′))) . (2)

We shall see in section 7 that Theorem 2 follows from Theorem 1, except when G′ �= G′
1

and the restriction of Π′ to G̃′
1 is irreducible. In that case, if WF (Π′) has more than 

one orbit of maximal dimension, we use a result of Loke and Ma, [19] combined with a 
theorem of Schmid and Vilonen, [25]. In fact, [19, Theorems A and D] prove the equality 
analogous to (2) for all cases with the wave front set replaced by the associated variety. 
Therefore one is tempted to deduce (2) from their result and from [25]. However, this is 
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not straightforward, because Schmid and Vilonen [25, page 1075] work with the groups 
that are the sets of the real points of a connected complex linear reductive groups. For a 
real ortho-symplectic dual pair either one member is a metaplectic group, which is not 
linear, or the other is an even orthogonal group, whose complexification is not connected. 
(Also, there are two Sekiguchi correspondences, see [26] and [7, Proposition 6.6], and the 
wave front set of a distribution depends, up to the ± sign, on a choice of the Fourier 
transform, see [10, Definition 8.1.2].)

One may probably circumvent [19] and [25] by producing the correct extension of Θ′
Π′

from G̃′
1 to G̃′, but this would require a good understanding of the twisted orbital 

integrals, [24], and is beyond the scope of this article.
The distribution Θ′

Π′ is defined also beyond the stable range and does not depend on 
the unitarity of Π′. Furthermore, the Springer representations generated by the lowest 
terms in the asymptotic expansions of Θ′

Π′ and ΘΠ′ behave as if (2) were true beyond 
the stable range under some other mild assumptions, [1, Theorem 1]. Therefore a gener-
alization of the above two theorems seems likely.

2. The Weil representation

In this section we recall the Weil representation [32] with the details suitable for our 
computations following [2]. Fix a compatible positive complex structure J on W, i.e. 
J ∈ sp(W) is such that J2 = −1, minus the identity in End(W), and the symmetric 
bilinear form 〈J ·, ·〉 is positive definite. For an element g ∈ Sp(W), let Jg = J−1(g − 1). 
Then its adjoint with respect to the form 〈J ·, ·〉 is J∗

g = Jg−1(1 −g). In particular Jg and 
J∗
g have the same kernel. Hence the image of Jg is JgW = (KerJ∗

g )⊥ = (KerJg)⊥, where ⊥
denotes the orthogonal complement with respect to 〈J ·, ·〉. Therefore, the restriction of 
Jg to JgW defines an invertible element. Thus it makes sense to consider det(Jg)−1

JgW, the 
reciprocal of the determinant of the restriction of Jg to JgW. Let

S̃p(W) = {g̃ = (g, ξ) ∈ Sp(W) × C, ξ2 = idim(g−1)W det(Jg)−1
JgW}.

There exists a 2-cocycle C : Sp(W) ×Sp(W) → C, so that S̃p(W) is a group with respect 
to the multiplication (g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)). In fact, by [2, Lemma 4.17],

|C(g1, g2)| =

√∣∣∣∣det(Jg1)Jg1W det(Jg2)Jg2W

det(Jg1g2)Jg1g2W

∣∣∣∣ (3)

and by [2, Proposition 4.13 and formula (102)],

C(g1, g2)
|C(g1, g2)|

= χ(1
8 sgn(qg1,g2)), (4)

where χ(r) = e2πir, r ∈ R, is a fixed unitary character of the additive group R and 
sgn(qg1,g2) is the signature of the symmetric form
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qg1,g2(u′, u′′) = 1
2 〈(g1 + 1)(g1 − 1)−1u′, u′′〉 + 1

2 〈(g2 + 1)(g2 − 1)−1u′, u′′〉

(u′, u′′ ∈ (g1 − 1)W ∩ (g2 − 1)W) .

By the signature of a (possibly degenerate) symmetric form we understand the difference 
between the maximal dimension of a subspace where the form is positive definite and 
the maximal dimension of a subspace where the form is negative definite. The group 
S̃p(W) is known as the metaplectic group, see [2, Lemmas 4.14, 4.15, 4.19 and Defini-
tion 4.16].

Let W = X⊕Y be a complete polarization. We normalize the Lebesgue measure on W
and on each subspace of W so that the volume of the unit cube, with respect to the form 
〈J ·, ·〉, is 1. Since all positive complex structures are conjugate by elements of Sp(W), 
this normalization does not depend on the particular choice of J .

Each tempered distribution K ∈ S∗(X × X) defines an operator Op(K) ∈
Hom(S(X), S∗(X)) by

Op(K)v(x) =
∫
X

K(x, x′)v(x′) dx′.

Here S(X) and S∗(X) denote the Schwartz space on the real vector space X and the space 
of the tempered distributions on X. The map Op : S∗(X×X) → Hom(S(X), S∗(X)) is an 
isomorphism of linear topological spaces. This is known as the Schwartz Kernel Theorem, 
[28, Corollary of Theorem 51.6].

Fix the unitary character χ(r) = e2πir, r ∈ R, and recall the Weyl transform

K : S∗(W) → S∗(X × X) ,

K(f)(x, x′) =
∫
Y

f(x− x′ + y)χ
(1
2 〈y, x + x′〉

)
dy (f ∈ S(W)) .

Let

χc(g)(u) = χ
(1
4 〈(g + 1)(g − 1)−1u, u〉

)
(u = (g − 1)w, w ∈ W).

In particular, if g − 1 is invertible on W, then χc(g)(u) = χ(1
4 〈c(g)u, u〉 where c(g) =

(g + 1)(g − 1)−1 is the usual Cayley transform. For g̃ = (g, ξ) ∈ S̃p(W) define

Θ(g̃) = ξ, T (g̃) = Θ(g̃)χc(g)μ(g−1)W, ω(g̃) = Op ◦ K ◦ T (g̃) ,

where μ(g−1)W is the Lebesgue measure on the subspace (g−1)W normalized so that the 
volume of the unit cube with respect to the form 〈J ·, ·〉 is 1. In these terms, (ω, L2(X)) is 
the Weil representation of S̃p(W) attached to the character χ, see [2, Theorem 4.27]. In 
fact this is the Schrödinger model of ω attached to the complete polarization W = X⊕Y. 
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Furthermore, Θ is the distribution character of ω and T (g̃) is a normalized Gaussian. 
For future reference we set ρ = Op ◦ K and recall the following formula

tr (ω(g̃)ρ(φ)) = T (g̃)(φ) (g̃ ∈ S̃p(W), φ ∈ S(W)) . (5)

3. A mixed model of the Weil representation

In this section we recall the explicit formulas for ω(g̃) for some particular elements g̃
of the metaplectic group. For a subset M ⊆ End(W) let Mc = {m ∈ M : det(m −1) �= 0}
denote the domain of the Cayley transform in M.

Proposition 3. Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and Y. 
Set

det−1/2
X (m̃) = Θ(m̃)|det(1

2(c(m|X) + 1))|−1 (m̃ ∈ M̃c).

Then (
det−1/2

X (m̃)
)2

= det(m|X)−1 (m̃ ∈ M̃c) ,

the function det−1/2
X : M̃c → C× extends to a continuous group homomorphism

det−1/2
X : M̃ → C×

and

ω(m̃)v(x) = det−1/2
X (m̃)v(m−1x) (m̃ ∈ M̃, v ∈ S(X), x ∈ X).

Suppose W = W1 ⊕ W2 is the direct orthogonal sum of two symplectic spaces. There 
are inclusions

Sp(W1) ⊆ Sp(W), Sp(W2) ⊆ Sp(W) (6)

defined by

g1(w1 + w2) = g1w1 + w2

g2(w1 + w2) = w1 + g2w2 (gj ∈ Sp(Wj), wj ∈ Wj , j = 1, 2) .

Furthermore, the map

Sp(W1) × Sp(W2) � (g1, g2) → g1g2 ∈ Sp(W) (7)

is an injective group homomorphism.
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Let us choose the compatible positive complex structure J so that it preserves both 
W1 and W2. Then we have two metaplectic groups S̃p(Wj), j = 1, 2. It is not difficult to 
see that the embeddings (6) lift to the embeddings

S̃p(W1) ⊆ S̃p(W), S̃p(W2) ⊆ S̃p(W).

Also, as is well known and easily follows from (3) and (4),

C(g1, g2) = 1 (gj ∈ Sp(Wj), j = 1, 2) .

Hence (7) lifts to a group homomorphism

S̃p(W1) × S̃p(W2) � (g̃1, g̃2) → g̃1g̃2 ∈ S̃p(W) ,

with kernel equal to a two-element group. Moreover, in terms of the identification

S(W) = S(W1) ⊗ S(W2) ,

we have

T (g̃1g̃2) = T1(g̃1) ⊗ T2(g̃2) (g̃j ∈ S̃p(Wj), j = 1, 2) ,

where Tj(g̃1) is the normalized Gaussian for the space Wj , j = 1, 2. Hence,

ω(g̃1g̃2) = ω1(g̃1) ⊗ ω2(g̃2) (g̃j ∈ S̃p(Wj), j = 1, 2) ,

where ωj is the Weil representation of S̃p(Wj), j = 1, 2.
Suppose from now on that Wj = Xj ⊕ Yj , j = 1, 2, are complete polarizations such 

that

X = X1 ⊕ X2 and Y = Y1 ⊕ Y2.

Then, in particular, we have the following identifications

S(X) = S(X1) ⊗ S(X2) = S(X1,S(X2)). (8)

Corollary 4. Suppose m ∈ Sp(W) preserves X1 and Y1. Denote by m1 the restriction of 
m to X1 and by m2 the restriction of m to Sp(W2). Then for v1 ∈ S(X1), v2 ∈ S(X2), 
x1 ∈ X1 and x2 ∈ X2,

(ω(m̃1m̃2)(v1 ⊗ v2)) (x1 + x2) = det−1/2
X1

(m̃1)v1(m−1
1 x1)(ω2(m̃2)v2)(x2) .

Thus, in terms of (8),

ω(m̃1m̃2)v(x1) = det−1/2
X1

(m̃1)ω2(m̃2)v(m−1
1 x1) (v ∈ S(X1,S(X2)), x1 ∈ X1) .
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Proposition 5. Suppose n ∈ Sp(W) acts trivially on Y⊥
1 . Then for v ∈ S(X1, S(X2)) and 

x1 ∈ X1,

ω(ñ)v(x1) = ±χc(−n)(2x1)v(x1) .

Proposition 5 is well known. If W2 = 0 then it coincides with [2, Proposition 4.29]. 
The general case may be verified via an argument similar to the one used there.

4. The restriction of the Weil representation to the dual pair

The defining module (V, (·, ·)) for the group G is a finite dimensional left vector 
space V over a division algebra D = R, C or H, with a possibly trivial involution, and 
a nondegenerate hermitian or skew-hermitian form (·, ·) such that G ⊆ EndD(V) is the 
isometry group of that form. Similarly we have the defining module (V,′ (·, ·)′) for the 
group G′. The stable range assumption means that there is an isotropic subspace X(1) ⊆ V
such that dim V′ ≤ dimX(1). Select an isotropic subspace Y(1) ⊆ V, complementary 
to X⊥

(1), and let V(2) ⊆ V be the orthogonal complement of X(1) ⊕ Y(1), so that V =
X(1) ⊕ V(2) ⊕ Y(1).

The symplectic space may be realized as W = Hom(V, V′) with

〈w′, w〉 = trD/R(w∗w′), (9)

where w∗ ∈ Hom(V′, V) is defined by (W, v′)′ = (v, w∗v′), where v ∈ V and v′ ∈ V′. The 
group G′ acts on W by the post-multiplication and the group G by the pre-multiplication 
by the inverse. Set X1 = Hom(X(1), V′), Y1 = Hom(Y(1), V′) and W2 = Hom(V(2), V′). 
Then Y1 and X⊥

1 are complementary isotropic subspaces of W with respect to the sym-
plectic form (9) and W2 is the orthogonal complement of W1 = X1 + Y1. We shall 
work in the mixed model of the Weil representation adapted to the decomposition 
W = X1 ⊕ W2 ⊕ Y1, as explained in the previous section.

For any symmetric matrix A ∈ GL(Rn) define

γ(A) = e
πi
4 sgn(A)√
| detA|

.

The real vector space Y1, is equipped with the scalar product 〈J ·, ·〉. Given z ∈ g, 
the formula qz(y, y′) = 1

2〈zy, y′〉 defines a symmetric bilinear form on Y1. Denote by 
Az the matrix of this form with respect to any orthonormal basis of Y1. Denote by 
iY1 : Y1 → X1 ⊕ W2 ⊕ Y1 the injection and by pX1 : X1 ⊕ W2 ⊕ Y1 → X1 the projection. 
The matrix Az depends only on the map pX1ziY1 : Y1 → X1. The stable range assumption 
implies that we may choose X(1) and Y(1) so the set of such elements z in non-empty. 
We shall fix such a choice for the rest of this article and let γ(qpX ziY ) = γ(Az).
1 1
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The complete polarization W1 = X1 ⊕Y1 leads to the Weyl transform K1 : S∗(W1) →
S∗(X1×X1). Hence K1⊗1 : S∗(W) → S∗(X1×X1×W2). In order to shorten the notation 
we shall write K1 for K1 ⊗ 1. Explicitly

K1(f)(x, x′, w2) =
∫
Y1

f(x− x′ + y + w2)χ
(1
2 〈y, x + x′〉

)
dy

(f ∈ S(W), x, x′ ∈ X1, w2 ∈ W2) .

By computing a Fourier transform of a Gaussian, as in [10, Theorem 7.6.1], we obtain 
the following Lemma.

Lemma 6. Let z ∈ gc be such that pX1ziY1 is invertible. Then for x, x′ ∈ X1 and w2 ∈ W2
we have

K1(T (c̃(z)))(x, x′, w2) = Θ(c̃(z))γ(qpX1ziY1
) (10)

χz(x− x′)χ(pX1ziY1 )−1(x + x′ − pX1(z(x− x′) + zw2))

χ(1
2 〈zw2, x− x′〉)χz(w2) .

Let h ∈ G be the element that acts via multiplication by −1 on W1 and by the identity 
on W2. Suppose that in addition det(hc(z) − 1) �= 0 and let zh = c(hc(z)). Then

K1(T (c̃(zh)))(x, x′, w2) = det−1/2
X1

(h̃)K1(T (c̃(z)))(x,−x′, w2) .

(Here h̃ is one of the two elements in the preimage of h chosen so that the right hand 
side is equal to the left hand side.)

Here is a technical lemma, analogous to [6, Lemma 4.3]. Recall that for a test function 
Ψ ∈ C∞

c (G̃)

T (Ψ) =
∫
G̃

Ψ(g)T (g) dg

is a well defined tempered distribution on W. Hence K1(T (Ψ)) is a tempered distribution 
on X1 × X1 × W2.

Lemma 7. Fix a euclidean norm | · | on the real vector space End(V). There is a Zariski 
open subset G′′ ⊆ G such that for Ψ ∈ C∞

c (G̃′′) the distribution K1(T (Ψ)) is a function 
on X1 × X1 × W2. Moreover, for N = 0, 1, 2, .. there are constants CN such that for all 
x, x′ ∈ X1 and all w2 ∈ W2,

|K1(T (Ψ))(x, x′, w2)| (11)

≤ CN (1 + |x∗x| + |x′∗x′| + |x∗x′| + |x′∗x| + |x∗w2| + |x′∗w2| + |w∗
2w2|)−N .
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Proof. The function (10) is of the form ei
π
2 φx,x′,w2 (z), where

φx,x′,w2(z) = 〈z(x− x′), x− x′〉

+ 〈(pX1ziY1)−1(x+x′ − pX1(z(x−x′) + zw2)), x+x′ − pX1(z(x−x′) + zw2)〉

+ 2〈zw2, x−x′〉+ 〈zw2, w2〉 .

In order to simplify the computations we introduce the following notation

A = pX(1)ziX(1) , B = pX(1)ziY(1) , C = pY(1)ziX(1) , F = C−1,

D = pV(2)ziY(1) , E = pV(2)ziX(1) , z2 = pV(2)ziV(2) .

By using the explicit description of the symplectic form, (9), and remembering that the 
Lie algebra g acts on W via minus the right multiplication, we can view the A, B, ..., F
as elements of End(V), so that

−φx,x′,w2(z) = trD/R
(
(x− x′)∗(x− x′)B

+ (x + x′ + (x− x′)A + w2E)∗(x + x′ + (x− x′)A + w2E)F

+ 2(x− x′)∗w2D + w∗
2w2z2

)
.

The derivative of −φx,x′,w2(z) viewed as a function of the variables A, B, F , D, E, z2 is 
given by

− φ′
x,x′,w2

(z)(ΔA,ΔB ,ΔF ,ΔD,ΔE ,Δz2)

= trD/R
(
(x− x′)∗(x− x′)ΔB

+ ((x− x′)ΔA)∗(x + x′ + (x− x′)A + w2E)F

+ (x + x′ + (x− x′)A + w2E)∗(x− x′)ΔAF

+ (w2ΔE)∗(x + x′ + (x− x′)A + w2E)F + (x + x′ + (x− x′)A + w2E)∗w2ΔEF

+ (x + x′ + (x− x′)A + w2E)∗(x + x′ + (x− x′)A + w2E)ΔF

+ 2(x− x′)∗w2ΔD + w∗
2w2Δz2

)
.

Notice that ΔAF = F (Ad(F−1)ΔA). Also, by the structure of the Lie algebra g, the 
variables ΔA, ΔB , ΔF , ΔD, ΔE , Δz2 are independent and fill out the corresponding vector 
spaces. The norm of the functional φ′

x,x′,w2
(z) can be estimated from below by taking 

ΔE = 0 and ΔF = 0. Furthermore, all norms on a finite dimensional vector space are 
equivalent. Hence, with the appropriate choice of the norm | · | on EndD(V),



1294 T. Przebinda / Journal of Functional Analysis 274 (2018) 1284–1305
|φ′
x,x′,w2

(z)| ≥ |(x− x′)∗(x− x′)| (12)

+ |(x− x′)∗(x + x′ + (x− x′)A + w2E)F |
+ |(x + x′ + (x− x′)A + w2E)∗(x− x′)F Ad(F−1)|
+ 2|(x− x′)∗w2| + |w∗

2w2| .

Using the operator norm inequality |ab| ≥ |a||b−1|−1 and the fact that |a∗| = |a| we see 
that

|(x− x′)∗(x− x′)| ≥ |(x− x′)∗(x− x′)A||A|−1 ,

|(x− x′)∗(x + x′ + (x− x′)A + w2E)F |
≥ |(x− x′)∗(x + x′ + (x− x′)A + w2E)||F−1|−1 ,

|(x + x′ + (x− x′)A + w2E)∗(x− x′)F Ad(F−1)|
≥ |(x− x′)∗(x + x′ + (x− x′)A + w2E)|Ad(F )F−1|−1 ,

|(x− x′)∗w2| ≥ |(x− x′)∗w2E||E|−1 .

Hence,

|φ′
x,x′,w2

(z)| ≥ C(z)
(
|(x− x′)∗(x− x′)| + |(x− x′)∗(x− x′)A| +

|(x− x′)∗(x + x′ + (x− x′)A + w2E)| + |(x− x′)∗w2E| + |(x− x′)∗w2| + |w∗
2w2|

)
,

where

C(z) = min(1
2 , C0(z)) , C0(z) = min(1

2 |A|−1, |C|−1 + |Ad(F )C|−1, |E|−1) .

Using the triangle inequality |a| + |b| ≥ |a ± b| we see that

|(x− x′)∗(x− x′)A| + |(x− x′)∗(x + x′ + (x− x′)A + w2E)| + |(x− x′)∗w2E|
≥ | − (x− x′)∗(x− x′)A + (x− x′)∗(x + x′ + (x− x′)A + w2E) − (x− x′)∗w2E|
= |(x− x′)∗(x + x′)|.

So,

|φ′
x,x′,w2

(z)| ≥ C(z)
(
|(x− x′)∗(x− x′)| + |(x− x′)∗(x + x′)| + |(x− x′)∗w2| + |w∗

2w2|
)
.

All this is done under the condition on z that C0(z) is finite.
Recall that Lemma 6 provides another expression for the function we would like to 

estimate, in terms φ′
x,−x′,w2

(zh). Our computation applied to zh shows that

|φ′
x,x′,w (zh)| ≥ C(zh)(|(x− x′)∗(x− x′)| + |(x− x′)∗(x + x′)| + |(x− x′)∗w2| + |w∗

2w2|).
2
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Hence, by the triangle inequality again,

|φ′
x,x′,w2

(z)| + |φ′
x,−x′,w2

(zh)|
≥ min(C(z), C(zh))

(|x∗x| + |x′∗x′| + |x∗x′| + |x′∗x| + |x∗w2| + |x′∗w2| + |w∗
2w2|) .

By the method of stationary phase (i.e. [10, Theorem 7.7.1]) and Lemma 6, the left hand 
side of (11) is dominated by

min((1 + |φ′
x,x′,w2

(z)|)−N , (1 + |φ′
x,−x′,w2

(zh)|)−N )

≤ (1 + 1
2(|φ′

x,x′,w2
(z)| + |φ′

x,−x′,w2
(zh)|))−N

≤ 2N (min(C(z), C(zh))−N

(|x∗x| + |x′∗x′| + |x∗x′| + |x′∗x| + |x∗w2| + |x′∗w2| + |w∗
2w2||)−N ,

which completes the proof, with G′′ equal to the image under the Cayley transform of 
the z ∈ gc such that zh ∈ gc and both C0(z) and C0(zh) are finite. �

As an immediate consequence of Corollary 4 and Proposition 5 we deduce the following 
lemma.

Lemma 8. Let Z ⊆ G be the subgroup that acts trivially on Y⊥
1 . Then for ñ ∈ Z̃, 

v ∈ S(X1, S(X2)), x1 ∈ X1 and g̃′ ∈ G̃′,

ω(ñ)v(x1) = ±χc(−n)(2x1)v(x1) , (13)

and

ω(g̃′)v(x1) = det−1/2
X1

(g̃′)ω2(g̃′)v(g′−1x1) . (14)

5. The functions Ψ ∈ C∞
c (G̃′′) act on HΠ via integral kernel operators

Given the polarization W2 = X2 ⊕ Y2 we have the map

ρ2 : S∗(W2) → Hom(S(X2),S∗(X2))

as in (5). Then

1 ⊗ ρ2 : S∗(X1 × X1 × W2) → S∗(X1 × X1) ⊗ Hom(S(X2),S∗(X2)) .

In order to shorten the notation we shall write ρ2 for 1 ⊗ ρ2 and K1(T (g̃))(x, x′) =
K1(T (g̃))(x, x′, ·). In these terms
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ω(g̃)v(x) =
∫
X1

ρ2(K1(T (g̃))(x, x′))(v(x′)) d .
x
′ (g̃ ∈ G̃, v ∈ S(X1,S(X2))). (15)

Let Xmax
1 ⊆ X1 be the subset of the surjective maps. The stable range assumption implies 

that this is a dense subset. For fixed x, x′ ∈ Xmax
1 the operator norm of

ρ2(K1(T (Ψ))(x, x′) (16)

is bounded by the Hilbert–Schmidt norm, which is finite. Indeed, Lemma 7 shows 
that

K1(T (Ψ))(x, x′, w2)

is a rapidly decreasing function of x∗w2 and hence of w2, because x∗, as a map from V′

to X(1) is injective. Therefore

K1(T (Ψ))(x, x′, ·) ∈ L2(W2) ,

which means that the Hilbert–Schmidt norm of (16) is finite.
In general, we denote by ρc the representation contragredient to ρ and by Hρ a Hilbert 

space where ρ is realized.
The group G′ acts on Xmax

1 , via the left multiplication, so that the quotient G′\Xmax
1

is a manifold. If dx is a Lebesgue measure on X1, we shall denote by d
.
x the corresponding 

quotient measure on G′\Xmax
1 . Let HΠ be the Hilbert space of the functions u : Xmax

1 →
L2(X2) ⊗HΠ′c such that for all g̃′ ∈ G̃′

u(g′x) = (ω2 ⊗ det−1/2
X1

Π′c)(g̃′)u(x) and
∫

G′\Xmax
1

‖ u(x) ‖2 d
.
x < ∞ . (17)

Lemma 9. The representation Π is realized on the Hilbert space HΠ and for Ψ ∈ C∞
c (G̃′′), 

the operator Π(Ψ) is given in terms of an integral kernel defined on Xmax
1 × Xmax

1 as 
follows

(Π(Ψ)u)(x) =
∫

G′\Xmax
1

KΠ(Ψ)(x, x′)u(x′) d .
x
′ (u ∈ HΠ) ,

where

KΠ(Ψ)(x, x′) =
∫

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′, ·)) ⊗ det−1/2
X1

(g̃)Π′c(g̃) dg . (18)

G′
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Furthermore,

trKΠ(Ψ)(x, x′) (19)

=
∫
G′

∫
W2

T2(g̃)(w2)K1(T (Ψ))(g−1x, x′, w2) det−1/2
X1

(g̃)ΘΠ′c(g̃) dw2 dg ,

where 
∫
W2

T2(g̃)(w2)φ(w2) dw2 stands for T2(g̃)(φ).

Proof. We proceed as in [6, Proposition 4.8]. Define a map

Q : S(X1,S(X2)) ⊗HΠ′c → HΠ

by

Q(v ⊗ η)(x) =
∫
G′

(ω ⊗ Π′c)(g̃)(v ⊗ η)(x) dg . (20)

Then (14) shows that

Q(v ⊗ η)(x) =
∫
G′

ω2(g̃)(v(g−1x)) ⊗ det−1/2
X1

(g̃)Π′c(g̃)η dg .

This last integral converges because |g−1x| is a constant multiple of the norm of g, as 
defined in [31, 2.A.2.4]. (The constant depends on x, which is fixed.) The argument 
used in the proof of Lemma 3.11 in [6] shows that the range of Q is dense in HΠ. The 
action of g̃ ∈ G̃ on HΠ is defined via the action of ω(g̃) on the v. Furthermore, with 
π(g̃) = det−1/2

X1
(g̃)Π′c(g̃), we have

Q(ω(Ψ)v ⊗ η)(x)

=
∫
G′

ω2(g̃)((ω(Ψ)v)(g−1x)) ⊗ π(g̃)η dg

=
∫
G′

∫
Xmax

1

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′))(v(x′)) ⊗ π(g̃)η dx′ dg

=
∫

Xmax
1

∫
G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′))(v(x′)) ⊗ π(g̃)η dg dx′

=
∫

G′\Xmax
1

∫
G′

∫
G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, h−1x′))(v(h−1x′)) ⊗ π(g̃)η dg dh d .
x
′

=
∫

′ max

∫
′

∫
′

ω2(g̃h̃)ρ2(K1(T (Ψ))(h−1g−1x, h−1x′))(v(h−1x′)) ⊗ π(g̃h̃)η dg dh d .
x
′

G \X1 G G
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=
∫

G′\Xmax
1

∫
G′

∫
G′

ω2(g̃h̃)ω2(h̃)−1ρ2(K1(T (Ψ))(g−1x, x′))(ω2(h̃)v(h−1x′))

⊗ π(g̃h̃)η dg dh d .
x
′

=
∫

G′\Xmax
1

⎛⎝ ∫
G′

ω2(g̃)ρ2(K1(T (Ψ))(g−1x, x′)) ⊗ π(g̃) dg

⎞⎠Q(v ⊗ η)(x′) d .
x
′
,

where by Lemma 7 all the integrals are convergent. This verifies (18).
The usual argument shows that K1(T (Ψ))(g−1x, x′, w2) is a differentiable function 

of g and w2 and that the derivatives are rapidly decreasing, as in Lemma 7. Hence (19)
follows from (18) and (5). �
6. The equality ΘΠ = Θ′

Π′

Recall the group Z defined in Lemma 8. For a Schwartz function ψ ∈ S(z), on the 
Lie algebra z of Z, define a distribution ψZ on G̃ by ψZ = ψ̃μZ, where ψ̃(n) = ψ(c(−n)), 
n ∈ Z, and μZ is the Haar measure on Z viewed as a distribution on G. Also, recall the 
space S(G) of rapidly decreasing functions on G, as defined in [31, 7.1.2].

Lemma 10. For any Ψ ∈ C∞
c (G) and any ψ ∈ S(z), the convolution Ψ ∗ ψZ ∈ S(G).

Proof. Notice that for z ∈ z,

−c(z) = (1 + z)(1 − z)−1 = (1 + z)(1 + z) = 1 + 2z ,

because z2 = 0. (Indeed, recall that z annihilates Y⊥
1 . Since (zx1, y1) = −(x1, zy1) = 0

we see that z maps X1 to Y⊥
1 , so z2 = 0.) Therefore we may choose the euclidean norm 

on the Lie algebra and the norm on the group, [31, 2.A.2.4], so that |c(z)| = |z|, z ∈ z. 
Furthermore the map Z � n → c(−n) ∈ z is a bijection with inverse z � z → −c(z) ∈ Z.

Recall that

Ψ ∗ ψZ(a) =
∫
Z

Ψ(ab)ψ̃(b−1) dμZ(b) .

Let C be a constant such that |g| ≤ C for all g in the support of Ψ. Then

|Ψ ∗ ψZ(a)| ≤‖ Ψ ‖∞
∫

|ab|≤C

|ψ̃(b−1)| dμZ(b) ≤‖ Ψ ‖∞
∫

|a|
C ≤|b−1|

|ψ̃(b−1)| dμZ(b) .

Since ψ is rapidly decreasing,

|ψ̃(b−1)| ≤ CN (1 + |b−1|)−N .
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Furthermore,

∫
|a|
C ≤|b−1|

(1 + |b−1|)−N dμZ(b) ≤
∫

|a|
C ≤|b−1|

(1 + |b−1|)−N/2 dμZ(b)
(

1 + |a|
C

)−N/2

.

Thus Ψ ∗ ψZ is rapidly decreasing. Further, we compute the left and right derivatives 
and get a similar estimate. �

Clearly, Lemma 10, with the obvious modifications, holds for the groups G̃ and Z̃, 
and we shall use it that way. Define a Fourier transform

ψ̂(ζ) =
∫
z

ψ(z)e2πiζ(z) dz (ζ ∈ z∗)

and the moment map

τz : W → z∗, τz(w)(z) = 〈zw,w〉 (w ∈ W, z ∈ z) .

We shall see in (23) that the following lemma removes the “deep” stable range assumption 
from [6].

Lemma 11. For any Ψ ∈ C∞
c (G̃′′) and any ψ ∈ S(z),

KΠ(Ψ ∗ ψZ)(x, x′) = 2dim zKΠ(Ψ)(x, x′)ψ̂(τz(x′)) (x, x′ ∈ Xmax
1 ) . (21)

Proof. The formula (13) implies that

K1(T (Ψ ∗ ψZ))(x, x′) = 2dim zK1(T (Ψ))(x, x′)ψ̂(τz(x′)) . (22)

Hence the lemma follows from (18), because Z commutes with G′. �
In the remainder of this section we prove Theorem 1. Recall the distribution Θ′

Π′

defined in [22, Definition 2.17]. (For a more precise version see [4, Formula (7)].) That 
invariant distribution was defined on smooth compactly supported functions, but that 
definition extends to S(G̃1), without any modifications.

Let Ψ ∈ C∞
c (G̃′′) and let ψ ∈ S(z), with supp ψ̂ compact. Denote by χΠ′((−1)̃)

the scalar by which Π′((−1)̃) acts on the Hilbert space HΠ′ , so that ΘΠ′((−1)̃g̃) =
χΠ′((−1)̃)ΘΠ′(g̃). Also, recall [2, sec. 4.5] the twisted convolution

φ1�φ2(w′) =
∫
W

φ1(w′ − w)φ2(w)χ(1
2 〈w,w

′〉) dw (φ1, φ2 ∈ S(W)) ,

which extends by continuity to some tempered distributions so that, in particular,
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T (g̃1)�T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ S̃p(W)) .

Also, we see from (22) that the formulas (18) and (19) hold with Ψ replaced by Φ = Ψ ∗ψZ. 
There are no convergence problems here because the elements x, x′ ∈ Xmax

1 are fixed.
On the other hand, we see from (21) that the integral kernel KΠ(Φ)(x, x′) has better 

estimates than KΠ(Ψ)(x, x′) because ψ̂ ◦ τz is compactly supported. (This is despite the 
fact that Φ may not be supported in G̃′′.) This is why all the consecutive integrals in 
the following computation are absolutely convergent:

ΘΠ(Ψ ∗ ψZ) = tr Π(Φ) =
∫

G′\Xmax
1

trKΠ(T (Φ))(x, x) d .
x (23)

=
∫

G′\Xmax
1

trKΠ(T (Φ))(−x,−x) d .
x

=
∫

G′\Xmax
1

∫
G′

∫
W2

T2(g̃)(w2)K1(T (Φ))(−g−1x,−x,w2) det−1/2
X1

(g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)
∫

G′\Xmax
1

∫
G′

∫
W2

T2((−1)̃g̃)(w2)K1(T (Φ))(g−1x,−x,w2)

det−1/2
X1

((−1)̃g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)
∫

G′\Xmax
1

∫
G′

(
T2((−1)̃)�T2(g̃)�K1(T (Φ))(g−1x,−x, ·)

)
(0)

det−1/2
X1

((−1)̃g̃)ΘΠ′(g̃−1) dg d .
x

= χΠ′((−1)̃)Θ2((−1)̃)
∫

G′\Xmax
1

∫
G′

∫
W2

(
T2(g̃)�K1(T (Φ))(g−1x,−x, ·)

)
(w2)

det−1/2
X1

((−1)̃g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)Θ2((−1)̃) det−1/2
X1

((−1)̃)
∫

G′\Xmax
1

∫
G′

∫
W2

K1(T2(g̃)�T (Φ))(g−1x,−x,w2)

det−1/2
X1

(g̃)ΘΠ′(g̃−1) dw2 dg d
.
x

= χΠ′((−1)̃)Θ2((−1)̃) det−1/2
X1

((−1)̃)∫
G′\Xmax

1

∫
G′

∫
W2

∫
Y1

T (g̃)�T (Φ)(x + x + y + w2)

χ(1 〈y, x− x〉)ΘΠ′(g̃−1) dy dw2 dg d
.
x
2
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= χΠ′((−1)̃)Θ((−1)̃)
∫

G′\Xmax
1

∫
G′

∫
W2

∫
Y1

T (g̃)�T (Φ)(x + y + w2)

ΘΠ′(g̃−1) dy dw2 dg d
.
x ,

where the functions under the integral are constant on the fibers of the covering map 
because we assume that Π′ is genuine. Also, the integral over (G′\Xmax

1 ) × G′ is also 
absolutely convergent. Furthermore, ΘΠ′ is indeed a function even if G′ �= G′

1, see [5, 
Theorem 2.1.1].

Suppose first that G = G′
1. Then we apply the Weyl integration formula for G′

∫
G′

f(g′) dg′ =
∑
H′

1
|W (H′)|

∫
H′

∫
G′/H′

f(g′h′g′−1) d .
g
′ |Δ(h′)|2 dh′

to the integral over G′ in (23) and see that

ΘΠ(Ψ ∗ ψZ) (24)

= χΠ′((−1)̃)Θ((−1)̃)
∑
H′

1
|W (H′)|

∫
H′\Xmax

1

∫
H′

∫
W2

∫
Y1

T (h̃′)�T (Φ)(x + y + w2)

ΘΠ′(h̃′−1) |Δ(h′)|2 dy dw2 dh
′ d

.
x

= χΠ′((−1)̃)Θ((−1)̃)
∑
H′

1
|W (H′)|

∫
H′

∫
H′\Xmax

1

∫
W2

∫
Y1

T (h̃′)�T (Φ)(x + y + w2)

ΘΠ′(h̃′−1) |ΔG′(h′)|2 dy dw2 dh
′ d

.
x

= χΠ′((−1)̃)Θ((−1)̃)
∑
H′

1
|W (H′)|

∫
H′

∫
H′\Wmax

T (h̃′)�T (Φ)(w)

ΘΠ′(h̃′−1) |Δ(h′)|2 dh′ d
.
w

= χΠ′((−1)̃)Θ((−1)̃)
∑
H′

1
|W (H′)|

∫
H′

ΘΠ′(h̃′−1) |Δ(h′)|2
∫

H′\Wmax

∫
G̃

Φ(g̃)T (h̃′g̃) dg̃ dh′ d
.
w.

Here we integrate over the regular elements h̃′ ∈ H̃′. For a fixed h̃′, the integral over 
H′\Wmax is a distribution on the group G̃, which happens to be the unique restriction of 
a distribution defined on the centralizer of the vector part of H′ in S̃p(W), as explained 
in [22, Proposition 10]. Therefore (24) is equal to Θ′

Π′(Ψ ∗ ψZ). However, as shown in 
[4, Theorem 4], Θ′

Π′ is an invariant eigendistribution. (Being an eigendistribution is 
a local statement, so it does not depend on the class of the test functions.) Hence, by 
Harish-Chandra Regularity Theorem, [9, Theorem 2], we have the equality for a sufficient 
class of test functions to conclude that the two distributions on G̃1 are equal.

Indeed, notice first that any invariant eigendistribution acts continuously on S(G̃) via 
an absolutely convergent integral. We see from the explicit formula for such a distribution 
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restricted to a Cartan subgroup, [16, Theorem 10.35], that this claim will be verified as 
soon as we check that the Harish-Chandra orbital integral corresponding to a Cartan 
subgroup H̃ ⊆ G̃ maps S(G̃) continuously into the space S(H̃′′) of the rapidly decreasing 
functions on the regular set H̃′′ of H̃, as in [31, Theorem 7.4.10(ii)]. If the H̃ is compact 
then the appropriate version of [31, Lemma 7.4.5] carries over with an easier proof, 
because one does not have to invoke [31, Lemma 7.4.3]. Hence, [31, Lemma 7.A.4.2]
implies that the last claim. Also, one sees from the inequalities [31, (v), page 232] that 
the Harish-Chandra transform [31, (v), page 231] maps S(G̃) continuously into the space 
of rapidly decreasing functions on the corresponding Levi factor. Hence, [31, 7.4.10(2), 
page 249] implies the claim for an arbitrary H̃. Next we notice that G̃ acts continuously on 
S(G̃) by translations, see the proof of Theorem 7.1.1 in [31]. We may choose the function 
ψZ to be non-negative (squaring it results in the convolution on the Fourier side, which 
keeps the support compact) and have integral equal to 1 and use the dilations on the Lie 
algebra z to construct the approximative identity, so that, with the notation of Lemma 10, 
Ψ ∗ψZ approaches Ψ continuously in S(G̃). (This is a standard argument used for example 
in [27, chapter 2, Theorem 2.1].) Therefore our two invariant eigendistributions are equal 
on Ψ. Thus they are equal on the Zariski open subset G̃′′ ⊆ G̃,. This suffices for the 
equality everywhere.

Now we consider the case G′
1 �= G′, where the Weyl integration formula is not valid. 

The assumption that the restriction of Π′ to G̃′
1 is the direct sum of two inequivalent 

representations means that ΘΠ′ is supported on G̃′
1. Each coset G′x ∈ G′\Xmax

1 is the 
disjoint union of two disjoint G′

1 cosets G′x = G′
1x ∪(G′\G′

1)x. The function we integrate 
in (23) has the same value on the two G′

1 cosets but the integral over G′ is equal to the 
integral over G′

1, because ΘΠ′ |
G̃′\G′

1
= 0. Hence, modulo a factor of 2, or renormalization 

of the measure on X1, the computation (23) goes through, with G′ replaced by G′
1.

We continue studying the case G′
1 �= G′. Suppose the restriction of Π′ to G̃′

1 is ir-
reducible. Notice that G̃′/G̃′

1 is isomorphic to G′/G′
1. Hence the determinant may be 

viewed as a character det : G̃′ → C×, trivial on G̃′
1. The representation Π′ ⊗ det is 

irreducible, is not equivalent to Π′ and has the same restriction to G̃′
1 as Π′. Let Πdet be 

the representation of G̃ corresponding to Π′ ⊗ det. Since ΘΠ′⊗det = ΘΠ′ det, we see that 
the restriction of ΘΠ′⊕Π′⊗det to G̃′ \ G′

1 is zero. Hence, the argument used in the proof 
of Theorem 1 shows that

ΘΠ⊕Πdet = Θ′
Π′⊕Π′⊗det , (25)

where the right hand side is defined as before in terms or the Weyl integration formula 
for G′

1.

7. The equality WF (Π) = τg(τ−1
g′ (WF (Π′))

In this section we prove Theorem 2. If G′ = G′
1, then the lowest term in the asymptotic 

expansion of Θ′
Π′ is given in terms of the lowest in the asymptotic expansion of ΘΠ′ . This 
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is immediate from [22, Theorem 2.13]. Then [22, Theorem 1.19] shows that by applying 
Fourier transform to both we get the desired orbit correspondence and (2) follows from 
Theorem 1. The same argument applies when G′ �= G′

1 and Π′|G̃′
1

is the sum of two 
inequivalent representations.

Suppose G′ �= G′
1 and the restriction of Π′ to G̃′

1 is irreducible. Then we have the 
equality (25) and the above argument shows that

WF (Π ⊕ Πdet) = τg(τ−1
g′ (WF (Π′ ⊕ Π′ ⊗ det))) .

Since the wave front set is computed at the identity and since the wave front set of the 
direct sum of representations is the union of their wave front sets [11, Theorem 1.8 and 
Proposition 1.3(a)], we see that

WF (Π′ ⊕ Π′ ⊗ det) = WF (Π′) = WF (Π′ ⊗ det)

and

WF (Π ⊕ Πdet) = WF (Π) ∪WF (Πdet) .

Thus

WF (Π) ∪WF (Πdet) = τg(τ−1
g′ (WF (Π′))) . (26)

Below we shall use [25, Theorem 1.4] and [19, Theorems A and D] in a minimal possible 
way. In particular we will not need these results if WF (Π′) is the closure of one orbit.

We know from [5, Theorem 2.1.1] that ΘΠ′ has an asymptotic expansion near any 
semisimple point in G̃′ \ G̃′

1. The corresponding asymptotic support at that point is 
contained in the wave front set at that point and hence, by [11, Theorem 1.8] in WF (Π′). 
Therefore the lowest possible homogeneity degree of the expansion at that point (a 
non-positive integer) is bounded below by the lowest possible homogeneity degree of 
the expansion at the identity. Therefore an obvious modification of [21, Lemma 15(b)], 
without the finite dimensionality assumption of the representation used there, holds and 
hence the argument of the proof of [21, Theorem 7.8(b)] verifies the equality of the 
associate varieties of the primitive ideals

Ass(IΠ) = Ass(IΠdet) .

(After this improvement, [19, Corollary E] is a particular case of [21, Theorem 0.9].) 
Hence, by [3, Theorem 4.1] and [15], the complexifications of WF (Π) and WF (Πdet) are 
equal. By [7, Theorem 8.1], τg(τ−1

g′ (WF (Π′))) has the same number of nilpotent orbits 
of maximal dimension as WF (Π′). If that number is 1, then (26) shows that we can 
stop right here. Otherwise we rely on [19, Theorems A and D] and [25, Theorem 1.4], as 
explained below.
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Since the restriction of Π′ to G̃′
1 is irreducible, one may take an irreducible subrepre-

sentation of a maximal compact subgroup of G̃1 in the definition of the good filtration 
leading to the associated variety of the Harish-Chandra module of Π′. Hence the asso-
ciated varieties of the Harish-Chandra module of Π′ viewed as a representation of G̃′ or 
G̃′

1 are equal. The same argument applies to Π′ ⊗ det. Thus we have the equality of the 
associated varieties AV (Π′) = AV (Π′ ⊗ det). Then [19, Theorems A and D] shows that 
AV (Π) = AV (Πdet).

Since G′ is an orthogonal group with the defining module of an even dimension, 
the covering G̃ → G is trivial, so [25] applies to G̃. Also, the group G̃′

1 is linear and the 
complexification of G′

1 is connected. Hence [25] applies to G̃′
1. Therefore [25, Theorem 1.4]

together with [7, Theorem 8.1] show that WF (Π) = WF (Πdet), and we are done.
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