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THE WAVE FRONT SET AND
THE ASYMPTOTIC SUPPORT FOR p-ADIC GROUPS

ToMAsz PRZEBINDA

We prove that for p-adic groups the notion of the wave front set of
a representation coincides with the notion of the asymptotic support.

1. The wave front sets of finite sums of homogeneous distributions.
Let Q be a p-adic field of characteristic zero, with valuation |-|. Let g
be a finite dimensional vector space over . Fix a non-trivial character
x of the additive group Q, and a non-degenerate symmetric bilinear
form B on g with values in Q.

For f € C¢°(g) (compactly supported, locally constant functions on
g) define a Fourier Transform by

(1.1) fuv=/ﬂMKX»ﬂXMX (¥ eg).

g
Here d X is a Haar measure on the additive group of g (normalized so
that the formula (f)~(x) = f(~x) holds). Then f — f is a bijective
mapping of C°(g) onto itself (see [Hal] or [W, p. 107]). If T is a
distribution g then its Fourier transform T is given by

(1.2) T(N=T) (feC@).
Let n = dimg(g). For f € C*(g) define
(1.3) LX) =1AT"fA7 X)) (X eg 1eQX).

Fix an open subgroup A of Q* with [Q*: A] < co.
DEFINITION 1.4. A distribution 7 on g is A-homogeneous of degree
deCif
T(f)=1T(f)  (f€CX(g), AEN).
Notice that
(1.5) (L) =WT" (feCX(), 1eQY),

so that if T is A-homogeneous of degree d then 7 is a A-homogeneous
of degree —n — d. Clearly if T is a function:

nﬁ=/vawmx
g
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then T is A-homogeneous of degree d iff for any 4 € A,
T(AX)dX = AT (X)dX.

The reader may safely focus on the case A = Q*. In order to justify
the generality of Definition 1.4 we mention that a distribution homo-
geneous with respect to a quasicharacter of Q* is A-homogeneous for
a suitable A (see for example [G-G-PS, Ch. II}).

By fixing a base of g we can identify it with Q” and use the norm

(1.6) (4,22, -, An)| = max{|A,], |42],- -, |Anl}-

The following simple fact will be used later.

LEMMA 1.7. Let F and V' be open-compact subsets of g. Then there
is & > 0 such that for any A € Q with |A| < & the following inclusion
holds:

AF+V CV.

It is known that any compactly supported distribution on g has a
locally constant function as a Fourier Transform.

We are going to use (1.2) to analyze the singularities of 7 near zero.

DEerFINITION 1.8 ([He] §2). A distribution T on g is A-smooth at
Yy € g\{0} if there is an open neighborhood W of 0 and an open
neighborhood V' of Y; such that for any f € C>(W) there is N > 0
for which 4 € A and |A| > N imply

(fT)"(AY)=0 forany Y eV.

The complement of the set of A-smooth points of 7 in g\ {0} is called
the A-wave front set of T at zero and is denoted WF%(T).

The function (f7T)~, (1.9), is sometimes called a localized Fourier
Transform of T (because supp(f7) C supp(f)). Of course this func-
tion can be expressed in terms of the convolution

(1.10) (fT)~=f+T, wherefor X,Y eg,
[«T(X)=T(Lxf), Lxf(Y)=f(X-Y).

Using (1.10) and the notion of a lattice in g [W, p. 28] we rephrase
the Definition 1.8. For a subset U C g, let fi; denote the characteristic
function of U.
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LEMMA 1.11. Let T be a distribution on g and let V be an open-
compact subset of g\{0}. Then the following conditions on V are equiv-
alent:

(a) VNWFXT) is empty.

(b) There is a lattice U in g and a constant ¢ > 0, such that

fuxT(AY)=0 fordeA A/ >c YeV.

(c) There is a lattice W in g and for any constant 1 > ¢ > 0 a
constant ¢, > 0 such that for any f € C(W),

(x) (LT)"(AY)=0 ford,yeMA|A>c, e<|y|<1,YeV.

Proof. Clearly () implies (a). The equivalence of (a) and (b) was
shown by Heifetz [He, Lemma 2.2] . We shall recall his proof to see
that (b) implies (). Let W be the lattice dual to U, f € C* (W), and
let F = —supp f . Lemma 1.7 applied to the sets F and V provides a
constant § > 0. Put ¢; = max{d~'e~!,c}. Since by (1.5) supp(f;) "~ =

y~!supp f we see that (under the assumptions of (x))
(HT)~@AY) = (fhfwT) ™ (AY)
= [~ @D =272+ Y)dz =0, 0
g
The reader may compare this proof with [Ho, 8.1.1] to see that the
analogous argument in the classical situation is more complex.
Lemma 1.11 has the following immediate
COROLLARY 1.12. The wave front set WFR(T) contains the set A of
those Y € g\{0} satisfying the condition that for any lattice U C g and
any constant ¢ > 0 there is A € A with |A| > ¢ such that fy « T(AY) # 0.
Clearly Lemma 1.11 implies that
(1.13) WEQ(T) C A -suppT.

Also, since for any lattice U C g the support of fUT is compact, the
wave front set of 7 is the same as that associated to the truncation Ty
of T at infinity, defined by Ty = T — fy T. Therefore we have another

COROLLARY 1.14. The wave front set WF%(T) is contained in the
set B, the intersection of all A-supp Ty, where U varies over all lattices
ing.
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Next we define a p-adic analog of the classical notion of an asymp-
totic cone (see [HO, 8.1.7]). For any subset E of g\{0} define its
A-asymptotic cone to be the set

(1.15)  ACA(E) = {1i+m,1jz,~|,1,~ez\, lim 4; =0, Z,-eE}.
Jj+oo Jj—oo

By a A-conical subset of g we will mean a subset closed under multi-
plication by elements of A. Then AC,(E) is a closed A-conical subset
of g.

THEOREM 1.16. For any distribution T on g define the sets A and B
as in Corollaries 1.12 and 1.14 respectively. Then

(1.17) A CWF}(T) C B C ACx(supp 7).

Moreover all these sets (1.17) coincide if T is A-homogeneous.

Proof. Only the last inclusion in (1.17) remains to be verified. It is
obv1ous, however, if we realize that for any lattice U in g the support
of Ty is contained in the intersection of the support of 7 with the
complement of U in g.

LEMMA 1.18. For any finite sequence of real numbers d, < d, <
- < d, and a sequence ay,ay,...,a, of complex numbers define the
Sfunction

F(x)=aix¥ +ayx® + -+ a,x% (x > 0).

Then either F is identically equal to zero or F has at most r — 1 zeros.
We omit the elementary proof.

THEOREM 1.19. Let Ty, T>,...,T, be A-homogeneous distributions
on g ofdegreesd, <dy < ---<d, respectively. Put T =T+ T, +---+
T,. then

r
WE(T) = | WEU(T)).
j=1
Proof. Since the wave front set of a finite sum of distributions is

clearly contained in the union of the wave front sets of the summands,
it will suffice to verify the inclusion

(1.20) WE(T) 2 | WES(T).
j=1
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Take V' disjoint with WFE’\(T) as in Lemma 1.11 (a). Then by (c)

r
(1.21) 0=(LT)"(7'AY) =D I4(fT)) "~ (AY)
j=1
for feCO(W),AeA,ye |y > e<|y|<1,YeV.

Choose ¢ > 0 so that there are at least r elements in the set (¢, 1] N
{I|ly € A}. Then Lemma 1.18 implies that each summand in (1.21)
is zero. o

2. P-adic wave front sets of group representation. Let G be a con-
nected, reductive Q-group and G the subgroup of all Q-rational points
in G. Then G with its usual topology is a locally compact, totally dis-
connected, unimodular group. Let g be the Lie algebra of G. Then g
is a vector space over { of finite dimension and G operates on g by
means of the adjoint representation. Assume that the form g in (1.1)
is G-invariant.

Let 7 be an irreducible admissible representation of G and

6 (f)=trzn(f) (fe€CX(G)
be its character.

Let N be the set of all elements of g which are nilpotent. Then N is
the union of a finite number of G-orbits which are called the nilpotent
orbits. For all this see [Hal], [Ha2]. Harish-Chandra [He 1, p. 180]
has shown that one can choose an open neighborhood U of zero in g
and, for each nilpotent orbit O, a complex constant cg such that

(2.1) O.(exp(X)) = Y _cofio(X) (X €).
o
Here uo is a Radon measure on g given by
woh = | L JAdg X0ds (f€Cr®)

where Xy € O and G is the stabilizer of X in G (see [R]).

It follows from Theorem 1 in [R], that ug is a Q*-homogeneous
distribution on g of degree d = —n+dimg(0)/2. Therefore, via state-
ment (1.5), 21y is a homogeneous distribution of degree — dimg(0)/2.

Let 7 be an admissible representation of G of finite length. Put

T =06, exp.

Then (2.1) implies that

T=§r:T,~
j=1



388 TOMASZ PRZEBINDA

where the T’s are homogeneous distributions on g of degrees d; (j =
1,2,...,r). Explicitly

Ti= Y. coflo.
dim0/2=—d,

Retain the above notation. Then Theorem 1.19 implies the following

THEOREM 2.2. Let m be an admissible representation of G of finite
length. Then

r
WF(T) = | supp 7.
j=1

The left hand side of the first equation may be thought of as the
wave front set of the representation n (see [H], [He]) and the right
hand side as the asymptotic support (see [B-V]) of n. Recall also [He,
Theorem 3.4] that for 7 unitary WF(,)\(T) coincides with the wave front
set of n defined by the trace class operators. A statement analogous
to Theorem 2.2 for the real reductive Lie groups was conjectured in
[B-V] (and should hold via the inverse of the Lefschetz principle).
Theorem 1.19 is true in the real case and its proof is equally easy.
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