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RESONANCES FOR THE LAPLACIAN
ON RIEMANNIAN SYMMETRIC SPACES:
THE CASE OF SL(3,R)/SO(3)

J. HILGERT, A. PASQUALE, AND T. PRZEBINDA

ABSTRACT. We show that the resolvent of the Laplacian on SL(3,R)/SO(3)
can be lifted to a meromorphic function on a Riemann surface which is a
branched covering of C. The poles of this function are called the resonances of
the Laplacian. We determine all resonances and show that the corresponding
residue operators are given by convolution with spherical functions parameter-
ized by the resonances. The ranges of these operators are infinite dimensional
irreducible SL(3,R)-representations. We determine their Langlands parame-
ters and wave front sets. Also, we show that precisely one of these representa-
tions is unitarizable. Alternatively, they are given by the differential equations
which determine the image of the Poisson transform associated with the reso-
nance.
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INTRODUCTION

The notion of resonance was introduced in quantum mechanics to study meta-
stable states of a system, that is, long-lived states from which the system deviates
only with sufficiently strong disturbances. Mathematically, resonances replace dis-
crete eigenvalues of linear operators on noncompact domains and appear as poles
of the meromorphic continuation of their resolvents.

The mathematical study of resonances was initiated for Schrodinger operators
on R™. Later, it was extended to more geometric situations, such as the Lapla-
cian on hyperbolic and asymptotically hyperbolic manifolds, symmetric or locally
symmetric spaces, and Damek-Ricci spaces. In a typical situation, one works on a
complete Riemannian manifold X, for which the positive Laplacian A is an essen-
tially self-adjoint operator on the Hilbert space L?(X) of square integrable functions
on X. Suppose that A has a continuous spectrum [p%, +00), with p% > 0. The re-
solvent R(z) = (Ax — p% — 2%)~! of the shifted Laplacian (or Helmholtz operator)
A —p% is then a holomorphic function of z on the upper (and on the lower) complex
half-plane, with values in the space of bounded linear operators on L?(X). Let the
resolvent act, not on the entire L?(X), but on a dense subspace of L?(X), for in-
stance, the space C$°(X) of compactly supported smooth functions on X or on some
suitable weighted L? space. Then the map z — R(z) might admit a meromorphic
extension across R to a larger domain in C or to a cover of such a domain. The
poles, if they exist, are the resonances of A — p%. Sometimes the name scattering
poles are also used, but the two concepts are not completely synonymous (see e.g.
[B]). The basic questions concern the existence of the meromorphic extension of the
resolvent, the distribution and counting properties of the resonances, the rank and
interpretation of the residue operators associated with the resonances.

Let G be a connected noncompact real semisimple Lie group with finite cen-
ter and let K be a maximal compact subgroup of G. Then the homogeneous
space X = G/K is a Riemannian symmetric space of the noncompact type. It
is a complete Riemannian manifold with respect to its canonical G-invariant Rie-
mannian structure. The positive Laplacian is the opposite of the Laplace-Beltrami
operator. An important example of such spaces are the real hyperbolic spaces
H" = SOg(n,1)/SO(n). The resonances of the positive Laplacian on H™ have been
studied by Guillopé and Zworski, [4]; see also [24]. They proved that there are
no resonances for n even; for n odd, there are resonances (which are explicitly
determined) and the corresponding residue operators have finite rank.

The study of the analytic extension of the resolvent of the Laplacian for general
Riemannian symmetric spaces of the noncompact type X = G/K was started by
Mazzeo and Vasy, [12]. The motivations were of a different nature. First of all,
these spaces form a natural class of complete Riemannian manifolds for which the
geometric properties are well understood. Moreover, the analytic properties of
their Laplace-Beltrami operator play an important role in representation theory
and number theory. Furthermore, the radial component of the Laplace-Beltrami
operator on a maximal flat subspace is a many-body type Hamiltonian, with the
walls of Weyl chambers of the maximal flat corresponding to the collision planes.
This suggested that many-body methods of geometric scattering theory could have
been appropriate to this setting. More precisely, the analysis carried out in [12]
combines microlocal techniques and an adaptation of the scattering method of
complex scaling of Aguilar-Balslev-Combes; see e.g. [8]. A different point of view,
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using the Helgason-Fourier analysis, was employed by A. Strohmaier, [21], and by
Hilgert and Pasquale, [7]. A further approach, using asymptotics of solutions to
the Laplacian on Damek-Ricci spaces, was employed by Miatello and Will in [I5].

For a general Riemannian symmetric space of the noncompact type X = G/K,
Mazzeo and Vasy [12] and Strohmaier [21I] independently proved that the resolvent
z + R(2?) of the shifted Laplacian Ax — p% admits a holomorphic extension across
R. The domain of the extension depends on the parity of the real rank of the
symmetric space X (i.e. the dimension of the maximal flat subspace of X). This
dependence on the parity of the dimension parallels the case of the Laplacian on
R™ (see e.g. [I4] §1.6]).

Despite the many articles studying resonances on complete Riemannian mani-
folds, detailed information on the existence and nature of the resonances for the
Laplacian on X is so far available only in the so-called even multiplicity and real
rank one cases. The even multiplicity case corresponds to the situation in which
the Lie algebra of G has a unique class of Cartan subalgebras. This happens, for
instance, when G possesses a complex structure. In the even multiplicity case, the
resolvent has an entire extension to a suitable covering of the complex plane; see
[21,, Theorem 3.3]. So there are no resonances in this case. The general rank-one
case was considered, with different approaches, in [15] and [7]: unless the sym-
metric space has even multiplicities (in which case there are no resonances), the
map z — R(z?) admits a meromorphic extension to C with simple poles along the
negative imaginary axis. The poles are at the points {, = |a|A\g, k¥ € N, where
|a| is a constant depending on the normalization of the Riemannian measure and
the Ax’s range among the spectral parameters of the spherical functions ¢y, on
X which are matrix coefficients of finite-dimensional spherical representations of
G. The resolvent residue operator at (i is a constant multiple of the convolution
operator by ¢, and its image is the space of the corresponding finite dimensional
spherical representation. In particular, the rank of the residue operators is finite.
See [7, Theorem 3.8].

In [1I] and [I3], Mazzeo and Vasy considered the specific case of X = SL(3,R)/
SO(3), to exemplify their microlocal and complex-scaling methods of analytic ex-
tension of the resolvent of the positive Laplacian. The space SL(3,R)/SO(3) is a
symmetric space of real rank-two which can be realized as the space of symmetric
3-by-3 positive definite matrices with determinant 1. Restricted to a maximal flat,
its Laplace-Beltrami operator is a Calogero-Moser-Sutherland 3-body Hamiltonian
of type II associated with the root system As; see e.g. [I7, (3.1.14) and (3.8.3)]. The
analysis of [I1] and [I3] left open nevertheless the basic questions on the existence
and nature of resonances and resolvent residue operators.

In this paper we provide complete answers to these questions. In a first step, one
notices that for fixed f € C°(X) and y € X the resolvent function z — (R(2)f)(y)
extends holomorphically to C\ ((—o0,0]Ui(—o00, —3px]). The cut (—oo,0] leads to
a logarithmic Riemann surface covering C \ (i(—oc0, —3px] U {0} Ui[$px, +00)) to
which z — (R(z) f)(y) can be lifted holomorphically (see Corollary[]). This narrows
down the location of the resonances to the negative imaginary axis. Our main
result, Theorem 20 then says that for each N € N there is an open neighborhood
of i(0, N 4 1) together with a branched cover M, to which z — (R(2)f)(y) can
be lifted meromorphically. Poles can occur only above the points —i(N + %), and
they are of order at most one. For special f and y the lift may be holomorphic
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at some of these points. Obviously this is the case for f = 0. The residues of the
lifted functions may be calculated and they are given as convolution of f with the
spherical function whose spectral parameter is the resonance. Unlike the rank-one
case, the residue resolvent operators are not of finite rank (see Proposition 2I]). On
the other hand, as in the rank one case the range of each of the residue operator
is a G-representation which can be identified explicitly. More precisely, it is the
unique irreducible subquotient of a (nonunitary) principal series whose Langlands
parameter can be read off from the resonance (see Proposition 23]). Since the
unitary dual of SL(3,R) is known, we are able to detect the unique resonance for
which the corresponding representation is unitarizable. Unfortunately, the spherical
unitary dual of some other real rank two semisimple groups was not classified yet.
Thus in these cases the question of unitarizibility of the residue representations
will be more difficult. We are not aware of any place in the literature where the
authors actually prove that any residue operators have infinite rank. Typically one
uses analytic Fredholm theory to show that these operators are of finite rank. The
Fredholm theory is not applicable in the case we consider. Instead we use Langlands
classification to show that the rank is infinite.

Alternatively, the range of the residue operator at some resonance is given by
the differential equations which determine the image of the Poisson transform as-
sociated with this resonance (see Remark [@]).

In order to compute the residues, initially we tried to reduce the problem from
rank two to the rank one, considered in [7], by pursuing a double rank-one inte-
gration and deforming the real line to an unbounded cycle in the complex plane.
However, this method leads to technical difficulties. Instead we decided to use polar
coordinates, deforming a circle to an ellipse (see section [3.2]) and get directly to the
result. Since the Laplacian has rotational symmetry this is a natural approach,
which was used in the Euclidean case to show that there are no residues on X = R?
despite the fact that there is a simple pole at zero for X = R; see [14]. These
computations lead quickly to a local meromorphic extensions of the resolvent; see
section B3l We glue them together in order to get an explicit global extension.
This is a nontrivial process, described in sections B.4] and

Notation. We shall use the standard notation Z, N, R, RT, C and C* for the
integers, the nonnegative integers, the reals, the positive reals, the complex numbers
and the nonzero complex numbers, respectively. We also set R~ = —R*. If X is
a manifold, then C*°(X) and C2°(X), respectively, denote the space of smooth
functions and the space of smooth compactly supported functions on X.

1. PRELIMINARIES

1.1. Structure of X = SL(3,R)/SO(3). Let G = SL(3,R) be the Lie group of
3-by-3 real matrices of determinant 1. The Lie algebra g = sl(3,R) of G consists of
the 3-by-3 matrices with real coefficients and trace equal to 0. The +1-eigenspace
decomposition of g with respect to the Cartan involution 6(z) = —z', where -!
denote transposition, yields the Cartan decomposition g = ¢ @ p. Here £ = s0(3) is
the Lie algebra of skew-symmetric 3-by-3 matrices and p is the vector subspace of
symmetric matrices in g.

We consider X = G/K as a symmetric space endowed with the G-invariant
Riemannian metric associated with the Cartan-Killing form of g. It can be realized
as the space X of the 3-by-3 symmetric positive definite matrices with determinant 1.
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Indeed, G acts transitively on )~(, the element g € G acting as the isometry x — gxg’
of X, and K is the isotropy subgroup of the identity matrix.

Choose
3

a = {diag(a1, a2, a3);a; € R, Zaj =0}
j=1
as a maximal abelian subalgebra in p. For j = 1,2,3 define €; € a* by
¢j(diag(a1, a2, a3)) = a; .
Then the set ¥ of (restricted) roots of (g, a) is
(1) E:{OQJ:&,—:?J].SZ#,]S?)}

It is a root system of type Ay. All root multiplicities m, are equal to 1. Take
Yt ={a;;: 1 <i<j <3} asaset of positive roots. The corresponding system of
simple roots is IT = {a1,2,a23}. The element p = 1> 5.y maa € a* is equal to

p=a12+az3=013.

We denote by at the positive Weyl chamber associated with ¥* and by a’ the
elements in the real dual space a* of a which are positive on a*. The Weyl group
W of ¥ is S5 acting as the group of permutations of the three elements ¢1, €9, 3.

In the following, we denote by the same symbol (-, -) the restriction of the Cartan-
Killing form of g to a x a, the dual inner product on a* and their C-bilinear exten-
sions to the complexifications ac and af, respectively. Explicitly, (-,-) is given by
(€4,€5) = 66, ; for all 4,5 = 1,2,3. Hence, (o, ) = 12 for every a € ¥. Moreover,
(01,2, a9.3) = —6.

In later sections of this paper we will find it convenient to identify a* with C by
choosing a suitable basis. To distinguish the resulting complex structure in a* from
the natural complex structure of ag, we shall indicate the complex units in a* = C
and ag by ¢ and i, respectively. So a* = C = R + iR, whereas af = a* 4 ia*. For
r,s € R and A\, v € a* we have (r +is)(A +iv) = (rA — sv) +i(rv + s)) € af.

1.2. Spherical representations. In the following, we denote by ¢, Harish-
Chandra’s spherical function of spectral parameter A € af; see e.g. [2, Chapter
3] or [5, Chapter IV]. The group G¢ = SL(3,C) is the simply connected complex-
ification of G. Its Lie algebra contains ac, which is formed by the 3-by-3 complex
diagonal matrices with 0 trace. We consider the finite-dimensional holomorphic rep-
resentations 7, of G¢ with highest weight u relative to ac, with dominance defined
by ©t. Let u be the restriction to a of such a weight. Then p € a*. Recall that
7, is said to be spherical, if there exists a nonzero vector v, in the representation
space of m, which is K-fixed, i.e., so that 7, (k)v, = v, for all k£ € K. According to
the Cartan-Helgason’s theorem, 7, is spherical if and only if p, € N for all a € X+,
In this case, the vector v, is unique up to constant multiples.

Thus p € ag is the highest restricted weight of a finite-dimensional spherical
representation of G if and only if there exists ni,ne € Z, so that pp = njwy 2 +
nows 3. Here wi o, we3 € a* are the fundamental restricted weights, which are
defined by the conditions

<wi,j7ak,l> -5
(app,omg) (LR D
for (i,7), (k,1) € {(1,2),(2,3)}. Hence
(2) w2 = %(20&1’2 =+ 042’3) and Wa 3 = %(CYLQ + 2(1273) .
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Observe that if A € af is written as
(3) A=A 2w1,2 + A2 3w 3,

then \; ; = )\aw., where for @ € ¥ the numbers A, are defined by (8). For instance,
for A = p, we have p = %(wl,g +wy3) as pro = P23 = %

Let Y = U/K be the simply connected Riemannian symmetric space of compact
type which is dual to X = G/K. Then U = SU(3). Let 7, be the finite-dimensional
spherical representation of G¢ of highest restricted weight 4, and let v, be a K-fixed
vector in the space of 7, having norm one in the inner product (-,-) making the
restriction of 7, to U unitary. Then the matrix coefficient g — (7,(9)v,,v,) is a
Kc-bi-invariant holomorphic function of g € G¢. Considered as a function on Y, it
is the spherical function on Y of spectral parameter . Considered as a function on
X, it agrees with the spherical function ¢, 4.

1.3. Eigenspace representations. Let D(X) be the commutative algebra of G-
invariant differential operators on X and S(ac)"V the commutative algebra of W-
invariant polynomial functions on af. The Harish-Chandra isomorphism is a sur-
jective isomorphism 7 : D(X) — S(ac)V such that v(A)(X) = (p, p) — (A, A\). See
e.g. [Bl Ch. II, Theorems 4.3 and 5.18, and p. 299].

Let A € af. The joint eigenspace Ex(X) for the algebra D(X) is

(4) EX)={feC>®X):Df =v(D)(\)f for all D € D(X)}.

See [6l Ch. II, §2, no. 3 and Ch. III, §6]. The group G acts on £,(X) by the left
regular representation:

(5) [Tx(9)f)(x) = fg™'2)  (9€G, z€X).

Notice that Ex(X) = Eua(X) (and hence Ty = Ty») for all w € W. The subspace
of K-fixed elements in €y(X) is 1-dimensional and spanned by Harish-Chandra’s
spherical function @y. The closed subspace £(5)(X) generated by the translates
Tx(g)ex of y, with g € G, is the unique closed irreducible subspace of &y(X).
The restriction of Ty to &£:)(X) is quasisimple and admissible. See e.g. [5, Ch.
IV, Theorem 4.5]. Furthermore, the representation T) is irreducible if and only if
1/Tx(A) # 0 where I'x is the Gamma function attached to X, as in [0, Ch. III, §7,
Theorem 6.2]. For X = SL(3,R)/SO(3) we have

272
(6) Dk = I TG +2)rG+%) = ] cos(ran)
aeX acxt

Thus T}, is reducible if and only if there is o € ¥ so that i\, € @'(Z + %) In the
present case, this is equivalent to A being a singularity of the Plancherel density
[enc (V) eue(—iN)] 7. Here cuc()) denotes Harish-Chandra’s c-function; see e.g.
[2, Theorem 4.7.5]. For SL(3,R), the Plancherel density is a meromorphic function
on ag, given by

(7) leuc(IN)cuc (=N =co [ Aath(mra),
aext
where ¢g is a normalizing constant and for A € af and o € ¥ we have the set

(8) do = 22

(ev,cx)

The space €y ¢(X) of G-finite elements in £, (X) is a (possibly zero) invariant
subspace of £x(X). Recall that it consists of all functions f € Ex(X) such that
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the vector space spanned by the left translates Th(g)f of f, with g € G, is finite
dimensional.

The following proposition holds for arbitrary Riemannian symmetric spaces of
the noncompact type X = G/K, where G is a noncompact connected semisimple Lie
group with finite center and K is a maximal compact subgroup of G. It characterizes
the €x,¢(X), when nonzero, as finite-dimensional spherical representations of G.

Proposition 1. &, g(X) # {0} if and only if there is w € W so that
(9) —(WA)q — pa €ZT for alla € 1.

In this case, Ex.c(X) is finite dimensional and irreducible under G. It is the finite-
dimensional spherical representation of highest restricted weight —wA—p. All finite-
dimensional spherical representations of G arise in this fashion.

Proof. This is [6, Ch. II, Proposition 4.16]. |

Remark 1. Notice that ([@) implies that A € a*. Recall that a finite-dimensional
representation 7 is spherical if and only if its contregradient 7 is spherical. More-
over, if m has highest restricted weight —wA — p, then 7 has highest restricted
weight —wo(—wA — p) = wow — p, where wy denotes the longest Weyl group el-
ement. See e.g. [0, Corollary 4.13 and Theorem 4.12]. Thus &\ ¢ # {0} if and
only if €_yoa,c # {0}, which is equivalent to the existence of w € W so that
(wA)a — pa € N for all @ € ¥F. For a dominant A\ € a*, this condition is therefore
equivalent to A\, — po € N for all & € T, In turn, for G = SL(3,R), the latter
condition is equivalent to A\, € N+ % for o € {a1,2, 2,3} when A € a* is dominant.

1.4. The resolvent of the Laplacian. Let A be the nonnegative Laplacian on
X for the G-invariant Riemannian structure associated with the Cartan-Killing
form of g = s[(3,R). Then A is an essentially self-adjoint G-invariant differential
operator on L?(X) and the spectrum of A is the half-line [p%, +00), where pZ =
{p,p) = 12. The resolvent R (u) = (A —u)~! is therefore a holomorphic function
of u € C\ [p%,+00). It is actually convenient to consider the change of variable

2?2 = u — p%, and reduce the study of Ra to that of

(10) R(z) = (A= px = 2%)7" = Ralpk + 2°).

Here we are choosing the single-valued holomorphic branch of the square root func-
tion on C \ [0, +00) mapping —1 to i. (Later the notation /- will be reserved to a
different choice of holomorphic branch; see [@6]).) Hence R is a holomorphic func-
tion of z € C*, where C* := {w € C : Imw > 0} is the upper half-space, with
values in the space of bounded linear operators on L?(X).

An explicit formula for R(z) can be obtained by means of the Plancherel Theorem
for the Helgason-Fourier transform; see e.g. [7, Section 1.4]. It follows, in particular,
that for every z € C* and f € C°(X), the distribution R(z)f is in fact a C
function on X, given by the formula

1 1 X
11) [R = — S . =
( ) [ (Z)f](y) ‘W| o <>\,>\> _ 2 (f X SOIA)(y) CHC(iA)CHC(—iA) ’
The symbol x in () denotes the convolution on X. Recall that for sufficiently
regular functions fi, fo : X — C, the convolution f; x fo is the function on X
defined by (f1 x fo)om = (fiom) * (faom). Here m: G — X = G/K is the natural
projection and * denotes the convolution product of functions on G.

y € X.
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The convolution (f X ¢;))(y) can be described in terms of the Helgason-Fourier
transform of f. In fact, for f € C°(X), A € af and y = g -0 € X, we have by
[6, Ch. III, Lemma 1.2 and proof of Theorem 1.3] that

(12) (f % o2)() = / FFOB) exs(y) db

is the spherical Fourier transform of the K-invariant function f, € C2°(X) given by

fy(on) = /K Fghon - o) di.

It follows by the Paley-Wiener Theorem that for every fixed y € X the function
(f x ¢ir)(y) is a Weyl-group-invariant entire function of A € af and there exists a
constant R > 0 (depending on y and on the size of the support of f) so that for
each N € N,

(13) sup e~ ML+ DY (F % ein) ()] < oo
A€ag
2. AN INITIAL HOLOMORPHIC EXTENSION OF THE RESOLVENT

We keep the notation introduced in the previous section. Recall, in particular,
that the bottom of the spectrum of the Laplacian is p% = (p, p) = (a, ) for all
a € X. In the following we denote by px the positive square root of pZ.

Let {e1, ea} be the standard basis in R%2. We identify a* with R? by

(14) a1 =€ and a3 =—3e + @62.

In this way the inner product (-,-) is p%-times the usual Euclidean inner product
on R%. One deduces from (@) that

(15) wig =e + @eg and wa 3 = 2@62 :
The above identification yields for
(16) A= /\17211)172 + )\27311)273 =x1e1 + X060 =21 +ix02 €EaF = RZ=C

the relations

Mg = 1,
(17) A3 = —iwi+ @szy

A3 = A2tz = %1'1 + §$2~
Set
(18) £=¢'5 .
In the above coordinates, one can rewrite () as

[enc(iN)ene(—iN)] ™0 = oz th(ma) (21t + 29 3) th(m (w1 L + 22 L2))
x(=a1g + a2 ) th(n(—a1g +22%))
(19) = ¢ [ Re(u)th(rRe(lu)).
u€{1,£,6%}
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Let S' = {w € C;|w| = 1} be the unit circle and let o denote the rotation-
invariant probability measure on S*:

27
f(w) do(w) = = / feyao =2 [ pa) ™
St 0

2m 21 Jou 1w

Introduce polar coordinates in a* = R2: for A as in (I8)), set

r? = x% + x% ,
(20) A= A(r,w) =rw, where - — ﬁ cgl
Hence (A(r,w), A(r,w)) = p%r?. Moreover, (1)) becomes

1 e 1
(21) RN = 557 [ e FUrapr i
where
B do(w)
F(fa Y, T) - /Sl (f X @iA(r,w))(y) CHc(i)\(T, w))ch(—i/\(r, ’U}))
d

(22) = o [ b)) 1 .

o (I (T, W) eue (—iN(rw)) dw

In the following, we will omit the dependence on f € C°(X) and y € X from the
notation, and write F(r) instead of F(f,r,y), and R(z) instead of [R(z)f](y).

2 Sl

Set
(23) o) = = (zeC),
(24) s(z) = 2_227 (2 € CX).

If z € S, then ¢(z) = Rez and s(z) = ilmz. Hence () gives for » > 0 and
w e St
[cuc (I, w))ene (X (r, w))]™F = ¢ H Re(ruw) th (7 Re(ruw))
u€{1,£,€%}
(25) = cor® H c(uw) th (rre(uw)) .
u€{1,£,€%}

We extend the function (r,w) € [0,+00) x S! = A(r,w) = rw € a* = R? by C
linearity in r to a map from C x S! to af by setting
(26) MMz, w) = Az, w) + iX(y, w) (z=2+iyc C,we S,

where \(z,w) = 2w = %)\(m,w) for (x,w) € (—o0,0) x St.

Proposition 2. Let f € C°(X) and y € X be fized.
(a) The function F(z), defined by @2)) for z = r > 0, extends to an even
holomorphic function of z € C\ i((—o0, —3] U [3,00)). Moreover, F(z)/z"
is bounded near z = 0.
(b) Fiz o >0 and yo > 0. Let
Q = {2z€C;Rez >z, yo>Imz >0},
U = QU{zeC;Imz < 0}.
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Then there is a holomorphic function H : U — C such that

(27) R(pxz) = H(z) + Wi F(z)  (2€Q).

X
In particular, the function R(z) = [R(z)f](y) extends holomorphically from
C* to C\ ((—00,0] Ui(—0c0,—%px]).

Proof. According to (25]), the integrand in the definition 22]) of F is

(28)

(f X Qoi)\(z,w))(y)zg H C(’LL’LU) th (WZC(U’LU)) )

2miw
ue{1,¢,¢%}

which is a meromorphic function of z € C. Since th(zwv) is holomorphic on v €
C\i(Z+ 1) and |c(w)| < 1 for all w € S', the function F extends to a holomorphic
function of z € C\ i((—o0o, —3] U [4,+00)). The change of variable given by the
antipodal map w — —w of S! shows that F' is even. The last part of (a) follows
from (28]) and the Dominated Convergence Theorem.

Since,
2 _ 1,1
r2—22 r—2z r+2z
we have
< _F(r)
2 _
2|Wipx R(pxz) = 2/0 r2—z2TdT
(oo} oo
(29) _ der/ Fr) 4
o r—=z 0 Ttz
The functions
< F
(30) C\[O,+oo)9zl—>/ PO e,
0 T—2
= F(r)
1 _
(31) C\ ( oo,O]le—>/O “Harec,

are holomorphic.

Let zg = 29 + iyo. Fix in the first quadrant a curve v, that starts at 0, goes to
the right and up above 2y and then becomes parallel to the positive real line and
goes to infinity. We suppose that @ is interior to the region bounded by =, and
the positive real line.

Let M, m be fixed positive numbers. Notice that, by (I3, the function (f x
©ir(z,w))(y) is rapidly decreasing in the strip {z € C;|[Imz| < M}. Moreover,
th(mv) is bounded in the domain {v € C;Jv| < 1/3} U{v € C;Rev > m}. Let
z € Q. Then, by Cauchy’s theorem,

(32) /Ooomdr—/ mdC—|-27riF(z).

r—z L 00—z

The term
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has a holomorphic extension to the forth and third quadrant through the positive
reals and the negative imaginary numbers. Moreover,

S0 U([TEO O
/0 rdr—2</0 dr + dC)—I— F(z). O

2_ .2 _
r?—z r+z vy C— 2

Remark 2. Write the elements of S! as w = €. So ¢(w) = cosf. Since
sin( cos 6)

cos(% cos )

and since for # near 0 the above expression is approximately equal to
1 2 4

_Tg(l—cosﬁ) (1 —cos#) e

cos @ th(ZE cos ) = —m cos 0

the function (28) is not absolutely integrable if z = %. Therefore it is not clear
if F' extends from the right or left half-plane to a continuous function on any set

containing parts of the imaginary axis larger than (—%, %)

The extension of R(z) across (—oo, 0] can be deduced from the results of Mazzeo
and Vasy [12] and of Strohmaier [2I]. They require an additional change of vari-
ables.

Let log denote the holomorphic branch of the logarithm defined on C\] — oo, 0]
by logl = 0. Set 7 = logz. It gives a biholomorphism between C and the strip
Sor:={r€C:0<Im7 <7} Let f € C*(X) and y € X be fixed. Define

[Riog (1) f1(y) = [R(pxe™) f1(y)
(33) 1 1 . dA
~ W / (N ) — pZer (Fxen) W) ey

Polar coordinates in a* now give

1 e o ot
(34) [Riog(T) f1(y) = W] [m WF(E )e? dt,

where F(r) = F(f,y,r) is as in (22). The evenness of the function F becomes
im-periodicity of the function F(e?).

As for the functions F' and R, we will omit the dependence of f and y in the
notation and write Riog(7) instead of [Riog(7) f](v).

Proposition 3. Let f € CX(X) and y € X be fized. The function Riog(T) =
[Riog (T) f](y) extends holomorphically from Sy to the open set

Uog = C\ U (m(n +3)+ [log(%),-i-oo))

neZ\{0}
and satisfies the identity
. T .
(35) Riog (T +im) = Riog(T) + 577 F'(€7) (1 € Uiog) -
PxIW|
Consequently,
1T &
(36)  [R(pxze™)f1(y) = [R(px2) fl(y) + =z F(2)
PxIW|

(z € C\ (i(—o00, —3] Ui[$,+00) U (—00,0])).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



RESONANCES FOR THE LAPLACIAN ON SL(3,R)/SO(3) 427

Proof. This is [21, Proposition 4.3] with f(z) = F(z)x for z € [0,400); see also

[12, Theorem 1.3]. O
Since F(0) = 0, we obtain the following corollary.

Corollary 4. Let f € C*(X) and y € X be fized. Then the function R(z) =
[R(=)f](y) satisfies

. 2T
(37) R(:e*") = R(z) + o F(pg2)
pxIW|
(2 € C\ ((—00,0] Ui(—00, —5px] Ui[3px, +00))).
and extends holomorphically from C\ ((—o0,0] Ui(—0o,—3px]) to a logarithmic
Riemann surface branched along (—00,0], with the preimages of i((—oco, —1px] U

[2px, +00)) removed.

Proposition 2l and Corollary ll show that all possible resonances of the resolvent
R(z) of the Laplacian of X are located along the half-line i(—oo, —%px]. Because
of 21, the study of R(z) along i(—oco, —1px] is reduced to that of F(z) along
i(—00, —3]. This will be done in the following section.

3. MEROMORPHIC EXTENSION

In this section we complete the meromorphic extension of the resolvent of the
Laplacian. We first need a different expression for the function F' from ([22]).
Recall that, for fixed f € C°(X) and y € X,

1 dw
FG) = P9 = 5= [ (% pinea))2* ] cluw)th (racuw) 52
o iw
u€{1,£,67}
where & = €/™/3 and c(z) is as in ([23). Observe that
_ i Pix(z,w) + P—ir(z,w) 3 d_w
F(z)= 5 /S1 (f X 5 )(y)z H c¢(uw) th (rzc(uw)) P

u€{1,€,6%}

Pir(z,w) TP —ir(z,w
A(z,w) 5 /\(zu))(

where now ( fx y) is an even function of z and w.

Let
(38) ¢ru(w)= % th(rze(uw)) (z¢(uw) ¢ i(Z+ 1), z € C, we C*),
(39) () = 5 (f x DB )(4)Gu)? (s €T, we ).
Hence
(40) F(Z) = ww(z) H ¢z,u(w) dw

st ue{1.6,6%)

Note that
(41) ¢z,u(w) = ¢:|:z,:|:u(w) and wz(w) = Qﬁ—z(w)-

Since A — @in + @_ix is Weyl group invariant and even, it is also invariant under
rotations by multiples of 7/3. It follows that for u = e* with 0 € { + 7z, j:%”} we
have
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Moreover,

(43) Gru(—w) = =@, (W) and P, (—w) = . (w).

3.1. Analytic properties of the function c(z). To proceed further, we need to
recall some known analytic properties of the functions c(z) and s(z). Recall that
for z € C* these functions are defined by

~1 -1
c(z) = z +22 and s(z) = : 22

For r > 0 and a,b € R\ {0} let
D, = {z€C; |z|<r},

. £\ (n\?
Eop = {{+ineC <E> +(g) <1}.

Their boundaries 0D, and OE,; are, respectively, the circle of radius r and the
ellipse of semiaxes |al, |b|, both centered at 0. In particular, 9D; = S'. Furthermore,
D, is the closed disc of center 0 and radius r.

Observe that ¢ : Dy \ {0} — C\ [-1,1] is a biholomorphic function. We denote
by ¢! its inverse. More precisely, for 0 < r < 1, it restricts to a biholomorphic
function

(44) C: D1 \D_T — EC(,,‘)’S(T) \ [—1, 1] .
Also,
(45) C: 8DT — 8Ec(r)7s(,a)

is a bijection. In particular,
Rei@C(aDr) = Rei@8EC(T)7S(T)

is the ellipse OEc(, s(r) Totated by © and dilated by R.
Let /- denote the single-valued holomorphic branch of the square root function
defined on C \ (—o0, 0] by

(46) VRe® =VRe®  (R>0,-1<0O< ).

A straightforward computation shows that

N 22+ 2 —
(47) Jx +iy = i +y —ngn i +y (x+iy € C\R7).

Lemma 5. The function \/F\/z——l originally defined on (C\ , 1] extends to
a holomorphic function on C\ [—1,1]. Also, \/(—z)+1y/(—2) — 1— \/z—l—l\/z 1.
Proof. For z = x + iy with y £ 0, write

A= (z+ 1) 4+97, a=x+1,

B=(z—1)2+4%, b=xz-1.
Then

2Vz+1Vz—1 (\/A——i—a + i sign(y) \/ﬂ) (\/B—-i-b + isign(y) \/E)
(VA+aVB+b-VA-aV/B-D)

+i sign(y) (\/A—l—a\/B—b—l—\/A—a\/B—i-b).
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Hence,
Jim 2V FTVE T = (Vi + a4 - Vel = av/il - )
+ (Vo +ay/Iol = b+ /]al — av/Jo[ 1) .

Ifx4+1<0,then b <a<0. So
(48) l_igli\/z-l—l\/z—l —V/|al|b| = =V =
y

isreal. Thus v/z + 1v/z — 1 extends holomorphically across (—oo, —1) by Schwarz’s
reflection principle.
Checking the last formula is straightforward. O

Lemma 6. For z € C\ [—1,1], the following formulas hold:
(z=Vz+1Vz—1)(z+Vz+1Vz—1)=1,
cl2)=2z-Vz+1Vz -1,
socl(2)=—vVz+1Vz -1

Also,

Va+i0+1vVr +i0 — 1 =1iy/1 — 22 (-l<z<1),
Vo —i0+1vVz —i0— 1= —iy/1— a2 (-l<z<l),
c Nz £i0) =2 F i1 — 22 (-l<z<1).

In particular, the “upper part” of the interval [—1,1] is mapped via c=* onto the
lower half of the unit circle and the “lower part” of the interval [—1,1] is mapped
onto the upper half of the unit circle. Furthermore,

soc™!: aEC(T),S(T) — 8Es(r),s(r)7
soc™ 1 Eogry s \ [-1, 1] = Bsryo(m \ i[-1,1],

are bijections.

Proof. The first equation is obvious. The two sides of the second equation are
holomorphic and equal for z > 1, hence equal in the whole domain of definition.
Also,

2=Vt 1IWe—1—(z—Vz+1v/z—-1)71
2

o VEFTVETT = (s e ETVE )
2

= —Vz+1lvz—-1 0<r<1).

The two limits are easy to compute. The last statement follows from the fact that

S 8DT — 8ES(T)1C(T)

socH(z) =

and
s: Dy \D_r — Es(r),c(r) \i[_l’ ]‘]

are bijections. (Il

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



430 J. HILGERT, A. PASQUALE, AND T. PRZEBINDA

Lemma 7. Let |(| = |(o| = 1. Then

(49) (¢ MR\ [-1,1])) N (¢7H(GRT\ [=1,1])) # 0 if and only if ¢ =1.
Also

(50)  (CcTM(GRN\ [-1,1])) N (¢ HGR\ [-1,1])) # 0 if and only if ¢ = £1.

Proof. Recall that ¢! is a bijection of C\ [~1,1] onto Dy \ {0}. If the intersection
(@9) is not empty, then there is 0 < r < 1 and z with |z| = r such that the two
points z and ¢z are mapped by c to a point on the ray (;R™. But the image of the
circle dD,. is the ellipse OE¢(;)s(r), which has only one point of intersection with
the ray. So c¢(z) = c¢(¢z). Hence z = (z, which means that ¢ = 1. This verifies (Z9).

Since ¢(—z) = —c(z), a similar argument proves (B0). O

3.2. Deformation of S' and residues. We keep the notation introduced above.

Lemma 8. Suppose z € C\ i((—o0,—3] U [$,00)) and 0 < r < 1 are such that

(51) i(Z + %) N zaEC(TLS(T) = 0.
Then
(52) F(z) = F.(z) + 2mi G, (2) ,
where
(53) Fo.(z) = Y2 (w) H ¢z,u(w) dw,
oD ue{1.£.6%)
(54) Go(z) = S wu(wo) Res [ dowlw),
’ * well£6%)

/

where Z denotes the sum over the wy’s for which there is a u € {1,5,52} S0
wo

that

zc(uwo) S Z(Z + %) n Z(EC(T)’S(T) \ [—1, 1]) .

For a fized r, both F, and G, are holomorphic on the open subset of C\i((—o0, —%]U
[1,00)) where the condition (B1)) holds. Furthermore, F, extends to a holomorphic
function on the open subset of C where the condition ([BI) holds. Also, F,.(0) =
G-(0) =0.

Proof. Observe that, by (@), the condition that wy € Dy \D_T and there is u €
{1,€,£} so that zc(uwg) € i(Z + 3) is equivalent to the fact that there is u €
{1,&,€?} for which zc(uwy) € i(Z + )N 2(Ec(ry ¢y \ [=1,1]). Formula (52) then
follows from (H{) and the Residue Theorem.

Since ¢, (w) and 1, (w) are holomorphic functions of the two variables z and
w, we see from (@A) that F, is a holomorphic function of z in the region where
(BEI) holds. Also F is holomorphic on C \ i((—o0, —3] U [, 00)), hence G, is also
holomorphic there.

Since ¢g,, = 0 we obtain that F,.(0) = G,-(0) = 0. O

We now derive an explicit formula for the function G, in (4.
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Lemma 9. Let z and 7 be as in BI). Fizu € {1,€,€*}. Let ng € Z be such that
i(no+3) € 2(Ee(rys(m \[—1,1]) and let wy € D1\D,. be such that zc(uwg) = i(no+3).
Then z # 0,

(55) wo = %c_l(é(no + %))
and
66)  Res  J[  oew(w)=(II uwn) ms,of(?;(j(ii +1)

u'€{1,¢,£7} u'Fu
Conversely, suppose that ng € Z is such that i(no + 3) € 2(Ec(r) st \ [=1,1]), and
define wy by [B8). Then wo € Dy \ D, and zc(uwg) = i(ng + %)

Proof. Since 0 ¢ i(Z + 3), we see that z # 0. If v/ # u, then Lemma [ shows that
the set of the singularities of the function ¢, .+ within the punctured open unit disc
D, \ {0} is disjoint from the set of the singularities of the function ¢, ,,. Therefore,

Res [T ¢ (w) = ([T ¢-r(wo)) - Res 6..u(w).

u' #u
Furthermore,
Res ¢, . (w) ze(uwo) sh(mzc(uwy)) L
ERY) = Q
w=wy | 1wo 0 L ch(rwe(uz))|w=w,
ze(uwy) 1
= 2U0) g
iwo > (ch(uwo))Sh(ﬂ'ZC(qu))ﬂ'ZuS(qu)(’U,wo)_l
_zc(uwg) ﬁ(no-i- %)
~ims(uwe)  im(soc)(L(ng + 3))
The last statement follows immediately from (d4]). O

Lemma 10. For all z € C and w € C* we have

61 3 () (] e (b)) = =30 ()21 (€w)o:1 (€70)
ue{1,¢,£%} u'Fu

Proof. Notice first that

ZC(u—/U)) ’
7%“10 th (wzc(%w)) = u’ii% -

By ([@2), we have

e () =

i

Hence
> (Lw)( 1 bor (b)) = Y wn(u) Il W ()
(58) = Y v I % een(w)
" il
Since
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we may assume that in the above product, for each fixed u,

o 13 )
m —:|:§+Z7 E{£7£ }
Then
[T % 6n(Bw) = 6.1 (Ew)E7. 1 (E7w).
u' #u

Since £€* = —1, we conclude that (58) is equal to the right-hand side of (57). O

Corollary 11. Under the assumptions of Lemma [,

(59) Gr(2) = Y Gul2),
neES,. .
where
(60) S’I’,Z = {TL € Z; ’L(TL + %) € Z(Ec(r),s(r) \ [_17 1])}
and
(61) Gole) = =316 (¢ 2+ 5o (€ (2 + 1) (€267 (n + 1)

tn+3)
im(so c*l)(f(n + %)) '
The function ([©1) is holomorphic and even on C\ iR. It satisfies
(62) Gn)(2) = G(—n-1)(2)-
Moreover, n € S, . if and only if -n —1€ S, ..

Proof. The equality (59)) is immediate from Lemmas [9] and If z € C\ iR, then
L(n+ 3) € C\iR. Hence G(,)(z) is holomorphic on C \ iR. It is even, because
of @) and (@3) and since ¢! (—w) = —c 1 (w) for w € C\ [~1,1]. The equality
G(n)(—=2) = G(—y—1)(2) follows from Lemmas [5 and [l together with ({I]) and (&3)).

This proves ([62) as G (,,)(2) is even. O
Corollary 12. Let W C C be a connected open set and let 0 < r < 1 be such that
(63) i(Z+ 3) NWOE() s(r) = 0.
Then the set S, := S, . defined in [GU) does not depend on z € W \ iR and
(64) G.(z) = Z Gy (2) (z € W\ iR).
nes,.
Also,
(65) n €S, ifand only if —n—1€8S,.

Proof. The condition (63) implies that for any fixed n € Z the set {z € W :
i(n+ %) € zEc(r),5(r)} is open and closed in W. Since W is connected, this set is
either ) or W. Hence

(66) (Z+ %) NzEc(r) sy = i(Z + %) NWEc@y,s(r) (z e W).
Notice that if z € C\ iR, then
i(Z + %) n ZEC(T),S(T) = i(Z + %) N (Z(Ec(r),s(r) \ [—1, 1])) .
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Hence, for each z € W \ iR,
(67) Sz = U(Z + 3) N WEc(r) s(r)-

Therefore (&4 follow from Corollary [Tl
Since our ellipses are invariant under the multiplication by —1, the formula (G5
follows from (B0J). O

Lemma 13. For any v € iR there is a connected neighborhood W C C of iv and
0 < r <1 such that the condition ([G3) holds.

Proof. Choose 0 < r < 1 so that
i(Z + %) Niv0Ec(ry s(r) = 0.
Then enlarge iv to W. O

Lemma [I3] shows that for any point v € iR there is a neighborhood W of that
point and a radius 0 < r < 1 so that condition (G3) is satisfied. Lemma [§ and
Corollary [2] show that

(68) F(z)=Fp(2)+2mi Y Guy(z) (2 € W\iR),

nes,
where F,. extends to a holomorphic function on W. Let N > 0 be the largest
element in S,. Then (G0) and (G5) show that S, = {-N —1,—N,..,N — 1,N}.
Moreover, G,y = G(—p—1) by ([@2). Hence, ([68) may be rewritten as

N

Fu(z)+2mi > G(2)

n=—N-1

N
(69) = Fo(2)+4m Y Guy(2) (2 € W\iR).

n=0

Notice that, since ¢(r) > 1, if 7v = i(m + %) with m € N, then m € S, for all
0<r<L

F(z)

Remark 3. By Lemmal8 for a fixed 0 < r < 1, the function F,.(z) is holomorphic on
the set of z € C for which (GI)) holds. The intersection of this set with iR consists
of the points iv for which vc(r) ¢ Z + 4. The function F,(z) will be therefore
holomorphic in an open set containing i(Z + %) provided 0 < r < 1 is chosen so
that (Z + ) Ne(r)(Z + 3) # 0.

The functions G(,,)(2) are defined and even on C \ iR. In the following section
we fix n € Z and determine a 2-sheeted Riemann surface M,, covering C\ {0} and
branched at z = +i(n + %). Then we prove that G(,)(z) extends as a meromorphic
function to M,,, with simple poles at the branching points above z = +i(n + %)

3.3. Meromorphic extension of the functions G,(z). The derivative of the
map
C?>w, )~ —uw+1eC
is equal to (—2w, 2¢). This is zero if and only if w = ¢ = 0. Hence the map
(C*\{0,0}) > (w,Q) = * —w?+1€C
is a submersion. Therefore the preimage of zero,
(70) M = {(w,(); (* =w? -1} CC?,
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is a complex submanifold. The fibers of the surjective holomorphic map
(71) M3 (w,()—»weC
consist of two points (w, () and (w, —(), if and only if w # +1. If w = %1, then
the fibers consist of one point (w, 0).
Let S C C and let S € M be the preimage of S in M under the map 7 given

by (1. We say that a function f : S — C is a lift of a f : S — C if there is a
holomorphic section o : S — S of the restriction of 7 to S so that

fw,§) = f(w)  ((w,¢) €0(S)).
We see from Lemma [6] that

(72) (soc™ Y M3 (w, )~ —(eC
is a lift of
soch:C\[-L, 12w~ —Vw+1Ww-1€C
and
(73) (M3 (w, () »w—-¢eC
is a lift of

ch:C\[-L]32w—w—Vw+1Vw—-1€C.
Both maps ((2) and (73) are holomorphic.
Let

M0y = {(w,{); ¢* =w” -1, Rew > 0},
M 10) = {(w,(); ¢* =w? =1, Rew < 0}

Then M, ¢y is an open neighborhood of (1,0) € M and M(_; ¢y is an open neigh-
borhood of (—1,0) € M. Furthermore, the following maps are local charts:

M1,0) 2 (w,{) = ¢ € C\ i((—oo7 -1 U1, +oo)), w=+/C2+1,
M(_1,0) 3 (w,¢) = ¢ € C\i((—o0, —1JU[1,+00)), w=—/¢>+1.
Lemma 14. Fizn € Z and let
M, = {0 eCx @\ (i} = (Z(n+ 1))2 -1},
The fibers of the map
(74) ot My, 3 (2,0) = 2z € C*
are {(z,¢), (z,—C)}. In particular,
M\ { % (i(n+13),0)} 3 (2,0 = 2 € C\ {£i(n+ 1)}

is a double cover.

Let My, 0 = {(2,¢) € My; 2z ¢ iR}. The function Gy, @), lifts to a holo-
morphic function é(n) : My0 = C and then extends to a meromorphic function
é(n) : M,, = C by the formula

é(n)(ZaC) = _31/&(2(” + %) - C)¢z,1(€(§(” + %) - C))¢z,1

(75) , il L
(E(Ln+3)-0)- (—17;‘2)
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The function é(n) is holomorphic on the set M, \ {(i(n+ 1),0), (—=i(n+1),0)}. It
satisfies
(76) Gy (=20 = Gy (%,¢)  ((2:¢) € My).

The following sets are open neighborhoods of (i(n + 3),0) and (—i(n + 1),0),
respectively:

Uinrsy = {(2:0) €M,; (n+3)Imz> 0},
U imsyy = {(50) €My (n+3)Imz <0}
Furthermore the following maps are local charts:

Kt i Uiny1y 3 (2,() = C € C\i((—o00,—1JU[1,+0)), 2=

ﬂ |
[
—_

+

Kot U g1y 2 (2,() = (€ (C\i((—oo,—l} U [1""00))7 Z= Z\(/r%

(77)

l\')l»—A

The points (+i(n + %), 0) are simple poles of é(n). The local expressions for é(n)
in terms of the charts () are

é(n) © “II(C) = 3wi(n+%) (V¢ +1-¢)

VT
(78) 2 1
X by (EVTHT= 0oy (EWVETT-0) Ve
VT VT
and
Gny o K21 Q) = =3¥ ey (VP +140)
(79) Ve
< buny (EVTFT+ 000y (EWETT+O) YL
! vl
Furthermore,
. ~ 1 3 1\2
(80) 2mi E{:egG(n)omr ¢ = %(n—k 5) wi(n+%)(1)
and
. ~ _ 3 1\2
(81) 2mi Res Gy 0 1 71() = _%<n+§) U1y (1)

Proof. We replace w by £(n + %) in the discussion preceding the lemma. This ex-
plains the structure of the covering ([(4)). Formula (73] follows from that discussion
and (6I). The function (78) might be singular at some point (z,¢) with ¢ # 0 if
and only if

(82) D=1 (E(2(n+3) =€) b1 (&2 (£(n+3) —())
is singular at (z,(), ¢ # 0. Fix k € {1,2} and suppose the term
(83) ¢1 (€5 (L(n+3) = ()

is singular at (z,(), ¢ # 0. Then
(€5 (L(n+3) = Q) €i(Z+ 3),

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



436 J. HILGERT, A. PASQUALE, AND T. PRZEBINDA

which means

(84) (€M (E(n+3) = Q) € L(Z+ ).
Assume first that

(85) z ¢ i(—o00,— |n+ |]Ui[|n+ 3|, 00)
or, equivalently, that

(86) t(n+3) ¢ =110

Then ¢! (é (n + %)) is in the open unit disc D; with the zero removed. It follows
that

(87) et (L(n+1)) eDy\ {0} =cH(C\ [-1,1]).
Because of (86), Lemma [0l implies that
(88)  fnt3z)-C=c(i(n+3) or tntz)—(=(T(tn+3) "
In the first case, (84) and (§7) yield
gt (f(n+g)) e (L(Z+3)\[-1,1]).
Since £k # +1, Lemma [ shows that this is impossible. In the second case,
(€' (tn+3)—Q) = € Em+5)) ) =c((€ T En+ )T
= (e (Ln+3))).
Hence, ([84) and (&) yield
e i+ i)y ect (LzZ+ )\ [-1,1).
Since £ % # +1, Lemma [T shows that this is impossible.
Assume from now on that

(89) z €i(—00,— |n+ 3|]Uil|n+ 3|, 00)
or, equivalently, that

(90) L(n+3)el-1,1.

Let us find all the points (z,(), ¢ # 0, where the term

(91) ¢ (€5 (L(n+3) - Q)

is singular. These are the points where (84)) holds.
For an integer m let z,,, = % (m + %) Then there is a unique ¢ = +1 such that

in+3)=a, and (= —ei\/1—a2.
Hence (B4)) is equivalent to the statement that there is m € Z such that
(92) c(&¥ (zp + €in/1 — 22)) = 2.

By (@), the left-hand side of this equation is equal to cosine of some real angle.
Hence,

(93) Tm € [-1,1].

Notice that &~ = 5% + i@, where 6 = 1if k =1 and 6 = —1 if k¥ = 2. Therefore
[@2) is equivalent to

(94) 5%xn—e§\/1—x%=xm,
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which implies

(95) 22— $xp Ty + 22, = Z

Let z = £. Then (@3] is equivalent to

z

z? = 3/4 .
(n+3)"=d(n+3) (m+3)+(m+3)
Hence,
2
L ((m+3) 6% (n+ 1)

A5t ) (e )+ (e )

The numerator of this fraction cannot be zero. Hence z2 < 1. Thus ([@0) is actually
equivalent to

%) ) e (L),
Write ([@4) as

VD) =5t 1) (m+ 1)+ (m+ 1)’
o | 2 (m+5) —d (n+ )]
1 2(m+ 1) —5(n+ )]

It is easy to check that the z given by (97)) satisfies the following inequalities:
(98) |z > [n+ 3| and |z| > |m+ 3.

Hence, ([@3) actually reads x,, € (—1,1). Thus given any integer m there are two
points (z,(), (—z,—¢) € M,, (corresponding to ¢ = 1) such that ([@2]) holds. This
completes our task of finding all the possible singularities of the function (@I).
We now prove that all these possible singularities are in fact removable.
Suppose (z, () satisfies ([@1). Set

(99) w=1i(n+3)-¢.
According to ([@7), there is an integer m such that
(100) 2=~ (2m+3)—dn+3)).

where § = 1 if §w is a pole of ¢, and § = —1 if &%w is a pole of @z,1. Choose
k € {1,2} so that £w is a pole of ¢, ;. Then ¢* = (5%—}—1’@ and €37F = —5%—1—@'@.
Hence, by (@2),

(101) ze(€Fw) = i(m + 3).
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Notice that

S 3
+ o+
[N

N
S
([
. S,
—~ o~

S s
w w
—
—~
~
ol
|
N[
SN—
—
S
+
N[
S~—"
+
B
_|_
N[
~—
_

(€ (n+3)+ (m+3)).
Using the relation s(a) + c¢(
ss(€hw) =

£

= o, we compute

— zc(&"w)

€7+ 5) + (m+3)) —i(m + 3)
(m+3)—(n+3),

N
e
x>
g

3

S s
—~
kol
—~

N
(o9

(102) -

because &3 = —1 and %Ek—i:%(%cﬂ—@i)—i:%&

We now prove that zc(€* *w) € iZ. Recall that for all a, 8 € C* we have
claf) = cla)e(P)+s(a)s(B),
s(af) = s(a)e(B) +c(a)s(B) -
Notice also that
c(€ ) =1 and s(¢*F) =i L.
Using (I01) and (I02), we obtain
(€ Fw) = 2 w)
= 2c(£77)e("w) + 28(677)s(6Mw)
= ig(m+3) +i6(30(m +3) = (n+ 3))
= i(m+1i)—is(n+3)eiZ.
Thus ¢Z71(€3_kw) = ¢Z71(£3_k(§(n + %) —¢)) = 0 and the function é(n) extends
to be holomorphic near (z,() € M,.

The symmetry property (ZG) as well as the local expressions of é(n) in terms of
the charts are immediate from (70]) and the parity properties of 1, and ¢, ; in {I)

and ([@3)).

The first residue at ¢ = 0 is equal to
N - 1
1}55 Guyori'(¢) = 31/)i(n+%)(1)¢i(n+§),1(5)¢i(n+%)71(€2)§
2 )
3 1 9 (1T 1
= T (n—i— 5) Vit 1) (1) th (?(”"‘ §)>7

which proves the result as th (%(n + 1)) = (—1)"i. One computes the second
residue similarly, using (@Il). O

Recall that the residues may depend on the choice of the chart. However, the
type of the singularity does not.

Remark 4. Let n € N be fixed. By Lemma [
(103) of :C\i((—o0,—(n+ )] U[n+3,+0)) 3z (2,(F () € M,
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iR
(4
W
A
i
0
\i(n+ 1) —iv € —iR
\
e LG )
. |
FIGURE 1. The branched curve v € Rt — +(;F (—iv)
where
(104) G =i+ 5 +1/in+ 1 -1,
is a holomorphic section of the projection map (4] so that
(105) Gyoot =G .

This, in particular, implies that G/, is holomorphic on (C\i((—oo, —(n+ %)] Uln+
1,400)) and that (I05) extends to this domain by analyticity. The image of o, is
usually refereed to as the physical sheet (or principal sheet) of M,,. The image in
M,, of the map

oo :C\ i((—oo, —(+ DU+ %),—i—oo)) S 20 (2,6 (2) € My,
is the nonphysical sheet. In the above equation, we have set

(106) G (2) = =Ci ()
For v € RT let (F(—iv) = (F(—iv + 0). Then, by Lemma 6]

n 2 .
(L/Q) -1 1f0<11§n+%7

%
i1—(E2)? ifo>n+l,
is the physical lift of —iR™ in M,,. The lift of —sR™* in M,, is the branched curve
R > v+ (F(—iv). Tt is represented in Figure 1.

(107) G (—iv) =

3.4. Meromorphic extension of F. According to (69), locally, in a neighborhood
W of each point —iv € —iR™, the function F' can be written as
N
(108) F(z) = F(2) +4m Y Gy(z) (2 € W\iR),
n=0

where 0 < r < 1 and N depend v, and F). is holomorphic in W.
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In this subsection we determine a meromorphic extension of F' above —iR™ by
“putting together” the meromorphic extensions of the functions G, (z) determined
in Lemma [[4 To do this, we need more precise information on the parameters r
and N occurring in (I08).

Lemma 15. Fiz N € N. Suppose 0 < r < 1 is chosen so that c(r) < 1+ ﬁ
Then for every 0 < v < N + % there is an open neighborhood W, of —iv so that

ST,Z NN = {’I”L eN; —i(n + %) € WUEC(T%S(T)} = {07 1,..., Nv} (Z ew, \ZR) ,
where N, < |v]. Here |v| denotes the largest integer less than or equal to v.

Furthermore, if [v| + 3 < v then N, = |v]. Ifv < |v] + § and we choose
0 <r =r, <1 so that it satisfies the additional condition c(r,) < %, then
N, = |v] - 1.

Proof. The ellipse E¢(,) s(») being invariant under sign change, we can work with iv
instead of —iv.

Let iu € iRT. Then iu € ivEc( s if and only if u < c(r)v. This shows that
i[u, +00) N iwEc(r) sy = 0 if tu ¢ WE¢( s(r). Moreover, since c(r) > 1, we have
that [0, v] C ivEc(ys(r). In particular,

(109) i(lv] + 1) € ivEe() s(r)

if |v] + & < v. Notice also that iu ¢ ivEc(,) s(r) if and only if u > c(r)v.
Suppose ¢(r) < 14 5357 and let 0 < v < N+3. Then 1+ 55 > 1+ 55 > c(r).
So (lv]+1)+ 3 >v+ 1 >uwvc(r), e,

(110) i(([v] +1) + 3) ¢ WEc(r) 5(r) -

The relations (I09) and (II0) still hold when we replace iVEc(y) s(r) With 2Ec(y s(r)
with z in a sufficiently small neighborhood W of iv. We also take W small enough
so that S, . is independent of z € W \ iR; see Corollary [[2 and Lemma [I31 The
extension of (II0) obtained in this way shows that N, < [v]|. Thus, N, = |v] if
lv] + 5 <w.

If v < [v] + 3, then we can choose 0 < r = r, < 1 so that it also satisfies the
condition c(r,) < % So ve(ry) < |v] + 1 yields N, < [v]. Thus, N, = |v] —1
in this case. ]

Corollary 16. Let N € N and m € {0,1,...,N}. Letv € [m—i— %,m—i— %) Then
there is an open neighborhood W, centered at —iv and 0 < r, < 1 so that

(111) F(z) :Frv(z)+4ﬂ'iZG(n)(z) (z € W, \ iR),
n=0

where F,. is holomorphic in W, and G,y is the function defined in (&I).

Proof. This is immediate from Lemma[Ifl Indeed, for v € [m+%,m+1) = [|v] +
1, |v] 4+ 1) we have N, = [v] = m, whereas for v € [m+1,m+32) = [|v], [v] +3)
we have N, = |[v] —1=(m+1)—-1=m. O

In the following we suppose that we have fixed the W, as in Corollary More-
over, by possibly further shrinking them, we may also assume that every W, is an
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open disk centered at —iv and that
(112) W,NiRC —i(m+4,m+3) ifve (m+3g,m+3),
(113) W, NiR C —i(m,m+ 1) ifo=m+1.

Corollary 17. Let m € {0,1,...,N} and v € [m + %,m + %) Suppose that
Wy, N Wy # 0 for some v’ € [4, N+ 3).
Ifv e (m—l— %,m—i— %), then v' € [m—l— %,m—i— %) Moreover,
F, , (2)=F. (2) (z € W, N Wyy).
Ifv=m+1, thenv' € (m— %, m+ 2). Moreover, if v/ € [m+ 1, m+2), then
F. ,(2) =F. (2) (ze W, NW,);
ifv' € (m— %,m—l—%), then
F.,(2) = Fp (2) + 4710 G () (2) (z € W, N Wy).

v

Proof. Observe first that W, N W, is connected. If v € (m + %,m + %) and
W, MWy # 0, then v’ € [m+ 3, m+ 2) by [[1Z). Moreover, ([I1)) gives F, ,(z) =
F, (z) for z € (W, N W, ) \iR. This equality extends to W,, N W, by analyticity.
Suppose now v = m + % The assumption (II3) ensures that if W, N W, # 0
then v’ € (m — %, m+ %) When v’ € [m + %, m+ %), the equality of the functions
F, follows as above. If v/ € [m - %, m + %), then
m—1
F(z)=F,, (2) +47i Y _ Gy(z) (2 € Wy \iR).
n=0
Therefore F,. , (2) = Fy, (2)+4mi G () (2) for z € (W,NW,)\iR. By ([12), we have
Wy NiR C —i(m—1,m+1). So G, is holomorphic on W, "W, (see Remark ).
Since W,, N W, is connected, the previous equality holds for all z €¢ W, " W,,. O

For every integer 0 < m < N we define

(114) Wiy = U W,
vE[m+3,m+3)
(115) Finy(2) = Fo(2) (@wem+im+3),2ew,).

Then W, is an open neighborhood of —z'[m + %,m + %) so that W,y NiR C
—i(m, m 4+ %) Moreover, setting

ve(m+3,m+3)
we have W(’m) NiR = —i(m + %, m + %) By Corollary M7, F{,,) is a holomorphic
extension of F}., to W, for every v € [m + %, m+ %)
It is convenient to introduce similar notation for a neighborhood of (0, %) We

therefore choose for every v € (0, %) and open ball W, centered at —iv so that
W, NiR C (0, %) and define:

(117) Wen = Wiy= U W
v€E(0,3)
(118) F(,l)(z) = F(Z) (ZEW(,U).
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Observe that W _) NiR = —i(0, %) Moreover, for every m € {—1,0,...,N — 1}
the intersection W,y N W1y = Wiy N W, 3 is a nonempty open connected
set.

Corollary 18. For every integer m > —1 we have
(119) F(2) = Fny(2) + 471 Y Gny(2) (2 € W) \iR),
n=0

where I,y is holomorphic in Wiy,y, the G, are as in (€I)), and empty sums are
defined to be equal to 0. Consequently, for every integer m > —1,

(120)

F(m)(z) = F(erl)(Z) + 47 G(erl)(Z) (z € W(m) N W(m+1) = W(m) N Wm+%) .

Proof. This is an immediate consequence of Corollary [[6] and (IT4)—(1S). O

The meromorphic continuation of F' across —i[%, +00) will be done in stages, on
Riemann surfaces constructed from the M,,’s. Recall that M,, denotes the Riemann
surface to which G, lifts as a meromorphic function. For an integer N > 0, let
(121)

M(N) = {(Z7<) € C* x CN+1; C = (COuClw"uCN); (Z7Cn) € Mn7 0<n< N} .

Then My is a Riemann surface, and the map
(122) TNyt My 3 (2,¢) = 2 € C*

is a holomorphic 2V*1-to-1 cover, except when z € {+i(n+31); n € N,0 <n < N}.
(This may be seen by checking, as in (7)), that if a;, as, . .., ar are nonzero complex
numbers whose squares are mutually distinct, then

(123) {(w,¢1,Cosn o G); G =aiw® —1, 1 <j <k} CCH!

is a one-dimensional complex submanifold with all the required properties.)

The ¢-coordinates ¢, (0 < n < N) of the points of the fiber of —iv € —iR" in
M) are uniquely determined by the condition that (—iv,(,) € M,,. This means
that

2
n+3
(124) 42_< 2) -1  (0<n<N).
v
Ifv ¢ {m+4;meN,0<m< N}, we get exactly 2! points, corresponding to
the two sign choices for each (,,. Hence the fiber of —iv € —iRT\ {—i(m+1);m €
N,0 <m < N} consists of the points
(125) (—iv,(&(—iv),...,(ﬁ(—iv))
where (F(—iv) is as in ([07). If v = m + 3 for some m € {0,...,N}, then the
{m-coordinate of the points of the fiber of —i(m + 3) is zero, whereas ([24) has
precisely two solutions, equal to £¢;7(—i(m+3)), for each n € {0,..., N} which is
different from m. Hence the fiber of —i(m -+ %) contains exactly 2V points. These
points have a real coordinate (,, when N > n > m, a purely imaginary coordinate
¢n when 0 < n < m, and (,, = 0. They are the branching points of M(y). A

schematic picture of the coordinates of the points of the fiber above —iR™ is drawn
in Figure 2.
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¢
I - ——
CN real values M
<+ :
N . :
Cm+1 real values )Qmaginary va;lues
+ : :
Cm+1 : :
G [T T i e T imaginary vaitues
real values > : :
G :
Tl vaties T gy vanes LT T
> maginary values : :
Ci" /\ imaginary valu : : :
O i U i ittt SOV Rt St m-m
Cg_ real/i\ : imaginary values : :
- -3 —3(m+3) —5m+3) —§(N+3) —weiR

FIGURE 2. Schema of the fiber above —iR¥ in My

We want to construct a meromorphic lift of F' along the branched curve
(126) v v € (0,N + 2) = (—iv, £(f (—iv), ..., £ (—iv)) € My,

which is the lift of —i(O,N + %) in M(ny. More precisely, let W, be the open
set in C defined in (IT4) and ({II7). Then we meromorphically lift F' to the open
neighborhood

N
(127) M(w>:7f<_zv1)( U W(m))
m=—1

of vy in M.
Notice that by (II3) the radius Ry, of the open disk W, | 1 satisfies Ry, < 1/2.
Moreover, using also ([I12l), we have, for m € {0,1,..., N — 1},

Winy " Wing1y = Wiy OW,_ 3 = (W) \ W, 1)OW s
mrT3 mT3 mT3

Wny N Weng1) NiR = —i]m + 5 — Rpsr,m+ 5[
Hence, for m € {—1,0,..., N},
(128) Wimy VWi Ni(Z+3) =0

and the branching point —i (m + %) is a boundary point of W,y N Wy, q1y.
For every € = (gg,...,en) € {£1}¥F! we define a section

0c : C\i((— 00, —3] U [3,+00)) = M)
of m(ny by setting
(129) o:-(2) = (2,607 (2), - - 7ENCJJ{,(Z)) )
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This is well defined as ¢ (z) is well defined at z € C\ i(( — oo, —(n+ 1))] U [n+
%,—i—oo)) for all n € {0,1,...,N}.

Because of ([I28]), by possibly shrinking the open disks W, we can also assume
that W(I\})(W(’m)) is the disjoint union of 2V+! homeomorphic copies of W(’m). In
particular, each of these copies is a connected set. We denote by U,, . the copy
containing o¢(W(,,,) \ iR).

Similarly, by possibly shrinking the open disks Wer 1, we can furthermore as-
2

sume that their preimage 7r(_ 1\}) (Wm+ % ) in M(y) is the disjoint union of 2N home-

omorphic copies of 71';11(Wm+ 1). They can be parameterized by the elements
2

(130) (EOa-~-75m—175m+1a-~-75N) (5n€{:|:1}70§n§N,n;£m)
We denote by e(m") the element ([30) obtained from ¢ € {1}V *! by removing its
m-th component. This means that e(m") = ¢’(m") if and only if € and ¢’ are equal

but for their m-th component, which can be +1. Modulo this identification, we can
indicate the connected components of w(_l\}) (Wm+%) as Ug(yvy with € € {£1}NHL

To unify notation, we define U, (,,,vy = 0 for m = —1.
Observe that {Us(m\/) UUneie € {1Vt meZ,-1<m< N} is a covering
of M, ) consisting of open connected sets.

Theorem 19. For m € {—1,0,...,N}, € € {1}V and (2,¢) € Ueimvy U Up, e
define

F(2,0) = Fimy(2) + 471 > G (2,Gn)

=0
(131) . n=o_ B
+ami Z [G(n) (Z’ C") - G(n)(za _é'n)} 5
m<n<N
with €, = —1
where the first sum is equal to 0 if m = —1 and the second sum is 0 if e, =1 for
alln >m.

Then F is a meromorphic lift of F to the open neighborhood M,y of the
branched curve yn lifting —i(O, N + %) in M(y). The singularities ofﬁ on M, )
are simple poles at the points ( — i(m + %),C) € M(y) with m € {0,1,...,N}.
Proof. To simplify the notation, we write the coordinates of the points of My,
above some fixed z € C as ( instead of ().

Let ﬁ(mﬁ)(z, ¢) denote the right-hand side of ([I3]). Since for every

me {-1,0,...,N -1}

the function ﬁ(m75)(z,<) is meromorphic on Ug(y,vy U Uy, then ﬁ(z,() will be
meromorphic on M, provided ﬁ(mﬁs)(z,() = ﬁ(mlg/)(z,() on all nonempty in-
tersections (Us(mvy U Um,e) N (U ((mryvy U Umrer) with m,m’ € {~1,0,...,N},
g,e/ € {£1}VF1 and (m, ) # (m/,€').

If (m,e) # (m/,€"), then Uy, . N Uy o = 0. Hence

(Us(mv) U Um,g) N (Us’((m’)\/) U Um/,g/)
= (Uemv) N Usr(mry)) U (Ue(mv) O U o) U (Uer(amryv) N Unme) -
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Since different U,(,,vy’s are disjoint, Ug(mvy N Uz ((mvy # O means that Uggp,vy =
Uer((mryv)- Since (m,e) # (m',€’), this means that m = m/, ¢, = ¢, for all
n € {0,1,..., N} with n # m and e, = —e/,. The definition of ﬁ(m,s)(z, () on the
right-hand side of (I3I]) depends on ¢ only for the &,,’s with n > m = m’. Therefore,
in this case we have ﬁ(m)g)(z, ¢) = ﬁ(m/75/)(27 ¢) for (2,¢) € Usmvy = Uer((mryv)-
Suppose now that Ue/((m/yv) N Upme # 0. If m = m/, this means that e(m") =
g’((m')Y). We are therefore in the situation just considered, in which f‘(m78)(z, ()=
ﬁ(m,ﬁ/)(z, ¢) for (2,¢) € Us(mvy = Usr((mryv). If m # m/, then two cases may occur:
(1) M =m+1and &((m)Y)=((m+1)V) =e((m+1)Y).
(2) m'=m—1and &((m)V)=€((m—1)V)=¢((m—1)V).
In Case (1) we need to check that ﬁ(m,a)(z,g) = ﬁ(m+17€)(z,() for (z,{) € Up,e N
Us((m41)v)- Since Upy e N Ug((m+1)v) is connected (as homeomorphic to W,,) N
W43, it suffices to check this equality on its subset o ((Win) N W,,43) \ iR).

On this subset, we have (41 = €41} . Hence, by (I05),

Gty (2 Emt1Cmt1) = Gmrn) (2, Ghir)
= Gm+1)(2) ((2,¢) € o (Wimy N Wois) \ iR).
Recall that, by (I20),
Fion)(2) = Fimg1)(2) + 4710 G 11)(2) (2 € Wiy "Wy, 15).
These equalities will be subsequently used in the computations below.

We now need to distinguish two further cases inside Case (1):

(L.a) e, =1 for all n > m,

(1.b) there exists n > m such that e, = —1.
In Case (1.a), we have ,,41 = 1. In Case (1.b), we also have to distinguish
whether €,,41 = 1 or €,,,41 = —1. In Case (1.a) or in Case (1.b) with &,,41 = 1,
for (z,¢) € oc(Wimy N Wys) \ iR) (and with empty sums equal to 0), we have:

Flne)(2,0) = Finy(2) + 471 Y Gy (2,Cn)

n=0
with €, = —

= Fluns1)(2) + 471 G g 1) (2) + 471 Y Gy (2,Cn)

n=0
m+1<n<N
with g,, = —1
m—+1 "
= Finy1)(2) + 470 Y Gy (2:6a)
n=0
+ 4mi Z [é(n)(z, Cn) = @(n)(z, —Gn)]
m+1<n<N
with ,, = —

= ﬁ(erl,s) (Z7 C) .
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In Case (1.b) with e,,41 = —1, then for (2,¢) € oc (W) ﬂWm+%)\iR) (and with
empty sums equal to 0), we have:

Flne)(2,C) = Fimy(2) + 471 Y _ Gy (2,Cn)

n=0

+ 4 [é(m+1)(27 <m+1) — é(erl)(z’ _Cerl)]
+ dmi Z [6’(") (Z’ gﬂ) - é(n)(zv _Cn)]

m+1<n<N
with ,, = —

= Flunt1)(2) + 470 G gy (2) + 470 > Gy (2,Ca)
n=0

+ 4mi [é(m—i-l)(Z, Cerl) - é(m-{-l)(za _<m+1)]
+ 47Ti Z [é(n) (Z, é'n) — é(n)(z, —Cn)]

m+1<n<N
with g,, = —1

m—+1
= F(erl)(Z) + 4mi Z G(n)(zv (:n)
n=0

+ 473 Z [é(n) (Za Cn) - é(n)(zv —Cn)]

m4l<n<N
with g, = —1

= F(m+1,5)(2a Q).
This concludes Case (1).

For Case (2), we need to check that f'(m_ljg)(z,C) = ﬁ(m’g)(z,o for (z,¢) €
Upm,e NUc((m—1)v)- As in Case (1), since Uy, c NUe((m—1)v) is connected (as homeo-
morphic to W,y N Wm+% ), it suffices to check this equality on o, ((W(m) N Wm+%)\
iR), where (,,, = £,,(,5,. The proof parallels that of Case (1), by considering if ¢, = 1
for all n > m —1 (Case (2.a)) or if there exists n > m — 1 such that ,, = —1 (Case
(2.b)). In Case (2.b), one has, moreover, to distnguish whether ¢,,, = 1 or &,,, = —1.
The details are omitted. _

This concludes the proof that F'(z,() is a meromorphic function on M, . Its
singularities on W(,,) are those of CNT'(m)(z, Cm), i.e., simple poles at the branching
points above z = —i(m + %), with m € {0,1,...,N}.

The fact that F(z, ) is a lift of F is an immediate consequence of (I05), Corollary
[I8 and the definition of ﬁ(mﬁ)(z, ¢) fore =(1,...,1). |

3.5. Meromorphic extension of the resolvent. Let C~ = {z € C;Imz <
0} be the lower half-plane. In this subsection we meromorphically extend the
resolvent z — [R(z)f](y) (where f € C2°(X) and y € X are arbitrarily fixed) from
C~ \ i(—o00, —1px] across the half-line i(—oo, —1px]. As before, we shall omit the
dependence on f and y from the notation and write R(z) instead of [R(z)f](y).
This simplification of notation will be employed wherever it is appropriate.

Recall from Proposition [ that on C~ (and indeed on a larger domain) we can
write

(132) R(2) = H(pg'2) + W”—p Flpx'z)  (zeC),
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where H is a holomorphic function. The required meromorphic extension will,
therefore, be deduced from that of F' in section 3.4
For any fixed integer N > 0 consider the Riemann surface above
Cy={z€CiImz>—(N+ %)px}

defined by

M(X,N) = {(zaé')a z € (C;[, C = (CO,Clv .. ,CN) € (CNJrla

G=({n+1)" -4, 0<n<N}.

Hence (2,() € Mx n) if and only if (px 'z, px{) € M(ny. Then the curve
v E (O,N—I— %) — —ipxv € iR

on the negative imaginary axis lifts to the curve yx n on the Riemann surface
Mx,ny given by

(133) ’YX,N(U) = (_ivavp;1COi(_iU)7 s 7p)21(:1%[(_“})) (0 <v<N + %)a
where ¢V (—iv) = —(; (—iv) is as in ([I07).

From each object constructed for M) we obtain a corresponding object for
Mx, ) by replacing (z,¢) with (px 'z, px¢). Tt will be denoted by adding “X” to
the symbol used in section [3.4 for the corresponding object in M. For instance,
for e € {£1}¥*! and n € {-1,0,1,..., N}, the sets Ux . and Ux e(nv) consist

of the (z,{) € M(x,n) so that the points (px 'z, px¢) belong to U, . and Ue(nvy,
respectively. Similarly,

My vy = {(2,¢) € Mx,n; (P)ZIZGPXC) € M(.YN)}.
Also, for n € {-1,0,1,...,N},
Wom = X Wy, Wik = Px Wiy Wt = Px Warg -

Hence Wix n) = WXm,—‘,—% U W(/X,n) is an open neighborhood in Cy of the interval
—ipx [n + %,n + %) if n £ —1, and of —i(O, pQ—X) ifn=-1.

Let mx,n) @ Mx,n)y — Cy denote the projection m(x n)((2,()) = 2. The
Riemann surface M(x n) admits branching points at the 2N points above z(™ =
—i(n + %)px, where n € {0,1,..., N}. The open disk Wx,n+§ is centered at z(™).
Set

(134) En={ec {1}V e, =1}.

Then the sets Ux .(,v) with € € &, are pairwise disjoint and form an open cover
of 7T(_X1,N) (WX,n+%)' For ¢ S gn, we denote by (Z(n)7 C(H,S)) the point Of the ﬁber
w(_)({N)(z(”)) which belongs to Ux .(,,v). Moreover, the map

(135)

_ ipx(n + %)

VxG2 +1

Rne * UX,E(nV) > (Zag) —(n € (C\Z((—OO, —Pgl] U [P)Zla"'oo))’ Z=

is a local chart around (z(™), (™).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



448 J. HILGERT, A. PASQUALE, AND T. PRZEBINDA

Observe also that, as in (I21),

(136) M('yx N) (x N)( U W(X n) )

n=—1

is an open neighborhood of the curve yx ny in M(x n). Moreover, for every n €
{-1,0,...,N}, we have

7T(_X1,N) (W(xm)) = U (UXJ%?:' U UX)E(HV)) .
ee{+1}N+1

The resolvent R can be lifted along the curve yx y to a meromorphic function on
M,, x)- The meromorphically lifted function admits singularities at the (N+1)x
2N branching points (2™, (™)) with (n,e) € {0,1,..., N} x &,. They are simple
poles. The precise situation is given by the following theorem. Recall the notation
&€ = ¢™/3 and the functions 1, and ¢ from (B8) and (B9).

Theorem 20. Let f € C*(X) and y € X be fizred. Let N € N and let yx n be
the curve in Mx ny given by (I33). Then the resolvent R(z) = [R(z)f](y) lifts as
a meromorphic function to the neighborhood M, ) of the curve yx N in Mx n.

We denote the lifted meromorphic function by ﬁ(N)(z, () = [E(N) (z, C)f] (y).

The singularities of R(N) are simple poles at the points (z("),C("’s)) € Mx,n)
with 2" = —i(n + )px and (n,e) € {0,1,...,N} x &,. Ezplicitly, for (n,c) €
{0,1,...,N} x &,,

(137) Rn)(2,¢) = Hnne) (2,0) + CGixony (2,0)  ((2:€) € Uxnie U Uxenv)) »
where ﬁl(N’n’E) is holomorphic,

_12n® 7P
Pl W]

is a constant (independent of N, n and ¢), and

G (5:0) = Ut (px (B0 + 5) = ) ) zpfll(spx(g< +1)-G)
_iﬂ-Cn
is independent of N and € (but dependent on f and y, which are omitted from the
notation). The function G(X,n) has a simple pole at (2™, (™)) for all e € &,.
The local expression for é(x’n) in terms of the chart ([33) is:

(139) (Goxn @ Fn ) (G) =¥ iy (VARG +1+pxGn)

(138) ‘
1 (Epx(Ln+ 3) - &)

\/PECR+1
¢ i(n+3) 1(5(\/P>2<C,2L+1+p><§n))
)
VPxGr +1
0y (E/RG 1)) - T
NN "
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Furthermore,
(140) Res [(Buy o ia AW = o (n+5) (% Crn) ).
n=0 |W| P
where Pnt1)p is the spherical function on X of spectral parameter (n + )p In
particular, (Riso [(R(n) o kipy ) (Cn) fl(y) is independent of e.

Proof. According to Corollary @ and Proposition [ it suffices to meromorphically
extend the function F' given by (22), as done in section 3.4l The lift Ry of the

resolvent to M(,, . as well as the expression of G (x,n) are then obtained from The-
orem [T, with (z,¢) replaced by (px'z, px¢). In fact, the function ﬁ(N)ms) (2,0)
in (I37) is the sum of the holomorphic function H(py'z) from Proposition 2 to-

gether with times the sum of all terms in the definition of F (px 2, px¢) on

\WI X
Ux ) UUx nc, as on the rlght hand side of (I3T]) with n instead of m, except for

4mi G(n)(px z, px¢). Thus H(Nn o) is holomorphlc on Ux c(nv) U Ux,p,c - Finally,

Notice that for (z,() in the neighborhood Ux .(,,v) of (2("), (™)) we have

ip?x(n—l—%) = —\/PxC2+1.

The expression (I39) for é(X,n) in the chart (Ux c(sv), kn,) then comes from (I41))
together with the parity properties [Il) and 3] of the functions ¢, and ¢, 1, as

for (79).
To compute the residue (I40), we have, by ([I37),

(142) Res(Row) © #72) (Gn) = C Res (Gxny 05 (Gn) -

By (BI) and (41,

(143) Res (Goxm 0 52 1)(Co) = i(n+ 1)21/) L (1)
En=0 X,n) n,e)\Sn o 9 i(n+3) .

Moreover, ([B9) yields

1 Pix(i(n+1),1) T Poir(i(n+1),1)
Uity (=5 (7 . ).
By definition, see (26), we have A(i(n+ 3),1) = i\(n+ 3, 1). Furthermore, by (20)
and (I4),

A(n + %, 1)=(n+ %)el =(n+ %)@172-
Recall that the spherical functions ¢y are Weyl group invariant in the spectral
parameter A € ai:. Recall also that the Weyl group W permutes all roots and, more
precisely, it acts on «; ; by permuting the indices ¢,j € {1,2,3}. Since p = a1 3 is
a root, we conclude that

Prir(i(nt+3),1) T PE2N(n+3),1) T PF(t3)ars = Plntg)e-

Therefore
1
(144) sy D) = = 52 (F X P W)
The residue (I40) then follows from ([[42), (I43) and (I44). O
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4. THE RESIDUE OPERATORS

Theorem 20 gives the meromorphic lift of the resolvent of the (shifted) positive
Laplace-Beltrami operator A — (p, p) of X to the Riemann surface M(x y) covering
Cy={z€C  :Imz > —(N + 2)px}, where N be any fixed nonnegative integer.
For fixed f € C°(X) and y € X, the lifted resolvent R( ~) admits simple poles
at the branching points of M(x ), that is at the points (2", ¢(9) with (n,e) €
{0,1,..., N} x{£1}¥*1. The singular part of the function (z,¢) — [Rny (2, ¢) f1()
at (2(", (™) is a constant multiple the function é(xyn)(zg () defined in ([I41]). It is
independent of the choice of N > n and of the singular point (z(”), ¢ ("75)) in the fiber
above z(™ = —ipx(n+ %) in M(x,n). In terms of the canonical chart (Ux c(,vy, fin,e)
around (2(™, (™), the residue of E(N)(Z,C) at (2, ¢9), computed in (I40),
is a smooth function of y € X depending linearly on f € C°(X). We use the value

of this residue to define a residue operator at z(™ = —ipx(n+ %) More precisely,
we define the residue operator
(145) Res, R : C2°(X) — C®(X)
by
~ 1y 2 -
(146) Res,, fof = (n+ 5) (f X i) (FECEX).

In this section we study the range of the linear operator Res, R from a repre-
sentation theoretic point of view.

4.1. Residue operators and eigenspace representations. Let A € az. We
consider the convolution operator

(147) Ry : C(X) = C™(X)
defined by
(148) Ra(f)=Ffxex  (FeCZ(X)),

where, as before, ¢, denotes Harish-Chandra’s spherical function of spectral param-
eter \. We keep the notation on eigenspace representations introduced in section
Lol

The next proposition holds for arbitrary Riemannian symmetric spaces of the
noncompact type X = G/K, where G is a noncompact connected semisimple Lie
group with finite center and K a maximal compact subgroup of G. It characterizes
the closure of R)(C2°(X)) inside the eigenspace representation space &£,(X) and
gives a necessary and sufficient condition for R (C2°(X)) to be finite dimensional.

Proposition 21. The space Ry(C(X)) = {f X px : [ € CX(X)} is a nonzero
T -invariant subspace of Ex(X). Its closure is the unique closed irreducible subspace
En(X) of Ex(X), which is generated by the translates of the spherical function
©x. The space RA(CE(X)) is finite dimensional if and only if Ex,c(X) # {0} is
the finite-dimensional spherical representation of highest restricted weight —w\ — p
(for some w € W, the Weyl group). In the latter case, Rx(C(X)) = Ex,a(X).

Proof. Observe first that R (CS°(X)) # {0} as ¢y is nonzero and continuous.
For all D € D(X) we have D(f x ¢)) = f x Dpx = v(D)(MN)(f x ©a). See
[5, Ch. II, Theorem 5.5]. So R»(C(X)) C Ex(X).
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Let g € G, and let F7(9) denote the left translate by g of the function F : X — C.
Hence, if 0 = eK is the base point of G/K, then F79)(h-0) = F(g~'h - o) for all
h € G. We have

Ta(9)(f x oa) = (f x o)™ = 79 x .

As f7(9) € C2°(X), the subspace R (C(X)) of £x(X) is T-invariant.
By definition, for f € C°(X),

(f xoa)(x /fg 0)ealg dg—/fgo (x)dg  (z€X)

belongs to &) (X), the closure of the subspace of £ (X) spanned by the left trans-
lates of . So RA(C(X)) C &(»)(X) is nonzero, closed and Tx-invariant. Since
E(X) is irreducible (see e.g. [5, Ch. IV, Theorem 4.5]), they must agree.

If RA(C(X)) is finite dimensional, then its nonzero elements are G-finite, so
Exa(X) # {0}. By Proposition [[l we conclude that wA — p is the restricted highest
weight of a finite-dimensional spherical representation for some w € W. Moreover,
RA(CX (X)) = Ex,c(X) by irreducibility.

Conversely, suppose Ex.¢(X) # {0} is the finite-dimensional spherical represen-
tation of highest restricted weight wA — p for some w € W. Then R)(C (X)) =
Ex,a(X) by [7, Theorem 3.2]. In particular, R (C2°(X)) is finite dimensional. O

Corollary 22. For alln € N the eigenspace representation T(n+%)p of G = SL(3,R)

on E1.1y,(X) is reducible. The closure of the image Resy, R(C°(X)) of the residue
operator is the infinite-dimensional irreducible subspace (1 1) (X) of €y 1y,(X)
spanned by the translates of the spherical function Pnt1)p- In particular, the

residue operator Res, R has infinite rank for all n € N.
Proof. Since p = ay 3, we have for all n € N that
n+ps=n+3eZ+1i.

(Recall from section [L.2 that p;; = pa,,.) Thus T(, | 1), is reducible by (@).

Because of Proposition I} it remains to prove that Res, R(C°°(X)) is infinite
dimensional. For this, it is enough to check that for every Weyl group element w
there is a root o € £+ so that —(n + 3)(wp)a ¢ N+ 1. In turn, by Remark [I] it
suffices to check that (n+3)p;; ¢ Z whenn € N and (4, j) = (1,2) or (i,5) = (2,3).
This is immediate, since p12 = p2,3 = % O

Remark 5. As before, let B = K/M. The Poisson transform of h € C'(B) is the
function Pyh : G/K — C defined by

(Pah)(y /h exp(y (y € G/K);
see e.g. [6L Ch. II, §3, no. 4, and §5, no. 4]. According to (I2)), the range of the
residue operator Res,, R is the image under the Poisson transform of the elements of

the Paley-Wiener space (see section [4)), evaluated at A = (n+ 1)p and considered
as a function of b € B.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



452 J. HILGERT, A. PASQUALE, AND T. PRZEBINDA

4.2. Residue operators and Langlands’ classification. In this section we give
a description of the SL(3,R)-action on the range of the residue operator in terms
of Langlands’ classification. We will identify all infinitesimally equivalent represen-
tations of the group G = SL(3,R).

Recall the ITwasawa decomposition G = KAN,

z = k(x)a(z)n(z) (x € G),

from section [Tl Let P = MAN C G be the minimal parabolic subgroup consisting
of matrices with zeros below the diagonal. For a fixed A € af the spherical nonuni-
tary principal series representation, Indg(l ® e*), is a representation of G defined
on the Hilbert space Hyy C L?(K) consisting of the right M-invariant functions,
with the group action given by

[1L(g)v](k) = a(g™" k) Pu(k(g~'k)) (g€ G, keK).

This representation has precisely one irreducible subquotient, 7(1 ® (\))(1), which
contains a trivial K-type; see [22] Def. 4.4.6]. If Re ) is negative, then T(1® (A\))(1)
is a subrepresentation of Ind$ (1 ® e*).

Also, recall that the group G has only three nilpotent orbits in g (see e.g. [I]).
They are indexed by the partitions of 3: the maximal orbit O;;,, the minimal
orbit O3 1 and the zero orbit O3 = {0}.

Proposition 23. As a representation of G, the range of the residue operator Res, R
is infinitesimally equivalent to T(1 ® (n + 3))(1). This is a proper infinite dimen-
sitonal subrepresentation of the nonunitary principal series. This representation is
unitarizable if and only if n = 0. The wave front set of each of these representations
(see [18] for the definitio), is equal to Oz U Oys.

The proof of Proposition23]is based on some well-known facts. Since their proofs
are short we include them in our argument.

Let (TI, Hy7) be an admissible representation of G realized on a Hilbert space Hry
with inner product (-,-);;. The hermitian dual (IT", H}) is defined by H} = Hp
and I1"(z) = II(z~1)*, 2 € G.

Lemma 24. Abusing the notation in an obvious way we have
h -
(Indg(l ® e’\)) —mdS(1®e?).

Proof. In the argument below we will find the following “change of variables” for-
mula useful:

(149) /K a(gk) =2 [ ((gk)) dk = /K [yl (g€ G).

It may be found for instance in [I0, (7.4)]. Let (-,-) denote the L? inner product
on K. For u,v € Hyr and g € G we have

(150)  (I"*(g)u,v) = (uaﬂ(g‘l)v)=Au(k)a(gk)‘*‘pv(fﬁ(gk))dk

| alg) (uk)atgh) > uwlgm)) di.
K
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Let | = k(gk). Then gk = x(gk)a(gk)n(gk). So,
ko= g 'la(gk)n(gk)

= w9~ Dalg~ Dn(g~ Dalgk)n(gk)

= n(g™Dalg™ Da(gk)n'.
Hence

E=r(g') and a(g 'l)a(gk) = 1.

Let t4(l) = k. (This is the inverse of the map k — x(gk).) The above formulas
show that

Yg(l) = k(g™ and  a(gyy(l) = alg™'D)~"
Since the function _
FO) = u(wg(D)algrrg (D))~ *u(D)

is right M-invariant, formula (I49) implies that (I50) is equal to

/ u(i(g™1))alg™ DN P o(l) d.
K

Thus _
" (g)u] (1) = alg™ " D* Pu(r(g~'1)).

Since this is the action of the induced representation IndS(l@e‘X), we are done. [

Next we show that the range of the residue operator Res,, R is infinitesimally
equivalent to (1 ® A)(1), where A = (n + 1)p.

If 1x denotes the constant function equal to 1 on K, then the Harish-Chandra
spherical function ¢, (considered as a K-bi-invariant function on G) is given by

pa(e) = (M(2)1k, 1x)  (z€G),

where (I, Hy7) stands for the induced representation Inds (1® A). As our X is real,
we have

oa(z) = (Ik, I(x)1k)  (z€G).
Since the convolution of two functions is given by

(F=0)e) = [ S@aly 2 dy (@G, € CUG). g€ C(E))
we see that
(150 (Fron@) = [ )T )0 dy = (1)1 T ).
Here 11" denotes the lift of (II",H}) to L'(G). The map
(152) C®(G) > frT"(f)lk € HY

intertwines the left regular representation on C°(G) with IT". By definition, the
range of this map is generated by the action of L!'(G) on the vector 1x. Hence
it is generated by the action of the group on the vector 1. But the represen-
tation (II",H]) is infinitesimally equivalent to IndS (1 ® (=))). As —\ is nega-
tive, the induced representation contains a unique irreducible subrepresentation,
T(1 ® (=A))(1), containing the trivial K-type, [22] Proposition 4.2.12]. Hence the
range of (I52) coincides with (1 ® (—A))(1).
Furthermore, we have the map

(153) HE S ues (u,11()1k) € C(G).
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Since the map
(154) CP(G)d fr freyeC®(G)

is the composition of (I53]) and ([I52]), we see that the range of ([I54]) coincides with
T(1 ® (—v))(1). Since replacing C°(G) by C°(G/K) does not change the range,
the range of (I24)) is equal to the range of the residue operator. Since T(1®(—\))(1)
is isomorphic to 7(1 ® A)(1), the first part of the proposition follows.

Next we study some properties of the representation 7(1 ® A)(1). The infinites-
imal character of (1 ® A\)(1) is equal to the infinitesimal character of the induced
representation, and therefore is represented by ; see [22] Lemma 4.1.8]. In par-
ticular, this infinitesimal character is not of the form “a highest weight plus p”.
Therefore 7(1 ® A)(1) is infinitely dimensional.

For each positive root a we have an embedding

¢ : GL(2,R) — G

defined by
0
g1 Gie B gi11 91,2
Par2 921 G2.2 N 921 922 0 ’
7 ' 0 0 (91,1922 — 91,2921) "
(91,1922 — g12921)" 1 0 0
gi1 91,2 o
Paza < 92,1 g2.2 ) N 0 gr1 912 ’
' ' 0 921 92.2
91,1 0 91,2
¢a1‘3 ( 91,1 91,2 ) — 0 (91’192.2 _91,292,1)—1 0
92,1 922 0
92,1 g2.2

Then ¢,(GL(2,R)) is the centralizer of the kernel of e* : A — C in G, and is
denoted by M®A® in [22, Notation 4.2.21]. As before, let A = (n+ 3)p. We see
from [22, Theorem 4.2.25] that the induced representation Ind$ (1®e*) is reducible
if and only if there is a such that the induced representation Indﬁaﬂgbilzgiﬂfg?R)) (1®et)

is reducible. Set

1 0 0 10 0
Hy,=(0 -1 0], Hy,=[00 0 |,
0 0 0 00 -1
00 0
Hoy=[ 0 1 0
00 -1

If o € {o1,2, 1,3, a2 3}, the reducibility condition for Indﬁ%;i%giﬂf%)R))(l ®e) reads

that
AMH,)=2d+1 (for some d =1,2,3,...).

But p = ay 3, so

p(Ha1,2) =1, p(Hal,B) =2, p(Haz,a) =1
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Therefore Ind$ (1 ® e*) is reducible if and only if

n-+ % is an odd positive integer
or 2(n+ 1) is an odd positive integer

or n+ 3 is an odd positive integer.

Thus Ind$ (1 ® e*) is reducible. According to [20] the unitary dual of G consists
of the trivial representation, complementary series and unitarily induced represen-
tations. Our representation 7(1 ® %p)(l) is at the end of a complementary series,
hence it is unitarizable. However, for n = 1,2,3,..., #(1® (n+ 1p))(1) is not in
any complementary series. Hence it is not unitarizable.

Let Q € G be the group generated by P and ¢q, ,(GL(2,R)). Then Q is a
maximal parabolic subgroup with the Levi factor equal to @, ,(GL(2,R)). The
restriction of the character e* to the center of ¢q, ,(GL(2,R)) is trivial. Therefore
the induction by stages, [22], Proposition 4.1.18], shows that

$ay,3(GL(ZR))
(155) md$(1®et) = Indg(lndmizz(GL(ZR))ﬂp(l ®eM)) ®el).

oy 5 (GL(2,R))
a5 (GL(2,R))NP

F\, which happens to be finite dimensional. Hence our Langlands quotient 7(1 ®
1p)(1) is a subquotient of

The representation Ind (1 ® e*) has the unique Langlands quotient

(156) Ind§ (Fy ® €°).

In particular, the wave front set of (1® $p)(1) is contained in the wave front set of

Indg(FA ®e?), which is equal to the closure of the nilpotent orbit induced from the
zero orbit on the Lie algebra of ¢,, ,(GL(2,R)), i.e., to the closure of Oz ;. This
completes the proof of Proposition 231

Remark 6. By ([I20), the image of the map (I53)) is the function

Gogw (u,1l(g)lk) = /Ku(k)a(g_lk)_)‘_p dk .

Consider right M-invariant functions on K as functions on B = K/M and right K-
invariant functions on G as functions on G/K. Then H}; = L2(B) and the range of
[@53) is C>=(G/K). Since a(g~1k) ™" = ey jm(gK), the map ([IE3) is the Poisson
transform Py, see Remark [l

For generic A, the Poisson transform maps the hyperfunction vectors of spherical
non-unitary principal series representation Ind$ (1 ® e*) onto &y (X). But Corol-
lary says the resonances (n + %)p are not generic in this sense. In this case,
according to [I6, Thm. 2.4], the image of the Poisson transform consists of those
elements u € &, 1) »(X) which satisfy the following additional differential equa-
tions: sym(h)u = 0, where h is a K-harmonic polynomial on pf, viewed as an
element of the symmetric algebra S(pc) of pc and sym: S(pc) — U(pc) is the
usual symmetrization map.
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