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Introduction

The Cauchy determinant identity says

det

(
1

1− hih ′j

)
=
∏

i< j (hi − h j)
∏

i< j (h
′
i − h ′j)∏

i, j (1− hih ′j)
,(1)

where h1, h2, ..., hn and h′1, h ′2, ..., h ′n are indeterminates, (see [M], [H5],
[Wy]). This identity is equivalent to

1∏
i, j (1− hih ′j)

=
∑

k1>k2>...>kn>0

|hk1 hk2 ...hkn |
|hn−1 hn−2 ...h0|

|h ′k1 h ′k2 ...h ′kn |
|h ′n−1 h ′n−2 ...h ′0| ,(2)
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where

|hk1 hk2 ...hkn | = det


hk1

1 hk2
1 ... hkn

1

hk1
2 hk2

2 ... hkn
2

.. .. ... ..

hk1
n hk2

n ... hkn
n

 ,
and similarly for the h′j’s, (see [M], [H5], [R3]).

Consider the following action of the group Un×Un on Mn(C), the space
of n × n matrices with complex entries:

A → gAg′ t (A ∈ Mn(C); g, g′ ∈ Un).

This action extends to an action on Sym(Mn(C)), the symmetric algebra of
Mn(C). The formula (2) is equivalent to

trace((g, g′)|Sym(Mn(C )) ) =
∑

trace(Π(g)) trace(Π(g′))

(g, g′ ∈ Un),
(3)

where the summation is over all irreducible polynomial representations Π
of Un , [H5], and both sides are understood as distributions on Un ×Un.

The formula (3) belongs to The Classical Invariant Theory. In a series
of works, culminating in [H1], Roger Howe has generalized this theory
by introducing the notion of a reductive dual pair G,G′ in a symplectic
group Sp.

Letω be an oscillator representation ofS̃p, the double cover of Sp, and let
G̃, G̃′ ⊆ S̃p be the preimages of G,G′ respectively. Howe’s correspondence
is a bijection Π↔ Π′ between certain (in general unknown) subsets of the
admissible duals of G̃ and of G̃′, [H1].

Let Θ be the distribution character of ω. If both G and G′ are compact,
then G is isomorphic to Um and G′ is isomorphic to Un, for some m and n,
and a slight generalization of (3) gives

ΘΠ′(g
′) =

∫
G̃

ΘΠ(g)Θ(gg′) dg (g′ ∈ G̃′),(4)

where ΘΠ(g) = trace(Π(g)) is the character of Π (and similarly for Π′),
and both sides are understood as distributions onG̃′.

The purpose of this paper is to redefine the right hand side of (4), so
that it would make sense, uniformly for all real reductive dual pairs, and
to provide some evidence for the conjecture that the resulting formula is
compatible with Howe’s correspondence.

The main problem, along these lines, is that if G is not compact then
the integral (4) has no chance to converge - no matter how far we stretch
the theory of generalized functions. However, there is a very simple way
around it, which by the way exposes the potential role of the structure of
G,G ′ orbits in W , the corresponding symplectic space.



A Cauchy Harish-Chandra integral, for a real reductive dual pair 301

Recall, [H2], that the mataplecitic groupS̃p, may be realized in the space
S∗(W ) of temperate distributions on W , via a map T : S̃p � g → T(g) ∈
S∗(W ), (see Sect. 2). In particular,

Θ((−1)̃g) = T((−1)̃g)(0) = Θ((−1)̃)
∫

W
T(g)(w) dw (g ∈ S̃p).

where (−1)̃ is in the preimage of −1.
Let χΠ denote the central character of Π, and let H ⊆ G be a Cartan

subgroup. Then (4) can be rewritten as

ΘΠ′(g
′) =

∫
G̃

ΘΠ((−1)̃g)Θ((−1)̃gg′) dg

= χΠ((−1)̃)Θ((−1)̃)
∫

G̃
ΘΠ(g)

∫
W

T(gg′)(w) dw dg

= χΠ((−1)̃)Θ((−1)̃)
∫

G̃
ΘΠ(g)

∫
G\W

T(gg′)(w) d
.
w dg

= χΠ((−1)̃)Θ((−1)̃)
∫

H̃
ΘΠ(h)∆(h)∆(h)

[∫
H\W

T(hg′)(w) d
.
w

]
dh,

(5)

where ∆ is the Weyl denominator, see [W2]. The point is that the integral in
brackets admits a generalization, (see Sect. 2). Hence, via Weyl’s integration
formula, the integral over G\W in the third line of (5), makes sense, (see
2.17), and this is what we have been looking for. The title of this paper
refers to our generalization of the integral in brackets in the formula (5).

As usual in the theory of orbital integrals, there is “an infinitesimal
version” of the above-mentioned integral, which lives on the Lie algebra.
We define it in Sect. 1, deferring most of the technicalities to Sects. 3–11. The
integral on the group is defined in Sect. 2, with the technicalities explained
to Sects. 12–14.

In Sects. 3–7 we deal with pairs of type II. The calculations here are
relatively straightforward, mainly because our object of study is a non-
negative invariant measure. The situation becomes more complex for pairs
of type I, Sects. 8–11, where we are led to deal with distributions, which
are not measures (Sect. 10).

The last three sections (12–14), where we investigate the integral on the
group, are a bit sketchy because the proofs of the results there are analogous
to the corresponding proofs in the Lie algebra case.

For computational convenience we reverse the roles of G and G′ in the
rest of this paper.

I would like to thank Wulf Rossmann for his wonderful hospitality during
my sabbatical stay in Ottawa in the Fall 1996 and during two summer visits
in 1997 and 1998. I am indebted to him for many fruitful conversations, and
for his insistence that “there should be contours somewhere in this theory”.
This finally lead to the proof of Theorems 10.3 and 14.12.
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I wish to thank Andrzej Daszkiewicz for participating in our continuing
project, of micro-local study of Howe’s correspondence, and for his warm
and cordial hospitality during my frequent visits in Torún.

It has been my pleasure to report on the initial results of this paper in
Tuczno, July 1995, and in Yale, November 1996. I would like to thank
Andrzej Hulanicki and Roger Howe for their kind invitations and interest.

1. The integral on the Lie algebra

Let W be a finite dimensional vector space over R, with a non-degenerate
symplectic form 〈 , 〉. Let Sp = Sp(W ) ⊆ End(W ) denote the correspond-
ing symplectic group, with the Lie algebra sp = sp(W ) ⊆ End(W ). Let
J be a compatible positive definite complex structure on W . Thus J ∈ sp,
J2 = −I , and the symmetric bilinear form

〈J w,w′〉 (w,w′ ∈ W )(1.1)

is positive definite. Let dw be the Lebesgue measure on W normalized
so that the volume of the unit cube is 1. Since any two positive definite
compatible complex structures on W are conjugate by elements of Sp(W ),
which have determinant 1, the normalization of the measure dw does not
depend on the particular choice of J . Let χ(x) = e2πix , x ∈ R. In these
terms, Liouville’s formula reads∫

W
χ

(
i

2
〈J(w),w〉

)
dw = 1.(1.2)

The conjugation by J , x → Jx J−1, defines a Cartan involution θ on the
group Sp and on the Lie algebra sp. Let G,G′ ⊆ Sp be an irreducible dual
pair, with the Lie algebras g, g′ ⊆ sp, [H1]. We may, and shall, assume that
θ preserves G, G′, g and g′.

Let H ′ = T ′A′ ⊆ G′ be a θ stable Cartan subgroup, where T′ is the
compact part of H′ and A′ is the vector part of H , as in [W1, 2.3.6].
Let A′′ = SpA′ denote the centralizer of A′ in Sp, and let A′′′ denote the
centralizer of A′′ in Sp. Clearly, A′′′ ⊆ G′. We shall see in (7.4) that
(A′′, A′′′) is a reductive dual pair in Sp(W ). We shall define an open dense
A′′′ - invariant subset WA′′′ ⊆ W such that A′′′ \WA′′′ is a manifold, with an
A′′ - invariant measure d

.
w determined by∫

WA′′′
φ(w) dw =

∫
A′′′\WA′′′

∫
A′′′
φ(aw) dad

.
w (φ ∈ Cc(WA′′′)),(1.3)

where da indicates a Haar measure on A′′′.
For a vector subspace V ⊆ sp define an unnormalized moment map

τV : W → V ∗, τV (w)(x) = 〈xw,w〉 (x ∈ V, w ∈ W ).(1.4)
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For simplicity, let

χx(w) = χ
(

1

4
τsp(w)(x)

)
=χ

(
1

4
〈xw,w〉

)
(x ∈ sp, w ∈ W ).

(1.5)

Recall, [Hö], [H3], that for a finite dimensional vector space V over R,
and a distribution u ∈ D′(V ), one defines the wave front set of u, WF(u) ⊆
V × V ∗, as follows. The complement of WF(u) in V × V∗ is the union of
all sets of the form U ×U′, where U ⊆ V is an open set, and U′ ⊆ V ∗ \ {0}
is an open cone such that for any ψ ∈ C∞c (U) and any φ ∈ C∞(U), with
the derivative φ′(U) ⊆ U ′

|u(ψ · χ ◦ φ)| ≤ constψ,φ,N (1+ max
x∈suppψ

|φ′(x)|)−N (N ≥ 0).(1.6)

Here, on the right hand side | | stands for a norm on V∗. (Unlike in [Hö],
we shall consider the zero section supp u × {0} to be in the wave front set
of u, whenever this is convenient and does not lead to confusion.) Let S(V )
denote the Schwartz space of V , as in [Hö, Chapt. 7].

Lemma 1.7. Let a′′ denote the Lie algebra of A′′. For any ψ ∈ S(a′′),∫
A′′′\WA′′′

∣∣∣∣∫
a′′
ψ(x)χx(w) dx

∣∣∣∣ d
.
w <∞.(a)

The formula

chc(ψ) =
∫

A′′′\WA′′′

∫
a′′
ψ(x)χx(w) dx d

.
w (ψ ∈ S(a′′))(b)

defines a temperate distribution on a′′. The wave front set of this distribution

WF(chc) = {(x, τa′′(w)); x(w) = 0, x ∈ a′′, w ∈ W}.(c)

Let W(H ′) = W(H ′,G′) denote the Weyl group of H′ in G′. By defin-
ition, W(H′) is equal to the normalizer of H′ in G′ divided by H′. This
group acts on the Lie algebra h′ of H ′. We shall say that an element x′ ∈ h′
is regular, if it is regular in the usual sense (the eigenvalue 0 of ad(x′) has
multiplicity equal to the dimension of h′, see [W1, 0.2.1]) and the stabilizer
of x′ in W(H ′) is trivial. The set of all such elements x′ ∈ h′ shall be denoted
by h′r .

Proposition 1.8. Fix an element x′ ∈ h′r . Then the intersection of WF(chc)
with the conormal bundle to the embedding

g � x → x′ + x ∈ a′′

is empty (contained in the zero section).
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Standard micro-local analysis [Hö, 8.2.4] together with Proposition 1.8,
justify the following definition.

Definition 1.9. Let x′ ∈ h′r . Then

chcx′(ψ) =
∫

A′′′\WA′′′

∫
g

ψ(x)χx′+x(w) dx d
.
w (ψ ∈ S(g))

is the pullback of the distribution (7.b) from a′′ to g via the embedding

g � x → x′ + x ∈ a′′.
The following lemma is an obvious consequence of [Hö, 8.2.4] and (1.8).

Lemma 1.10. For any x′ ∈ h′r , WF(chcx′) = {(x, τg(w)); (x ′+x)(w) = 0,
x ∈ g, w ∈ W}.

Recall, [H1] that the group G′ has a defining module V′. Specifically,
if the pair G,G′ is of type I, then V′ is a finite dimensional space over
D = R, C or H (the quaternions). The division algebra D is equipped with
a (possibly trivial) involution, and the space V′ with a non-degenerate form
( , )′, which is either hermitian or skew-hermitian. The group G′ coincides
with the isometry group of that form. If the pair G,G′ is of type II, then
G′ = GLD (V ′), is “the isometry group of the zero form”.

For a pair G,G′ of type I, let V ′c ⊆ V ′ be the subspace on which the
vector part A′ of the Cartan subgroup H′ ⊆ G′ acts trivially. Let V′s ⊆ V ′ be
the orthogonal complement of V′c. Since the restriction of the form ( , )′ to
V ′s is split, there is a complete polarization V′s = X ′ ⊕ Y ′ preserved by H′.
Thus

V ′ = V ′c ⊕ V ′s , V ′s = X ′ ⊕ Y ′.(1.11)

If the pair G,G′ is of type II, we have V′c = 0, and the whole space V′
is isotropic. For convenience, we identify V′ with X′ in this case (and set
Y ′ = 0).

Similarly, let V be the defining module for G. Set d = dimD (V ) and
d′ = dimD (V ′). Let

(1.12) p = d − d′ + 1, d − d′, d − d′, 2(d − d′), 2(d − d′)+ 1 if

G′ = Op,q, Sp2n(R), Up,q, Spp,q, O∗
2n, respectively.

For an element x′ ∈ h′ let λ1(x ′), λ2(x ′),..., denote the eigenvalues of
x ′|X ′ ∈ EndR(X ′), the restriction of x′ to X ′. Fix a norm | | on the real
vector space EndD (V ′c). Let V ′c = V ′c1 ⊕ V ′c1 ⊕ ... be a decomposition of V′c
into H ′ - irreducible subspaces over D. For x′ ∈ h′ let µ1(x ′) =

∣∣∣x ′|V ′c1

∣∣∣,
µ2(x ′) =

∣∣∣x ′|V ′c2

∣∣∣, .... Let πh′ be the product of positive roots of h′
C

in g′
C

,

(with respect to some ordering of roots). Recall that the rank of G is the
dimension of a Cartan subalgebra of g.
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Theorem 1.13. Assume that the rank of G′ is less or equal to the rank of G.
Fix numbers N, ε > 0. If V ′c = 0 set

P(x ′) =
∏

j

(|λ j(x
′)| + 1)N , (x ′ ∈ h′).

If V ′c �= 0, then the group G′ is isomorphic to one of the groups listed in
(1.12) and the number p defined in (1.12) is non-negative. In this case set

P(x ′) =
∏

j

(|λ j(x
′)| + 1)N ·

∏
j

(µ j(x
′)+ 1)p−ε, (x ′ ∈ h′).

Then the following integral converges and defines a continuous seminorm
on S(g):∫

h′r
P(x ′)

∣∣∣∣πh′(x ′) ∫
g

chc(x′ + x)ψ(x) dx

∣∣∣∣ dx′ (ψ ∈ S(g)).

Proof. This Theorem is a direct consequence of Harish-Chandra’s Theorem,
regarding his semisimple orbital integral, [Va, part I, p. 47], combined with
(11.14) and (10.3) for pairs of type I, and (7.21) for pairs of type II. ��

For a finite dimensional vector space V over R, with a Lebesgue meas-
ure dx, let

ψ̂(ξ) =
∫

V
χ(ξ(x)) ψ(x) dx (ξ ∈ V∗, ψ ∈ S(V ))(1.14)

be the Fourier transform, defined with respect to the character χ. The
Fourier transform of a temperate distribution u ∈ S′(V ) is defined by the
usual recipe: û(ψ) = u(ψ̂), ψ ∈ S(V ).

Let O′ ⊆ g′∗ be a nilpotent coadjoint orbit. Denote by µO′ ∈ S′(g′)
the canonical invariant positive measure on O′, as explained in [RR], [R1,
p. 56] or in [W2].

Harish-Chandra’s Regularity Theorem, [W1, 8.3.4], implies that the
Fourier transform, µ̂O′ ∈ S′(g′∗) coincides with a locally integrable, con-
jugation invariant function on g′. In particular one can restrict this func-
tion to h′r . For each connected component C ⊆ h′r there is a harmonic
polynomial h such that µ̂O′(x ′) = h(x′)/πh′(x ′), x ′ ∈ C, see [W2]. More-
over there is a constant coefficient differential operator D′ on h′ such that
h = D′πh′ , see [He, Theorem 3.6, p. 361]. By combining these facts with
(1.13) and (10.6), it is easy to deduce the following corollary.

Corollary 1.15. Suppose the rank of G′ is less or equal to the rank of G. If
G′ is one of the groups listed in (1.12), assume in addition, that

2d′ ≤ d + 2, 2d′ ≤ d, 2d′ ≤ d, 2d′ ≤ d, 2d′ ≤ d + 1 if

G′ = Op,q, Sp2n(R), Up,q, Spp,q, O∗
2n, respectively.
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Then for any nilpotent coadjoint orbit O′ ⊆ g′∗ and any Cartan subalgebra
h′ ⊆ g′,∫

h′r

∣∣∣∣µ̂O′(x
′)πh′(x ′)2

∫
g

chc(x′ + x)ψ(x) dx

∣∣∣∣ dx′ <∞ (ψ ∈ S(g)).

Moreover, the above integral defines a continuous seminorm on S(g).

Since A′ ⊆ A′′′ ⊆ H ′, we may normalize the measures involved so that
the Weyl integration formula looks as follows,∫

g′
ψ(x) dx =

∑ 1

|W(H ′)|
∫
h′
|πh′(x ′)|2

∫
G ′/A′′′

ψ(gxg−1) d
.
g dx

(1.16)
(ψ ∈ S(g′)),

where the summation is over a maximal family of mutually non-conjugate
Cartan subgroups H′ ⊆ G′, and |W(H ′)| is the cardinality of the Weyl group
W(H ′).

Definition 1.17. Under the assumptions of the Corollary 1.15, given a nilpo-
tent coadjoint orbit O′ ⊆ g′∗ and the canonical invariant measureµO ′ define
an invariant temperate distribution µ̂′

O′ on g by the formula

µ̂′O′(ψ) =
∑ 1

|W(H ′)|
∫
h′r
µ̂O′(x ′)|πh′(x ′)|2

∫
g

chc(x′ + x)ψ(x) dx dx′

(ψ ∈ S(g)),

where the summation is as in (1.16).

The point of this definition is that µ̂′O′ resembles a constant multiple of
the Fourier transform of the sum of canonical measures supported on some
orbits contained in τg ◦ τ−1

g′ (O
′):

µ̂′O′(ψ) =
∑ 1

|W(H ′)|
∫
h′r
µ̂O′(x ′)|πh′(x ′)|2∫

A′′′\WA′′′

∫
g

χx′+x(w)ψ(x) dx d
.
w dx′

(1.18)

=
∑ 1

|W(H ′)|
∫
h′r
µ̂O′(x ′)|πh′(x ′)|2∫

A′′′\G ′

∫
G ′\W

∫
g

χx′+x(gw)ψ(x) dx d
.
w d

.
g dx′
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=
∫
g′
µ̂O′(x ′)

∫
G ′\W

∫
g

χx′+x(w)ψ(x) dx d
.
w dx′

=
∫

G ′\W

∫
g′
µ̂O′(x ′)χx′(w) dx′

∫
g

χx(w)ψ(x) dx d
.
w

= const ·
∫

G ′\W
µO′(τg′(w))ψ̂(τg(w)) d

.
w

= const · µ̂τg◦τ−1
g′ (O

′)(ψ).

The above reasoning can be made precise in some interesting cases.
Recall, [H4], [Li], that a pair G,G′ of type I is in the stable range,

with G′ - the smaller member, if the space V has an isotropic subspace of
dimension greater or equal to the dimension of V′. For such pairs it is well
known that if O′ ⊆ g′∗ is a nilpotent coadjoint orbit, then τg ◦ τ−1

g′ (O
′) ⊆ g∗

contains a single dense nilpotent coadjoint orbit O. The same holds for pairs
of type II, with the rank of G′ less or equal to the rank of G. We shall refer
to O as to the orbit corresponding to O′.

Theorem 1.19. Suppose the pair G,G′ is of type I in the stable range, with
G′ - the smaller member, or a pair of type II, with the rank of G′ less or equal
to the rank of G. Let O′ ⊆ g′∗ be a nilpotent coadjoint orbit, and let O ⊆ g∗
be the corresponding nilpotent coadjoint orbit. Thenµ̂O = const · µ̂′

O′ .

Proof. We shall provide the argument for pairs of type II at the end of
Sect. 7, (see (7.22)–(7.24)).

From now on we assume that the pair G,G′ is of type I. In [D-P1] we
have constructed a dense G · G′-invariant set Wmax ⊆ W and a continuous
linear map A from the space of rapidly decreasing functions on g to the
space of rapidly decreasing functions on g′ such that for any ψ ∈ S(g)∫

g

ψ(x) dµO(x) = const
∫
g′

Aψ(x ′) dµO′(x
′),(1.20)

where the constant, const, does not depend on ψ, and

(Aψ̂)̂(x ′) =
∫

G ′\Wmax

∫
g

χx′+x(w)ψ(x) dx d
.
w (x ′ ∈ g′).(1.21)

Here we identify g′ = g′∗ via an invariant bilinear form B on g′. Moreover,
the group G′ acts freely on Wmax , so that G′\Wmax is a manifold with the
quotient measure d

.
w defined as in (1.3) and G′\Wmax � .

w→ w ∈ Wmax is
a fixed section. Each consecutive integral in (1.21) is absolutely convergent.
Furthermore, by (11.5) and (4.2), Wmax ⊆ WA′′′ for each A′ as in (1.3).

Fix a Cartan subalgebra h′ ⊆ g′. Let D(y′), y′ ∈ g′, be the Weyl
denominator, (see [W2, 2.3.1]). By a theorem of Harish-Chandra, [Va,
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part I, Proposition 9, p. 108], there is a finite constant C such that for any
x ′ ∈ h′r and for any regular semisimple element y′ ∈ g′∣∣∣∣∫

G ′/A′′′
χ(B(gx′g−1, y′)) d

.
g

∣∣∣∣ ≤ C|D(x ′)|−1/2|D(y′)|−1/2.(1.22)

Moreover, for N ≥ 0, large enough,∫
g′
|D(y′)|−1/2(1+ |y′|)−N dy′ <∞,(1.23)

where | | is a norm on the real vector space g′.
With the notation (1.21), we have∫
g′

∫
G ′/A′′′

χ(B(gx′g−1, y′)) d
.
gAψ̂(y′) dy′ =

∫
G ′/A′′′

(Aψ̂)̂(gx′g−1) d
.
g

=
∫

A′′′\G ′

∫
G ′\Wmax

∫
g

χx′+x(gw)ψ(x) dx d
.
w d

.
g.

(1.24)

The last formula in (1.24), with the g replaced by a′′ and with ψ ∈ S(a′′),
defines the distribution (1.7.b). (Here the special section G′\Wmax � .

w→
w ∈ Wmax , constructed in [D-P1], disappears.) Hence, by the uniqueness
of the restriction to g,∫

g′

∫
G ′/A′′′

χ(B(gx′g−1, y′)) d
.
gAψ̂(y′) dy′

=
∫

A′′′\Wmax

∫
g

χx′+x(w)ψ(x) dx d
.
w =

∫
g

chc(x′ + x)ψ(x) dx,
(1.25)

where, by (1.22) and (1.23), the integral over g′ is absolutely convergent.
Hence, the distribution µ̂′

O′ , defined in (1.17), may be calculated as follows:

µ̂′O′(ψ) =
∑ 1

|W(H ′)|
∫
h′r
µ̂O′(x ′)πh′(x ′)πh′(x ′)∫

g′

∫
G ′/A′′′

χ(B(gx′g−1, y′)) d
.
gAψ̂(y′) dy′ dx′

=
∫
g′
µ̂O′(x ′)(Aψ̂)̂(x ′) dx′ =

∫
g′

Aψ̂(x ′) dµO′(x
′)

= const
∫
g

ψ̂(x) dµO(x),

where, by (1.13) and (1.25), the integral over h′r is absolutely convergent,
and the last equation follows from (1.20). ��
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2. The integral on the group

We shall use the superscript c to indicate the domain of the Cayley trans-
form c, (c(x) = (x + 1)(x − 1)−1, as in [H2]). Thus Spc is the domain of c
in Sp and spc is the domain of c in sp. Define the following set

S̃pc = {(g, ξ); g ∈ Spc, ξ2 = det(i(g − 1))−1}.
This is a real analytic manifold, and a two fold cover of Spc via the map

S̃pc � g̃ = (g, ξ)→ g ∈ Spc.(2.1)

For x ∈ sp the formula 〈x(w),w′〉 defines a symmetric bilinear form 〈x , 〉
on W . The signature of this form, sgn〈x , 〉, is the difference between the
dimension of the maximal subspace on which the form is positive definite,
and the dimension of the maximal subspace on which the form is negative
definite. Let

γ(x) = |det(x)|1/2 exp
(
−π

4
i sgn〈x , 〉

)
(x ∈ sp, det(x) �= 0).(2.2)

For (g1, ξ1), (g2, ξ2) ∈ S̃pc with c(g1)+ c(g2) invertible in End(W ), set

(g1, ξ1) · (g2, ξ2) = (g1g2, 2nξ1ξ2γ(c(g1)+ c(g2))
−1),(2.3)

where n = 1
2dim(W ).

Theorem 2.4 [H2]. (a) Up to a group isomorphism there is a unique con-

nected group S̃p containing S̃pc with the multiplication given by (2.3) on the

indicated subset of S̃pc × S̃pc.

(b) The group S̃p is a connected Lie group which contains S̃pc as an open
submanifold.
(c) The map (2.1) extends to a double covering homomorphism of Lie

groups: S̃p → Sp.

The metaplectic group S̃p may be realized as a subset of S∗(W ), the
space of temperate distributions on W , as follows.

For φ, φ′ ∈ S(W ), the Schwartz space of W , define the twisted convolu-
tion φ�φ′ and φ∗ by

φ�φ′(w′) =
∫

W
φ(w)φ′(w′ −w)χ

(
1

2
〈w,w′〉

)
dw,

φ∗(w) = φ(−w) (w,w′ ∈ W ).

(2.5)

For a temperate distribution f ∈ S∗(W ) define f ∗ ∈ S∗(W ) by f ∗(φ) =
f(φ∗). The functions χx (1.5) do not belong to S(W ), but we may convolve
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them in the sense analogous to the formula of (2.5). Indeed, let φ ∈ S(W ).
Then for w′ ∈ W and y ∈ sp∫

W
χy(w)φ(w

′ −w)χ
(

1

2
〈w,w′〉

)
dw

= χy(w
′)
∫

W
χ

(
1

2
〈(1− y)(w′),w〉

)
χy(w)φ(w) dw.

Thus, for 1− y invertible, the above expression is a Schwartz function ofw′.
Denote this function by χy�φ(w

′). Suppose x ∈ spc. Then by the same
argument χx�(χy�φ) ∈ S(W ). Suppose moreover that x + y is invertible in
End(W ). Let z = (y− 1)(x + y)−1(x − 1)+ 1. Then z ∈ spc and, by [Hö,
3.4], χx�(χy�φ) = 2nγ(x + y)−1χz�φ. Thus,

χx�χy = 2nγ(x + y)−1χz.(2.6)

Define the following functions

Θ : S̃pc � g̃ = (g, ξ)→ ξ ∈ C,

T : S̃pc � g̃ = (g, ξ)→ Θ(̃g)χc(g) ∈ S∗(W ).
(2.7)

Theorem 2.8 [H2]. The map T extends to a unique injective continuous
map T : S̃p → S∗(W ), and the following formulas hold

T(̃g1)�T(̃g2) = T(̃g1 · g̃2) (̃g1, g̃2 ∈ S̃pc, det(c(g1)+ c(g2)) �= 0)(a)

T(̃g)∗ = T(̃g−1) (̃g ∈ S̃p)(b)
T(1) = δ.(c)

Here δ ∈ S∗(W ) is the Dirac delta at the origin.

For any Lie group G we identify g, the Lie algebra of G, with the Lie
algebra of left invariant vector fields on G. This leads to an identification
T ∗G = G × g∗, so that if Ψ ∈ C∞c (G), then dΨ is a g∗-valued function on
G given by the following formula

dΨ(g)(x) = ∂tΨ(g exp(tx))|t=0 (g ∈ G, x ∈ g).
Let us fix a norm | | on the real vector space g∗. Let u ∈ D′(G) be
a distribution on G. The wave front set of u is a closed conic subset WF(u) ⊆
T ∗G defined as follows.

Let U ⊆ G be an open set and let U′ ⊆ g∗ \ 0 be an open cone. Then
WF(u) is the complement of the union of all the sets U ×U′ such that

|u(Ψ · χ ◦ φ)| ≤ constN,Ψ,φ(1+ max
g∈suppΨ

|dφ(g)|)−N , (N = 0, 1, 2, ...)

for any Ψ ∈ C∞c (U) and any real valued φ ∈ C∞(U) with dφ(U) ⊆ U ′.
Let G,G′ be an irreducible dual pair in Sp=Sp(W ). Let H′ = T ′A′ ⊆ G′

be a Cartan subgroup and let A′′, A′′′, WA′′′ ⊆ W be as in Sect. 1.
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Lemma 2.9. For any Ψ ∈ C∞c ( Ã′′)∫
A′′′\WA′′′

∣∣∣∣∫
Ã′′

Ψ(g)T(g)(w) dg

∣∣∣∣ d
.
w <∞.(a)

The formula

Chc(Ψ) =
∫

A′′′\WA′′′

∫
Ã′′

Ψ(g)T(g)(w) dg d
.
w (Ψ ∈ C∞c ( Ã

′′))(b)

defines a distribution on Ã′′. The wave front set of this distribution coincides
with the set

WF(Chc) = {(g̃, τa′′(w)); g̃ ∈ Ã′′, w ∈ W, g(w) = −w} ⊆ Ã′′ × a′′∗.(c)

We shall say that an element h′ ∈ H ′ is regular if the multiplicity of
the eigenvalue 1 of Ad(h′) is equal to the dimension of h′ (as usual), and
the stabilizer of h′ in the Weyl group W(H′) is trivial. The set of all such
elements h′ ∈ H ′ shall be denoted by H′r .

Proposition 2.10. Fix an element h̃ ′ ∈ H̃ ′r . The intersection of the wave
front set of the distribution Chc, defined in (2.9.b), with the conormal bundle
to the embedding

G̃ � g̃ → h̃ ′ g̃ ∈ Ã′′

is empty (contained in the zero section).

Standard micro-local analysis [Hö, 8.2.4] together with Proposition 2.10,
justify the following definition.

Definition 2.11. Let h̃ ′ ∈ H̃ ′r . Then

Chch̃′(g̃) = Chc(h̃ ′g̃) =
∫

A′′′\WA′′′
T(h̃ ′ g̃)(w) d

.
w (g̃ ∈ G̃)

is the pullback of the distribution (2.9.b) toG̃ via the embedding

G̃ � g̃ → h̃ ′ g̃ ∈ Ã′′.

Lemma 2.12. For any h̃ ′ ∈ H̃ ′r ,

WF(Chch̃′) = {(g̃, τg(w)); h ′g(w) = −w, g̃ ∈ G̃, w ∈ W} ⊆ G̃ × g∗.
Proof. This is clear from the Definition 2.11, [Hö, 8.2.4], and (2.9.c). ��
Theorem 2.13. The Cauchy Harish-Chandra Integral on Lie algebra is the
lowest term in an asymptotic expansion of the Cauchy Harish-Chandra
Integral on the group, in the sense of the following formula:

lim
t→0+

tn
∫

A′′′\WA′′′
T(−c̃(tx)c̃(tx′))(w) d

.
w = Θ(−1̃)

∫
A′′′\WA′′′

χx+x′(w) d
.
w

(x ′ ∈ h′r, x ∈ g).
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Proof. Recall that

c(−c(x)c(x′)) = c(c(x)c(x′))−1 = ((x ′ − 1)(x + x′)−1(x − 1)+ 1)−1.

Hence,

c(−c(tx)c(tx′)) = t((tx′ − 1)(x + x′)−1(tx − 1)+ t)−1.

Therefore∫
A′′′\WA′′′

χc(−c(tx)c(tx ′))(w) d
.
w

=
∫

A′′′\WA′′′
χ((tx ′−1)(x+x ′)−1(tx−1)+t)−1(t1/2w) d

.
w

= t−n
∫

A′′′\WA′′′
χ((tx ′−1)(x+x ′)−1(tx−1)+t)−1(w) d

.
w.

Hence,

tn
∫

A′′′\WA′′′
T(−c̃(tx)c̃(tx′))(w) d

.
w

= Θ(−c̃(tx)c̃(tx′))
∫

A′′′\WA′′′
χ((tx ′−1)(x+x ′)−1(tx−1)+t)−1(w) d

.
w

−→
t→0

Θ(−1̃)
∫

A′′′\WA′′′
χx+x′(w) d

.
w.

��
For a system of positive roots Φ of h′

C
in g′

C
, set

∆(h) =
∏
α∈Φ

(hα/2 − h−α/2) (h ∈ H ′r),

as in [W1, 7.4.5]. Let ‖ ‖ denote a norm on the groupG̃′, as in [W1, 2.A.2].

Theorem 2.14. Assume that the rank of G′ is less or equal to the rank
of G. Let G1 ⊆ G denote the Zariski identity component of G. Then for any
N ≥ 0 and any Ψ ∈ C∞c (G̃1) the following integral is finite and defines
a continuous seminorm on C∞c (G̃1):∫

H̃ ′r
‖ h ′ ‖N

∣∣∣∣∆(h ′) ∫
G̃ ′

Chc(h′g)Ψ(g) dg

∣∣∣∣ dh′.

Proof. This Theorem follows directly from (14.2), (14.3) and (14.12). ��
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Let Π′ be an irreducible admissible representation of G̃′, (see [W1,
3.3.5]). Let ΘΠ′ denote the distribution character of Π′, [W1, 8.1.1]. We
identify ΘΠ′ with the corresponding real analytic function on G̃′rs, the
set of regular semisimple elements of G̃′, by Harish-Chandra’s Regularity
Theorem, (see [W1, 8.4.1] and [B, 2.1.1]). Recall that, by Langlands’ clas-
sification, [W1, 5.4], and by Harish-Chandra’s basic inequality, [W1, 8.6.1],
there is N ≥ 0 such that for any Cartan subgroup H̃ ′ ⊆ G̃′

|ΘΠ′(h)∆(h)| ≤ const ‖ h ‖N (h ∈ H̃ ′).(2.15)

By combining (2.14) and (2.15) we see that the following formula defines
a distribution on G̃1:∫

H̃ ′r
ΘΠ′(h ′)|∆(h ′)|2

∫
G̃

Chc(h′g)Ψ(g) dg dh′ (Ψ ∈ C∞c (G̃1)).(2.16)

Hence the following definition makes sense.

Definition 2.17. For an irreducible admissible representation Π′ of G̃′ de-
fine a distribution Θ′Π′ on G̃1 by

Θ′
Π′(Ψ) =χΠ′((−1)̃)Θ((−1)̃)∑ 1

|W(H ′)|
∫

H̃ ′r
ΘΠ′(h ′)|∆(h ′)|2

∫
G̃

Chc(h′g)Ψ(g) dg dh′,

where Ψ ∈ C∞c (G̃1), and the summation is as in the Weyl integration
formula:∫

G̃ ′
Ψ(g) dg =

∑ 1

|W(H ′)|
∫

H̃ ′r
|∆(h ′)|2

∫
G̃ ′/ Ã′′′

Ψ(gh′g−1) dg dh′.

Moreover, (−1)̃ ∈ S̃p is in the preimage of −1, and χΠ′((−1)̃) is the scalar
by which Π′((−1)̃) acts on the Hilbert space of Π′.

We shall see in (14.2), that for pairs of type II, the formula for Θ′Π′
coincides with the character formula for a unitary parabolic induction, which
is known to be compatible with Howe’s correspondence.

Conjecture 2.18. Generically, if ΘΠ′ |G̃ ′\G̃ ′1 = 0, the following equation
holds

Θ′
Π′ = ΘΠ|G̃1

,

where Π is the irreducible admissible representation ofG̃ corresponding to
Π′ via Howe’s correspondence for the dual pair G,G′.
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We shall explain a few facts in support of this conjecture.
Let J be a positive compatible complex structure on W . Then the com-

plexification WC of W splits into a direct sum of eigenspace for J . Let
W±
C

be the ±-eigenspace for i J . Set PW+
C

= (1+ i J)/2 ∈ End(WC ). This

a projection onto W+
C

. Let

Ω(g̃) = T(g̃)(χiJ ) (g̃ ∈ S̃p(W )).(2.19)

This is a matrix coefficient of the oscillator representation ω ofS̃p(W ) cor-
responding to lowest subrepresentation of the maximal compact subgroup
S̃p(W )J , in the sense of Vogan. A straightforward calculation shows that

Ω(g̃)2 = 1

detW+
C

(gPW+
C

)
(g̃ ∈ S̃p(W )).(2.20)

Let Hω be the Hilbert space where the oscillator representation ω is realized,
and let H∞

ω ⊆ Hω be the subspace of smooth vectors. Recall the following
theorem, [P2, 3.1], which generalizes a result of Li, [Li].

Theorem 2.21. Suppose∫
G̃ ′
|ΘΠ′(g)|Ω(g) dg <∞.(a)

Then the formula

(ω(ΘΠ′)v, v
′) =

∫
G̃ ′

ΘΠ′(g)(ω(g
′)v, v′) dg′ (v, v′ ∈ H∞

ω )(∗)

defines a G̃ · G̃′ - invariant hermitian form on H∞ω . Let R ⊆ H∞
ω denote

the radical of this form. Suppose that

the form (∗) is positive semidefinite and non-trivial.(b)

Then the G̃ · G̃′ - module H∞
ω /R equipped with the form induced by (∗),

completes to an irreducible unitary representation ofG̃ · G̃′, infinitesimally
equivalent to Π ⊗Π′ for some irreducible unitary representation Π ofG̃.
Thus Π′ is associated to Π via Howe’s correspondence.

For a Hilbert space H let Tr(H) denote the space of trace class operators
on H . In this context we formulate the following conjecture:

Conjecture 2.22. Under the assumptions of Theorem 2.21 there is a con-
tinuous map

S(W ) � φ→ ρΠ(φ) ∈ Tr(HΠ)(a)

such that for all φ ∈ S(W ) and all g ∈ G̃

tr(ρΠ(φ)Π(g)) =
∫

G̃ ′

∫
W

ΘΠ′(g
′)T(g′g)(w)φ(w) dw dg′.(b)
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It is easy to see, via the van der Corput Lemma, [S, 8.1.2, 8.2.3], and
(2.21.a), that each consecutive integral in (2.22.b) is absolutely convergent,
(see [P2]).

Recall that the pair G,G′ of type II is in the stable range with G′-the
smaller member, if d ≥ d′/2. The proof of the following theorem is based
on the construction of Li, [Li]. We leave it to the reader.

Theorem 2.23. The conjecture (2.22) holds for pairs of type I or II in the
stable range with G′-the smaller member.

For a function φ ∈ S(W ) let φG ′(w) = ∫
G ′(φ(g

′w) dg′, whenever this
integral converges. It is clear that, under the additional assumption, dim V′ ≤
dim V , there are sequences φn ∈ S(W ) such that φG ′

n (w)→ 1, as n →∞,
almost everywhere on W . Formally, by chasing through the Weyl integration
formula, we see that

Θ′
Π′(g) =

∫
G̃ ′

∫
G ′\W

ΘΠ′(g′)Θ((−1)̃)T(((−1)̃)−1g′g)(w) d
.
w dg′

= Θ((−1)̃) lim
n→∞tr(ρΠ(φn)Π(((−1)̃)−1g)).

(2.24)

Thus Θ′
Π′ is an invariant distribution on G̃1, which can formally be ap-

proximated by generalized matrix coefficients of Π. The commons sense
dictates that Θ′Π′ should, be equal to a constant multiple of ΘΠ|G̃1

. In fact
the following theorem holds. The proof is standard, left to the reader.

Theorem 2.25. Suppose Π is an irreducible admissible representation of
a real reductive group E, realized on a Hilbert space HΠ. Recall the map

trΠ : Tr(HΠ)→ D′(E), trΠ(T )(Ψ) = tr(Π(Ψ)T )
(T ∈ Tr(HΠ), Ψ ∈ C∞c (E)).

Let u be an Ad(E)-invariant distribution on E, such that for some sequence
Tn ∈ Tr(HΠ), u = lim

n→∞trΠ(Tn), in the topology of D′(E). Then u is

a constant multiple of the character ΘΠ.

We also leave to the reader the exercise of checking that the Conjec-
ture (2.18) holds under the assumptions of the main theorems in [P1] or
in [D-P2]. (Write down the character ΘΠ calculated there, in terms of in-
tegrals over various Cartan subgroups, and see that the result agrees with
the Θ′

Π′ .) In particular, (by (2.13), (1.19) and [R3]), the following formula
(conjectured by Howe) holds

WF(Π) = τg(τ−1
g′ (WF(Π′)),(2.26)

if the pair G,G′ is in the deep stable range (see [D-P2]), with G′ - the
smaller member, and Π′ is any irreducible unitary representation of G̃′,
which occurs in Howe’s correspondence. Here WF(Π) ⊆ g∗ is the fiber of
the wave front set of ΘΠ at the identity, and similarly for Π′.
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Pairs of Lie algebras, of type II

3. Notation

Let V, V ′ be two finite dimensional vector spaces over D. On the real vector
space W = Hom(V ′, V )⊕ Hom(V, V ′) define a symplectic form 〈 , 〉 by

〈w,w′〉 = tr(xy′)− tr(yx′) (w = (x, y), w′ = (x ′, y′) ∈ W ),(3.1)

where tr = trD/R . Let G = GL(V ), g = End(V ), G′ = GL(V ′), g′ =
End(V ′). We identify these Lie algebras with their duals via the bilinear
form provided by the trace: B(x, y) = 2 tr(xy). Then the moment maps
τg : W → g, τg′ : W → g′ are given by

τg(x, y) = xy, τg′(x, y) = yx ((x, y) ∈ W ).(3.2)

The groups G,G′ act on W by post-multiplication and pre-multiplication by
the inverse, respectively. These actions preserve the symplectic form (3.1).
The moment maps (3.2) intertwine these actions with the corresponding
adjoint actions.

Fix a positive definite D - valued hermitian form on V and on V′. Then
for x ∈ Hom(V ′, V ), we have the adjoint x∗ ∈ Hom(V, V ′). Similarly, for
y ∈ Hom(V, V ′), we have the adjoint y∗ ∈ Hom(V ′, V ). Let J(x, y) =
(y∗,−x∗). Then J is a compatible positive definite complex structure on W .
The resulting scalar product restricts to any subspace of W , and yields
a normalization of the corresponding Lebesgue measure (so that the volume
of the unit cube is 1).

4. The pair gln(R), gl1(R)

Here we consider the simplest case when D = R, dimD V = n and
dimD V ′ = 1. We identify Hom(V ′, V ) = V = Rn - the space of column
vectors, and Hom(V, V ′) = Rn∗ - the space of row vectors. Then the adjoint
of a vector coincides with the transpose.

The scalar product on Rn ⊆ W yields the Hilbert Schmidt norm on
g = gln(R), which gives the usual normalization of the Lebesgue measure
on g: dx = dx11dx12...dxnn . The corresponding canonical Haar measure on
G = GLn(R) can be expressed as follows:∫

G
Ψ(g) dg =

∫
Ψ(exp(x))

∣∣∣∣det

(
exp(−ad x)− 1

−ad x

)∣∣∣∣ dx

=
∫
g

Ψ(x)|det(x)|−ndx,
(4.1)

where Ψ ∈ Cc(G).
Let |Sn−1| = 2πn/2/Γ(n/2) denote the area of the unit sphere Sn−1 ⊆ Rn.

Let K ⊆ G be the centralizer of J . Then K coincides with the orthogonal
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group On(R). The invariant integral on Sn−1 can be expressed in terms of
an integral over K as follows∫

Sn−1
Ψ(σ) dσ = |Sn−1|

∫
K

Ψ(ke1) dk/|K |,

where e1 = (1, 0, 0, ..., 0)t ∈ Sn−1 and |K | is the Haar measure of K .
Hence, ∫

W
φ(w) dw = |S

n−1|
2

∫
G ′

∫
K

∫
Rn∗
φ(ke1a, a−1 y) dy

dk

|K | da,

where G′ = GL1(R) = R×. This formula allows us to define a measure µ
on g which may be viewed as a “push forward” of the Lebesgue measure
dw on W to g, via the moment map τg:

µ(ψ) = |S
n−1|
2

∫
K

∫
Rn∗

ψ(ke1 y) dy
dk

|K | =
∫

G ′\Wmax
ψ(τg(w)) d

.
w,(4.2)

where Wmax = WG ′ = {(x, y); x �= 0, y �= 0} ⊆ W . Clearlyµ is temperate.
The Fourier transform of µ, defined with respect to the character χ, is given
by:

µ̂(ψ) = µ(ψ̂) =
∫
g

∫
g

ψ(x)χ(−2tr(xy)) dx dµ(y) (ψ ∈ S(g)).

Using the following formula for the Dirac delta, [Hö, (7.8.5)],

δ(x) =
∫
Rn∗

χ(−tr(xy)) dy (x ∈ Rn),

it is easy to calculate µ̂ explicitly:

µ̂(ψ) = |S
n−1|

2n+1

∫
Mn,n−1(R)

∫
K
ψ(k(0, x)k−1)

dk

|K | dx

= |S
n−1|

2n+1

∫
gln−1(R)

∫
R(n−1)∗

∫
K
ψ

(
k

[
1 y
0 1

] [
0 0
0 x

][
1 y
0 1

]−1

k−1

)
(4.3)

dk

|K | dy |det(x)| dx.

Since,∫
G
φ(g) dg = |S

n−1|
2

∫
R(n−1)∗

∫
K

∫
G L1(R)

∫
G Ln−1(R)

φ

(
k

[
1 y
0 1

] [
a 0
0 b

])
db da

dk

|K | dy,
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the Weyl integration formula applied to gln−1(R) shows that

2nµ̂(ψ) =
∑ 1

|W(Hn−1)|
∫
hn−1

|πhn−1(x)|2|det(x)|
∫

G/H
ψ

(
g

[
0 0
0 x

]
g−1

)
d
.
g dx,

(4.4)

where the summation is over a maximal family of mutually non-conjugate
Cartan subgroups Hn−1 ⊆ GLn−1(R), hn−1 is the Lie algebra of Hn−1, πhn−1

is the product of positive roots of hn−1 in gln−1(C) and H = GL1(R) ×
Hn−1 ⊆ G embedded diagonally.

The formula (4.4) suggests a more intrinsic description ofµ̂.
The derivative det′ of the determinant det : gln(R) → R coincides

with the matrix of minors of size n − 1. Hence, the set of x ∈ gln(R) with
det′(x) �= 0 contains each surface det−1(s), s ∈ R×. Therefore δ(det(x)− s)
is a well defined distribution on gln(R), see [Hö, 6.1.2]. By the Weyl inte-
gration formula

∫
g

ψ(x)δ(det(x) − s) dx

=
∑ 1

|W(H)|
∫
h

|πh(x)|2δ(det(x) − s)
∫

G/H
ψ(gxg−1) d

.
g dx

(4.5)

=
∑ 1

|W(H)|
∫
h∩det−1(s)

|πh(x)|2
|det′(x)|

∫
G/H

ψ(gxg−1) d
.
g dµs(x),

(ψ ∈ S(g))

where µs is the Euclidean surface measure on the indicated surface.
For x ∈ h, let x1, x2, ...., xn be the eigenvalues of x, and let Sn be the

permutation group on n letters. We may assume that

πh(x) = πn(x) =
∏

1≤i< j≤n

(xi − x j) =
∑
σ∈Sn

sgn(σ)xσ(n−1)
1 xσ(n−2)

2 ...xσ(0)n .

Hence, |πn(x)|
|det ′(x)| ≤ polynomial(x), x ∈ h. Furthermore, if x =

[
0 0
0 y

]
, where

y ∈ gln−1(R) has eigenvalues x2 , x3, ..., xn, then |πn(x)|2
|det ′(x)| = |πn−1(y)|2|det(y)|.

Therefore Harish-Chandra’s estimate for orbital integrals, [W1, 7.3.8] and
a calculation for n = 2, show that the limit if s → 0 of the expression (4.5)
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exists: ∫
g

ψ(x)δ(det(x)) dx := lim
s→0

∫
g

ψ(x)δ(det(x) − s) dx(4.6)

=
∑ 1

|W(H)|
∫
h∩det−1(0)

|πn(x)|2|det′(x)|−1
∫

G/H
ψ(gxg−1) d

.
g dµ0(x)

=
∑ 1

|W(Hn−1)|
∫
hn−1

|πn−1(x)|2|det(x)|
∫

G/H
ψ

(
g

[
0 0
0 x

]
g−1

)
d
.
g dx,

where ψ ∈ S(g). Thus,

2nµ̂ = δ ◦ det,(4.7)

where the right hand side is defined in (4.6).
We shall calculate the wave front set of µ and of µ̂. Since µ is a ho-

mogeneous distribution, [Hö, 8.1.8] implies that the fiber of WF(µ) over
0 ∈ g coincides with suppµ̂ = det−1(0) = grk≤n−1, the set of elements
of rank less or equal to n − 1. The complement of {0} in the support of µ
is the set of elements of rank one. This set is a single G × G-orbit, under
the left-right action. Hence a point (x, y) ∈ (suppµ \ {0}) × g belongs to
WF(µ) if and only if y is perpendicular to the orbit of x, (see [Hö, 8.2.5]),
i.e. xy = yx = 0. Hence,

WF(µ) = {(x, y) ∈ grk≤1 × grk≤n−1; xy = yx = 0}.(4.8)

It is clear from (4.8) and from [Hö, 8.2.5] that

WF(µ̂) = {(x, y) ∈ g× grk≤1; xy = yx = 0}
= {(x, τg(w)); x(w) = 0, x ∈ g, w ∈ W}.(4.9)

Notice, by the way, that the convergence (4.6) does not happen in the
space D′Γ(g), defined in [Hö, 8.2.2], with Γ = WF(µ̂). Indeed, by [Hö,
8.2.5], WF(δ ◦ det − s) = T∗det−1(s)(g), the conormal bundle of the surface
det−1(s). Hence

(s1/n I, λI ) ∈ WF(δ ◦ det − s) (s > 0, λ �= 0),

where I = In is the identity matrix. But lim
s→0
(s1/n I, λI ) = (0, λI ) /∈ Γ,

a contradiction.



320 T. Przebinda

Finally, the Cauchy Harish-Chandra Integral can be calculated as fol-
lows:

chc(ψ) =
∫

G ′\Wmax

∫
g

ψ(x)χx(w) dx d
.
w

=
∫

G ′\Wmax

∫
g

ψ(x)χ

(
1

4
τg(w)(x)

)
dx d

.
w

=
∫

G ′\Wmax

∫
g

ψ(x)χ

(
1

2
tr(xτg(w))

)
dx d

.
w

=
∫
g

∫
g

ψ(x)χ

(
1

2
tr(xy)

)
dx dµ(y)

=
∫
g

∫
g

ψ(x)χ

(
−1

2
tr(xy)

)
dx dµ(y)

= 2nµ̂(ψ).

Thus,

chc = δ ◦ det, and
WF(chc) = {(x, τg(w)); x(w) = 0, x ∈ g, w ∈ W}.(4.10)

Lemma 4.11. Let ψ ∈ S(g). Then there is a unique continuous functionψ̃
on τg(Wmax), such that∫

W
ψ ◦ τg(w)χ

(
1

2
〈w,w′〉

)
dw = ψ̃ ◦ τg(w′) (w′ ∈ Wmax).(a)

Moreover, ∫
G ′\Wmax

|ψ̃ ◦ τg(w)| d .
w <∞.(b)

Proof. Recall [A-S, 9.1.23, 9.6.21] the following Bessel functions

Y0(x) = − 2

π

∫ ∞

0
cos(x cosh t) dt, K0(x) =

∫ ∞

0
cos(x sinh t) dt (x > 0).

Let

F(x) =
{

2K0(2πx1/2) for x > 0,
−πY0(2π|x|1/2) for x < 0.

Then, by [A-S, 9.1.23, 9.6.21],

F(x) =
∫ ∞

0
2cos(π(a−1 − a x)) da/a (x ∈ R×).



A Cauchy Harish-Chandra integral, for a real reductive dual pair 321

Let X = Hom(V ′, V ), and let Y = Hom(V, V ′). For an appropriately
normalized element x0 ∈ X \ {0}, the left hand side of (4.11.a), viewed as
a generalized function of w′ = (x ′, y′) ∈ Wmax , is equal to

∫
Y

∫
X
ψ(xy)χ

(
1

2
(y′x − yx′)

)
dx dy

=
∫

G ′

∫
K

∫
Y
ψ(kx0 y)χ

(
1

2
(a y′kx0 − a−1 yx′)

)
dy dk da

=
∫

K

∫
Y
ψ(kx0 y)

∫
G
χ

(
1

2
(a−1 − a y′kx0 yx′)

)
da dy dk

=
∫

K

∫
Y
ψ(kx0 y)F(y′kx0 yx′) dy dk = ψ̃ ◦ τg(w′),

where

ψ̃(x ′) =
∫
g

ψ(x)F(tr(xx′)) dµ(x) (x′ ∈ g).(4.12)

We shall check that the integral (4.12) is absolutely convergent, which
suffices for (4.11.a), and that the following estimate holds:

|ψ̃(x)| ≤ const (1+ |log|x||) (x ∈ g).(4.13)

Indeed, by [A-S, 9.1.8, 9.2.2, 9.6.8, 9.7.2],

|F(x)| ≤ const (1+ |log|x||) (x ∈ R).

Hence∫
|ψ(x)F(tr(xx′))| dµ(x) ≤ const

∫
|ψ(x)(1+ |log|tr(xx′)||) dµ(x)

= const(µ(|ψ|)+
∫
|ψ(x)log|tr(xx′)|| dµ(x))

= const(µ(|ψ|)+
∫
|ψ(x)log|tr(x x ′

|x ′|)|| dµ(x) +
∫
|ψ(x)log|x′|| dµ(x))

≤ const((1+ |log|x′||)µ(|ψ|)+
∫
|ψ(x)log|tr(x x ′

|x ′|)|| dµ(x))

Hence, it will suffice to see that the last integral is bounded independently
of x′ �= 0. But, with x0 ∈ X \ {0}, as in the calculation preceding (4.12),
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and with an appropriate y0 ∈ Y \ {0},∫
|ψ(x)log|tr(x x ′

|x ′|)|| dµ(x) =
∫

Y

∫
K ′
|ψ(kx0 y)log|y x ′

|x ′|kx0|| dk dy

=
∫ ∞

0

∫
K

∫
K
|ψ(kx0 y0lr)||log|y0l

x ′

|x ′|kx0r||rn−1 dk dl dr

≤ constN,ψ

∫ ∞

0

∫
K

∫
K
(1+ r)−N (|log|y0l

x ′

|x ′|kx0|| + |log(r)|)rn−1 dk dl dr

≤ constN,ψ(1+
∫

K

∫
K
|log|y0l

x ′

|x ′|kx0|| dk dl),

and it is easy to see, using polar coordinates, that the last integral is finite,
and bounded independently of x′ �= 0. Hence the absolute convergence of
(4.12) and the estimate (4.13) follow.

It is easy to see that for any polynomial function P(x′), x ′ ∈ g, there is
a polynomial coefficient differential operator DP on g such that

P(x)ψ̃(x) = (DPψ)̃(x) (x ∈ τg(Wmax)).(4.14)

Clearly (4.13) and (4.14) imply

|ψ̃(x)| ≤ constN,ψ(1+ |log|x||)(1 + |x|)−N (x ∈ τg(Wmax), ψ ∈ S(g)).

Notice that for N large enough∫
(1+ |log|x||)(1+ |x|)−N dµ(x)

=
∫

Y

∫
K
(1+ |log|kx0 y||)(1+ |kx0 y|)−N dk dy

=
∫

Y
(1+ |log|y||)(1+ |y|)−N dy

= const
∫ ∞

0
(1+ |log(r)|)(1 + r)−Nrn−1 dr <∞.

Hence (4.11.b) follows, and we are done. ��

5. The pair gln(C), gl1(C)

Let us view the complex numbers as matrices of size 2, with real entries:

z = x + i y =
[

x y
−y x

]
. This leads to an embedding

gln(C)→ gl2n(R).(5.1)
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The orthogonal complement of gln(C) in gl2n(R) consists of matrices, with

blocks of size 2 of the form
[−x y

y x

]
, x, y ∈ R. In particular the rank

of any such matrix is even. Hence, the intersection of the wave front set
of the distribution δ ◦ det ∈ S∗(gl2n(R)) with the conormal bundle to
the embedding (5.1), is empty. Therefore the restriction δ ◦ det|gln (C ) ∈
D′(gln(C)) exists. We shall give an explicit formula for this distribution.

Since the unitary group K = Un acts transitively on the unit sphere
in Cn , the measure µ, (4.2), can be written as follows:

µ(ψ) = |S2n−1|
2

∫
K

∫
R2n∗

ψ(ke1 y) dy
dk

|K | .(5.2)

Hence, the calculation leading to (4.3) shows that

µ̂(ψ) =
∫

M2n,2n−1(R)

ψ̃(0, x) dx, where

ψ̃(y) = |S
2n−1|

22n+1

∫
K
ψ(kyk−1)

dk

|K | (ψ ∈ S(gl2n(R)), y ∈ gl2n(R)).

(5.3)

Lemma 5.4. For ψ ∈ S(gln(C)),

δ ◦ det|gln (C ) (ψ) =
∫

Mn,n−1(C )

ψ̃(0, x) dx, where

ψ̃(y) = |S
2n−1|

22n+1

∫
K
ψ(kyk−1)

dk

|K | (y ∈ gln(C)).

Proof. Let C̃ be the space of matrices of the form z̃ =
[−x y

y x

]
, x, y ∈ R. In

terms of the coordinates x, y set dz̃ = dxdy. Similarly for z =
[

x y
−y x

]
∈ C,

let dz = dxdy. Thus∫
gl2(R)

ψ(x) dx = 4
∫
C

∫
C̃

ψ(z + z̃) dz̃ dz,(5.5)

and we use the analogous notation for the integrals over spaces of block
matrices with the blocks in C̃ or in C. Let f, φ ∈ C∞c (gln(R)) be two
Ad(K)-invariant functions, and let ψ ∈ C∞c (gln(C)). Then∫

gln(C )

φ(z) ∗ (δ ◦ det · f )ψ(z) dz

=
∫
gln(C )

∫
gl2n(R)

φ(z − x)δ(det(x)) f(x)ψ(z) dx dz(5.6)

=
∫
gln(C )

∫
M2n,2n−1(R)

φ(z − (0, x)) f(0, x)ψ̃(z) dx dz,
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where ψ̃ is defined as in (5.3). The map

C̃ � z̃ =
[−x y

y x

]
→ ˜̃z = z =

[
x y
−y x

]
∈ C

extends to a map Mn,1(C̃) � z̃ → ˜̃z ∈ Mn,1(C). Thus, by (5.5), the last
expression in (5.6) may be rewritten as follows:∫

gln(C )

∫
Mn,1(C̃ )

∫
Mn,n−1(C̃ )

∫
Mn,n−1(C )

4n2
φ(z − ( ˜̃x + x̃, y + ỹ)

f( ˜̃x + x̃, y + ỹ)ψ(z) dy dỹ dx̃ dz
(5.7)

=
∫
gln(C )

∫
Mn,1(C̃ )

∫
Mn,n−1(C̃ )

∫
Mn,n−1(C )

4n2
φ(z − (x̃, ỹ)

f( ˜̃x + x̃, y + ỹ)ψ(z + ( ˜̃x , y)) dy dỹ dx̃ dz.

Notice that if
∫
gl2n(R)

φ(x) dx = 1, then, by (5.5),∫
gln(C )

∫
Mn,1(C̃ )

∫
Mn,n−1(C̃ )

4n2
φ(z − (x̃, ỹ)) dỹ dx̃ dz = 1.

Therefore,∫
gln(C )

φ(z) ∗ (δ ◦ det · f )ψ(z) dz −
∫

Mn,n−1(C )

ψ̃(0, y) dy

=
∫
gln(C )

∫
Mn,1(C̃ )

∫
Mn,n−1(C̃ )

∫
Mn,n−1(C )

4n2
φ(z − (x̃, ỹ))(5.8)

( f( ˜̃x + x̃, y + ỹ)ψ(z + ( ˜̃x , y))− ψ̃(0, y)) dy dỹ dx̃ dz.

Assume, in addition, that ψ ≥ 0. Then (5.8) can be dominated by∫
Mn,n−1(C )

sup
{z−(x̃,ỹ)∈suppφ}

| f( ˜̃x + x̃, y + ỹ)ψ(z + ( ˜̃x , y))− ψ̃(0, y)| dy.(5.9)

The quantity (5.9) tends to zero if the function f tends to 1 uniformly, and
the support of φ shrinks to zero. Thus [Hö, 8.2.4] completes the proof. ��

Let δ ∈ D′(C) denote the Dirac delta at 0. Then, as in the previous
section, we check that for the complex determinant det : gln(C)→ C and
any s ∈ C× the distribution δ(det(z) − s) ∈ S∗(gln(C)) is well defined and
that

lim
s→0

∫
gln(C )

δ(det(z)− s)ψ(z) dz = δ ◦ det|gln (C ) (ψ),(5.10)
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where the right hand side is defined in (4). For this reason we shall denote
the distribution (5.10) also by δ ◦ det, remembering that δ ∈ D′(C) is the
Dirac delta at 0.

As in the previous section we check that

chc = δ ◦ det and
WF(chc) = {(x, τg(w)); x(w) = 0, x ∈ g, w ∈ W},(5.11)

where g = gln(C).

6. The pair gln(H), gl1(H)

We view the quaternions as matrices of size 2, with complex entries: z =[
x y
−y x

]
, x, y ∈ C. This leads to an embedding

gln(H)→ gl2n(C).(6.1)

The orthogonal complement of gln(H) in gl2n(C) consists of matrices, with

blocks of size 2 of the form

[−x y
y x

]
, x, y ∈ C. In particular the (complex)

rank of any such matrix is even. Hence, the intersection of the wave front
set of the distribution δ ◦ det ∈ S∗(gl2n(C)), with the conormal bundle to
the embedding (6.1), is empty. Therefore the restriction δ ◦ det|gln (H) ∈
D′(gln(H)) exists.

Let K = Un(H) = Spn. The argument used to prove (5.4) verifies the
following lemma.

Lemma 6.2. For ψ ∈ S(gln(H)),

δ ◦ det|gln (H) (ψ) =
∫

Mn,n−1(H)

ψ̃(0, x) dx, where

ψ̃(y) = |S
4n−1|

24n+1

∫
K
ψ(kyk−1)

dk

|K | (y ∈ gln(H)).

Similarly,

chc = δ ◦ det|g and
WF(chc) = {(x, τg(w)); x(w) = 0, x ∈ g, w ∈ W},(6.3)

where g = gln(H).
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7. A general pair (g, g′) of type II

Here we resume the notation of Sect. 3. Let H′ = T ′A′ ⊆ G′ be a Cartan
subgroup, as in Sect. 1. Let

V ′ = V ′1 ⊕ V ′2 ⊕ ...(7.1)

be the decomposition of V′ into A′ - isotypic components. Equivalently,
(7.1) is a decomposition into H′ isotypic D subspaces. The symplectic
space W decomposes into a direct sum of mutually orthogonal subspaces:

W = ⊕
j
W j, W j = Hom(V ′j, V )⊕ Hom(V, V ′j).(7.2)

The group A′′ (= centralizer of A′ in Sp) preserves the decomposition (2)
and the obvious restrictions yield the following isomorphisms:

a′′ = EndR(Hom(V ′1, V ))⊕ EndR(Hom(V ′2, V ))⊕ ...,
A′′ = GLR(Hom(V ′1, V ))× GLR(Hom(V ′2, V ))× ... .(7.3)

Let A′′′ be the centralizer of A′′ in Sp. Then for any V′j as in (7.1) the
restriction of A′′′ to V ′j is isomorphic to GL1(R). Thus, as a reductive dual
pair, (A′′, A′′′) is isomorphic to

(GLn1(R), GL1(R))× (GLn2(R), GL1(R))× ... ,(7.4)

where n j = dimR Hom(V ′j, V ), j = 1, 2, ... . In terms of (7.2) let Wj A′′′j ={(x, y) ∈ Wj; x �= 0, y �= 0}. Let WA′′′ = W1 A′′′1
× W2 A′′′2

× ... ⊆ W .
Define a measure d

.
w on the quotient manifold A′′′\WA′′′ as in (1.3). Then,

as a temperate distribution on a′′,

chc(x) =
∫

A′′′\WA′′′
χx(w) d

.
w

=
∫

A′′′1 \WA′′′1

χx1(w1) d
.
w1 ⊗

∫
A′′′1 \WA′′′2

χx2(w2) d
.
w2 ⊗ ...

(7.5)

where x ∈ a′′ and x j is the restriction of x to Hom(V′j, V ). The Lemma 1.7,
for pairs of type II, follows easily from (7.5), (4.10), (5.11) and (6.3).

Proof of Proposition 1.8. Suppose sj ∈ EndR(Hom(V ′j, V )) is of rank one.
Then there are non-zero elements xj ∈ Hom(V ′j, V ) and yj ∈ Hom(V, V ′j)
such that

si(u) = tr(uyj)x j (u ∈ Hom(V ′j, V )),

where tr = trD/R . In other words, in terms of (7.2) and (7.3), s1+ s2+ ... =
τa′′(w) forw = (x1, y1; x2, y2; ...). Suppose s1+s2+... ∈ a′′ is perpendicular
to g. Then by (1.7) and (3.2)

x1 y1 + x2 y2 + ... = 0.(7.6)
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Recall the regular element x′ ∈ h′r . Suppose x ∈ g is such that (x′ + x, s1+
s2 + ...) is in the wave front set of the distribution (7.5). Then, by (4.9), we
have

xx j = x j x
′, and yjx = x′y j .(7.7)

By combining (7.6) and (7.7) we see that

x1x ′k y1 + x2x ′k y2 + ... = 0 (k = 0, 1, 2, ...).(7.8)

Since the powers of x′, (x ′1, x ′2, ...), span h′ over the center of D, we see
that (8) holds with the x′k replaced by an arbitrary element of h′. Hence, for
all j ,

x j y j = 0.(7.9)

If dimD V ′j = 1 then (7.9) implies that xj = 0 or yj = 0, a contradiction.
The remaining case is D = R and dimD V ′j = 2. Then (7.9) implies that
the image of yj has dimension 1. On the other hand the second equation in
(7.7) shows that the image of yj is preserved by x′. Since x′ is regular, this
is a contradiction. ��

Fix x′ ∈ h′r . The distribution chc(x′ + x), x ∈ g, is Ad(G)-invariant.
Therefore it has a well defined restriction to hr , for any Cartan subalgebra
h ⊆ g. We denote this restriction by the same symbol chc(x′ + x), x ∈ hr .
Clearly, this is a non-negative measure invariant under the action of the
Weyl group W(H).

Lemma 7.10. The distribution chc(x′ + x), x ∈ g, is regular, in the sense
that for any ψ ∈ S(g),∫

g

ψ(x)chc(x′ + x) dx

=
∑ 1

|W(H)|
∫
hr

chc(x′ + x) |πh(x)|2
∫

G/H
ψ(ghg−1) d

.
g dx,

where the integrals are absolutely convergent, and the summation is over
a maximal family of mutually non-conjugate Cartan subalgebras h ⊆ g.
Proof. By Harish-Chandra’s Method of Descent, [Va, part I], it will suffice
to consider the distribution chcx′(x) = chc(x′ + x), x ∈ g, in an arbitrarily
small, completely invariant open neighborhood of a point in the support of
chcx′ . We shall need some additional notation.

Let h′′ be the centralizer of h′ in sp(W ). Clearly h′′ ⊆ a′′ and, in terms
of (3),

h
′′ = Endh′(Hom(V ′1, V ))⊕ Endh′(Hom(V ′2, V ))⊕ ... .(7.11)
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From the classification of Cartan subalgebras in g′ we know that for each
j , h′|V ′j ⊆ EndR(V ′j) is a field isomorphic either to R or to C. Hence the
embedding

Endh′(Hom(V ′j, V )) ⊆ EndR(Hom(V ′j, V ))

is either an equation, or is of the form

EndC (C
m) ⊆ EndR(C

m).

Hence, by (5.4) and (5.11), the restriction of chc from a′′ to h′′ exists and is
given by

chc(x) = δ ◦ det(x1)⊗ δ ◦ det(x2)⊗ ...,(7.12)

where x ∈ h′′, x j is the restriction of x to Hom(V′j, V ), and δ ◦ det is as in
(4.6) or (5.10), depending on the field h′|V ′j . Furthermore, it is clear that the
distribution chcx′ ∈ S∗(g) coincides with the pullback of the distribution
(7.12) from a′′ to g via the embedding

g � x → x′ + x ∈ h′′.(7.13)

Let x̃ ∈ g, and let x̃ = x̃s + x̃n be the Jordan decomposition of x̃ . Let

V = V1 ⊕ V2 ⊕ ...(7.14)

be the decomposition of V into subspaces over D, which are isotypic as
R[x̃s]-modules. Then the set of eigenvalues of x̃s|Vk has empty intersection
with the set of eigenvalues of x̃s|Vl , for k �= l.

For each j, k, Hom(V ′j, Vk) is a vector space over the field h′|V ′j , and
an R[x̃s]-module. As such, it is either irreducible, or it is a sum of two
irreducible pieces. The second possibility occurs if and only if D �= C and
both, h′|V ′j and R[x̃s|V ′k], are isomorphic to C. In any case we shall write

Hom(V ′j, Vk) = Hom(V ′j, Vk)1 ⊕ Hom(V ′j, Vk)2,

keeping in mind the possibility that the second summand could be zero.
Let gx̃s denote the centralizer of x̃s in g, and similarly, h′′ x̃s ⊆ h′′. Then,

in terms of (7.11),

gx̃s = Endx̃s (V1)⊕ Endx̃s(V2)⊕ ...,
h
′′ x̃s =

∑
j,k

(
Endh′(Hom(V ′j, Vk)1)⊕ Endh′(Hom(V ′j, Vk)2)

)
,

and (7.13) restricts to an embedding

g
x̃s � x → x′ + x ∈ h′′ x̃s .(7.15)
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Suppose, from now on, that x̃ ∈ supp(chcx′). Then det(x′|V ′j + x̃s) = 0 for
each j , where x′|V ′j + x̃s is viewed as an element of EndR(Hom(V ′j, V )).
Let x̃s, j,k,l denote the restriction of x̃s to Hom(V ′j, Vk)l. Then

det(x′|V ′j + x̃s) =
∏
k,l

det(x′|V ′j + x̃s, j,k,l).

Hence, we may arrange the indices so that

det(x′|V ′j + x̃s, j, j,1) = 0,

and det(x′|V ′j + x̃s, j,k,l) �= 0 for j �= k, or j = k and l �= 1.(7.16)

Moreover, it is clear that

chcx′ �= 0, implies dim V ′ ≤ dim V.(7.17)

Let Ug ⊆ gx̃s be a completely invariant open neighborhood of x̃s, so small
that the second line in (7.16) holds with the x̃s replaced by any element
x ∈ Ug. We may, and shall, assume that Ug is contained in the set of
regular elements of gx̃s , and that Ad(G)Ug is a completely invariant open
neighborhood of x̃s in g, as in [Va, part I, p. 16]. Then x̃ ∈ Ad(G)Ug.
Similarly, let Uh′′ ⊆ h′′ x̃s be a completely invariant open neighborhood of
x ′ + x̃s, such that Ad(H′′)Uh′′ is a completely invariant open neighborhood
of x′ + x̃s in h′′. We take the Uh′′ small enough, so that for each x ∈ Uh′′
and for each j , at most one of the determinants det(xj,k,l) is zero. Then the
restriction of chc to Uh′′ may be written as follows.

chc(x) =
∏

j

δ(
∏
k,l

det(x j,k,l))

=
∏

j

(
∑
k,l

δ(det(x j,k,l))
∏

(k′,l′) �=(k,l)
|detR(x j,k′,l′)|−1).

(7.18)

Hence, the pullback of the distribution (7.18) via (7.15) is given by

chc(x′ + x) = δ ◦ det(x′|V ′1 + x1,1,1)
∏

(k,l) �=(1,1)
|detR(x

′|V ′1 + x1,k,l)|−1

δ ◦ det(x′|V ′2 + x2,2,1)
∏

(k,l) �=(2,1)
|detR(x

′|V ′2 + x2,k,l)|−1

(7.19)

... .

Notice that the assumption det(x′|V ′j + x̃s, j, j,1) = 0, (7.16), implies that the
fields h′ and R[x̃s|V ′j ] are isomorphic. Moreover the map

Endx̃s(Vj) � y → y ∈ Endh′(Hom(V ′j, Vj)1)
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is an R-linear bijection. The preimage of x′|V ′j ∈ Endh′(Hom(V ′j, Vj)1) via
this bijection coincides with±x̃s|Vj . This last element is a constant multiple
of the identity IVj on Vj , if Vj is viewed as a vector space over the field
R[x̃s|V ′j ]. Hence, with λ = ±x̃s|Vj ∈ R[x̃s|V ′j ], we have for any x ∈ Ug,

δ ◦ det(x′|V ′j + x j, j,1) = δ ◦ det(λ IV ′j + x|Vj ).

By (4.6) and (5.10) the translation of the distribution δ ◦ det by any con-
stant multiple of the identity is regular (in the sense of our Lemma 7.10).
Therefore, chcx′ |Ug

is regular, and we are done. ��
Since we are interested only in the case when chcx′ �= 0, we may assume,

by (7.17), that V ′ is a subspace of V . Let U ⊆ V be a complementary
subspace, so that V = V′ ⊕U . This gives embeddings

End(V ′)→ End(V ), a(v′ + u) = a(v′), a ∈ End(V ′),
End(U)→ End(V ), b(v′ + u) = b(u), b ∈ End(U), and(7.20)

Hom(U, V ′)→ End(V ), c(v′ + u) = c(u), c ∈ Hom(U, V ′),

where v′ ∈ V ′ and u ∈ U . Then n = Hom(U, V ′) is the nilpotent radical of
a parabolic subalgebra of g = End(V )with the Levi factorm = End(V′)⊕
End(U). Let K ⊆ G = GL(V ) be the centralizer of J , (see Sect. 3). This
is a maximal compact subgroup of G. For ψ ∈ S(g) and x ∈ g set

ψK (x) =
∫

K
ψ(kxk−1)

dk

|K | , and ψK
n (x) =

∫
n

ψK (x + y) dy.

Proposition 7.21. For any x′ ∈ h′r and any ψ ∈ S(g),∫
g

chc(x′ + x)ψ(x) dx =
∫

G ′/H ′

∫
End(U )

ψK
n (gx′g−1 + x) dx d

.
g.

Proof. The argument is straightforward. By (7.10), we express the left hand
side in terms of explicit integrals over the regular sets of various Cartan
subalgebras of g, and conclude that the resulting expression is equal to the
right hand side.

Let h ⊆ g be a Cartan subalgebra. We shall describe the restriction of
the distribution chcx′ to hr , and thus refine the formula (7.19).

Recall the decomposition (7.1). For each j , Hom(V′j, V ) is a vector
space over the field h′|V ′j and an h-module. As such, it decomposes into
irreducibles: Hom(V′j, V ) =∑k X j,k. Hence

det(x′|V ′j + x) =
∏

k

det(x′|V ′j + x|X j,k) (x ′ ∈ h′r, x ∈ hr),
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where the determinant takes values in the field h′|V ′j . Hence,

δ(det(x′|V ′j + x)) =
∑

k

δ(det(x′|V ′j + x|X j,k))
∏
l �=k

|detR(x
′|V ′j + x|X j,l)|−1.

Therefore,

δ(det(x′ + x)) =
∏

j

δ(det(x′|V ′j + x))

(7.21.1)

=
∑

k1,k2,...

∏
j

δ(det(x′|V ′j + x|X j,k j
))
∏
l �=k j

|detR(x
′|V ′j + x|X j,l)|−1

 .
If the term δ(det(x′|V ′j + x|X j,k j

)) is non-zero, then the space Xj,k j is of
dimension one over the field h′|V ′j . Furthermore, since x is regular, only
one such term may be non-zero, for each j . In particular, if the expression
(7.21.1) is non-zero, then h is conjugate to h′ + hU , for some Cartan subal-
gebra hU ⊆ End(U), (see (7.20)). Assuming h = h′ + hU , we can rewrite
(7.21.1) as follows:

chc(x′ + x) = 1

|W(HU )|
∑

σ∈W(HU )

δ(x ′ − (σx)|V ′)|detR(ad(σx)|g′/h′+n)|−1,

where n = Hom(U, V ′), x ′ ∈ h′r, x ∈ hr , (σx)|V ′ ∈ h′ is the restriction of
σx ∈ h to V ′, δ ∈ S∗(h′) is the Dirac delta at the origin, W(HU ) is the Weyl
group of HU , the Cartan subgroup of GL(U) with the Lie algebra hU , and
W(H) is the Weyl group of H , the Cartan subgroup of G = GL(V ) with
the Lie algebra h. Hence, by (7.10), for ψ ∈ S(g),∫

Ad(G)hr
chc(x′ + x)ψ(x) dx

= 1

|W(H)|
∫
hr
|det(ad(x)|g/h)| chc(x′ + x)

∫
G/H

ψ(gxg−1) d
.
g dx

= 1

|W(HU )|
∫
hr

U

|πU(x)|2|det(ad(x′ + x)|n)|
∫

G/H
ψ(g(x′ + x)g−1) d

.
g dx

= 1

|W(HU )|
∫
hr

U

|πU(x)|2
∫

G ′/H ′

∫
G L(U )/HU

ψK
n (g

′x ′g′−1 + gxg−1) d
.
g d

.
g
′
dx

=
∫

Ad(G L(U )hr
U

∫
G ′/H ′

ψK
n (g

′x ′g′−1 + x) d
.
g
′
dx,

where |πU (x)|2 = |det(ad(x)|End(U )/hU )|, and the third equality follows from
the standard integral formulas, [W1, 2.41, 7.3.7]. Since the set of conjugacy
classes of Cartan subalgebras h, for which (7.21.1) is non-zero, is in one
to one correspondence with set of conjugacy classes of Cartan subalgebras
hU , the Proposition follows. ��
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Define a continuous linear map

A : S(g)→ S(g′), Aψ(x) = ψK
n (x), x ∈ g′.(7.22)

It is easy to check that∫
g′

Aψ(x) dx =
∫

G ′\Wmax
ψ ◦ τg(w) d

.
w.(7.23)

where Wmax = {(x, y); x and y are of maximal rank}.
Let O′ ⊆ g′ be a G′ orbit. Then τg(τg′(O

′)) contains a single dense
G orbit O ⊆ g. Let µO′ ∈ S∗(g′) be the canonical measure on O′. Then
µO′ ◦ A is a G invariant measure, a positive constant multiple of µO .
A straightforward calculation based on (7.21) and (7.23) shows that

(µO′ ◦A)̂(ψ) =
∑ 1

|W(H ′)|
∫
h′r
µ̂O′(x

′)|π(x ′)|2
∫
g

chc(x′ + x)ψ(x) dx dx′,

(7.24)

where the summation is as in the Weyl integration formula for g′. This
verifies Theorem (1.19) for pairs of type II.

Pairs of Lie algebras, of type I

8. Notation

Let V, V ′ be two finite dimensional vector spaces overDwith non-degenerate
forms ( , ), ( , )′ - one hermitian and the other one skew-hermitian. Define
a map Hom(V ′, V ) � w→ w∗ ∈ Hom(V, V ′) by

(wv′, v) = (v′, w∗v)′ (w ∈ Hom(V ′, V ), v ∈ V, v′ ∈ V ′).(8.1)

Define a symplectic form 〈 , 〉 on the real vector space W = Hom(V′, V )
by

〈w,w′〉 = tr(w′∗w) (w,w′ ∈ W ).(8.2)

Let G ⊆ GL(V ) be the isometry group of the form ( , ), with the Lie
algebra g ⊆ End(V ). Similarly we have the isometry group G′ ⊆ GL(V ′)
of the form ( , )′, with the Lie algebra g′ ⊆ End(V ′). We identify g with
g∗ via the bilinear form provided by the trace, and similarly for g′. Then the
moment maps τg : W → g∗ and τg′ : W → g′∗ are given by

τg(w) = ww∗, τg′(w) = w∗w, (w ∈ W ).(8.3)

The groups G,G′ act on W by post-multiplication and premultiplication by
the inverse, respectively. These actions preserve the symplectic form (8.1).
The moment maps (8.3) intertwine these actions with the corresponding
adjoint actions.
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9. The pair sp2n(R), so1

In this case the integral over G′\W may be identified with the integral
over W . Hence,

chc(ψ) =
∫

W

∫
sp
χx(w)ψ(x) dx dw (ψ ∈ S(sp), sp = sp(W )),(9.1)

where each consecutive integral is absolutely convergent. Let

sp+
C
= {z = x + i y; x, y ∈ sp, 〈y , 〉|Ker(x) > 0},(9.2)

where the statement 〈y , 〉|Ker(x) > 0 means that 〈yw,w〉 > 0 for every
non-zero element w ∈ Ker(x). Let n = 1

2dim(W ).

Proposition 9.3. (a) The set sp+
C

is contractible.

(b) There is a unique holomorphic function chc : sp+
C
→ C such that

chc(i y) = 2n|det(y)|−1/2 for y ∈ sp such that 〈y , 〉 > 0. Moreover
|chc(z)| = 2n|det(z)|−1/2, z ∈ sp+

C
.

(c) As a distribution on sp, chc(x) = lim
y→0

chc(x + i y), x ∈ sp, where

〈y , 〉 > 0.

(d) WF(chc) = {(x, τsp(w)); x ∈ sp, w ∈ W, x(w) = 0}.
In order to prove the proposition we realize W asR2n, with the symplectic

form

〈w,w′〉 = w′t Jw, J =
[

0 In
−In 0

]
, (w,w′ ∈ W ).

Then sp = sp2n(R) = {x ∈ M2n(R); Jx + xt J = 0} and similarly for the
complexification spC = sp2n(C).

Let m = 2n and let SMm(D) denote the space of symmetric matrices of
size m with entries in D = R or C. Let

SM+
m (C) = {A = B + iC; B,C ∈ SMm(R), w

t Bw > 0
for w �= 0, Cw = 0}.

The map

α : sp2n(C) � z →−i Jz ∈ SM2n(C)

is a linear isomorphism, and α(sp+
C
) = SM+

m (C). Part (a) of the proposition
is immediate from the following lemma.

Lemma 9.4. The set SM+
m (C) is contractible.
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Proof (Rossmann). For a > 0, consider the map:

SMm(C) � A = B + iC → Ã = B + a C2 + iC ∈ SMm(C).

Then A ∈ SM+
m (C) if and only if there is a > 0 such that the real part of

Ã is positive definite. Since the set of complex symmetric matrices with
a positive definite real part is convex, we are done. ��

In particular, (9.4) implies that there is a unique holomorphic function
SM+

m (C) � A → det1/2(A) ∈ C, which coincides with the positive square
root of the determinant of A, if A is real and positive definite. Clearly, the
function

chc(z) = 2n

det1/2(α(z))
(z ∈ sp+

C
)(9.5)

satisfies (9.3.b).
Recall, [Hö, (3.4.1)”] the following integral formula

1

det1/2(A)
=
∫
Rm

e−πw
t Aw dw

(A = B + iC; B,C ∈ SMm(R); B > 0).
(9.6)

The statement (9.3.c) is a straightforward consequence of (9.5) and (9.6).
It remains to calculate the wave front set, WF(chc). Let

µ(ψ) =
∫
Rm
ψ(−wwt) dw (ψ ∈ S(SMm(R)).

This integral is absolutely convergent and µ is a temperate measure on
SMm(R).

Lemma 9.7. Under the identification SMm(R)
∗ = SMm(R) provided by

the trace, (tr(CD), C, D ∈ SMm(R)),
(a) WF(µ) = {(C, D) ∈ suppµ× SMm(R); DC = 0},
(b) WF(µ̂) = {(D,C) ∈ SMm(R)× (−suppµ); DC = 0}.
Proof. We begin with (a). Clearly the fibers of WF(µ) over the complement
of the support of µ are empty (zero). Notice that the Fourier transform of µ,

µ̂(C) =
∫

SMm(R)

χ(−tr(CD)) dµ(D) = lim
B→0

∫
Rm

e−πw
t (−2B−2iC)wdw

= 2−m/2 lim
B→0

1

det1/2(−(B + iC))
,

(9.8)

where −B > 0. In particular, by [Hö, (8.1.18)], The fiber of WF(µ) over 0
coincides with suppµ̂ = SMm(R).

Since suppµ \ {0} = {gCgt; g ∈ SLm(R)}, and since µ is invariant
under the action of SLm(R), [Hö, 8.2.5] implies that (C, D) ∈ WF(µ) if
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and only if D is perpendicular to the tangent space to suppµ \ {0} at C.
Thus for any X ∈ slm(R),

0 = tr(D(XC + CXt)) = 2tr(DCX).

Hence DC is a constant multiple of the identity. But C is not invertible.
Therefore the constant is zero, i.e. DC = 0. By taking the transpose we get
CD = 0. This verifies (a).

Let C, D ∈ SMm(R) \ {0}. Then, by [Hö, 8.1.8], and (a), (D,C) ∈
WF(µ̂) if and only if (−C, D) ∈ WF(µ), which happens if and only if
C ∈ −suppµ, D ∈ SMm(R) and CD = 0. Also, the fiber of WF(µ̂) over
zero coincides with −suppµ. This verifies (b). ��

Notice that for D ∈ SMm(R) and w ∈ Rm , Dwwt = 0 if and only if
Dw = 0. Indeed, both sides of the equivalence are invariant under the action
of the orthogonal group Om(R). Hence we can assume that D is diagonal.
But in this case the statement is obvious. Hence, it is easy to deduce from
(9.7) that, with β : Rm → SMm(R)

∗ defined by β(w)(D) = wt Dw,
w ∈ Rm, D ∈ SMm(R),

WF(µ̂) = {(D, β(w)) ∈ SMm(R)× SMm(R)
∗; w ∈ Rm, Dw = 0}.(9.9)

Notice that for w ∈ W and x ∈ sp, τsp(w)(x) = 〈xw,w〉 = wt Jxw =
β(w)(Jx). Hence, by (9.8),

chc(x) =
∫

W
χx(w) dw =

∫
W

e2πiwt 1
4 Jxwdw = µ̂

(
1

4
Jx

)
(x ∈ sp).

Therefore (9.3.d) follows from (9.9).

10. The case when H′ ⊆ G′ is compact

In this section the Cartan subgroup H′ ⊆ G′ is compact. (This forces the
pair G,G′ to be of type I.) Let

V ′ =
∑
j∈J′

V ′j(10.1)

be a decomposition of V′ into H ′-irreducible subspaces over D. If G′ is
isomorphic to the orthogonal group Op,q, with p + q odd, then (10.1)
contains the trivial component, which shall be denoted by V′0. There is no
(non-zero) trivial component in any other case. For each j ∈ J′ \ {0} there
is a complex structure i on V′j , (i ∈ EndR(V ′j), i2 = −1), and R-linear
coordinates x′j on h′, such that

x ′|V ′j = ix′j (x ′ ∈ h′, j ∈ J′ \ {0}).(10.2)
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Theorem 10.3. Let p be defined as in (1.12). Assume p ≥ 0. Then for any
ψ ∈ S(g) and any ε > 0, the following integral∫

h′r

∏
j∈J′\{0}

(|x ′j | + 1)p−ε
∣∣∣∣πh′(x ′) ∫

g

chc(x′ + x)ψ(x) dx

∣∣∣∣ dx′

is convergent and defines a continuous seminorm on S(g).

In order to prove Theorem (10.3) we need some preparation. Let H ⊆ G
be a compact Cartan subgroup, with the Lie algebra h ⊆ g. The symplectic
space W decomposes into a direct orthogonal sum of H · H′-irreducible
subspaces Wj,k, over R:

W =
∑

j∈J′,k∈J

W j,k, W j,k ⊆ Hom(V ′j, V ).(10.4)

The holomorphic function chc defined on sp+
C

, see (9.3.b), extends and then
restricts to a rational function on h′

C
+hC . We denote by W0,k the subspace on

which H′ acts trivially, and by Wj,0 the subspace on which H acts trivially.
In terms of (10.4) we have

chcW(z
′ + z) =

∏
j∈J′,k∈J

chcW j,k(z
′ + z) (z′ ∈ h′

C
, z ∈ hC ),(10.5)

where the subscript (W or Wj,k) indicates the symplectic space with respect
to which the corresponding function is defined.

Let Φ(h′) be a system of positive roots of h′
C

in g′
C

, and let πh′ denote
the product of all the roots α ∈ Φ(h′). Similarly, we define πh. Then, as
a polynomial in the coordinates x′j , (see (10.2)), πh′ has degree

d′ − 2, d′ − 1, d′ − 1, 2d′ − 1, 2d′ − 2 if

G′ = Op,q, Sp2n(R), Up,q, Spp,q, O∗
2n, respectively.

(10.6)

Let p̃ be a non-negative integer, smaller or equal to the number p, defined
in (1.12). Set

P(x ′) =
∏

j∈J′\{0}
(ix′j + 1) p̃ (x ′ ∈ h′).

By (10.6), the degree of the rational function

P(z′)πh′(z′)chcW(z
′ + z) (z′ ∈ h′

C
, z ∈ hC )
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with respect to each z′j , j ∈ J′ \ {0}, is negative. (Moreover, p̃ = p is
maximal with this property.) Hence, by partial fractions,

P(z′)πh′(z′)chcW (z
′ + z)πh(z) =

∑
L

FL,z′(z),

(10.7)
FL,z′(z) = PL(z)chcL(z

′ + z), chcL(z
′ + z) =

∏
j∈J′\{0}

chcW j,L( j)(z
′ + z),

where the summation is over all injections L : J′ \ {0} → J \ {0}, each PL
is a polynomial function, z′ ∈ h′

C
, and z ∈ hC .

Let Φn(h) ⊆ Φ(h) denote the positive system of non-compact (imag-
inary) roots. Recall, [Sch], that the conjugacy classes of Cartan subalgebras
of g are parameterized by strongly orthogonal sets S ⊆ Φn(h). More pre-
cisely, for each α ∈ Φn(h) one chooses Xα ∈ gα (the α-root space in gC )
and Hα ∈ ih such that the following commutation relations hold:

[Hα, X±α] = ±X±α, [Xα, X−α] = Hα, Xα = X−α.

Then, the Cayley transform corresponding to α is defined by

cα = exp

(−πi

4
ad(Xα + X−α)

)
∈ End(gC ).

For a strongly orthogonal set S ⊆ Φn(h), define cS = ∏
α∈S cα. The Cartan

subalgebra corresponding to S is given by

hS = g ∩ cS(hC ).(10.8)

Moreover, two Cartan subalgebras hS1, hS2 are conjugate if and only if some
element of the Weyl group W(H) maps S1 ∪ (−S1) onto S2 ∪ (−S2).

It is important to realize that the following equation holds

chcW(z
′ + z) = chcW(z

′ + c−1
S (z)) (z′ ∈ h′

C
, z ∈ hS,C ),(10.9)

where hS,C stands for the complexification of hS.
Indeed, if G = Up,q and G′ = U1, then by (9.3)

chcW (z
′ + z) = (−1)p2p+q 1

det(z′ + z)
(z′ ∈ h′

C
= g′

C
, z ∈ gC ).(10.10)

Since the determinant is invariant under conjugation, the formula (10.9)
follows. The general case reduces to the above one, via the decomposition

chcW (z
′ + z) =

∏
j∈J′

chcW j (z
′ + z)

(W j = Hom(V ′j, V ), z′ ∈ h′C , z ∈ gC ).
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By combining (10.7) and (10.9) we see that, with the notation of (7), we
have for any strongly orthogonal set S ⊆ Φn(h), and any z′ ∈ h′

C
and

z ∈ hS,C ,

P(z′)πh′(z′)chcW(z
′ + z)πh ◦ c−1

S (z)
(10.11)

= P(z′)πh′(z′)chcW(z
′ + c−1

S (z))πh ◦ c−1
S (z) =

∑
L

FL,z′ ◦ c−1
S (z).

Since we are going to use Stokes formula, [Hö, 6.4.5], we introduce the
differential forms involved.

As in (10.1), let

V =
∑
l∈L

Vl(10.12)

be a decomposition of V into H-irreducible subspaces over D. We denote
by V0 the trivial component if it occurs (i.e. is non-zero). For each l �= 0 fix
a complex structure i on Vl. Then there are linear coordinates xl on h such
that

x|Vl = ixl (x ∈ h, l ∈ L \ {0}).(10.13)

Define an R-linear isomorphism c′S : h→ hS by

c′S(x) = x for all x ∈
⋂
α∈S

Ker α, c′S(iHα) = cS(Hα) for all α ∈ S.(10.14)

Let dim h = n. In terms of (10.13) and (10.14) set

µ = dx1dx2...dxn, µS = (c′S)∗µ = i |S|(cS)
∗µ,

where |S| stands for the cardinality of S. We orient h and hS by declaring
the following charts to be positive:

κ : h � x → (x1, x2, ..., xn) ∈ Rn, and κ ◦ c′S
−1 : hS → Rn.

Then, for a test function ψ,

∫
hS

ψµS =
∫
h

(ψ ◦ c′S)µ =
∫
Rn
ψ ◦ c′S ◦ κ−1(x1, x2, ..., xn) dx1dx2...dxn.

(10.15)

Let HS ⊆ G be the Cartan subgroup corresponding to hS. Recall the
Harish-Chandra integral, defined with respect to negative roots (see [W1,
7.3.5]):

ψS(x) = πh ◦ cS
−1(x)εS(x)

∫
G/HS

ψ(gxg−1)d
.
g,

(10.16)
εS(x) =

∏
α◦cS

−1 real

sgn(α ◦ cS
−1(x)) (x ∈ hr

S, ψ ∈ S(g)).
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The Weyl group W(HS) preserves the Cartan decomposition hS = k∩ hS ⊕
p ∩ hS. Let (p ∩ hS)

+ ⊆ p ∩ hS be a Weyl chamber on which εS(x) > 0.
Let hS

+ = k ∩ hS ⊕ (p ∩ hS)
+, and let nS denote quotient of the cardinality

of the restriction of W(HS) to p ∩ hS by the cardinality of W(HS). Then the
Weyl integration formula can be written as∫

g

ψ(x) dx =
∑

nS

∫
hS
+
πh ◦ c−1

S ψS µS (ψ ∈ S(g)),(10.17)

where the summation is over a maximal family of mutually non-conjugate
Cartan subalgebras hS ⊆ g.

Notice that the Weyl group W(H) acts on the set of indices J \ {0} by
permuting the summand in (10.4). For each injection L : J′ \ {0} → J \ {0}
choose an element yL ∈ h so that

〈yL , 〉|W j,L( j) > 0 for j ∈ J′ \ {0} and σ(yL) = yσL for σ ∈ W(H).(10.18)

This is possible. Indeed, there are unique elements Hl ∈ h such that x =∑
l xl Hl for x ∈ h, and we may choose

yL =
∑

j∈J′\{0}
sgn〈HL( j) , 〉|W j,L( j) HL( j).

Let yL
S =

∑
yL

l Hl, where the summation is over the l such that α(Hl) = 0
for all α ∈ S. Define an (n + 1)-chain CL

S in hS,C as follows:

CL
S (t, x) = x + ityL

S (x ∈ h+S , 0 ≤ t ≤ 1).

Let Φn
S = {α ∈ Φ(h), α ◦ c−1

S is a non-compact imaginary root for hS}. For
α ∈ Φn

S, let CL
S |α denote the restriction of CL

S to Kerα ◦ c−1
S . Let CL

S (1)
denote the restriction of CL

S to t = 1. We give orientations to CL
S , CL

S (1),
and CL

S |α, by declaring the following charts to be positive:

CL
S � x + ityL

S → (t, κ ◦ c−1
S (x)) ∈ R1+n,

CL
S (1) � x + ityL

S → κ ◦ c−1
S (x) ∈ Rn,

CL
S |α � x + ityL

S → (t, 0)+ κ ◦ c−1
S (x) ∈ Rn.

Let hi r
S = {x ∈ hS, α ◦ c−1

S (x) �= 0 for all α ∈ Φn
S}. By a theorem of

Harish-Chandra, [Va, part I, p. 47], each function ψS, defined in (10.16),
extends to a smooth function on hi r

S , which shall be denoted by the same
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symbol ψS. For an integer N ≥ 0, let ψS,N denote the extension of degree
N of ψS, to the complexification of hi r

S , as in [Hö, 3.1.15], (see (A.1)).

Theorem 10.19. Fix an element x′ ∈ h′r . Then for any integer N ≥ 0, large
enough, and for all ψ ∈ S(g),

P(x ′)πh′(x ′)
∫
g

chc(x′ + x)ψ(x) dx

=
∑

nS

∫
CL

S (1)
νL,x′,S,N −

∫
CL

S

d(νL,x′,S,N)−
∑
α∈Φn

S

∫
CL

S |α
νL,x′,S,N

 ,
where νL,x′,S,N = FL,x′ ◦ c−1

S · ψS,N · µS, the unmarked summation is over
a maximal family of mutually non-conjugate Cartan subalgebras hS ⊆ g
and over all injections L : J′ \ {0} → J \ {0}. Moreover, each integral on
the right hand side of the equation is absolutely convergent. Furthermore,
the integrals over CL

S |α are equal to each other.

Proof. The decompositions (10.1), (10.4), and (10.12) are of course related,
as follows. If D = C, then Wj,k = Hom(V ′j, Vk). For D �= C the space
Hom(V ′j, Vk), ( j �= 0, k �= 0) decomposes into two irreducible subspaces.
Thus, with n = dim h, we may define the index set J so that

J \ {0} =
{ {1, 2, ..., n} if D = C,
{1, 2, ..., 2n} if D �= C,

and choose the complex structures i on V′j and on Vk so that, for x ∈ h,

(x ′ + x)|W j,k =
{

i(xk − x ′j) if k ≤ n,

i(−xk−n − x ′j) if k > n.
(10.20)

It is an exercise to see that one can introduce linear coordinates ul, vl, xl
on hS as follows (see (10.13)): if D = R then there are numbers 0 ≤ a, b,
a + 2b ≤ n, such that for x ∈ h,

c−1
S (x)l =


vl if 1 ≤ l ≤ a,
iul + vl if a < l ≤ a + b,
−iul−b + vl−b if a + b < l ≤ a + 2b,
ixl if a + 2b < l ≤ n;

(10.21)

if D = C, then there is an integer b ≥ 0, with 2b ≤ n, such that for x ∈ hS
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c−1
S (x)l =


iul + vl if 1 < l ≤ b,
iul−b − vl−b if b < l ≤ 2b,
ixl if 2b < l ≤ n;

(10.22)

if D = H, then there is an integer b ≥ 0, with 2b ≤ n, such that for x ∈ hS

c−1
S (x)l =


iul + vl if 1 < l ≤ b,
−iul−b + vl−b if b < l ≤ 2b,
ixl if 2b < l ≤ n.

(10.23)

Let L : J′ → J be an injection. We see from (10.20) that, in terms of (21–
23), the function

∣∣chcL(x ′ + c−1
S (C

L
S (t, x)))

∣∣, (x ′ ∈ h′r , x ∈ hS), is a constant
multiple of the following expression, for D = R,C,H respectively:

∏
1≤L( j)≤a

|vL( j) − ix′j |−1
∏

n<L( j)≤n+a

|vL( j)−n + ix′j |−1

∏
a<L( j)≤a+b

|i(uL( j) − x ′j)+ vL( j)|−1

∏
n+a<L( j)≤n+a+b

|i(uL( j)−n + x ′j)+ vL( j)−n|−1

∏
a+b<L( j)≤a+2b

|i(−uL( j)−b − x ′j)− vL( j)−b|−1(10.24)

∏
n+a+b<L( j)≤n+a+2b

|i(−uL( j)−b−n + x ′j)− vL( j)−b−n|−1

∏
a+2b<L( j)≤n

|i(xL( j) − x ′j)+ tyL
L( j)|−1

∏
n+a+2b<L( j)≤2n

|i(xL( j)−n + x ′j)− tyL
L( j)−n|−1,

∏
1≤L( j)≤b

|i(uL( j) − x ′j)+ vL( j)|−1

∏
b<L( j)≤2b

|i(uL( j)−b − x ′j)− vL( j)−b|−1(10.25)

∏
2b<L( j)≤n

|i(xL( j) − x ′j)− tyL
L( j)|−1,
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1≤L( j)≤b

|i(uL( j) − x ′j)+ vL( j)|−1

∏
n<L( j)≤n+b

|i(uL( j)−n + x ′j)+ vL( j)−n|−1

∏
b<L( j)≤2b

|i(−uL( j)−b − x ′j)+ vL( j)−b|−1

(10.26) ∏
n+b<L( j)≤n+2b

|i(−uL( j)−b−n + x ′j)+ vL( j)−b−n|−1

∏
2b<L( j)≤n

|i(xL( j) − x ′j)− tyL
L( j)|−1

∏
n+2b<L( j)≤2n

|i(xL( j)−n + x ′j)− tyL
L( j)−n|−1.

The expressions (10.24–10.26) are products of independent terms of the
form

|v− ix′|−1, |v − ix′1|−1|v− ix′2|−1

(x ′ �= 0, x′1 �= x ′2, x ′1 �= 0, x′2 �= 0),
(10.27)

|i(u − x′)− v|−1, |i(u − x′1)− v|−1|i(u − x′2)− v|−1

(x ′1 �= x ′2),
(10.28)

|i(x − x′)− t|−1, |i(x − x′1)− t|−1|i(x − x′2)− t|−1

(x ′1 �= x ′2).
(10.29)

Since the expressions (10.27–10.29) are locally integrable with respect to
v ∈ R, (u, v) ∈ R2, or (x, t) ∈ R2, the absolute convergence of the integrals
in the Theorem (10.19) follows, (see also (A.3), (A.4)).

In order to prove the formula (10.19) we may assume that ψ ∈ C∞c (g).
Suppose first that the support of ψ is disjoint with the singular support of
the distribution chcx′ . Then, by (10.11) and by the Weyl integration formula
(10.17), ∫

g

P(x ′)πh′(x ′)chc(x′ + x)ψ(x) dx

=
∑

nS

∫
h+S

P(x ′)πh′(x ′)chc(x′ + x)πh ◦ c−1
S (x)ψS(x) µS(x)(10.30)

=
∑

nS

∫
h+S

FL,x′ ◦ c−1
S · ψS · µS.
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Let us fix L and view h+S as CL
S (0), the restriction of CL

S to t = 0. Also, let
νL,x′,S,N = FL,x′ ◦ c−1

S · ψS,N · µS. Then, by Stokes formula, [Hö, (6.5.4)],
and a Theorem of Harish-Chandra, regarding the singularities of his integral
(10.16), [Va, part I, p.47],∫

CL
S

d(νL,x′,S,N) =
∫

CL
S (1)

νL,x′,S,N −
∫

CL
S (0)

νL,x′,S,N

−
∑
α∈Φn

S

∫
CL

S |α
νL,x′,S,N .

(10.31)

Clearly, (10.30) and (10.31) verify the formula (10.19).
For a general ψ ∈ C∞c (g) the same argument applies, via a partition of

unity and a reduction to the case G = Up,q, G′ = U1, considered in [D-P3].
We explain the details.

Let x̃ ∈ g be in the singular support of the distribution chcx′ . Let x̃s be
the semisimple part in the Jordan decomposition ofx̃. Let

V =
∑

k

Ṽk(10.32)

be the decomposition of V intoR[x̃s]-isotypic subspaces overD. The decom-
position (10.32) is direct, orthogonal, and the sets of eigenvalues ofx̃s|Ṽk

are
disjoint, as k varies. Let W̃ j,k = Hom(V ′j, Ṽk). Since the x′ ∈ h′r is regular,
we may arrange the indices so that

Ker(x′ + x̃s) ∩ W̃ j,k �= ∅ if and only if j = k = 1, 2, ...,m.(10.33)

A straightforward, case by case, verification shows that for 1 ≤ k ≤ m,

W̃k,k =
{

Ker(x′ + x̃s) ∩ W̃k,k if D = C,
Ker(x′ + x̃s) ∩ W̃k,k ⊕ (Ker(x′ + x̃s) ∩ W̃k,k)

⊥ if D �= C.
In particular,

W = Ker(x′ + x̃s)⊕ (Ker(x′ + x̃s))
⊥.(10.34)

Using the complex structure i on V′k we view Ker(x′+x̃s)∩W̃k,k as a complex
vector space. The Hermitian form 〈 , 〉 + 〈i , 〉 on this space is preserved
by Gx̃s |Ṽk

, the restriction to Ṽk of the centralizer of x̃s in G. Thus

(Gx̃s |Ṽk
, Ker(x′ + x̃s) ∩ W̃k,k) is isomorphic to (Up,q, C

p+q),(10.35)

for some p, q.
Let U ⊆ gx̃s be a completely invariant, open neighborhood of x̃s, in-

variant under conjugation by elements of the identity component of G̃xs ,
such that (10.33) holds with the x̃s replaced by any x ∈ U . Notice that our
original element x̃ belongs to U . We choose U small enough so that the
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adjoint orbits are transversal to U , (see [Va, part I, p. 19]). By [Hö, 8.2.4],
the distribution chcx′ restricts to U . We describe this restriction in more
detail.

Let g+
C ,x′ = {z = x+i y; 〈y , 〉|Ker(x′+x)>0, x, y ∈ g} ⊆ gC . The function

chcW : sp+
C
→ C, defined in (9.3), restricts to a holomorphic function

g
+
C ,x′ � z → chcW (x

′ + z) ∈ C.
We see from (10.35) that for each x ∈ U there is an element y ∈ gwhich pre-
serves the decomposition (10.34) and satisfies the condition 〈y , 〉|Ker(x′+x)>0.
For such x and y, and z = x + i y,

chcW (x
′ + z) = chcKer(x′+x̃s)(x

′ + z) · chcKer(x′+x̃s)⊥(x
′ + z),

because the function chcW is the reciprocal of a square root of the determi-
nant, (see (9.3)). By taking limit if y → 0 we obtain the following equation
of distributions:

chc(x′ + x) = chcKer(x′+x̃s)(x
′ + x) · chcKer(x′+x̃s)⊥(x

′ + x)
(x ∈ U),

(10.36)

where the second factor, on the right hand side, is a real analytic function.
Furthermore, by (10.33),

chcKer(x′+x̃s)(x
′ + x) =

m∏
k=1

chcKer(x′+x̃s)∩W̃k,k
(x ′ + x)

(x ∈ U).

(10.37)

Since, by [D-P3], the Theorem 10.19 holds for the pair Up,q,U1, the for-
mulas (10.36) and (10.37) imply the equation (19) for ψ ∈ C∞c (Ad(G)U).
A partition of unity argument completes the proof. ��
Lemma 10.38. Letφ(v) = (1+|v|)−N orφ(u, v) = (1+|u|)−N(1+|v|)−N ;
u, v ∈ R, N ≥ 0. Then for N large enough, and any ε > 0, the following
integrals are finite:∫

R

∫
R

(v2 + x ′2)−1/2φ(v) dv (1+ x′2)−ε/2 dx′,(a)

∫
R2

∫
R

(v2 + x ′1
2)−1/2(v2 + x ′2

2)−1/2φ(v) dv

(1+ x′1
2)−ε/2(1+ x′2

2)−ε/2 dx′1 dx′2,
(b)

∫
R

∫
R2
((u − x′)2 + v2)−1/2φ(u, v) du dv (1+ x′2)−ε/2 dx′,(c)

∫
R2

∫
R2
((u − x′1)

2 + v2)−1/2((u − x′2)
2 + v2)−1/2φ(u, v) du dv

(1+ x′1
2)−ε/2(1+ x′2

2)−ε/2 dx′1 dx′2.
(d)



A Cauchy Harish-Chandra integral, for a real reductive dual pair 345

We shall prove this lemma in Appendix B.

Proof of Theorem 10.3. From the formulas (10.19), (10.24–10.29) and
(A.3), (A.4), we see that the integral in Theorem 10.3 is a sum of integrals,
each of which can be dominated by by one of the integrals (10.38). ��

11. A general pair (g, g′) of type I

Here we resume the general case of Sect. 8. Let H′ = T ′A′ ⊆ G′ be
a Cartan subgroup, as in Sect. 1. Let V′c ⊆ V ′ be the subspace on which
A′ acts trivially. Let V′s = V ′c⊥ ⊆ V ′ be the orthogonal complement of V′c.
Then V ′s has a complete polarization V′s = X ′ ⊕ Y ′, preserved by H′. Let
X ′ = X ′1 ⊕ X ′2 ⊕ ... and Y ′ = Y ′1 ⊕ Y ′2 ⊕ ... be the decomposition of X′,Y ′
into A′-isotypic components. Altogether we have

V ′ = V ′s ⊕ V ′c, V ′s = X ⊕ Y, X ′ = X ′1 ⊕ X ′2 ⊕ ..., Y ′ = Y ′1 ⊕ Y ′2 ⊕ ... .
(11.1)

We assume that the restriction of the form ( , )′ to each space V ′j = X ′j⊕Y ′j ,
as in (11.1), is non-degenerate. Let Ws = Hom(V ′s , V ), Wc = Hom(V ′c, V ),
W j = Hom(V ′j, V ). Then we have the following direct sum orthogonal
decompositions

W = Wc ⊕Ws, Ws = W1 ⊕W2 ⊕ ... .(11.2)

Moreover,

W j = Hom(X ′j , V )⊕ Hom(Y ′j, V ) ( j ≥ 1).(11.3)

The group A′′ (= centralizer of A′ in Sp) preserves the decompositions (2)
and (11.3) and the obvious restrictions yield isomorphisms:

a′′ = sp(Wc)⊕ EndR(Hom(X ′1, V ))⊕ EndR(Hom(X ′2, V ))⊕ ...
A′′ = Sp(Wc)× GLR(Hom(X ′1, V ))× GLR(Hom(X ′2, V ))× ... .(11.4)

Let A′′′ be the centralizer of A′′ in Sp. Let A′′′j be the restriction of A′′′

to X ′j . Then A′′′j is isomorphic to GL1(R). The restriction of A′′′ to Wc is
isomorphic to O1, the two element group. Hence, (A′′, A′′′) is a dual pair
isomorphic to

(Sp2n(R), O1)×(GLn1(R),GL1(R))×(GLn2(R),GL1(R))×... .(11.5)

Let WA′′′ = (Wc \ {0})×W1 A′′′1
×W2 A′′′2

× ....
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Define an invariant measures d
.
w on the quotient manifolds A′′′ \WA′′′ ,

and on A′′′j \WA′′′j , as in (1.3). Then, as a temperate distribution on a′′,

(11.6) chc(x) =
∫

A′′′\WA′′′
χx(w) d

.
w

=
∫

Wc

χxc(w) dw⊗
∫

A′′′1 \WA′′′1

χx1(w) d
.
w⊗

∫
A′′′1 \WA′′′2

χx2(w) d
.
w ⊗ ... ,

where x ∈ a′′, xc = |Wc , x j = x|Hom(X ′j ,V ), and each term is well defined via
the results of previous sections. In particular Lemma (1.7) follows.

Proof of Proposition 1.8. Suppose s0 ∈ sp(Wc) is of rank one. Then there
is a non-zero wo ∈ Wc such that

s0(w
′
0) = ±〈w0, w

′
0〉w0 (w′0 ∈ Wc).

Let s j ∈ EndR(Hom(X ′j, V )), j ≥ 1, be of rank one. Then there are
non-zero elements xj ∈ Hom(X ′j , V ), y j ∈ Hom(Y ′j, V ), such that

s j(u) = tr(u y∗j )x j (u ∈ Hom(X ′j , V )).

In other words, s0+s1+s2+... = τa′′(w), forw = (w0, x1+ y1, x2+ y2, ...).
Suppose that s0 + s1 + s2 + ... ∈ a′′ is perpendicular to g. Then τg(w) = 0,
i.e.

w0w
∗
0 + x1 y∗1 + x2 y∗2 + ... = 0.(11.7)

Let x ∈ g be such that (x′ + x, s0 + s1 + s2 + ...) is in the wave front set of
the distribution chc, (11.6). Then by (4.9) and (9.3.d)

xw0 = w0x ′c, xx j = x j x
′
j , xy j = y j x

′
j ( j ≥ 1).(11.8)

By combining (11.7) and (11.8) we deduce

0 = w0(x
′)kw∗0 + x1(x

′)k y∗1 + x2(x
′)k y∗2 + ... (k = 0, 1, 2, ...) .(11.9)

Since x′ ∈ h′r is regular, the odd powers (x′)k span h′ over the field of
the points in the center ofD, fixed by the involution. Hence, by taking linear
combinations of both sides of (11.9), with coefficients in in that field, we
see that (11.9) holds with the (x′)k replaced by an arbitrary element of h′.
In particular

w0w
∗
0 = 0, x j y∗j = 0, ( j ≥ 1).(11.10)

The first equation in (11.10) means that the image of w∗0 is an isotropic
subspace of V ′c. By (11.8), this image is preserved by x′. Hence, by the
classification of Cartan subalgebras in g′, w0 = 0. Also, as in the proof of
this Proposition (1.8), for pairs of type II, we check that sj = 0 for j ≥ 1.
This contradiction completes the proof. ��
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Suppose V ′ = V ′s . Then the first line of (11.4) reduces to

a
′′ = EndR(Hom(X ′1, V ))⊕ EndR(Hom(X ′2, V ))⊕ ... ,

and (11.6) reads

chc(x) = δ ◦ det(x1)⊗ δ ◦ det(x2)⊗ ...,
where x ∈ a′′, x j is the restriction of x to Hom(X′j , V ), and δ ◦ det is as in
(4.6). In particular the distribution chc(x′ + x), x ∈ g, is a positive invariant
measure on g. The following lemma can verified using the same argument
as in the proof of (7.10). We leave the details to the reader.

Lemma 11.11. Suppose V′ = V ′s .
(a) If the distribution chcx′(x) = chc(x′ + x), x ∈ g, is non-zero, then
the space V contains an isotropic subspace of the same dimension as the
dimension of the isotropic space X′ ⊆ V ′.
(b) The distribution chcx′ is regular, in the sense that for any ψ ∈ S(g),∫

g

ψ(x)chc(x′ + x) dx

=
∑ 1

|W(H)|
∫
hr

chc(x′ + x) |πh(x)|2
∫

G/H
ψ(ghg−1) d

.
g dx,

where the integrals are absolutely convergent, and the summation is over
a maximal family of mutually non-conjugate Cartan subalgebras h ⊆ g.

From now on we assume that chcx′ �= 0. If V ′c �= 0, then, in terms of
(11.2),

chcW (x
′ + x) = chcWc(x

′ + x) · chcWs(x
′ + x) (x ∈ g),(11.12)

where the product of distributions is well defined, by (1.8). In particular
we see that (11.11.a) holds in general. Hence, we may assume that V′s is
a subspace of V , such that the restriction of the form ( , ) to V′s is non-
degenerate and such that V′s = X ′ ⊕ Y ′ is a complete polarization with
respect to the form ( , ).

Let U = V ′s⊥ ⊆ V . Then

V = V ′s ⊕U = X ′ ⊕ Y ′ ⊕U.(11.13)

As in (7.20), this gives embeddings, End(X′)→ g, Hom(U, X ′)→ g, and
g(U)→ g, where g(U) is the Lie algebra of the group G(U) of isometries
of the restriction of the form ( , ) to U . Notice that Hom(U, X′) is contained
in the unipotent radical n of the parabolic subalgebra of g preserving X′. The
Levi factor of this parabolic subalgebra coincides with End(X′)+g(U). Let
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n′ ⊆ g′ be the unipotent radical of the parabolic subalgebra preserving X′.
Recall the maximal compact subgroup K ⊆ G. For ψ ∈ S(g) define

ψK
n (x) =

∫
n

∫
K
ψ(k(x + y)k−1) dk dy (x ∈ g).

By restriction the above formula gives a continuous map

S(g) � ψ→ ψK
n ∈ S(End(X′)+ g(U)).

Proposition 11.14. For any x′ ∈ h′r and any ψ ∈ S(g),∫
g

chc(x′ + x)ψ(x) dx

= 1

|det(ad(x′)|n′)|
∫

G L(X ′)/H ′s

∫
g(U )

chcWc(x
′
c + x)ψK

n (gx′sg−1 + x) dxd
.
g,

where H′
s = H ′|X ′ , is the restriction of H′ to X ′, x ′c = x ′|V ′c , and x′s = x ′|X ′ .

Proof. If V ′ = V ′s , i.e., if U = 0, then, by (11.11.b), the left hand side can
be expressed in terms of integrals over the regular parts of various Cartan
subalgebras. The same can be done with the right hand side, and the two
appear equal.

The general case follows from the previous one and from the formula
(11.12), via a straightforward calculation. ��

The pairs of groups

12. The pair Sp2n(R)), O1

Let WC = W ⊗ C be the complexification of W . The symplectic form
〈 , 〉 extends uniquely to a complex valued form on WC . Let Sp(WC ) and
sp(WC ) = sp(W )⊕ i sp(W ) denote the corresponding complex symplectic
group and complex symplectic Lie algebra. It is easy to see that the elements
of the subset sp++

C
= {x + i y; x, y ∈ sp, 〈y , 〉 > 0} ⊆ sp(WC ) don’t

have 1 as an eigenvalue. Let Sp++(WC ) = c(sp++
C
). As shown in [H2,

(12.4b)], Sp++(WC ) is an open sub-semi-group of Sp(WC ). Furthermore,
see [H2, (23.7.2)], every element g ∈ Sp++(WC ) has a unique factorization
g = u · p, where u ∈ Sp(W ), 〈Im(c(p)) , 〉 > 0, c(p) ∈ i sp(W ) and p (as
an endomorphism of WC ) has positive eigenvalues �= 1. Set

S̃p
++
(WC ) = {g̃ = (g, ξ); g ∈ Sp++(WC ), ξ

2 = det(i(g − 1))−1},
Θ : S̃p

++
(WC ) � g̃ → ξ ∈ C.(12.1)

The distribution Θ, defined in (2.7), coincides with the function equal
to the limit of the holomorphic function defined in (12.1), as p tends to the
identity.
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Lemma 12.2. The distribution Θ, has the wave front set given by the fol-
lowing formula: WF(Θ) = {(g̃, τsp(w)); g(w) = w, g̃ ∈ S̃p(W ), w ∈ W}.
Proof. Let Ψ ∈ C∞c (S̃p

c
) be supported on one sheet of the covering map

S̃p → Sp. Let g̃0 ∈ S̃p
c
. Then∫

S̃pc
Ψ(g̃)Θ(g̃0 g̃) dg̃ =

∫
S̃pc

Ψ(g̃)T(g̃0)�T(g̃)(0) dg̃

=
∫

W

∫
S̃pc

Ψ(g̃)T(g̃0)(w)T(g̃)(w) dg̃ dw.
(12.3)

Fix a smooth lifting c̃ : spc → S̃p
c

of the Cayley transform c : spc → Spc,
so that supp Ψ is in the image of c̃. Let g̃ = c̃(x), ψ(x) = const Ψ(c̃(x))
det(1 − x)2n+1, and let x0 = c(g0). Then (12.3) may be rewritten as∫

S̃pc
Ψ(g̃)Θ(g̃0g̃) dg̃ =

∫
W

∫
spc
ψ(x)Θ(c̃(x))Θ(g̃0)χx0+x(w) dx dw.(12.4)

Define maps

Λg̃0 : S̃p � g̃ → g̃0g̃ ∈ S̃p, λx̃0 : sp � x → x0 + x ∈ sp.(12.5)

Then (12.4) shows that, in terms of pullbacks of distributions [Hö, 9.2], we
have

c̃∗((Λ∗
g̃0

Θ)|S̃pc) = Θ(g̃0) · c̃∗Θ · λ∗x0
µ̂,(12.6)

where Θ(g̃0) is a constant, c∗Θ(x) = Θ(c̃(x)) is a smooth function, and µ̂
is defined just before (9.7). Hence, by [Hö, 8.2.4],

WF((Λ∗
g̃0

Θ)|S̃pc) = c̃∗ ◦ λ∗x0
(WF(µ̂)).(12.7)

Recall (9.7) that, under the identification sp = sp∗,

WF(µ̂) = {(x, s) ∈ sp× τsp(W ); xs = 0}.
Hence,

λ∗x0
(WF(µ̂)) = {(x, s) ∈ sp× τsp(W ); (x0 + x)s = 0}.

It is easy to check that

dc̃(g)(x) = −2(g − 1)−1x(g − 1)−1 (x ∈ sp).

Hence,

(g̃, s) ∈ c̃∗ ◦ λ∗x0
(WF(µ̂))

iff

(
x,−1

2
(g− 1)s(g − 1)

)
∈ λ∗x0

(WF(µ̂)

(12.8)
iff (x0 + x)(g − 1)s(g − 1) = 0
iff (x0 + x)(g − 1)s = 0.
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Recall [H2] that on a dense subset of Spc × Spc

c(c(x0)c(x)) = (x − 1)(x0 + x)−1(x0 + 1)+ 1.

Hence,

x0+ x = (x0− 1)(c(g0g)− 1)−1(x− 1) = 2(g0− 1)−1(g0g− 1)(g− 1)−1.

Therefore, on the whole set Spc × Spc,

x0 + x = 2(g0 − 1)−1(g0g− 1)(g− 1)−1.

Hence, the last condition in (12.8) is equivalent to

(g0g − 1)s = 0.

Since Sp = Spc · Spc, we are done. ��
Lemma 12.9. For any Ψ ∈ C∞c (S̃p), the distribution T(Ψ), (see (2.7)), is
a function and belongs to S(W ). Moreover the map

C∞c (S̃p) � Ψ→ T(Ψ) ∈ S(W )

is continuous.

Proof. By the method of stationary phase, the lemma is clear ifS̃p is replaced
by S̃p

c
. For the general case we notice that there are g1, g2, ..., gm ∈ S̃p

c

such that

S̃p =
m⋃

j=1

gj S̃p
c
.

Hence there are functions Ψ1,Ψ2, ...,Ψm ∈ C∞c (S̃p
c
), such that

m∑
j=1

Ψ j(g
−1
j g) = 1 (g ∈ S̃p).

Therefore for any Ψ ∈ C∞c (S̃p)

(12.10) T(Ψ) =
∫

S̃p
Ψ(g)T(g) dg =

m∑
j=1

∫
S̃p

Ψ j(g
−1
j g)Ψ(g)T(g) dg

=
m∑

j=1

∫
S̃p

Ψ j(g)Ψ(gj g)T(gj g) dg =
m∑

j=1

T(g j)�

∫
S̃pc

Ψ j(g)Ψ(gj g)T(g) dg.

Since for any g ∈ S̃p the map

S(W ) � φ→ T(g)�φ ∈ S(W )

is well defined and continuous, the lemma follows from the formula (12.10).
��
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Lemma 12.9 implies, in particular, that the following formula defines a dis-
tribution on S̃p

Chc(Ψ) =
∫

W
T(w) dw(Ψ) =

∫
W

∫
S̃p

Ψ(g)T(w) dg dw

(Ψ ∈ C∞c (S̃p)).

(12.11)

Corollary 12.12. With the above definitions we have

Chc =
∫

W
T(w) dw = Θ((−1)̃)−1Λ∗

(−1)̃
Θ,(a)

WF(Chc) = {(g̃, τsp(w)); g(w) = −w, g̃ ∈ S̃p, w ∈ W}.(b)

Proof. For part (a) we notice that

Λ∗
(−1)̃

Θ(Ψ) =
∫

S̃p
Ψ(g)Θ((−1)̃g) dg =

∫
S̃p

Ψ(g)T((−1)̃g)(0) dg

= T((−1)̃)�
∫

S̃p
Ψ(g)T(g)(0) dg =

∫
W

∫
S̃p

Θ((−1)̃)Ψ(g)T(g)(w) dg dw.

Part (b) follows from (a) and (12.2). ��
Let J be a (not necessarily positive definite) compatible complex struc-

ture on W and let U = Sp(W )J be the centralizer of J in the symplectic
group. Set

HJ(w,w
′) = 〈Jw,w′〉 + i〈w,w′〉.

This is a positive definite hermitian form on W , viewed as a complex
vector space where multiplication by i ∈ C is identified with J . For
g ∈ GLC (W ), let g∗ ∈ GLC (W ) be the adjoint element, defined by the
equation HJ(gw,w′) = HJ(w, g∗w′). In these terms, the group U = {g ∈
GLC (W ), g∗ = g−1}.

Let U++
C

= Sp++(WC )
J be the centralizer of J in Sp++(WC ), and

let Ũ++
C

be the preimage of U++
C

in S̃p
++
(WC ). It is easy to check that

U++
C

= {g ∈ GLC (W ); g∗g < 1}, and that Ũ++
C

= {g̃ = (g, ξ); g ∈
U++
C
, ξ2 = det(g)

det(1−g)2
}. (Here “g∗g < 1” means “HJ((1 − g∗g)w,w) > 0

for all w ∈ W \ {0}.”) In particular

Θ(g̃) = det1/2(g)

det(1− g)
,(12.13)

where g̃ ∈ Ũ++
C

is in the preimage of g ∈ U++
C

, and ((det1/2(g))2 = det(g).
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The group GLC (W ) is a complexification of U . LetG̃LC (W ) = {(g, h);
g ∈ GLC (W ), h2 = det(g)}, and let G̃L

++
C
(W ) = {(g, h); g ∈ GLC (W ),

g∗g < 1, h2 = det(g)}. A straightforward calculation shows that the map

GL++
C
(W ) � (g, h)→

(
g,

h

det(1 − g)

)
∈ ŨC

preserves multiplication. In particular we see that the function Θ, described
in (12.13), extends to a rational function onG̃LC (W ).

13. The pair GLn(R),GL1(R)

Here we use the notation developed in Sect. 4.

Lemma 13.1. For any Ψ ∈ C∞c (G̃), T(Ψ) is a function on Wmax such that∫
G ′\Wmax

|T(Ψ)(w)|d .
w <∞.(a)

Let Ψ ∈ C∞c (G̃) be supported on one sheet of the covering map. Then, with
δ ◦ det understood as in (4.6),

Chc(Ψ) =
∫

G ′\Wmax
T(Ψ)(w) d

.
w

=
∫

G
Ψ(g̃)Θ(g̃)|det(g − 1)|δ(det(g + 1)) dg.

(b)

Moreover,

(Θ(g̃)det(g − 1))2 = det g (g ∈ G).(c)

Thus,

Chc(g̃) = det1/2(g)δ(det(g + 1)) (g ∈ G),(d)

where the sign of the square root depends ong̃ in the preimage of g.

Proof. Notice that for g ∈ Gc and x = c(g),

det(x − 1) = det(2(g − 1)−1) �= 0 and

det(x + 1) = det(2g(g − 1)−1) �= 0.
(13.2)

Let Ψ ∈ C∞c (G̃c) be supported on one sheet of the covering map. Then

T(Ψ)(w) =
∫

G̃
Ψ(g̃)Θ(g̃)χc(g)(w) dg =

∫
g′
ψ(x)χx(w) dx,(13.3)
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where the function

ψ(x) = 2n2
Ψ(c̃(x))Θ(c̃(x))|det(x − 1)(x + 1)|−n (x ∈ g),(13.4)

is in C∞c (gc). Hence, for Ψ ∈ C∞c (G̃c), the method of stationary phase
implies (a). Moreover, (4.10) shows that∫

G\Wmax
T(Ψ)(w) d

.
w =

∫
G ′\Wmax

∫
g

ψ(x)χx(w) dx d
.
w

=
∫
g

ψ(x)δ(det(x)) dx =
∫

G
Ψ(g̃)Θ(g̃)δ(c(g)) dg

=
∫

G
Ψ(g̃)Θ(g̃)|det(g − 1)|δ(det(g + 1)) dg.

Thus (b) follows for Ψ ∈ C∞c (G̃c).
Let g0 ∈ Gc and let x0 = c(g0). Then for Ψ ∈ C∞c (G̃c),

T(g̃0)�T(Ψ)(w
′)(13.5)

= Θ(g̃0)χx0(w
′)
∫

W
χx0(w)

∫
g

ψ(x)χx(w) dx χ

(
1

2
〈(1− x0)w

′, w〉
)

dw

as a distribution on W . As shown in (4.11), this distribution coincides with
a function on Wmax , which is absolutely integrable over G \ Wmax . Thus,
with the convergence question out of the way, we are free to calculate the
following oscillatory integral (with z0, z ∈ gc):∫

G ′\Wmax
χz0�χz(w

′) d
.
w
′

(13.6)

=
∫

G ′\Wmax

∫
W
χz0(w

′)χ
(

1

2
〈(1− z0)w

′, w〉
)
χz0+z(w) dw

=
∫

G ′\Xmax

∫
X

∫
Y

∫
Y
χ

(
1

2
((x ′z0 + x(1− z0))y

′

+ (−x ′(1+ z0)+ x(z0 + z))y)

)
dy dy′ dx d

.
x
′

= const
∫

G ′\Xmax

∫
X
δ

(
1

2
(x ′z0 + x(1− z0))

)
δ

(
1

2
(x ′(1+ z0)− x(z0 + z))

)
dx d

.
x
′
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= const |det(1− z0)|−1
∫

G ′\Xmax

∫
X
δ(x ′z0 + z)

δ(x ′(1+ z0)− x(1− z0)
−1(z0 + z)) dx d

.
x
′

= const |det(1− z0)|−1
∫

G ′\Xmax
δ(x ′(1+ z0 + z0(1− z0)

−1(z0 + z))) d
.
x
′

= const |det(1− z0)|−1|det(1− z)|−1∫
G ′\Xmax

δ(x ′(1+ z0 + z0(1− z0)
−1(z0 + z))(1− z)−1) d

.
x
′

= const |det(1− z0)|−1|det(1− z)|−1∫
G ′\Xmax

δ(x ′(1+ (1− z0)
−1(z0 + z)(1− z)−1)) d

.
x
′

= const |det(g0 − 1)det(g − 1)|
∫

G ′\Xmax
δ

(
x ′

1

2
(g0g + 1)

)
d
.
x
′

= const |det(g0 − 1)det(g − 1)|
∫

G ′\Xmax
δ(x ′(g0g + 1)) d

.
x
′

Thus for g0, g ∈ Gc,

(13.7)
∫

G ′\Wmax
T(g̃0)�T(g̃)(w

′) d
.
w
′

= const Θ(g̃0)|det(g0 − 1)|Θ(g̃)|det(g − 1)|
∫

G ′\Xmax
δ(x ′(g0g+ 1)) d

.
x
′

= const det1/2(g̃0)det1/2(g̃)δ(det(g0g+ 1)).

By taking the limit if g0 goes to 1, we see that the constant is equal to 1,
(const = 1). Since there are g0, g1, ..., gm ∈ Gc such that

G =
m⋃

j=0

gj G
c

a partition of unity argument completes the proof of (b). Parts (c) is easy. ��
An argument analogous to the one used to prove (12.11) verifies the

following statement:

WF(Chc) = {(g̃, τg(w)); g(w) = −w, g̃ ∈ G̃, w ∈ W}.(13.8)
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14. A general pair G,G′

The proof of Proposition (2.10) is based on (12.12.b) and (13.8), and is
entirely analogous to the proof of Proposition (1.8). Thus we leave it for the
reader.

Fix a Cartan subgroup H′ ⊆ G′, as in Sect. 2, an element h′ ∈ H̃ ′r .
Assume that Chch′ �= 0.

Suppose the pair G,G′ is of type II. Then we have the decompos-
ition V = V ′ ⊕ U , (see (7.20)). Let P ⊆ G̃ be the parabolic subgroup
preserving V ′. Then the unipotent radical of P, N = 1 + n, where n =
Hom(U, V ′). The Levi factor of P, M, coincides with the double cover of
GL(V ′) · GL(U), via (7.20). Let δP be the modular function for P. Recall
the Harish-Chandra transform

ΨP(m) = δ1/2
P (m)

∫
N

∫
K

Ψ(kmnk−1) dk dn

(Ψ ∈ C∞c (G̃), m ∈ M),
(14.1)

see [W2, 7.2.1]. It is easy to see (as in (7.21)) that (13.1) implies the
following proposition.

Proposition 14.2. For any Ψ ∈ C∞c (G̃) and any h′ ∈ H̃ ′r ,∫
G̃

Chc(h′g)Ψ(g) dg =
∫

G ′/H ′

∫
G̃ L(U )

ΨP(gh′g−1h) dh d
.
g.

Let G,G′ be a pair of type I. Then V = X′ ⊕ U ⊕ Y ′, as in (11.13).
Let P ⊆ G̃ be the parabolic subgroup preserving X′, and let P′ ⊆ G̃′
be the parabolic subgroup preserving X′. Let N ⊆ P and N′ ⊆ P′ be
the unipotent radicals. The Levi factor of P, M, coincides with the double
cover of GL(X′) · G(U), where G(U) is the restriction of G to U . Let ΨP

denote the Harish-Chandra transform of Ψ, as in (14.1). Then an argument
analogous to the one verifying (11.14) proves the following proposition.

Proposition 14.3. For any Ψ ∈ C∞c (G̃) and any h′ ∈ H̃ ′r ,∫
G̃

Chc(h′g)Ψ(g) dg

= δ−1/2
P′ (h ′)

∫
G L(X ′)/H ′s

∫
G̃(U )

ChcWc(h
′
ch)Ψ

P(gh′sg−1h) dh d
.
g,

where H′
s = H ′|X ′ , is the restriction of H′ to X ′, h ′c = h ′|V ′c , h ′s = h ′|X ′ , and

Wc = Hom(V ′c,U).

From now on we assume that the pair G,G′ is of type I, and that the
Cartan subgroup H′ ⊆ G′ is compact.
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Let H ⊆ G be a compact Cartan subgroup. The function Θ, (12.13), and
hence the function Chc, (12.12.a), uniquely extends to a rational function
on H̃ ′

C
H̃C . In terms of the decomposition (10.4) we have

ChcW (h
′h) =

∏
j∈J′, k∈J

ChcW j,k(h
′h) (h′ ∈ H̃ ′

C
, h ∈ H̃C ),(14.4)

where the subscript (W or Wj,k) indicates the symplectic space with respect
to which the corresponding function is defined. As in (10.7) we have

∆(h ′)ChcW(h
′h)∆(h) =

∑
L

F̃L,h′(h),

(14.5)
F̃L,h′(h) = P̃L(h

′)ChcL(h
′h), ChcL(h

′h) =
∏

j∈J′\{0}
ChcW j,L( j)(h

′h),

where the summation is over all injections L : J′ \ {0} → J \ {0}, each P̃L

is a regular function on H̃C , h ′ ∈ H̃ ′
C

, and h ∈ H̃C .
For a strongly orthogonal set S ⊆ Φn(h), the Cayley transform cS :

hC → hS,C lifts to an isomorphism CS : H̃C → H̃S,C . Thus, as in (10.11),

∆(h ′)ChcW(h
′h)∆ ◦ C−1

S (h) = ∆(h′)ChcW (h
′C−1

S (h))∆ ◦ C−1
S (h)

(14.6)
=
∑

L

F̃L,h′ ◦ CS(h) (h′ ∈ H̃ ′
C
, h ∈ H̃S,C ).

In terms of (10.13) let

h|Vl = exp(x)|Vl = exp(x|Vl) = eixl = hl (h ∈ H̃, x ∈ h).(14.7)

Thus, each hl is identified with a complex number of absolute value 1. The
formula (14.7) extends to the complexification H̃C . Then each hl is a non-
zero complex number. In these terms, define the following differential forms
on H̃C and on H̃S,C :

µ̃ = dh1

ih1

dh2

ih2
...

dhn

ihn
, µ̃S = i |S|C∗Sµ̃.(14.8)

Recall the Harish-Chandra integral, defined with respect to negative
roots (see [W1, 7.4.8]):

ΨS(h) = ∆ ◦ C−1
S (h) ε̃S(h)

∫
G/HS

Ψ(ghg−1) d
.
g,

(14.9)
ε̃S(h) =

∏
α◦c−1

S real

sgn(1− h−α◦c
−1
S ) (Ψ ∈ C∞c (G̃), h ∈ H̃r

S).
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As in Sect. 10, we have the Weyl integration formula:∫
G̃

Ψ(g) dg =
∑

nS

∫
H̃+S

∆ ◦ C−1
S (h)ΨS(h) µ̃S.

Recall the notation introduced between (10.18) and (10.19). Let

C̃
L
S (t, h) = h exp(ityL

S ) (h ∈ H̃+
S , 0 ≤ t ≤ 1).(14.10)

For α ∈ Φn
S, let C̃

L
S |α denote the restriction of C̃

L
S to the set of h ∈ H̃S,C ,

where hα◦c
−1
S = 1. Let C̃

L
S (1) denote the restriction of C̃

L
S to t = 1. We

give orientations to C̃
L
S , C̃

L
S (1), and C̃

L
S |α, compatible with those of CL

S ,
CL

S (1) and CL
S |α via the exponential map, respectively. Let H̃i r

S ={h ∈ H̃S;
hα◦c

−1
S �= 1 for all α ∈ Φn

S}. By a theorem of Harish-Chandra, [Va, part II,
p. 219], each function ΨS, defined in (14.9), extends to a smooth function on
H̃i r

S , which shall be denoted by the same symbol ΨS. For an integer N ≥ 0,
let ΨS,N denote the extension of degree N of ΨS, to the complexification
H̃i r

S,C , (see (A.6)).

Theorem 14.11. Fix an element h′ ∈ H̃ ′r . Then for any integer N ≥ 0,
large enough, and for all Ψ ∈ C∞c (G̃1),

∆(h ′)
∫

G̃
Chc(h′g)Ψ(g) dg

=
∑

nS

∫
C̃

L
S (1)

ν̃L,x′,S,N −
∫

C̃
L
S

d(ν̃L,x′,S,N)−
∑
α∈Φn

S

∫
C̃

L
S |α
ν̃L,x′,S,N

 ,
where ν̃L,x′,S,N = F̃L,x′ ◦ C−1

S ·ΨS,N · µ̃S, the unmarked summation is over
a maximal family of mutually non-conjugate Cartan subgroups HS, and
over all injections L : J′ \ {0} → J \ {0}. Moreover, each integral on
the right hand side of the equation is absolutely convergent, (see (A.7)).
Furthermore, the integrals over C̃

L
S |α are equal to each other.

Proof. By Harish-Chandra’s Method of Descent, [Va, part II], the problem
is reduced to the case G = Up,q,G′ = U1, as in the proof of (10.19). ��
Theorem 14.12. For any Ψ ∈ C∞c (G̃1) the following integral∫

H̃ ′r

∣∣∣∣∆(h ′) ∫
G̃

Chc(h′g)Ψ(g) dg

∣∣∣∣ dh′

is convergent and defines a continuous seminorm on C∞c (G̃1).

Proof. Since, by definition (14.10), C̃
L
S (t, exp(x)) = CL

S (t, x), this theorem
follows from (12.12) and (10.38) via the argument used in the proof of
(10.19). ��
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Appendix A

Here we recall the notion of a boundary value of an analytic function in the
sense of distribution theory, see [Hö, 3.1.15].

Let V be a finite dimensional space over R. For any v ∈ V , let ∂(v)
denote the derivative in the direction v:

∂(v)ψ(x) = d

dt
ψ(u + tv)|t=0 (u ∈ V, ψ ∈ C∞(V )).

Let Sym(VC ) denote the symmetric algebra of VC . The map ∂ extends to
an isomorphism from Sym(VC ) onto the algebra of constant coefficient
differential operators on V . Let

eN(s) =
N∑

p=0

1

p! s
p (s ∈ Sym(VC ), N = 0, 1, 2, ...).

For an open set U ⊆ V and a function ψ ∈ C∞(U) define an extension ψN
(N = 0, 1, 2, ...) of degree N of ψ to the complexification U + iV by

ψN(u + iv) = ∂(eN(iv))ψ(u) (u ∈ U, v ∈ V ).(A.1)

By fixing a basis, we obtain real valued coordinates x = (x1, x2, ..., xn)
on V . Let z = (z1, z2, ..., zn) be the corresponding complex coordinates
on VC . Let dx = dx1dx2...dxn and let dz = dz1dz2...dzn.

Let U ⊆ V be an open set, and let Γ ⊆ V be an open convex cone. Fix
a norm | | on V . For some γ > 0, set Z = {u + iv ∈ VC ; u ∈ U, v ∈ Γ,
|v| < γ }. Let f be an analytic function on Z such that for some N ≥ 0,

| f(u + iv)| ≤ const |v|−N , (u + iv ∈ Z).(A.2)

Let v0 ∈ Γ, with |v0| < γ . Then for any ψ ∈ S(V ), the following limit
exists and defines a temperate distribution on V∫

V
ψ f dx := lim

Γ�v→0

∫
V
ψ(u) f(u + iv) dx(u)

=
∫

V
ψN(u + iv0) f(u + iv0) dx(u)(A.3)

+
∫

V

∫ 1

0
∂((iv0)

N+1/N!)ψ(u) f(u + itv0)t
N dtdx(u).

The formula (A.3) is a direct consequence of Stokes Theorem, and can
be written in more intrinsic terms as follows.

Let C be a (n + 1) chain in Z defined by

C : [0, 1] ×U � (t, u)→ u + itv0 ∈ Z,
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Let C(0), (C(1)) denote the restriction of C to t = 0, (t = 1). We declare
the following charts to be positive:

V = C(0) � u → x(u) ∈ Rn, V = C(1) � u + iv0 → x(u) ∈ Rn,

C � u + itv0 → (t, x(u)) ∈ R1+n.

Then ∫
C(0)

ψN f dz =
∫

C(1)
ψN f dz −

∫
C

d(ψN f dz),(A.4)

where∫
C(0)

ψN f dz =
∫

V
ψ f dx∫

C(1)
ψN f dz =

∫
V
ψN(u + iv0) f(u + iv0) dx(u)(A.5)

−
∫
∂C

d(ψN f dz) =
∫

V

∫ 1

0
∂((iv0)

N+1/N!)ψ(u) f(u + itv0)t
N dtdx(u).

More generally, let H be a commutative Lie group of dimension n, and
let HC be the complexification of H . For y ∈ h, the Lie algebra of H , let

∂̃(y)Ψ(h) = d

dt
Ψ(h · exp(ty))|t=0 (h ∈ H, Ψ ∈ C∞(H)).

As is well known, ∂̃ extends to an injective homomorphism from Sym(hC )
to the algebra of differential operators on H .

For an open subset X ⊆ H and and a function Ψ ∈ C∞(X) define an
extension ΨN (N = 0, 1, 2, ...) of degree N of Ψ to Z = X · exp(ih) ⊆ HC

by

ΨN(h · exp(i y)) = ∂̃(eN(i y))Ψ(h) (h ∈ X, y ∈ h).(A.6)

In particular, if the group H is connected, we have

ΨN(exp(x + i y)) = (Ψ ◦ exp)N(x + i y) (x ∈ exp−1(X), y ∈ h),
where the right hand side was defined in (A.1).

Let Γ ⊆ h be an open convex cone. Fix a norm | | on h. For γ > 0
set Zγ = {h · exp(i y); h ∈ X, y ∈ Γ, |y| < γ }. Let f be a holomorphic
function on Zγ \ X. Assume that the function f satisfies the following
growth condition

| f(h · exp(i y))| ≤ const |y|−N, (h ∈ X, y ∈ Γ, |y| < γ).
Suppose C is a (n + 1) chain in Zγ , with the boundary ∂C = C0 − C1,

where C0 = X and C1 ⊆ Zγ \X. Let dz be an invariant holomorphic n-form
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on HC . Then the corresponding limit distribution is given by the following
formula,∫

X
Ψ(x) f(x) dx :=

∫
C1

ΨN(z) f(z) dz −
∫

C

d (ΨN(z) f(z) dz) ,(A.7)

where, for N large enough, the integrals on the right hand side are absolutely
convergent.

Appendix B

Here we prove Lemma (10.38). Notice that∫
|v|≥1

(v2 + a2)−1/2φ(v) dv ≤
∫
R

φ(v) dv,∫
|v|≤1

(v2 + a2)−1/2φ(v) dv ≤ 2 ‖ φ ‖∞
∫ 1

0
(v2 + a2)−1/2φ(v) dv,

∫ 1

0
(v2 + a2)−1/2φ(v) dv = log(v +

√
v2 + a2)|10 = log

(
1

|a| +
√

1

|a|2 + 1

)
.

Moreover,

lim
x→∞

log
(

x +√x2 + 1
)

log(x + 1)
= 1.

hence

log

(
1

|a| +
√

1

|a|2 + 1

)
≤ const log

(
1

|a| + 1

)
.

Furthermore, for ε > 0,∫ ∞

0
log

(
1

a
+ 1

)
(a2 + 1)−ε/2 da

=
∫ 1

0
log

(
1

a
+ 1

)
(a2 + 1)−ε/2 da +

∫ ∞

1
log

(
1

a
+ 1

)
(a2 + 1)−ε/2 da

≤
∫ 1

0
log

(
1

a
+ 1

)
da +

∫ ∞

1
a−1−ε da

=
∫ ∞

1
log (a + 1) a−2 da +

∫ ∞

1
a−1−ε da <∞.

This verifies (10.38.a).
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Notice that, for ε > 0,∫
R2

∫
|v|≥1

(v2 + a2)−1/2(v2 + b2)−1/2φ(v) dv(1 + a2)−ε/2(1+ b2)−ε/2 da db

≤‖ φ ‖1

∫
R2
(1+ a2)−1/2−ε/2(1+ b2)−1/2−ε/2 da db <∞.

Furthermore,∫
R2

∫ 1

0
(v2 + a2)−1/2(v2 + b2)−1/2 dv(1+ a2)−ε/2(1+ b2)−ε/2 da db

(B.1)

=
∫ 1

0

(∫
R

(v2 + a2)−1/2(1+ a2)−ε/2 da

)2

dv,

and

1

2
(v+ a)2 ≤ v2 + a2.

Moreover, for v > 0 and a > 0,∫ ∞

0
(v+ a)−1(1+ a)−ε da ≤

∫ 1

0
(v+ a)−1 da +

∫ ∞

1
a−1−ε da

= log(v−1 + 1)+ ε−1.

Hence the right hand side of (B.1) can be dominated by∫ 1

0

(∫
R

(|v| + |a|)−1(1+ |a|)−ε da

)2

dv

≤ 4
∫ 1

0

(∫
R

(v2 + a2)−1/2(1+ a2)−ε/2 da

)2

dv

≤ 4
∫ 1

0

(
log(v−1 + 1)+ ε−1

)2
dv <∞.

This verifies (10.38.b).
Let z = u + iv, and let ψ(z) = φ(u, v). We would like to show that∫

R

∫
R2
|z − a|−1ψ(z) du dv(1+ a2)−ε/2 da <∞.(B.2)

It is easy to check that for |z − a| ≥ 1,

1

|z − a| ≤
2

1+ |z − a| ≤ 2
1+ |z|
1+ |a| ≤ 2

1+ |z|
(1+ a2)1/2

.
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Hence, ∫
R

∫
|z−a|≥1

|z − a|−1ψ(z) du dv(1 + a2)−ε/2 da

≤ 2
∫
R

∫
R2
(1+ |z|)ψ(z) du dv(1 + a2)−1/2−ε/2 <∞.

Moreover,∫
|z−a|≤1

|z − a|−1ψ(z) du dv ≤
∫
|z|≤1

max
|z−a|≤1

φ(z)

≤ const (1+ a2)−1/2 <∞.
Hence, ∫

R

∫
|z−a|≤1

|z − a|−1ψ(z) du dv(1 + a2)−ε/2 da <∞.

This verifies (10.38.c).
Since,

((u − a)2 + v2)−1/2(1+ a2)−ε/2 ≤ 4(|u − a| + |v|)−1(1+ |a|)−ε,
we consider the following integral∫ ∞

0
(|u − a| + |v|)−1(1+ |a|)−ε da,(B.3)

for an arbitrary u ∈ R and v ≥ 0. If u ≤ 0, then the integral (B.3) is equal
to ∫ ∞

0
(a − u + v)−1(1+ a)−ε da ≤ log((v − u)−1 + 1)+ ε−1.

If u > 0, then the integral (B.3) is equal to∫ u

0
(u − a + v)−1(1+ a)−ε da +

∫ ∞

u
(a − u + v)−1(1+ a)−ε da.

Notice that∫ u

0
(u − a + v)−1(1+ a)−ε da ≤

∫ u

0
(u − a + v)−1 da

= log(u + v)− log(u),

and that∫ ∞

u
(a − u + v)−1(1+ a)−ε da ≤

∫ ∞

0
(a − u + v)−1(1+ a)−ε da

≤ log((v − u)−1 + 1)+ ε−1.

Hence, the square of the integral (B.3) is integrable against the rapidly
decreasing function φ(u, v). This verifies (10.38,d).
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