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Introduction

The Cauchy determinant identity says

1)

det 1 _ ITicythi =hp) T (hy —h))
1-hh )~ [T, @—hh) :

where hy, hy, ..., hy and hi, h, ..., h; are indeterminates, (see [M], [H5],
[Wy]). Thisidentity is equivalent to

1 |hkhke bk hkepke | ke

) — — =
@) [T, @—hh) — &, o h"Thn2  ho] [hn-Thn-2  ho]’
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where
h'c hle . hi
ki ok
|hk1h"2...h'““|:det hzl hZ2 h;n ,
hki hke ... hk

and similarly for the h;’s, (see [M], [H5], [R3]).
Consider the following action of the group U, x U, on M,,(C), the space
of n x n matrices with complex entries:

A— gAg'  (Ae My(©); g,d € Up).

This action extends to an action on Sym(M,(C)), the symmetric algebra of
M, (C). The formula (2) is equivalent to

trace((d. §)lsymmn(©)) = Y _ trace(I1(g)) trace(I1(g))
(9.9 € Un),

where the summation is over al irreducible polynomial representations IT
of Up, [H5], and both sides are understood as distributions on U, x U,,.

The formula (3) belongs to The Classical Invariant Theory. In a series
of works, culminating in [H1], Roger Howe has generalized this theory
by introducing the notion of a reductive dual pair G, G in a symplectic
group Sp. -

Let w bean oscillator representation of S, the double cover of S, and let
G, G’ € Sbethepreimagesof G, G respectively. Howe's correspondence
isabijection IT <> IT between certain (in general unknown) subsets of the
admissible duals of G and of G/, [H1].

Let © be the distribution character of w. If both G and G are compact,
then G isisomorphic to U, and G’ isisomorphic to Uy, for some m and n,
and a slight generalization of (3) gives

©)

(4) O () = /G On(@O(ggHdy (9 € G),

where ®r(g) = trace(T1(Q)) isthe character of TT (and similarly for IT),
and both sides are understood as distributions onG'.

The purpose of this paper is to redefine the right hand side of (4), so
that it would make sense, uniformly for all real reductive dua pairs, and
to provide some evidence for the conjecture that the resulting formula is
compatible with Howe's correspondence.

The main problem, along these lines, is that if G is not compact then
the integral (4) has no chance to converge - no matter how far we stretch
the theory of generalized functions. However, there is a very simple way
around it, which by the way exposes the potentia role of the structure of
G, G’ orbitsin W, the corresponding symplectic space.



A Cauchy Harish-Chandra integral, for areal reductive dual pair 301

Recall, [H2], that the mataplecitic groupSp, may be realized in the space
S*(W) of temperate distributions on W, viaamap T : > g — T(Q) €
S (W), (see Sect. 2). In particular,

O((-1)g) = T(-1)9)(0) = O((—1)) /W T@w)dw  (ge ).

where (—1) isin the preimage of —1.
Let x denote the central character of IT, and let H € G be a Cartan
subgroup. Then (4) can be rewritten as

On(g) = fG On((-19)0((—-1)gg) dg

S (—D)O(~1) /G o /W T(gg) (w) dw dg

) S (—D)O(~1) / o / T(gg) (w) chi g
G G\W

(DO~ / BnmAmAh [ / T(hg’)(w)dw] dh,
A H\W

where A isthe Weyl denominator, see[W2]. The point isthat theintegral in
brackets admitsageneralization, (see Sect. 2). Hence, viaWeyl’sintegration
formula, the integral over G\W in the third line of (5), makes sense, (see
2.17), and this is what we have been looking for. The title of this paper
refers to our generalization of the integral in brackets in the formula (5).

As usual in the theory of orbital integrals, there is “an infinitesimal
version” of the above-mentioned integral, which lives on the Lie algebra.
Wedefineitin Sect. 1, deferring most of thetechnicalitiesto Sects. 3-11. The
integral on the group isdefined in Sect. 2, with the technicalities explained
to Sects. 12-14.

In Sects. 3—7 we deal with pairs of type Il. The calculations here are
relatively straightforward, mainly because our object of study is a non-
negative invariant measure. The situation becomes more complex for pairs
of type I, Sects. 8-11, where we are led to deal with distributions, which
are not measures (Sect. 10).

Thelast three sections (12—14), where we investigate the integral on the
group, are abit sketchy because the proofs of the results there are anal ogous
to the corresponding proofsin the Lie algebra case.

For computational convenience we reverse the roles of G and G in the
rest of this paper.

| would liketo thank Wulf Rossmann for hiswonderful hospitality during
my sabbatical stay in Ottawain the Fall 1996 and during two summer visits
in 1997 and 1998. | am indebted to him for many fruitful conversations, and
for hisinsistence that “there should be contours somewhere in thistheory”.
Thisfinaly lead to the proof of Theorems 10.3 and 14.12.
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and cordial hospitality during my frequent visitsin Toru.

It has been my pleasure to report on the initial results of this paper in
Tuczno, July 1995, and in Yale, November 1996. | would like to thank
Andrze] Hulanicki and Roger Howe for their kind invitations and interest.

1. Theintegral onthelLiealgebra

Let W be afinite dimensional vector space over R, with a non-degenerate
symplectic form (, ). Let o = Sp(W) € End(W) denote the correspond-
ing symplectic group, with the Lie algebra sp = sp(W) < End(W). Let
J be a compatible positive definite complex structure on W. Thus J € sp,
J? = —1, and the symmetric bilinear form

1.1 (Jw, w") (w, w € W)

is positive definite. Let dw be the Lebesgue measure on W normalized
so that the volume of the unit cube is 1. Since any two positive definite
compatible complex structures on W are conjugate by elements of So(W),
which have determinant 1, the normalization of the measure dw does not
depend on the particular choice of J. Let x(x) = &7, x e R. In these
terms, Liouville's formula reads

(1.2 / X <i—(J(w), w)) dw =1
wo \2

The conjugation by J, x — JxJ1, defines a Cartan involution 6 on the
group S and on the Lie algebrasp. Let G, G € S be an irreducible dual
pair, withthe Liealgebras g, ¢ < sp, [H1]. We may, and shall, assume that
0 preserves G, G, gand ¢'.

Let H = T'A € G’ be a0 stable Cartan subgroup, where T is the
compact part of H and A’ is the vector part of H, as in [W1, 2.3.6].
Let A’ = * denote the centralizer of A in I, and let A” denote the
centralizer of A’ in §. Clearly, A” € G’. We shall see in (7.4) that
(A”, A isareductive dua pair in So(W). We shall define an open dense
A" - invariant subset Wx» € W such that A” \ Wx» isamanifold, with an
A" - invariant measure dw determined by

13 [ pwdw= / p(aw)dadiv (¢ € Co(War),
Wy AW J A7

where da indicates a Haar measure on A”.
For avector subspace V C sp define an unnormalized moment map

1.4 v W —= V* y(w)(X) = (Xw, w) xeV, weW).
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For simplicity, let

1 1
(15) Xx(w) = x (erp(w)(X)> =X <Z<Xw’ w>)
(X esp, weW).

Recall, [HO], [H3], that for afinite dimensional vector space V over R,
and adistribution u € D'(V), one defines the wave front set of u, WF(u) €
V x V*, asfollows. The complement of WF(u) in V x V* isthe union of
all setsof theformU x U’, whereU < V isan open set, and U’ € V*\ {0}
is an open cone such that for any v € G°(U) and any ¢ € C>*(U), with
the derivative ¢’ (U) C U’

(16)  Ju(y Ko@)l = constypn(l+ max [¢'CN™ (N =0).

Here, on the right hand side | | stands for a norm on V*. (Unlike in [HQ],
we shall consider the zero section suppu x {0} to be in the wave front set
of u, whenever thisis convenient and does not lead to confusion.) Let S(V)
denote the Schwartz space of V, asin [HO, Chapt. 7].

Lemma 1.7. Let a” denote the Lie algebra of A’. For any ¢ € S(a”),

@ / / Y (X) xx(w) dx| dw < oo.
AW | Jar

The formula

()  che(y) = / P0xxw) dxdi (€ S@)
AN\W Jar

defines atemperate distribution on d’. The wave front set of this distribution
(0 WF(chc) = {(X, T (w)); X(w) =0, x € d’, we W}

Let W(H") = W(H’, G") denote the Weyl group of H in G'. By defin-
ition, W(H") is equal to the normalizer of H' in G’ divided by H’. This
group acts on the Lie algebra ly of H'. We shall say that an element X € b’
isregular, if it isregular in the usual sense (the eigenvalue 0 of ad(X) has
multiplicity equal to the dimension of §, see [W1, 0.2.1]) and the stabilizer
of X inW(H") istrivial. Theset of al such elementsX e b’ shall be denoted

by b".

Proposition 1.8. Fixan element X € b"". Then the intersection of WF(chc)
with the conormal bundle to the embedding

goXx—> X +xed

is empty (contained in the zero section).



304 T. Przebinda

Standard micro-local analysis [HO, 8.2.4] together with Proposition 1.8,
justify the following definition.

Definition 1.9. Let X' € '". Then

chey (V) = /

A’” \ WA///

/W(X)Xx/+x(W) dxdw (¥ € S(g)
g

isthe pullback of the distribution (7.b) from d’ to g via the embedding
go3Xx—> X +xed.

The following lemma s an obvious consequence of [HG, 8.2.4] and (1.8).

Lemma 1.10. Foranyx e b, WF(chcy) = {(X, g(w)); (X'+X)(w) =0,
Xeg, we W}

Recall, [H1] that the group G has a defining module V'. Specificaly,
if the pair G, G’ is of type I, then V' is a finite dimensional space over
D =R, C or H (the quaternions). The division algebraD is equipped with
a(possibly trivial) involution, and the space V with a non-degenerate form
(, ), which iseither hermitian or skew-hermitian. The group G coincides
with the isometry group of that form. If the pair G, G is of type II, then
G = GLp(V"), is“the isometry group of the zero form”.

For apair G, G’ of typel, let V. € V' be the subspace on which the
vector part A’ of the Cartan subgroup H' € G’ actstrivially. Let V; € V' be
the orthogonal complement of V.. Since the restriction of the form (, Y to
V¢ is split, there is a complete polarization \, = X' @ Y’ preserved by H'.
Thus

(1.12) V=V.eV, V=XaY.

If the pair G, G’ is of type Il, we have V. = 0, and the whole space V'
is isotropic. For convenience, we identify V' with X’ in this case (and set
Y = 0).

Similarly, let V be the defining module for G. Set d = dimy (V) and
d = dimp (V). Let

112 p=d-d+1,d-d,d-d, 2d-d), 2(d—-d)+1if
G/ - Op,q, S)zn(R), Up,q, $p’q, O;n, reSpeCth@Iy.
For an element X' € b’ let A1(X), A2(X),..., denote the eigenvalues of

X|X" € Endr(X'), the restriction of X to X'. Fix anorm | | on the red
vector space Endpy (V). Let V{ = V{; & V/; @ ... be adecomposition of V,

into H’ - irreducible subspaces over D. For X € b’ let uy (X)) = ’x/|vc/1),

ua(X) = )X/Iv&’, ... Let yy be the product of positive roots of K- in g,

(with respect to some ordering of roots). Recall that the rank of G is the
dimension of a Cartan subalgebra of g.
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Theorem 1.13. Assumethat therank of G islessor equal totherank of G.
Fix numbers N, € > 0. If V = 0 set

PX) = [ [ 001+ DN, (X € ).
j

If V¢ # O, then the group G’ is isomorphic to one of the groups listed in
(1.12) and the number p defined in (1.12) is non-negative. In this case set

PO) = T2 001+ DN - T 0 + P, (X e ),
j j

Then the following integral converges and defines a continuous seminorm
on S(g):

/ P(x)
h/l’

Proof. ThisTheoremisadirect consequence of Harish-Chandra’'s Theorem,
regarding his semisimple orbital integral, [Va, part |, p. 47], combined with
(11.14) and (10.3) for pairs of type |, and (7.21) for pairs of typell. O

dx' (¥ € Sg)).

iy (X') / che(X' + X)yr(X) dx
g

For afinite dimensional vector space V over R, with a Lebesgue meas-
ure dx, let

(1.14) y(€) = /V xECN Y dx (e V' ¥ edqV))

be the Fourier transform, defined with respect to the character . The
Fourier transform of a temperate distribution u € 3(V) is defined by the
usual recipe: 0(y) = u(y), ¥ € V).

Let @' C g'* be a nilpotent coadjoint orbit. Denote by oy € S(g)
the canonical invariant positive measure on ¢, as explained in [RR], [R1,
p.56] or in [W2].

Harish-Chandra’'s Regularity Theorem, [W1, 8.3.4], implies that the
Fourier transform, 1o € S(g’*) coincides with alocally integrable, con-
jugation invariant function on ¢. In particular one can restrict this func-
tion to h'". For each connected component ¢ C ' there is a harmonic
polynomial h such that f1o/(X') = h(X)/my (X), X" € €, see [W2]. More-
over there is a constant coefficient differential operator D on b’ such that
h = D'my, see [He, Theorem 3.6, p. 361]. By combining these facts with
(2.13) and (10.6), it is easy to deduce the following corollary.

Corollary 1.15. Suppose therank of G isless or equal to the rank of G. If
G’ is one of the groups listed in (1.12), assume in addition, that

2d <d+2 2d <d, 2d' <d, 2d' <d, 2d' <d + 1if
G = Op.g: Pon(R), Upg, S)p,q, 0O3,. respectively.
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Then for any nilpotent coadjoint orbit @ C g'* and any Cartan subalgebra
h/ g g/’

A/r

Moreover, the above integral defines a continuous seminormon S(g).

dX' <oo (¥ € Sg).

for(X)7ry (X)? / che(x' + x)(x) dx
g

Since A € A” C H’, we may normalize the measures involved so that
the Weyl integration formula looks as follows,

_ 1 N2 —1 .
[, 9000 =3 iy [ oo [ wiorg g

(116) “¢ /
(€ Sg)),

where the summation is over a maximal family of mutually non-conjugate
Cartan subgroups H' € G/, and |[W(H’)| isthe cardinality of the Weyl group
W(H').

Definition 1.17. Under theassumptionsof the Corollary 1.15, givenanilpo-

tent coadjoint orbit @’ C g'* andthecanonical invariant measure 1 define
an invariant temperate distribution i, on g by the formula

Al _ 1 AU N2 ! !
RO =3 i A o )y (X)) /g che(x' + X)y(x) dx dx

(v € S@).

where the summation isasin (1.16).

The point of this definition is that /i, resembles a constant multiple of
the Fourier transform of the sum of canonical measures supported on some

orbits contained in 7 o 7, *(O):

A~/ l A~ U /
Lo (Y) = Z W /h” M(D/(X)|7Th’(x)|2
[ [ entwmoodedivax
AW\WA/// g
=> L / for (<) |y (X) 2
[W(H")| b

f f / 1o (G Y0 o i dg X’
AN\G’ W Jg

(1.18)
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= / fo (X)) / / Xo-x (W) (X) dx chw dx’
g "\W /g

_ / / Fror O0) 10 (w) A / e (W) V(%) dx chi
\WJg’ g

—oonst- [ g (o (w) ) i
G\W

= const - ﬂfgorg_/l(@/)(w).

The above reasoning can be made precise in some interesting cases.

Recall, [H4], [Li], that a pair G, G of type | is in the stable range,
with G’ - the smaller member, if the space V has an isotropic subspace of
dimension greater or equal to the dimension of V. For such pairsit iswell
knownthat if @" C g"* isanilpotent coadjoint orbit, then g, orgil((9/) Cg*
contains asingle dense nilpotent coadjoint orbit @. The same holdsfor pairs
of type I, with the rank of G’ less or equal to the rank of G. We shall refer
to O asto the orbit corresponding to ¢

Theorem 1.19. Supposethepair G, G isof type in the stable range, with
G’ - the smaller member, or a pair of typell, withtherank of G lessor equal
totherank of G. Let @' C g’* be anilpotent coadjoint orbit, and let @ C ¢
be the corresponding nilpotent coadjoint orbit. Thenjiy = const - fi,.

Proof. We shall provide the argument for pairs of type Il at the end of
Sect. 7, (see (7.22)—7.24)).

From now on we assume that the pair G, G is of type |. In [D-P1] we
have constructed adense G - G-invariant set W™ C W and a continuous
linear map A from the space of rapidly decreasing functions on g to the
space of rapidly decreasing functions on ¢ such that for any ¢ € Sg)

(1.20) / ¥(X) due (X) = const / AY(X) due (X),
g g
where the constant, const, does not depend on -, and

121)  (APHX) = / / PO dxdis (X € g).
g

/\Wmax

Here weidentify g = g’* viaan invariant bilinear form B on ¢. Moreover,
the group G’ acts freely on W™ so that G'\ W™ is a manifold with the
guotient measure dw defined asin (1.3) and G\W™ 5> w — w € W™ s
afixed section. Each consecutive integral in (1.21) is absolutely convergent.
Furthermore, by (11.5) and (4.2), W"® C Wy~ for each A’ asin (1.3).

Fix a Cartan subalgebra f C g¢'. Let D(Y), ¥ € g/, be the Weyl
denominator, (see [W2, 2.3.1]). By a theorem of Harish-Chandra, [Va,
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part 1, Proposition 9, p. 108], there is a finite constant C such that for any
X' € b’ and for any regular semissimple element y € ¢’

(1.22)

/G (B y)) dg| = CIDOI DY)
// 11
Moreover, for N > 0, large enough,
(1.23) / DY) 2L+ [y N dy < oo,
g/

where | | isanorm on the real vector space ¢.
With the notation (1.21), we have

/ / L HBEG YD daado)dy = [ (aiiexa g
g/ ! 11

G// A///
(1.24)

= / / / Xx+x(Qw) ¥ (X) dx dw dg.
A///\G/ /\Wmax g

The last formulain (1.24), with the g replaced by d” and with v € S(a”),

defines the distribution (1.7.b). (Here the special section G\W™* > w —

w € WM constructed in [D-P1], disappears.) Hence, by the uniqueness
of therestriction to g,

// ///AW x(B(gx'g™t, y)) dgAy(y) dy

(125 ¢

:/ / Yo (W)Y () dx = / che(X + )P (x) dx,
Arwmax Jg o

where, by (1.22) and (1.23), the integral over ¢ is absolutely convergent.
Hence, the distribution /i, defined in (1.17), may be calculated asfollows:

A~/ 1 N O N— /
o) = 3 ey |, B0 00y 00
/ / | K(BOKG Y dgAT () dy ¢
g/ ! /1!
_ / ooy O (AP () X’ = / AV (X) ity (X)
g’ g’
= const / ¥ () due (X),
g

where, by (1.13) and (1.25), the integral over " is absolutely convergent,
and the last equation follows from (1.20). O
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2. Theintegral on the group

We shall use the superscript ¢ to indicate the domain of the Cayley trans-

formc, (c(X) = (X + 1)(x — 1)1, asin [H2]). Thus S* is the domain of ¢

in S and spf isthe domain of ¢ in sp. Define the following set
F°=1(9.9; ge °, £ =deti(g— 1)}

Thisisareal analytic manifold, and atwo fold cover of §5 viathe map

(2.2) $50=(98 > ge X"

For x € sp the formula (x(w), w') defines a symmetric bilinear form (x , )

on W. The signature of this form, sgn(x , ), is the difference between the
dimension of the maximal subspace on which the form is positive definite,
and the dimension of the maximal subspace on which the form is negative
definite. Let

(22) (%) = |det() Y2 exp (—%i sgn(x,))  (x€sp, et #0).

For (g1, £1), (G2, &) € ° with c(gy) + ¢(gy) invertible in End(W), set
(2.3) (01, £1) - (G2, £2) = (G102, 2"E1&2(C(G0) + C(G2) D),

where n = 2dim(W).

Theorem 2.4 [HZ2]. (a) Up to a group isomor phism there is a unique con-
nected group Sp containing Sp¢ with the multiplication given by (2.3) on the
indicated subset of ° x S°.

(b) The group $p is a connected Lie group which contai nséSC as an open
submanifold.

(c) The map (2.1) extends to a double covering homomorphism of Lie
groups.  — .

The metaplectic group $ may be redlized as a subset of S(W), the
space of temperate distributions on W, as follows.

For ¢, ¢' € S(W), the Schwartz space of W, define the twisted convolu-
tion ¢u¢’ and ¢* by

1
P1g’ (w) =/ Pp(w)g' (W' — w)x <§(w, w/)> dw,
w
*(w) = p(—w) (w,w eW).

(2.5)

For a temperate distribution f € S(W) define f* € S*(W) by f*(¢) =
f(¢*). Thefunctions xx (1.5) do not belong to S(W), but we may convolve
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them in the sense analogous to the formula of (2.5). Indeed, let ¢ € S(W).
Thenforw e Wandy e sp

/ 1 /
/ Xy(w)p(w' — w)x <§(w, w )) dw
w
1
= xy(w) /WX <§((1 - W), w)) xy(w)p(w) dw.

Thus, for 1— y invertible, the above expression isa Schwartz function of .
Denote this function by x,t¢(w’). Suppose x € sp°. Then by the same
argument xyti(xytig) € S(W). Suppose moreover that X + y isinvertible in
End(W). Let z= (y — 1)(x + y)"%(x — 1) + 1. Then z € spf and, by [H6,
34], xx1(xysp) = 2"y(x + y) " xzl¢. Thus,

(2.6) Xxixy = 2"y(x + Y)_le-

Define the following functions
©:§°29=(0.6—>¢&eC,
T:°27=(98 — 0@ xc € S(W).

Theorem 2.8 [H2]. The map T extends to a unique injective continuous
map T : S — S(W), and the following formulas hold

@ TEIT@) =T - &) @, T e F° det(c(an) + c(g2)) # 0)
(b) TO ' =TGH @GeP)

(© TQ) = 6.

Here§ € S*(W) isthe Dirac delta at the origin.

(2.7)

For any Lie group G we identify g, the Lie algebra of G, with the Lie
algebra of left invariant vector fields on G. This leads to an identification
TG = G x g*, sothat if ¥ e C(G), then dW¥ isa g*-valued function on
G given by the following formula

d¥(g)(X) = W (gexp(tx))i=o (geG, xeg).

Let us fix a norm | | on the real vector space ¢*. Let u € D'(G) be
adistribution on G. Thewavefront set of u isaclosed conic subset WF(u) €
T*G defined asfollows.

Let U € G be an open set and let U' C g* \ 0 be an open cone. Then
WF(u) isthe complement of the union of all the setsU x U such that

U(Y - X 0 §)| < constyug(l+ max [dp@h ™, (N=0,1,2 )
gesupp W
forany W € C2°(U) and any real valued ¢ € C>*(U) withdgp(U) C U’.

Let G, G’ beanirreducibledual pairinSo=p(W).LetH = T'A € G’
be a Cartan subgroup and let A’, A”, Wa» € W beasin Sect. 1.
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Lemma?2.9. Forany ¥ e Cgo(ﬂ”)

@ /
A \WA///

The formula

/~ v(g) T(9)(w) dg’ dw < oo.

7

® chew)= [ [ woTowdgdi @ ecT®)
A/”\WAH/ /!

defines a distribution on A”. The wave front set of this distribution coincides

with the set

(€) WF(Che) = {(@, tr(w)); g€ A”, we W, gw) = —w} € A’ x a’*.

We shall say that an element i € H’ is regular if the multiplicity of
the eigenvalue 1 of Ad(h) is equal to the dimension of i (as usua), and
the stabilizer of I in the Weyl group W(H’) is trivial. The set of all such
elementsh’ € H’ shall be denoted by H'.

Proposition 2.10. Fix an element i’ € H"". The intersection of the wave
front set of the distribution Chc, defined in (2.9.b), with the conormal bundle
to the embedding

Gsg—>hgeA
is empty (contained in the zero section).

Standard micro-local analysis [HO, 8.2.4] together with Proposition 2.10,
justify the following definition.

Definition 2.11. Leth’ € H'". Then
Chey(@ =Cheiy = [ TlROwdi @<
AW
is the pullback of the distribution (2.9.b) toG via the embedding
Gsg—>hgeA.
Lemma2.12. For anyh’ € H",
WF(Chcr) = {(@, 74(w)); h'g(w) = —w, §e G, we W} C G x g*.
Proof. Thisisclear from the Definition 2.11, [H6, 8.2.4], and (2.9.c). O

Theorem 2.13. The Cauchy Harish-Chandra Integral on Liealgebra isthe
lowest term in an asymptotic expansion of the Cauchy Harish-Chandra
Integral on the group, in the sense of the following formula:

lim t”/ T(—8(tx)8(tX)) (w) dw = O(—1) Xxrx (W) dw
=0+ J AWy A\Wpn

X eb”, xeg).
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Proof. Recall that
c(—c()c(X)) = c(e)e(X) = (X = DX +X) T x =1+ D~
Hence,
c(—c(tx)c(tx)) = t((tX' — DH(x +x)"Htx — 1) + )L

Therefore

/ Xc(—c(tx)c(tx)) (w) dw
A/// \WA///

1/2 '
—/ X((tx—1) (x+x)~Ltx—1) +p—1 (L / w) dw
NN

=t /AW\W X (X —1) (xtx)~L(tx—1)+1)-1 (W) dw.
A///

Hence,

tn/ T(—e(tx)E(tx)) (w) dw
AW\WA///

= O(—C(tX)E(xX)) X (X —1) (x+x)Ltx— 1)+ -1 (w) dw
AW\WAW
— 0(-1) Xox (w) .
t—0 AW\WAW
O

For a system of positive roots ® of i~ in g, set

Aty =[] 2=h=2  (heHN,

acd
asin[W1, 7.4.5]. Let || || denote anorm on the groupG’, asin[W1, 2.A.2].

Theorem 2.14. Assume that the rank of G is less or equal to the rank
of G. Let G; € G denote the Zariski identity component of G. Then for any
N > O and any ¥ € C°(G;) the following integral is finite and defines
a continuous seminorm on Cgo(él):

/~ LAk
H/r

Proof. This Theorem follows directly from (14.2), (14.3) and (14.12). O

A(h") | Che(hg)w(g)dg| dh'.
G/
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Let IT" be an irreducible admissible representation of G, (see [W1,
3.3.9]). Let O denote the distribution character of IT, [W1, 8.1.1]. We
identify ®p: with the corresponding real analytic function on G''s, the
set of regular semisimple elements of G’, by Harish-Chandra's Regularity
Theorem, (see [W1, 8.4.1] and [B, 2.1.1]). Recall that, by Langlands’ clas-
sification, [W1, 5.4], and by Harish-Chandra's basic inequality, [W1, 8.6.1],
thereis N > 0 such that for any Cartan subgroupH’ < G’

(2.15) 1®©(h)A(h)| < const || h N (h e H).

By combining (2.14) and (2.15) we see that the following formula defines
adistribution on G1:

(216) [ Opm)AM)? /G Chc(h'g)w(g)dgdh’ (¥ e CZ(Gy)).

H/r

Hence the following definition makes sense.

Definition 2.17. For an irreducible admissible representation IT of G’ de-
fine a distribution ®, on G4 by

(W) =xm ((=1))O((—1))
1 -
On (W) AN 2/Ch h'g)W(g) dgdh’,
ZIW(H/)I/;q/r (M)A | Cheh'g ¥(@)dg

where ¥ e C®(Gy), and the summation is as in the Weyl integration
formula:

1
v(g)dg =
/@ ©99=2 i)

Moreover, (—1) € Spisin the preimage of —1, and x((—1)) isthe scalar
by which IT'((—1)) acts on the Hilbert space of IT.

|A(N)[2 w(gh'g Y dgdh'.

H/r G//Aw

We shall see in (14.2), that for pairs of type II, the formula for &,
coincideswith the character formulafor aunitary parabolicinduction, which
is known to be compatible with Howe's correspondence.

Conjecture 2.18. Generically, if Onlgng, = 0, the following equation
holds

/]_[/ = ®nlél’

where IT isthe irreducible admissible representation ofG corresponding to
IT" via Howe's correspondence for the dual pair G, G.
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We shall explain afew facts in support of this conjecture.

Let J be a positive compatible complex structure on W. Then the com-
plexification W of W splits into a direct sum of eigenspace for J. Let
WZ be the £-eigenspace for i J. Set Ry+ = (1+1iJ)/2 € End(W). This

C

aprojection onto W' . Let
(2.19) QO =T@U) (@€ DW)).

Thisisamatrix coefficient of the oscillator representation  of Sp(W) cor-
responding to lowest subrepresentation of the maximal compact subgroup
S(W)?, in the sense of Vogan. A straightforward calculation shows that

(2.20) Q(g)° (3 € P(W)).

" dety; (GPu)

Let 7, betheHilbert space wherethe oscillator representation w isrealized,
and let #;, < #,, bethe subspace of smooth vectors. Recall the following
theorem, [P2, 3.1], which generalizes aresult of Li, [Li].

Theorem 2.21. Suppose

@ | len@ie@dg < oe.

G/
Then the formula
() (@Om)v.) = /~ O (9 (w(@)v,v)dg (v, v € HY)

G/

definesa G - G’ - invariant hermitian form on H®. Let R € #°° denote
the radical of this form. Suppose that
(b the form (x) is positive semidefinite and non-trivial.

Then the G - G’ - module #° /R equipped with the form induced by (),
completes to an irreducible unitary representation ofG - G, infinitesimally

equivalent to IT ® IT for some irreducible unitary representation IT of G.
Thus IT' isassociated to IT via Howe's correspondence.

For aHilbert space # let Tr (#¢) denote the space of trace class operators
on #. In this context we formulate the following conjecture:

Conjecture 2.22. Under the assumptions of Theorem 2.21 there is a con-
tinuous map

@ SW) 3 ¢ — pn(e) € Tr(Hn)
such that for all ¢ € (W) and all g € G

b  t(on@Q@) = /G | /W B () T(0 Q) (w)(w) dw dg.
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It is easy to see, via the van der Corput Lemma, [S, 8.1.2, 8.2.3], and
(2.21.9), that each consecutive integral in (2.22.b) is absolutely convergent,
(see [P2]).

Recadll that the pair G, G’ of type Il isin the stable range with G-the
smaller member, if d > d'/2. The proof of the following theorem is based
on the construction of Li, [Li]. We leave it to the reader.

Theorem 2.23. The conjecture (2.22) holds for pairs of type | or Il in the
stable range with G'-the smaller member.

For a function ¢ € S(W) let ¢¢ (w) = fG/(qﬁ(g/w) dg’, whenever this
integral converges. Itisclear that, under the additional assumption,dimV <
dimV, there are sequences ¢, € S(W) such that ¢,?’(w) — 1,asn — oo,
almost everywhere on W. Formally, by chasing through the Weyl integration
formula, we see that

Oy (Q) = / / O (@O~ 1) T((~1) g g) (w) div dgf
(2.24) Jenw

= O((=1) limtr (pr (@) IL(((—1))9)).

Thus ©F, is an invariant distribution on G4, which can formally be ap-
proximated by generalized matrix coefficients of IT. The commons sense
dictates that ©/;, should, be equal to a constant multiple of Gylg,. In fact
the following theorem holds. The proof is standard, |eft to the reader.

Theorem 2.25. Suppose IT is an irreducible admissible representation of
a real reductive group E, realized on a Hilbert space #4;. Recall the map

trp: Tr(#Hp) — D'(E), trp(T) (V) = tr(II(¥)T)
(T e Tr(#Hn), ¥ e CZ(E)).

Let u bean Ad(E)-invariant distribution on E, such that for some sequence
T, € Tr(¥p), u = nIimtrn(Tn), in the topology of D'(E). Then u is

a constant multiple of the character ©y.

We aso leave to the reader the exercise of checking that the Conjec-
ture (2.18) holds under the assumptions of the main theorems in [P1] or
in [D-P2]. (Write down the character ® calculated there, in terms of in-
tegrals over various Cartan subgroups, and see that the result agrees with
the ®7,.) In particular, (by (2.13), (1.19) and [R3]), the following formula
(conjectured by Howe) holds

(2.26) WR(IT) = 74(z,, " (WR(IT)),

if the pair G, G’ is in the deep stable range (see [D-P2]), with G - the
smaller member, and IT is any irreducible unitary representation of G/,
which occurs in Howe's correspondence. Here WF(IT) C ¢t is the fiber of
the wave front set of ©p at the identity, and similarly for IT.
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Pairsof Liealgebras, of typell
3. Notation

Let V, V' betwo finite dimensional vector spaces over D. On thereal vector
space W = Hom(V’, V) & Hom(V, V") define asymplectic form (, ) by

B (ww)=trxy)—tr(yx) (w=XYy, w=(X,y)eW),

wheretr = trpr. Let G = GL(V), g = End(V), G' = GL(V), ¢’ =
End(V’). We identify these Lie algebras with their duals via the bilinear
form provided by the trace: B(x,y) = 2tr(xy). Then the moment maps
3: W— g, 7y : W— g aregiven by

(3.2) (X, Y) =Xy, (X, ) =yx (X, y) e W).

Thegroups G, G act on W by post-multiplication and pre-multiplication by
the inverse, respectively. These actions preserve the symplectic form (3.1).
The moment maps (3.2) intertwine these actions with the corresponding
adjoint actions.

Fix a positive definite D - valued hermitian form on V and on V. Then
for x e Hom(V’, V), we have the adjoint x* € Hom(V, V’). Similarly, for
y € Hom(V, V'), we have the adjoint y* € Hom(V’, V). Let J(X,y) =
(y*, —x*). Then J isacompatible positive definite complex structure on W.
The resulting scalar product restricts to any subspace of W, and yields
anormalization of the corresponding L ebesgue measure (so that the volume
of the unit cubeis 1).

4. Thepair glh(R), gli(R)

Here we consider the simplest case when D = R, dimpyV = n and
dimpV’ = 1. We identify Hom(V’, V) = V = R" - the space of column
vectors, and Hom(V, V') = R"* - the space of row vectors. Then the adjoint
of avector coincides with the transpose.

The scalar product on R" € W yields the Hilbert Schmidt norm on
g = glp(R), which gives the usua normalization of the Lebesgue measure
on g: dx = dXy10X45...dXn,. The corresponding canonical Haar measure on
G = GL,(IR) can be expressed as follows:

B exp(—adx) — 1
/G\If(g) dg _/W(e(p(x)) ‘det <T>‘ dx

= / W (x)|det(x)|"dX,

g

(4.1)

where ¥ € C.(G).
Let|S"1| = 272"/2/T'(n/2) denotetheareaof theunit sphere - < R".
Let K C G bethe centralizer of J. Then K coincides with the orthogonal
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group O,(R). The invariant integral on "~ can be expressed in terms of
an integral over K asfollows

/ V(o) do = |5 / wikey) dk/|K .
-1 K

where e, = (1,0,0,...,0' € S 1 and |K| is the Haar measure of K.
Hence,

g1 dk
/¢( ) dw _ | |// g p(kera, a*1y>dyﬁda

where G’ = GL;1(R) = R*. Thisformula allows us to define a measure 1
on g which may be viewed as a “ push forward” of the Lebesgue measure
dw on W to g, via the moment map .

S dk .
=] / / kery) dy / V(g () dl,
K~ Joume

where W™ = Wg = {(X, y); X # 0,y # 0} € W.Clearly u istemperate.
The Fourier transform of ., defined with respect to the character y, isgiven
by:

(42) n@) =

pW) = ) = //W(X)x(—Ztr(Xy)) dx di(y) (¥ € Sg)).
g9
Using the following formula for the Dirac delta, [H6, (7.8.5)],

500 = [ x-woandy e m,

itis easy to calculate i explicitly:

R . dk
pn = /M o / 0, 0K T2 i

69 =53 [ Lo [0 )

dk
— dy |det(x)| dx.
K] Yyl |

Since,

= / / / / < |:1 y] |:a 0]>
d = k
/G¢(g) 9 2 rRO-Dx JK JoL,R) GLn_l(R)d) 01100

dk
dbda — dy,
K
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the Weyl integration formula applied to gh_1 (R) shows that

20 =) 7+ ()17 det(X)|

IW(Hn-0)| Jy,_4
00 —1)d'dx
/G/Hw<g[0 X]g gax,

where the summation is over amaximal family of mutually non-conjugate
Cartan subgroups H,_1 € GL_1(R), hy_1 istheLiealgebraof H,_1, 7y, ,
is the product of positive roots of f,_1 in glh_1(C) and H = GL(R) x
Hn_1 € G embedded diagonally.

The formula (4.4) suggests amore intrinsic description of /i.

The derivative det’ of the determinant det : gl,(R) — R coincides
with the matrix of minors of size n — 1. Hence, the set of x € gh(R) with
det’(x) # 0 contains each surface det™%(s), s € R*. Therefore §(det(x) — )
isawell defined distribution on gl (R), see [HG6, 6.1.2]. By the Weyl inte-
gration formula

(4.4)

/ Y(X)8(det(x) — s) dx
g

—_ 1 2 _ —1 .
—Z|W(H)| hlma(X)I 5(det(x) —s) o Y(gxg ™) dg dx

(4.5)

! |7y ()2 Ny
= d d . ’
Z IW(H)I hNdet—1(s) |det’ (X)| G/H Y(gxg ™) dgdus(X)

(Vv € Sg))

where us is the Euclidean surface measure on the indicated surface.

For X € b, let X, X2, ...., Xn be the eigenvalues of x, and let &, be the
permutation group on n letters. We may assume that

7 (X) = T (X) = 1_[ (X —Xj) = Z sgn (o)X DxgM=2)  xo©

1<i<j=n 0e6p

Hence, XL < npolynomial (x), x € b. Furthermore, if x = [8 8} where

" |det’(x)]

y € gly-1(R) haseigenvaluesx;, X3, ..., Xa, then }ggtﬁ?x‘f, = |mn_1(Y)|?|det(y)].
Therefore Harish-Chandra's estimate for orbita integrals, [W1, 7.3.8] and

acalculation for n = 2, show that the limit if s — 0 of the expression (4.5)
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exists:

(4.6) / Y)5(cet(x)) dx := lim / Y(X)8(det(x) — ) dx
S— g

g

1 2 ’ -1 1 .
= n det dgd
Z IWCH)| Jyrde-10 |70 (X) || det’ (X) | oh Y(gXxg ) dg duo(X)

i I CEMEDE
=y - o det dgdx,
Z|W(Hn_1>| | Vna0oPidetol | vr( 9] |97 ) dodx

where ¢ € Sg). Thus,
4.7) 2"[L = § o det,

where the right hand side is defined in (4.6).

We shall calculate the wave front set of u and of ji. Since u is a ho-
mogeneous distribution, [HO, 8.1.8] implies that the fiber of WF(u) over
0 € g coincides with suppft = det™1(0) = grk<n_1, the set of elements
of rank less or equal to n — 1. The complement of {0} in the support of u
is the set of elements of rank one. This set isasingle G x G-orbit, under
the left-right action. Hence a point (x, y) € (suppu \ {0}) x g belongs to
WF(w) if and only if y is perpendicular to the orbit of x, (see [HO, 8.2.5]),
i.e. xy = yx = 0. Hence,

(4.8 WF(n) = {(X, y) € Ork<1 X Grk<n—1; XY = YX = 0}.
It is clear from (4.8) and from [HG, 8.2.5] that

WF(1) = {(X,y) € g X grk<1; XY = yX = 0}

(4.9
= {(X, 5g(w)); X(w) =0, xeg, we W}

Notice, by the way, that the convergence (4.6) does not happen in the
space Dp.(g), defined in [HO, 8.2.2], with ' = WF(1). Indeed, by [HO,
8.2.5], WF(5 o det — 5) = T*4e-1(5(g), the conormal bundle of the surface
det~1(s). Hence

(s, A1) € WF(S o det — 9) (s> 0, A #0),

where | = 1|, is the identity matrix. But Iing(sl/”l,/\l) = (0,x1) ¢ T,
S—
acontradiction.
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Finally, the Cauchy Harish-Chandra Integral can be calculated as fol-
lows:

cho(y) = /G y / W) () dx i
’ max g

1 .
2/ /w(x)x <ng(w)(x)> dx dw
G/\Wmax g

=/ /WX)X <%tr(X‘L’g(w))> dx dw
G\wmx J g

1
= / V(X)X (—tr(xy)> dx du(y)
gJg 2

1
= / / Y(X)x (——tr(xy)> dx dp(y)
gJ9 -

=2"0(y).
Thus,

chc = § o det, and

(4.10) WF(che) = {(X, Tg(w)); X(w) =0, X € g, w € W}.

Lemma4.11. Let v € S(g). Then thereis a unique continuous functionyr
on 7, (W™), such that

1 -~
@ / Vo 1g(w)x (E(w, u/)) dw = ¥ o 74(w) (w' e WM,
W
Moreover,
(b / |1,Zotg(w)|dw < 00.
G/\Wmax
Proof. Recall [A-S, 9.1.23, 9.6.21] the following Bessel functions
2 o o
Yo(X) = ——/ cos(x cosht) dt, Kg(x) = / cos(x sinht)dt (x > 0).
T Jo 0

Let

2Ko(2wxY/?) for x > 0,

F) = {—nY0(2ﬂ|X|1/2) for x < 0.

Then, by [A-S, 9.1.23, 9.6.21],

F(X) = / h 2cos(r(@at —ax))da/a  (x € R¥).
0
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Let X = Hom(V',V), and let Y = Hom(V, V’). For an appropriately
normalized element X, € X \ {0}, the left hand side of (4.11.8), viewed as
ageneralized function of w = (X', y) € W™ isequa to

1
/ / YY) <§(>/x - yx/)) dx dy
Y JX
:/ / /w(kxoy)x <}(a)/kxo—al yx’)) dy dkda
! K Y 2

1
=/ /w(kxOy)/ X <§(a1—aykxoyx/)> dady dk
K JY G
=/K/Y¢'(kXOY)F()/kXo yX) dydk = ¥ o t4(w'),

where
(4.12) (X)) = / Y Fr(xx)) du(x) (X € g).
g

We shall check that the integral (4.12) is absolutely convergent, which
suffices for (4.11.a), and that the following estimate holds:

(4.13) [¥(x)] < const(1+|loglx])) (X € g).
Indeed, by [A-S, 9.1.8,9.2.2,9.6.8, 9.7.2],

|F(X)| < const (1+ |log|x]|]) (x € R).

Hence

/ WO F(tr (o)) dyu(x) < const / WL+ [logtr (66K 1) de(x)
— const(u(|/)) + / W 0logitr (0)]] due ()

=COﬂSt(M(|1ﬁ|)+/ |1//(x)log|tr(xi)||du(x)+/|1//(x)log|x/||du(x))

X']

< COﬂSt((1+||09|X/||)M(|1,0|)+/Iw(X)logltr(X%)lldM(X))

Hence, it will suffice to see that the last integral is bounded independently
of X' # 0. But, with xo € X\ {0}, as in the calculation preceding (4.12),
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and with an appropriate yp € Y \ {0},

| wooreirocoliduoo = [ [ woayogly ool dedy

X'] X'

:/ //|¢(kx0yolr)||log|yolkaor||r”ldkdl dr
o JkJk IX']

gconstN,¢/ //(1+r)N(|Iog|yol%kxo||+|Iog(r)|)r”ldkdl dr
0 K JK

< const 1+ [ [ floglydl okl cke),
K JK IX'|

and it is easy to see, using polar coordinates, that the last integral is finite,
and bounded independently of X # 0. Hence the absolute convergence of
(4.12) and the estimate (4.13) follow.

It is easy to see that for any polynomial function P(X), X’ € g, thereis
apolynomial coefficient differential operator Ds on g such that
(4.14) POV () = (Dpy)(¥) (X € T(W™)).
Clearly (4.13) and (4.14) imply
W ()| < consty,y (1+ [logX|D(L+ XD (x € (W™, ¥ € Sg)).

Notice that for N large enough
/(1+ logixI) (L + x)) ™ die ()
=/Y[(<1+|log|kmy||>(1+|kxOy|>—Ndkdy
- /Y<1+ loglyl(L+ [y~ dy
= const /OOO(1+ llog)D@ +r)Nr"1dr < oo.

Hence (4.11.b) follows, and we are done. O

5. Thepair gl,(C), gl1(C)

Let us view the complex numbers as matrices of size 2, with real entries:

Z=x+iy= [_Xy )3(’] This leads to an embedding

(5.1 glh(C) — gln(R).
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The orthogonal complement of gk, (C) in glon (R) consists of matrices, with
blocks of size 2 of the form —yx ))(/ , X, ¥ € R. In particular the rank
of any such matrix is even. Hence, the intersection of the wave front set
of the distribution § o det € S'(glon(R)) with the conormal bundle to
the embedding (5.1), is empty. Therefore the restriction § o detly, ) €
D' (gl (C)) exists. We shall give an explicit formulafor this distribution.

Since the unitary group K = U, acts transitively on the unit sphere
in C", the measure u, (4.2), can be written as follows:

SZn—l dk
(5.2) u(y) = | | / Y(kery) dy —
2 K JIR2nx* | K |

Hence, the calculation leading to (4.3) shows that

) 2/ (0, X) dx, where
M2n 2n— 1(R)

-1
| S

V) = / Y(kyk™ >|K| (¥ € Sgln(R)). Y € glan(R)).
Lemma5.4. For ¢ € Sglh(C)),

(5.3)

8 o detgr, 0 (V) = / ¥ (0, x) dx, where
Mn.n-1(©)

5 SZn l|
=" / Yikyk ) (¥ € ghn(C)).

y X
termsof thecoordinatesx, y setdZ = dxdy. Similarly forz = [_X y] e C,
let dz = dxdy. Thus

(5.5 / Y(X)dx = 4/ / Y(z+ 2)dZdz,
gl2(R) cJC

and we use the analogous notation for the integrals over spaces of block
matrices with the blocks in C or in C. Let f,¢ € C°(glh(R)) be two
Ad(K)-invariant functions, and let v € G°(gl(C)). Then

Proof. LetC bethe space of matricesof theformz = [ X y],x, yeR.In

/ ¢(2) % (odet - f)yY(z2)dz
gl (O

(5.6) = / / ¢(z — X)8(det(x)) f(X)y¥(z) dx dz
gln(©) Jglon(R)

= / / #(z — (0, x)) f(0, X)¥ (2) dx dz,
gln(©) J Mzn 2n-1(R)
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where v/ is defined asin (5.3). The map

ros_ | TXY —_,_ | XY

(Caz_[ }—> _z_[_yx]ec

y X
extends to amap M, 1(C) 3 2 - Z € M, 1(C). Thus, by (5.5), the last
expression in (5.6) may be rewritten as follows:

/ / / / Apz— R +Xy+9)
gl (O Mn,l((c) Mn,n—l((c) Mn,n—l((c)

f(X + X,y + V) (z) dydydg dz
57) ( y+ Y)v(2) dydy

- / / / / ¢z — (%, 9)
aln (O Mn,l(C) Mn,n—l(C) Mn,n—l((c)

f(X + X, y+ 9z + (X, y) dydydxdz.

Nu

Notice that if fg[2n<R) ¢(x) dx = 1, then, by (5.5),

/ / / 4" p(z — (%, §)) dydg dz = 1.
gl (O Mn,l(@) Mn,n—l(@)

Therefore,

/ #(2) % (§odet - F)y(2) dz—/ ¥(0, y)dy
glh(© Mn,n—l((c)

(5.8) = / / ) / ) / 4Pz — (%, 9))
gl (O Mn,l((c) Mn,n—l((c) Mn,n—l((c)

(fX + R, y+ ¥+ (X, y) —¥(0, y)) dydydg dz.
Assume, in addition, that » > 0. Then (5.8) can be dominated by

(5.9) sup [fR + X Y+ DY+ (X, y) — ¥(0, y)| dy.
Mn.n—1(0) {z—(X.y)esuppe}

The quantity (5.9) tends to zero if the function f tendsto 1 uniformly, and
the support of ¢ shrinks to zero. Thus [HO, 8.2.4] completes the proof. O

Let § € D'(C) denote the Dirac delta at 0. Then, as in the previous
section, we check that for the complex determinant det : gh(C) — C and
any s € C* thedistribution §(det(z) — s) € S'(gln(C)) iswell defined and
that

(5.10) li m/ 5(det(z) — 9)y(2) dz = § o det|gr, ) (¥),
glh (O

s—0
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where the right hand side is defined in (4). For this reason we shall denote
the distribution (5.10) also by § o det, remembering that § € D(C) is the
Dirac deltaat 0.

Asin the previous section we check that

chc =§ o det and

(511) WF(che) = {(X, ig(w)); X(w) =0, x € g, w € W},

where g = gl (C).

6. Thepair gl,(H), gly (H)

We view the quaternions as matrices of size 2, with complex entries: z =

[—XV %’} X, y € C. Thisleads to an embedding

(6.1) glh(H) — glon(C).

The orthogonal complement of gi, (H) in gl (C) consists of matrices, with

blocks of size 2 of the form _yX )ﬂ X, y € C. In particular the (complex)
rank of any such matrix is even. Hence, the intersection of the wave front
set of the distribution § o det € S'(gly,(C)), with the conormal bundle to
the embedding (6.1), is empty. Therefore the restriction 6 o detf,m €
D’ (gl (H)) exists.

Let K = Uy(H) = S,. The argument used to prove (5.4) verifies the
following lemma.

Lemma6.2. For v € S(gl,(H)),

8 o det|g, m (¥) = / ¥ (0, x) dx, where
Mn,n—1(H)
N . dk
T =D /K Y S (3 € ah D)
Similarly,
63) chc = 4§ o det|y and

WF(chc) = {(X, tg(w)); X(w) =0, x € g, w € W},

where g = gl (H).
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7. A general pair (g, ¢) of typell

Here we resume the notation of Sect. 3. Let H = T'A’ € G’ be a Cartan
subgroup, asin Sect. 1. Let

(7.1) V=VieVs..

be the decomposition of V' into A’ - isotypic components. Equivalently,
(7.1) is a decomposition into H isotypic ID subspaces. The symplectic
space W decomposes into a direct sum of mutually orthogonal subspaces:

(7.2) W=@W,, W, = Hom(V/, V) ® Hom(V, V).
J

The group A’ (= centralizer of A in ) preserves the decomposition (2)
and the obvious restrictions yield the following isomorphisms:

a” = Endg(Hom(V;, V)) @ Endg (Hom(V,, V)) & ...,

A’ = GLr(Hom(V;, V)) x GLr(Hom(V,, V)) x ...

Let A" be the centralizer of A" in . Then for any V| as in (7.1) the

restriction of A” to Vj/ isisomorphic to GL;(IR). Thus, as areductive dual
pair, (A”, A”) isisomorphic to

(7.4) (GLn, (R), GL1(R)) x (GLn,(R), GL1(R)) x ...,

wheren; = dimg Hom(V/, V), j =1,2, ... . Interms of (7.2) let W, A=
{(x,y) € W], X # O,y = O}. Let Wyr = W]_A/l// X WQA/Z// X ... € W.

Define a measure dw on the quotient manifold A”\Wx~ asin (1.3). Then,
as atemperate distribution on «’,

(7.3)

che(x) = / xx(w) dw
A///\WA///
(7.5)
= / Xxa (1) dwy ®/ Yo (W2) dwo ® ...
AL\ W

AL \Wy

wherex € a” and x; istherestriction of x to Hom(VJf, V). TheLemmal.7,
for pairs of typell, follows easily from (7.5), (4.10), (5.11) and (6.3).

Proof of Proposition 1.8. Supposes € EndR(Hom(Vj’, V)) isof rank one.

Then there are non-zero elements x; € Hom(V;, V) and y; € Hom(V, V)
such that

S (U) = tr(uy;)x; (u e Hom(V!, V)),

wheretr = trpg. In other words, intermsof (7.2) and (7.3), s + S+ ... =
T (w) forw = (Xg, Y1; X2, Y2; ...). SUppose s +S,+... € a” isperpendicular
tog. Then by (1.7) and (3.2)

(7.6) X1y1+ XoY2 + ... = 0.
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Recall theregular element X € h'". Suppose x € gissuchthat (X + X, s, +
+ ...) isin the wave front set of the distribution (7.5). Then, by (4.9), we
have

(7.7) xxj = x;X', and yjx = X'y;.
By combining (7.6) and (7.7) we see that
(7.8) XXy +xoxX¥y, +...=0 (k=0,1,2,...).

Since the powers of X, (x'1, x2, ...), span b’ over the center of D, we see
that (8) holds with the x* replaced by an arbitrary element of . Hence, for
al j,

If dimpV; = 1 then (7.9) implies that ; = 0 or y; = 0, a contradiction.
The remaining caseisD = R and dinpV/ = 2. Then (7.9) implies that
the image of y; has dimension 1. On the otIJ1er hand the second equation in
(7.7) showsthat the image of y; is preserved by X'. Since X’ is regular, this
isacontradiction. O

Fix X' € p". The distribution chc(X + X), X € g, is Ad(G)-invariant.
Therefore it has awell defined restriction to , for any Cartan subalgebra
h € g. We denote this restriction by the same symbol chc(X + x), X € b".
Clearly, this is a non-negative measure invariant under the action of the
Weyl group W(H).

Lemma 7.10. The distribution chc(X + X), X € g, isregular, in the sense
that for any ¢ € Sg),

/ Y(x)che(X' + x) dx

— / 2 1 .
Z|W(H)| Che(X’ + ) |y (X)| /G/H ¥(ghg™) dgdx,

where the integrals are absolutely convergent, and the summation is over
a maximal family of mutually non-conjugate Cartan subalgebras b C g.

Proof. By Harish-Chandra's Method of Descent, [Va, part 1], it will suffice
to consider the distribution chgy (X) = chc(X’ + X), X € g, in an arbitrarily
small, completely invariant open neighborhood of a point in the support of
chc, . We shall need some additional notation.

Let h” be the centralizer of i in sp(W). Clearly §” C a” and, in terms
of (3),

(7.12) h” = Endy (Hom(V;, V)) & Endy (Hom(V,, V) @ ... .
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From the classification of Cartan subalgebras in ¢ we know that for each
i f)’lv; - EndR(V]f) is afield isomorphic either to R or to C. Hence the

embedding
Endy (Hom(V{, V)) € Endr(Hom(V;, V))
is either an equation, or is of the form
Endc(C™) € Endg(C™).

Hence, by (5.4) and (5.11), the restriction of chc from d' to h” existsand is
given by

(7.12) che(x) = 8 o det(xg) ® 8 o det(X) ® ...,

where X € b”, x; isthe restriction of x to Hom(\/]f, V),and § o det isasin
(4.6) or (5.10), depending on the field Ulvj/- Furthermore, it is clear that the

distribution chcy € S*(g) coincides with the pullback of the distribution
(7.12) from o” to g viathe embedding

(7.13) gox—>X+xebp”.
LetX € g, and let X = X5 + X, be the Jordan decomposition of X. Let
(7.19) V=ViaVod..

be the decomposition of V into subspaces over D, which are isotypic as
R[Xs]-modules. Then the set of eigenvalues of Xs|y, has empty intersection
with the set of eigenvalues of Xs|y;, for k # I.

For each j, k, Hom(V/, V) is a vector space over the field h(|\,j/, and

an R[Xs]-module. As such, it is either irreducible, or it is a sum of two

irreducible pieces. The second possibility occursif and only if D # C and

both, f)/lvj' and R[Xs|v], are isomorphic to C. In any case we shall write
Hom(V!, Vi) = Hom(V!, Vi)1 & Hom(Vj’, Vi) 2,

keeping in mind the possibility that the second summand could be zero.
Let g* denote the centralizer of X5 in g, and similarly, " C §”. Then,
interms of (7.11),

gf(s = Enng(Vl) D Enng(VZ) oD ...,
% = Z (Endy, (Hom(V/, Vio1) @ Endy (Hom(V/, Vi)2))
ik
and (7.13) restricts to an embedding

(7.15) g“3x—> X +xeb’™.
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Suppose, from now on, that X € supp(chcy). Then det(x/|vjf + Xs) = Ofor
each |, where x’|\,j/ + X is viewed as an element of Endz (Hom(V!, V)).
Let X j | denote the restriction of Xs to Hom(V/, V). Then

det(x'lv; + %) = [ ] detX'lv; + %s jicn)-
k.l

Hence, we may arrange the indices so that
det(X'|v; + %sj,j.1) =0,
(7.16) and det(x/lvj/ +Xsjki) #0forj #k, or j =kandl # 1.
Moreover, it is clear that
(7.17) chcy # 0, impliesdimV’' <dimV.

Let Uy C g* be acompletely invariant open neighborhood of %s, so small
that the second line in (7.16) holds with the Xs replaced by any element
X € Ug. We may, and shall, assume that U, is contained in the set of
regular elements of g%, and that Ad(G)Uy is a completely invariant open
neighborhood of Xs in g, as in [Va, part I, p. 16]. Then X € Ad(G)U,.
Similarly, let Uy» € h”* be a completely invariant open neighborhood of
X"+ Xs, such that Ad(H"”)Uy~ isacompletely invariant open neighborhood
of X' 4+ Xs in h”. We take the Uy, small enough, so that for each x € Uy
and for each j, at most one of the determinants det(x ) is zero. Then the
restriction of chc to Uy may be written as follows.

che(x) = [ J8(] | det(xjc))
ikl

=[O s@etcxju) ]  Idetr(xjei)™.
j kI (K1) #(Kk,I

Hence, the pullback of the distribution (7.18) via (7.15) is given by

(7.18)

che(x' +x) =8odet(X|y; + X111 []  Ideta(X'lv; + Xk ™
(kD#(L1)
(7.19)

§odet(X |y, +%21) [ Idete(Xlv; + Xou)| ™
(kD#(2,1)

Notice that the assumption det(>(|vjr + Xsj.j,0) = 0, (7.16), implies that the
fields’ and R[f(slvj/] are isomorphic. Moreover the map

Ends,(V)) 3 y — y € Endy (Hom(V/, Vj)y)
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isan R-linear bijection. The preimage of X|y, € Endy (Hom(V/, V;)1) via
this bijection coincides with £%|v; . Thislast element isa constant multiple
of the identity Iy, on Vj, if Vj isviewed as a vector space over the field
]R[Xs|vj/]. Hence, with A = +X4|y; € ]R[Xs|vj/], we have for any x € Uy,

do det(x’|vj/ +Xj,j1) =680 det(x |ij + X|Vj)-

By (4.6) and (5.10) the trandlation of the distribution § o det by any con-
stant multiple of the identity is regular (in the sense of our Lemma 7.10).
Therefore, chee |y, isregular, and we are done. O

Sinceweareinterested only in the casewhen chg: # 0, we may assume,
by (7.17), that V' is a subspace of V. Let U € V be a complementary
subspace, sothat V = V' @ U. This gives embeddings

End(V") — End(V), a(v +u) = a®@), a € End(V’),
(7.20) End(U) — End(V), b(v' +u) = b(u), b € End(U), and
Hom(U, V') — End(V), c(v' + u) = c(u), ¢ € Hom(U, V'),

wherev' € V'andu € U. Thenn = Hom(U, V') isthe nilpotent radical of
aparabolic subalgebra of g = End(V) with the Levi factor m = End(V) &
End(U). Let K € G = GL (V) bethe centralizer of J, (see Sect. 3). This
isamaximal compact subgroup of G. For ¥ € S(g) and X € g set

o

K — kk—l ,
v (X) /Kllf(x )IKI

nd vk 00 = [ < oct ) dy.
Proposition 7.21. For any X € b and any v € Sg),

/ che(X' 4+ X)y¥(x) dx = / UK (gx'g™t + x) dx dg.
g End(U)

G//H/

Proof. Theargument isstraightforward. By (7.10), we express the left hand
side in terms of explicit integrals over the regular sets of various Cartan
subalgebras of g, and conclude that the resulting expression is equal to the
right hand side.

Let h C g be a Cartan subalgebra. We shall describe the restriction of
the distribution chc, to b, and thus refine the formula (7.19).

Recall the decomposition (7.1). For each j, Hom(Vj, V) is a vector
space over the field f)/lvj’ and an h-module. As such, it decomposes into

irreducibles: Hom(V/, V) = ", Xj . Hence

det(x|v; +x) = [ [detXlv +XIx, 0 (X €, xe ),
k
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where the determinant takes values in the field Hlv.’ . Hence,

5(det(X'v; + X)) = Za(det(x Ivi + XIx,0) | T Idete (X' Iv; + xIx, )17
£k
Therefore,

S(det(X' 4+ x)) = ]_[ 5(det(X|v; + X))
(7.21.2) j
= > T] (5(det(x/v; +Xlx)) [ ] Idete (X'Iv; + x|x,.)1) :
ki,ko,... ] |;£kj

If the term 8(det(x/|vj/ + X|x,-,kj )) is non-zero, then the space X;y; is of
dimension one over the field tf|y. Furthermore, since x is regular, only

one such term may be non-zero, for each j. In particular, if the expression
(7.21.1) isnon-zero, then b is conjugate to i + by, for some Cartan subal-
gebrahy € End(U), (see (7.20)). Assuming h = i + by, we can rewrite
(7.21.1) asfollows:

che(X' + x) =

D8 — (ox)|v)|detr (@d(0X) g /+n)|

oeW(Hy)

wheren = Hom(U, V'), X' € ", x € b", (oX)|yv € b’ isthe restriction of
ox € htoV’, 8 € S(ly) isthe Dirac delta at the origin, W(H,) isthe Weyl
group of Hy, the Cartan subgroup of GL (U) with the Lie agebra f, and
W(H) isthe Weyl group of H, the Cartan subgroup of G = GL (V) with
the Lie algebra ). Hence, by (7.10), for v € S(g),

1
IW(HU)I

/ che(X' + X) ¥ (X) dx
Ad(G)b

— / 1 .
= W] A |det(ad(x)1g/n)| che(x + ) /G/H ¥(gxg ") dgdx

~ W(HY)|

() / / Kgx'g~t + gxg™) dgdg dx
|W(HU)|/r I (3 G//H GL(U)/H}J[, 9x 9 9ad

YR (gXg "t +x) dg dx,

/ |70 (x)|?|det(ad(x’ + X)ln)I/G ., Y(g(X +x)g ") dg dx
/

//;\d(GL(U)hU G'/H’

where |y (X)|2 = |det(@d(X) |gngu) /pu) |, andthethird equality followsfrom
the standard integral formulas, [W1, 2.41, 7.3.7]. Since the set of conjugacy
classes of Cartan subalgebras b, for which (7.21.1) is non-zero, is in one
to one correspondence with set of conjugacy classes of Cartan subalgebras
hu, the Proposition follows. 0
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Define a continuous linear map

(7.22) A @) —> @), AYX) =YL (X), xeg.
It is easy to check that

(7.23) / A Y(X) dX = / ¥ o 7g(w) dw.
g G/\ Wwmax

where W™ = {(x, y); x and y are of maximal rank}.

Let @ C g bea G orbit. Then 7;(zy(9")) contains a single dense
G orbit @ C g. Let uo € S'(g') be the canonical measure on ¢@'. Then
U o A isa G invariant measure, a positive constant multiple of .
A straightforward calculation based on (7.21) and (7.23) shows that

(7.24)

N 1
(oo AYW) =Y

IW(H")|

/ fror (X)) (X [? / che(X' + x)yr(x) dx dx’,
" g

where the summation is as in the Weyl integration formula for g. This
verifies Theorem (1.19) for pairs of type ll.

Pairsof Liealgebras, of typel
8. Notation

LetV, V' betwofinitedimensional vector spacesover D with non-degenerate
forms(, ), (, )’ - one hermitian and the other one skew-hermitian. Define
amap Hom(V’, V) > w — w* € Hom(V, V') by

81 (wv,v) =, wv) (w e Hom(V', V), ve V, vV e V).

Define a symplectic form (, ) on the real vector space W = Hom(V, V)
by

(8.2 (w, w') = tr(w™* w) (w, w € W).

Let G € GL(V) be the isometry group of the form (, ), with the Lie
algebrag € End(V). Similarly we have the isometry group G € GL (V')
of theform (, ), with the Lie algebra g € End(V’). We identify g with
g* viathe bilinear form provided by the trace, and similarly for g. Then the
moment maps 7; : W — g* and 7y : W — g'* are given by

(8.3) g(w) = ww*, 1g(w) = ww, (w e W).

Thegroups G, G’ act on W by post-multiplication and premultiplication by
the inverse, respectively. These actions preserve the symplectic form (8.1).
The moment maps (8.3) intertwine these actions with the corresponding
adjoint actions.
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9. Thepair spy(R), S0y

In this case the integral over G\W may be identified with the integral
over W. Hence,

(9) che(y) = /W / W) dxdw (¥ € SEp). 5p = SPOW)),
sp

where each consecutive integral is absolutely convergent. Let

(9.2) sp =1{z=x+1iy; X,y €sp, (Y. )lkex > O}

where the statement (y , )lkerw > 0 means that (yw, w) > O for every
non-zero element w € Ker(x). Let n = 2dim(W).

Proposition 9.3. (a) The set sp‘cF is contractible.

(b) There is a unique holomorphic function chc : s@ — C such that
cheiy) = 2"|det(y)|~Y/2 for y e sp such that (y , ) > 0. Moreover
Iche(z)| = 2"|det(2)| /2, z € spf..

(c) As a distribution on sp, chc(x) = Iirgchc(x +1iy), X € sp, where
y—

(y,)>0.
(d) WF(che) = {(X, tsp(w)); X € Sp, w € W, X(w) = 0}.

Inorder to provethe propositionwerealize W as", with thesymplectic
form

0

_|n

(w,w) =wtw, J= |: I(;'] , (w,w e W).

Then sp = spon(R) = {X € M (R); Ix + x'J = 0} and similarly for the
complexification spc = Spn (C).

Let m = 2n and let SM,,(ID) denote the space of symmetric matrices of
sizemwithentriesinD = R or C. Let

SMH(C) = {A=B+iC; B,C € SMy(R), w'Bw > 0
forw # 0, Cw = 0}.

The map

isalinear isomorphism, and «(sp%) = SM;(C). Part (a) of the proposition
isimmediate from the following lemma.

Lemma 9.4. The set SM/(C) is contractible.
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Proof (Rossmann). For a > 0, consider the map:
SMn(C) > A=B+iC - A=B+aC?+iC e SM(C).

Then A € SME(C) if and only if thereisa > 0 such that the real part of

A is positive definite. Since the set of complex symmetric matrices with
apositive definite real part is convex, we are done. O

In particular, (9.4) implies that there is a unique holomorphic function
SMF(C) 3 A — det'/?(A) e C, which coincides with the positive square
root of the determinant of A, if A isreal and positive definite. Clearly, the
function

2n

(95) ChC(Z) - detT(a(Z))

(z € spf)

satisfies (9.3.b).
Recall, [HO, (3.4.1)"] the following integral formula

1 _ IA
— Tw w d
96)  OetV2(A) /Rm © v
(A=B+iC: B.C ¢ SMy(R): B> 0).

The statement (9.3.c) is a straightforward consequence of (9.5) and (9.6).
It remains to calculate the wave front set, WF(chc). Let

n() = - Yy(—ww)dw (¥ € (SMn(R)).

This integral is absolutely convergent and w is a temperate measure on
SMn(IR).

Lemma 9.7. Under the identification SMn(R)* = SMp,(R) provided by
thetrace, (tr (CD), C, D € SMh(R)),

(@) WF(u) = {(C, D) € supp i x SMn(R); DC = 0},

(b) WF() = {(D, C) € SMn(R) x (—suppp); DC = 0},

Proof. We beginwith (a). Clearly the fibers of WF(u) over the complement
of the support of . are empty (zero). Notice that the Fourier transform of .,

i (C) = / x(—tr(CD)) du(D) = lim / gl (-2B-20)ugy,
SMm(R) B—0 Jp

1
= 2-M2)j
B0 det2(—(B +10))’
where —B > 0. In particular, by [H6, (8.1.18)], The fiber of WF(1) over 0
coincides with suppit = SMn(R).
Since supp i \ {0} = {gCd'; g € SLm(R)}, and since u is invariant
under the action of SL(R), [HO, 8.2.5] implies that (C, D) € WF(u) if

(9.9)
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and only if D is perpendicular to the tangent space to supp « \ {0} at C.
Thusfor any X € dn(R),

0 = tr(D(XC + CX")) = 2tr(DCX).

Hence DC is a constant multiple of the identity. But C is not invertible.
Therefore the constant is zero, i.e. DC = 0. By taking the transpose we get
CD = 0. This verifies (a).

Let C,D € SMy(R) \ {0}. Then, by [HO, 8.1.8], and (a), (D,C) €
WF() if and only if (—C, D) € WF(u), which happens if and only if
C e —suppu, D € SMy(R) and CD = 0. Also, the fiber of WF({1) over
zero coincides with —supp . This verifies (b). O

Notice that for D € SM(R) and w € R™, Dww! = 0 if and only if
Dw = 0. Indeed, both sides of the equivalence areinvariant under the action
of the orthogonal group O, (R). Hence we can assume that D is diagonal.
But in this case the statement is obvious. Hence, it is easy to deduce from
(9.7) that, with B : R™ — SMpy(R)* defined by B(w)(D) = w'Dw,
w e R™, D e SMp(R),

(9.9) WF(Q) = {(D, B(w)) € SMm(R) x SMm(R)*; w € R™, Dw = O}.
Notice that for w € W and X € sp, wp(w)(X) = (Xw, w) = w'Ixw =
B(w)(JX). Hence, by (9.8),

che(x) = / xx(w) dw = / v i gy, — o <%JX> (X € sp).
W W

Therefore (9.3.d) follows from (9.9).

10. Thecasewhen H' € G’ iscompact

In this section the Cartan subgroup H C G’ is compact. (This forces the
pair G, G’ to be of typel.) Let

(10.1) V=3V
jeg’

be a decomposition of V" into H’-irreducible subspaces over D. If G is
isomorphic to the orthogonal group G, q, with p 4+ g odd, then (10.1)
contains the trivial component, which shall be denoted by \. There is no
(non-zero) trivial component in any other case. For each j € ¢ \ {0} there
is a complex structure i on Vj, (i € Endr(V)), i2 = —1), and R-linear
coordinates x; on ', such that

(10.2) X’|er = iX} X' eb', jeg \{o).
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Theorem 10.3. Let p be defined asin (1.12). Assume p > 0. Then for any
¥ € S(g) and any € > 0, the following integral

[, TT e

jeg\(0}

iy (X) / che(X' + X))y (X) dx| dx’
9

is convergent and defines a continuous seminorm on S(g).

In order to prove Theorem (10.3) we heed some preparation. Let H € G
be a compact Cartan subgroup, with the Liealgebrah C g. The symplectic
space W decomposes into a direct orthogonal sum of H - H-irreducible
subspaces Wi i, over R:

(10.4) W= > W W< Hom(V/, V).
jed keg

The holomorphic function chc defined on sp‘c*, see (9.3.b), extends and then
restrictsto arational function on i, +hc. We denote by W  the subspace on
which H’ actstrivially, and by W o the subspace on which H actstrivialy.
In terms of (10.4) we have

(105) chew(z+2= [] chow,(Z+2  (Zebp zeho),
jed keg
where the subscript (W or W, i) indicates the symplectic space with respect
to which the corresponding function is defined.
Let ®(h') be a system of positive roots of f- in g;., and let 7y, denote

the product of al the roots o € ®(l). Similarly, we define 7. Then, as
apolynomial in the coordinates X, (see (10.2)), 7y has degree

d—-2,d-1d-1, 2d -1, 2d — 2if

(10.6) , ) _
G’ = Opg» Fon(R), Upg, Spq, Oz, respectively.

Let p be a non-negative integer, smaller or equal to the number p, defined
in(1.12). Set

PX)= ] @+DP (K eb).
jeg"\{0}

By (10.6), the degree of the rational function

P(Z)my (Z)chow(Z + 2) (Z € b, Zz€ho)



A Cauchy Harish-Chandra integral, for areal reductive dual pair 337

with respect to each Z, j € g’ \ {0}, is negative. (Moreover, p = p is
maximal with this property.) Hence, by partial fractions,

P(Z)my (Z)chew(Z + 2my(2) = Y FL2(2),

(10.7) -

FLz(2) = PL(@)cheL(Z 4+ 2). cheu(Z +2) = [ chew,, (2 + 2.

jeg'\(0}

where the summation isover al injections L : ¢ \ {0} — 4\ {0}, each P_
isapolynomial function, Z € b, and z € hc.

Let ®"(h) € ®(h) denote the positive system of non-compact (imag-
inary) roots. Recall, [Sch], that the conjugacy classes of Cartan subalgebras
of g are parameterized by strongly orthogonal sets S € &'(h). More pre-

cisely, for each o € ®"(h) one chooses X, € g, (the a-root space in gc)
and H, € ih such that the following commutation relations hold:

[Ha» Xia] = ixia» [Xa» Xfa] = Ha, Yoz = Xfa-

Then, the Cayley transform corresponding to « is defined by

C, = exp <_T”'ad(xa + xa)> e End(go).

For a strongly orthogonal set S < @"(h), define cs = [ [,.5C.. The Cartan
subalgebra corresponding to Sis given by

(10.8) bs = gnNcs(ho).

Moreover, two Cartan subalgebras hs,, hs, are conjugate if and only if some
element of the Weyl group W(H) maps S U (—S) onto S U (—S).
It isimportant to realize that the following equation holds

(10.9)  chow(Z + 2) = chew(Z + ¢5'(2) (Z € b, Z€ bso),
where hs ¢ stands for the complexification of bs.
Indeed, if G = Up q and G' = Uy, then by (9.3)

/ 1 / /
(10.10) chew(Z 4+ 2) = (—1)p2p+qm (Zl € f)(c =4gc, Z€ gc)-

Since the determinant is invariant under conjugation, the formula (10.9)
follows. The general case reduces to the above one, via the decomposition

chew(Z + 2) = l_[ chew, (Z + 2)
jed
(W = Hom(V|, V), Z € b, zZ € go).
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By combining (10.7) and (10.9) we see that, with the notation of (7), we
have for any strongly orthogonal set S € d'(h), and any Z € b, and

Z € bsc,

P(Z)my (Z)chew(Z + 2)y o €51 (2)
(10.12)

= P(Z)my (Z)chow(Z + Cs*(2)my 0 ¢5'(2) = Y " FLz 0 c5'(2).
L

Since we are going to use Stokes formula, [H0, 6.4.5], we introduce the
differential formsinvolved.
Asin (10.2), let

(10.12) V=>"V
leL

be a decomposition of V into H-irreducible subspaces over . We denote
by Vo the trivial component if it occurs (i.e. is non-zero). For each | # 0 fix
acomplex structurei on M. Then there are linear coordinates X on b such
that

(10.13) Xlv =ix  (xeh, | eL£\{0).
Define an R-linear isomorphism ¢ : h — hsby

(10.14) c5(x) = xforal x e (| Ker o, Cg(iHy) = cs(Hy) foral o € S

aeS
Letdimbh = n. Interms of (10.13) and (10.14) set
= dxgdxa...dxn, s = (C)*u =i'%(ce)*u,

where | S| stands for the cardinality of S. We orient h and fx by declaring
the following charts to be positive:

K : [] 5 X = (X1, X2, ..., Xn) € Rn, and « Od871 : f)s—) R".
Then, for atest function v,
(10.15)

WMSZ/(deS)MZ/ Yo SOKil(Xl, X2,.‘.,Xn)dX1dX2...an.
bs b Rn

Let Hs € G be the Cartan subgroup corresponding to . Recall the
Harish-Chandra integral, defined with respect to negative roots (see [W1,
7.3.5)]):

Ys(X) = Ty o Cs H(X)es(X) - Y(gxg Hdg,
(10.16) e
es =[] s;n@ocs'(x)  (xebs v e S

aocs ! rea
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The Weyl group W(Hs) preserves the Cartan decomposition hs = ¢ N hsP
pNhs. Let (p Nhs)™ C p N bhs be aWeyl chamber on which es(x) > 0.
Lethst =€Nhsd (p Nhs)t, and let ng denote quotient of the cardinality
of the restriction of W(Hs) to p N hs by the cardinality of W(Hs). Then the
Wey! integration formula can be written as

1017 [vodx=3ns [ mocsvsus (e Sw),
g st

where the summation is over a maximal family of mutually non-conjugate
Cartan subalgebras hs C g.

Notice that the Weyl group W(H) acts on the set of indices ¢ \ {0} by
permuting the summand in (10.4). For eachinjection L : ¢\ {0} — 4\ {0}
choose an element y- € § so that

(10.18) (y". )lw;., > Ofor j € '\ {0} and o(y") = y°* for o € W(H).

This is possible. Indeed, there are unique elements H € § such that x =
> 1 X H for x € b, and we may choose

L
yo= ) son(Hug s lwg Huy.
je7\(0)

Letys = Yy Hi, where the summation is over the | such that a(H) = 0
for dl « € S. Definean (n + 1)-chain G in hsc asfollows:

Cs5(t,x) =x+itys  (xebhs, 0<t<.

Let % = {o € D(h), ozocgl is a hon-compact imaginary root for bs}. For
a € ®Y, let Ck|, denote the restriction of G5 to Ker o o cgt. Let €5(1)
denote the restriction of G tot = 1. We give orientations to G5, C5(1),
and C%|,, by declaring the following charts to be positive:

Cs 3 X +itys — (t, k o5t (X)) € RM™,
C5(1) 3 X +itys — kocgt(x) € R",
CEly 3 X +itys — (1, 0) +x o CgH(X) € R
Let hY = {x € hs, @ 0 C5'(X) # Oforal o € dY}. By a theorem of

Harish-Chandra, [Va, part I, p.47], each function v, defined in (10.16),
extends to a smooth function on J, which shall be denoted by the same
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symbol s. For aninteger N > 0, let ¢5 denote the extension of degree
N of s, to the complexification of K, asin [HE, 3.1.15], (see (A.1)).

Theorem 10.19. Fixanelement X € h'. Thenfor any integer N > 0, large
enough, and for all ¥ € Sg),

P(X") 7ty (X') / che(X' + X)) (X) dx
g

ZZns / VL x, SN —/ d(vex,sn) — Z/ VLx,SN | »
e el aeal? Csla

where v w sn = FLx o cgl - YsN - s, the unmarked summation is over
a maximal family of mutually non-conjugate Cartan subalgebras s C g
and over all injections L : ¢ \ {0} — ¢ \ {0}. Moreover, each integral on
the right hand side of the equation is absolutely convergent. Furthermore,
the integrals over G|, are equal to each other.

Proof. Thedecompositions (10.1), (10.4), and (10.12) are of course related,
as follows. If D = C, then W, x = Hom(V{, Vy). For D # C the space
Hom(Vj/, Vi), (j # 0, k # 0) decomposes into two irreducible subspaces.
Thus, with n = dimb, we may define the index set ¢ so that

o] @2..nmib=C
F\ }_{{1,2,...,2n} if D # C,

and choose the complex structuresi on V/ and on Vi so that, for x € b,

10.20 : i —xj) ifk<n,
(10.20) X+ X)wyy = i(—Xk—n_X}) if k> n.

It is an exercise to see that one can introduce linear coordinates y, vy, X
on hs as follows (see (10.13)): if D = R then there are numbers 0 < a, b,
a+ 2b < n, such that for x € b,

Y ifl<l<a,
1 iU+ ifa<l|l <a+b,
(1021) Cs (= —iu_p+uv_p ifa+b<l<a+2b,
iX ifa+2b<I| <n;

if D = C, then thereisan integer b > 0, with 2b < n, such that for x € g
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iy + v ifl<I| <hbh,
(10.22) cstX) = Jiup—uv_p ifb<l<2b,
iX if2b <1 <n;

if D = H, then thereis an integer b > 0, with 2b < n, such that for x € ks

iy + v ifl<I <bh,
(10.23) Cr(X) = 1 —iu_p+u_p ifb<Il<2b,
I X if2b<I <n.

LetL : ¢ — ¢ beaninjection. We see from (10.20) that, in terms of (21—
23), thefunction|che, (X' + c5M(C(t, X)), (X' € b, X € bs), isaconstant
multiple of the following expression, for D = R, C, H respectively:

L1 v/ 1—1
l_[ loLgy — 1X] 1_[ [VL(y—n + 1X]

1<L(j=<a n<L(j)<n+a
; -1
1_[ li(uLgy — X)) + oLl
a<L(j)=<atb
; -1
1_[ [1(UL(j)—n + X/j) + VL (j)—nl
n+a<L(j)<n+a+b
; -1
(10.24) [T  li=uigoo—%) — vigsl
at+b<L(j)<a+2b
; -1
1 i (—UL(j)~b-n + X}) — VL(j)~b-nl
n+a+b<L(j)<n+a+2b

[T lixeg —x) +tybgl™

a+2b<L(j)<n

; L -1
| | (XL (j)—n + X/J) —WiG-nl
n+a+2b<L(j)<2n

: -1
1_[ liULcy — X)) + vl
1=L()=b

. -1
(10.25) [T lieg-o—x) = oLl
b<L(j)<2b
. L -1
[T liows—xp—tyggl™
2b<L(j)=<n
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- -1
1_[ li(ULgy — X)) + oLl

1<L(j)=<b
. -1
1_[ ||(uL(j)—n+X/j) + VL (j)-nl
n<L(j)<n+b
. -1
1_[ i (=UL(j)-b — X}) + vij-bl
b<L(j)<2b
(10.26)
: -1
1_[ i (—=UL(j)—b-n + X}) + VL(j)~bnl

n+b<L(j)<n+2b

R / L -1
[T liowg =x) =ty
2b<L(j)<n

: / L -1
[T liegon+x) —tybal™
n+2b<L(j)<2n

The expressions (10.24-10.26) are products of independent terms of the
form

lo—ixX |72 v —ix)| o —ix5| 7t

(10.27) / S |
(X' #0, X] # X5, X1 0, X5 #0),
(1025 NU=X) vl =) — vl i —xp) — v
| 06 # %)),
(1029 XX =t o) — T Oc—g) — 117

(X # Xp).

Since the expressions (10.27-10.29) are locally integrable with respect to
ve R, (u,v) e R?or(xt) e R? the absolute convergence of theintegrals
in the Theorem (10.19) follows, (see dso (A.3), (A.4)).

In order to prove the formula (10.19) we may assume that v € Q°(g).
Suppose first that the support of ¢ is digoint with the singular support of
the distribution chc,. Then, by (10.11) and by the Weyl integration formula
(10.17),

/ P(X")mry (X )che(X' 4+ X)¥(X) dx
g

(1030) =) ns /h POy (X)ehe(X + ) 0 5200 ¥ 1s(X)

:Zn3/+ FLxoCs' ¥s-us.
b

S
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Let usfix L and view h$ as €5(0), the restriction of €5 tot = 0. Also, let
VL x.sn = FLx oCgt- ¥sn - ius. Then, by Stokes formula, [H6, (6.5.4)],
and a Theorem of Harish-Chandra, regarding the singularities of hisintegral
(10.16), [Va, part |, p.47],

/ d(vL x,sN) =/ VL x',SN —/ VL x, SN
ek C5(D e5(0)

- E / VL,x,SN-
@L

ote(bg Sle

Clearly, (10.30) and (10.31) verify the formula (10.19).

For ageneral ¢ € C(g) the same argument applies, via a partition of
unity and areductiontothecase G = Uy ¢, G’ = Uy, considered in [D-P3].
We explain the details.

Let X € g bein the singular support of the distribution cheg.. Let X5 be
the semisimple part in the Jordan decomposition of X. Let

(10.32) V="V
k

(10.31)

bethedecomposition of V into R [Xs]-isotypic subspacesover D. Thedecom-
position (10.32) isdirect, orthogonal, and the sets of eigenvalues ofXs|y, are

digoint, ask varies. Let W, x = Hom(V/, V). Sincethe X' € " is regular,
we may arrange the indices so that

(10.33)  Ker(X + %) "Wy #@ifandonlyif j =k=1,2, ..., m.

A straightforward, case by case, verification showsthat for 1 < k < m,

Vi — Ker (X' + %s) N Wik if D=C,
KT Ker (X + %) N Wik @ (Ker (X + %) N Wi)t if D # C.
In particular,
(10.34) W = Ker(X' + %) @ (Ker(x' + %))+

Using the complex structurei on \, weview Ker (X' +%s) "W x asacomplex
vector space. The Hermitian form (, ) + (i , ) on this space is preserved
by G*s|y,, the restriction to Vi of the centralizer of %s in G. Thus

(10.35)  (G*ly,, Ker(x' + Xs) N W) isisomorphic to (Upq, CPH9),

for some p, g.

Let U C g* be a completely invariant, open neighborhood of Xs, in-
variant under conjugation by elements of the identity component of G,
such that (10.33) holds with theXs replaced by any x € U. Notice that our
original element X belongs to U. We choose U small enough so that the
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adjoint orbits are transversal to U, (see [Va, part I, p.19]). By [H6, 8.2.4],
the distribution chc, restricts to U. We describe this restriction in more
detal.

Letgl,, ={Z=X+iy; (Y, Mlkerxtx>0. X, Y € g} € gc. Thefunction
chew : spi — C, defined in (9.3), restricts to a holomorphic function

g, 32— chow(X' +2) € C.

We seefrom (10.35) that for each x € U thereisan element y € g which pre-
servesthedecomposition (10.34) and satisfiesthecondition (Y, )ker(x-+x)=0-
Forsuchxandy,andz= x +1iy,

chow (X' 4 2) = chtker(x+x9) (X' + 2) - ChCker(x+20- (X' + 2),
because the function chay isthe reciprocal of a square root of the determi-
nant, (see (9.3)). By taking limit if y — O we obtain the following equation
of distributions:
che(X' 4 X) = chtker v+ (X 4 X) + ChCkerx 591 (X + X)

xeU),

where the second factor, on the right hand side, is areal analytic function.
Furthermore, by (10.33),

(10.36)

m
Chkerx-+20 (X +X) = [ | eier ooz ritge (X + )

(10.37) o

(x e U).

Since, by [D-P3], the Theorem 10.19 holds for the pair U, 4, Uy, the for-
mulas (10.36) and (10.37) imply the equation (19) for ¢ € Q°(Ad(G) U).
A partition of unity argument completes the proof. O

Lemma 10.38. Let¢(v) = (1+|v])"Nor ¢(u, v) = (1+|u))"NA+|v)~N;
u,v € R, N > 0. Then for N large enough, and any € > 0, the following
integrals are finite:

(a) / / (U2 + X/z)_1/2¢(v) dv (1 + X/Z)_e/z dX/’
R JR

AZA(UZ+XiZ)—l/Z(v2+X/22)—1/2¢(U) dv
(1 + X% "2(1 4 x52) /2 dx| dx5,

(b)

(© / / ((u— x/)2 + vz)_l/2¢(u, v)dudv (1 + X/z)—e/z dx,
R JR2

/ / (U= x)? +v?)"Y2((u = x5)? + v*) " Y2¢(u, v) dudv
R2 JR2

(1 + X2 ~2(1 4+ x4%) =2 dx], dxs.

(d)
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We shall prove thislemmain Appendix B.

Proof of Theorem 10.3. From the formulas (10.19), (10.24-10.29) and
(A.3), (A.4), we see that the integral in Theorem 10.3 isasum of integrals,
each of which can be dominated by by one of the integrals (10.38). O

11. A general pair (g, g) of typel

Here we resume the general case of Sect. 8. Let H = T'A' € G’ be
a Cartan subgroup, asin Sect. 1. Let V. € V' be the subspace on which
A actstrivialy. Let V. = V/* C V' be the orthogonal complement of \/.
Then V{ has a complete polarization V, = X' & Y’, preserved by H'. Let
X=X@eX,@..andY =Y ®Y,® ... bethe decomposition of X, Y’
into A'-isotypic components. Altogether we have

(11.1)
Vi=VieV, Vi=XaY, X=XeX,a...Y=YoY,&...

We assume that the restriction of theform (, ) to each space Vj/ = X/]- @Yj/ ,
asin (11.1), isnon-degenerate. Let W, = Hom(V{, V), W; = Hom(V/, V),
W; = Hom(V/{, V). Then we have the following direct sum orthogonal
decompositions

(11.2) W=W.®dWs, Ws =W, W5 & ...
Moreover,
(11.3) W, = Hom(X’, V) & Hom(Y, V) (j >1).

The group A’ (= centralizer of A in ) preserves the decompositions (2)
and (11.3) and the obvious restrictions yield isomorphisms:

a’ = sp(W) @ Endg (Hom(X}, V)) & Endg(Hom(X5, V)) @ ...

(114 , , ,
A" = PW,) x GLr(Hom(X7, V)) x GLr(Hom(X5, V)) x ... .

Let A” be the centralizer of A" in . Let A" be the restriction of A”
to X/]-. Then A/j” isisomorphic to GL;(R). The restriction of A” to W, is
isomorphic to Oy, the two element group. Hence, (A’, A”) isadua pair

isomorphic to
(11.5) (S0 (R), O1) x (GLp, (R), GL1(R)) x (GLp,(R), GL1(R)) x... .

Let WAW = (Wc \ {0}) X WlA{’ X W2A’2” X ...
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Define an invariant measures dw on the quotient manifolds A” \ Wy,
and on A"\ WA/jn, asin (1.3). Then, as atemperate distribution on d’,

(11.6) chc(x) :/ xx(w) dw

A" \WA’”

=/ xxc<w)dw®/ xxl(w)dwea/ (W) dib ® ...
We A&//\WAZ/ A/J{/\WA/Z//

wherex € a’, Xc = |w,, Xj = x|Hom(x/j,V), and each term iswell defined via
the results of previous sections. In particular Lemma (1.7) follows.

Proof of Proposition 1.8. Suppose $ € sp(W;) is of rank one. Then there
isanon-zero w, € W, such that

So(wp) = E(wo, wo)wo ~ (wp € We).

Let s; € Endg(Hom(X},V)), j > 1, be of rank one. Then there are
non-zero elements x; € Hom(X?5, V), y; € Hom(Y}, V), such that

Sj(U) = tr(uyX; (u € Hom(X’, V)).

Inother words, §+S1+S+... = tor(w), for w = (wo, X1+ VY1, Xo+ VYo, ...).
Suppose that  + s + S + ... € a” isperpendicular to g. Then z;(w) = 0,
i.e

(11.7) wowg + X1Y; + Xay5; + ... = 0.

Letx € gbesuchthat (X + X, S+ S + S + ...) isin the wave front set of
the distribution chc, (11.6). Then by (4.9) and (9.3.d)

(11.8) Xwo = woXg, XXj = XjXj, XYj = YjX; (j=1.

By combining (11.7) and (11.8) we deduce
(11.9) 0 = wo(X) wl + X1 YE + %X ) ys + ... (k=0,1,2,..).

Since X' € h" isregular, the odd powers (X)X span iy’ over the field of
the pointsin the center of D, fixed by theinvolution. Hence, by taking linear
combinations of both sides of (11.9), with coefficients in in that field, we
see that (11.9) holds with the (X)* replaced by an arbitrary element of 4.
In particular

(11.10) wowg =0, Xy =0, (j=1.

The first equation in (11.10) means that the image of uf is an isotropic
subspace of V.. By (11.8), this image is preserved by X. Hence, by the
classification of Cartan subalgebrasin ¢, wo = 0. Also, as in the proof of
this Proposition (1.8), for pairs of type I, we check that § = O for j > 1.
This contradiction completes the proof. |
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Suppose V' = V{. Then thefirst line of (11.4) reduces to
a” = Endg(Hom(X’, V)) & Endg (Hom(X5, V) & ...,
and (11.6) reads
che(x) = 8 o det(xg) ® 8 o det(x2) ® ...,

where x € a”, X; istherestriction of x to Hom(Xj, V), and § o det isasin
(4.6). In particular the distribution chc(X + X), X € g, isapositive invariant
measure on g. The following lemma can verified using the same argument
asin the proof of (7.10). We leave the details to the reader.

Lemma11.11. Suppose V' = V{.

(a) If the distribution chc,(X) = chc(X’ + X), X € g, is non-zero, then
the space V contains an isotropic subspace of the same dimension as the
dimension of the isotropic space X C V'.

(b) The distribution chc, isregular, in the sense that for any v € Sg),

/ Y(x)che(X' + x) dx

g

_ 1 / 2 -1 .
=2 IW(H)| /,, CNC(X+X) [y (X)] /G/H ¥(ghg™) dgdx,

where the integrals are absolutely convergent, and the summation is over
a maximal family of mutually non-conjugate Cartan subalgebras b C g.

From now on we assume that chc, # 0. If V{ # 0, then, in terms of
(11.2),

(11.12)  chew(X' + X) = chow, (X' + X) - chow, (X + X) X €g),

where the product of distributions is well defined, by (1.8). In particular
we see that (11.11.8) holds in general. Hence, we may assume that \{ is
a subspace of V, such that the restriction of the form (, ) to \{ is non-
degenerate and such that \V, = X' @ Y’ is a complete polarization with
respect to theform (, ).

LetU = V[t C V. Then

(11.13) V=V.eU=X@aY &U.

Asin (7.20), this gives embeddings, End(X) — g, Hom(U, X') — g, and
g(U) — g, where g(U) isthe Lie agebra of the group G(U) of isometries
of therestriction of theform (, ) toU. Noticethat Hom(U, X) iscontained
inthe unipotent radical n of the parabolic subalgebra of g preserving X. The
Levi factor of this parabolic subalgebra coincides with End(X) +g(U). Let
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n’ C g’ be the unipotent radical of the parabolic subalgebra preserving X.
Recall the maximal compact subgroup K € G. For ¢ € S(g) define

Y () = / / Yk(x+yk Hdkdy  (x € g).
nJK
By restriction the above formula gives a continuous map

S(g) 3 ¥ — ¥ € S(End(X) + g(U)).
Proposition 11.14. For any X € h"" and any v € S(g),

/ che(X + X)yr(x) dx
g

1
= Jdet(@d(x) )] chow, (X + X) ¥ (9%g ™" + x) dxdg,
|det(ad(x’) | )| /GL(X/)/Hé /g(U) We ' Va (9%9 g

where H; = H'|x/, istherestriction of H' to X', x¢ = X[y, and Xg = X'|x'.

Proof. If V' =V, i.e,if U =0, then, by (11.11.b), the |eft hand side can
be expressed in terms of integrals over the regular parts of various Cartan
subalgebras. The same can be done with the right hand side, and the two
appear equal.

The genera case follows from the previous one and from the formula
(11.12), via a straightforward calculation. ]

The pairsof groups
12. Thepair Sp,,(R)), Oy

Let We = W ® C be the complexification of W. The symplectic form
(, ) extends uniquely to a complex valued form on W, Let So(We) and
sp(We) = sp(W) @i sp(W) denote the corresponding complex symplectic
group and complex symplectic Liealgebra. It iseasy to seethat the elements
of the subset sp™ = {x +iy; x,y € sp, (y, ) > O} € sp(W) don’t
have 1 as an eigenvalue. Let " (We) = c(spi"). As shown in [H2,
(12.4b)], Sp" (W) is an open sub-semi-group of So(We). Furthermore,
see[H2, (23.7.2)], every element g € " (W) has a unique factorization
g=u-p,whereu € (W), {Im(c(p)), ) > 0,c(p) €isp(W) and p (as
an endomorphism of W) has positive eigenvalues # 1. Set

ST We) ={0=(9,8); ge PTWe), £2=det(i(g— 1)1,

(12.2) »
0:H T We)>9—£eC.

The distribution ©, defined in (2.7), coincides with the function equal
to the limit of the holomorphic function defined in (12.1), as p tends to the
identity.
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Lemma 12.2. The distribution ®, has the wave front set ~given by the fol-
lowing formula: WF(®) = {(@, tsp(w)); 9(w) = w, § € (W), w € W}.

Proof. Let ¥ € C§°(S~p°) be supported on one sheet of the covering map
$ > . Leto € §°. Then

/NC\IJ(Q)®(QOQ> dg = /N _W(@T(Go)T(@)(0) dg

(12.3) &

= / /~ W (@) T(Go) (w) T(G) (w) dg dw.
W/

Fix a smooth lifting ¢ : sp® — $° of the Cayley transform ¢ : sgf — °,
so that supp W isin the image of €. Let § = €(X), ¥(X) = const W(E(x))
det(1 — x)®"1, and let xo = c(go). Then (12.3) may be rewritten as

(12.4) /gpc V(9)©(800) dg = /W Y(X)O(E(X) O (o) xxo+x(w) dx duw.

spc
Define maps
(125)  Ag : P30 0P, Az :SP3X—> X+ X €SP

Then (12.4) shows that, in terms of pullbacks of distributions [H6, 9.2], we
have

(12.6) C((Ag,®)lg®) = O(Fo) - TO - AL A1,

where G({o) is aconstant, c®(X) = ©(E(x)) isasmooth function, and &
isdefined just before (9.7). Hence, by [H6, 8.2.4],

(12.7) WF((A},0)g°) = T o Aj (WF(R).
Recall (9.7) that, under the identification sp = sp,

WFE(1) = {(X,S) € Sp x tsp(W); Xs = 0}.
Hence,

M WF(R)) = {(X, 5) € sp X t5p(W); (X0 + X)s = O}.
It is easy to check that
de@() = -2 - 'x(@-Dt  (xesp.

Hence,

(8,9 €T oAy (WF(Q))

ift (x, 2@ Dsg- 1)) & 13, (WF(R)

iff % +x)(g—1s(g—1) =0
iff (Xo+X)(g—1)s=0.

(12.8)
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Recall [H2] that on a dense subset of §F x P°
C(C(X0)C(X) = (X = (X +X) (X0 +1) + L
Hence,
Xo+X = (X0 — D(C(@g) — ) (x—1) = 2(g— D H(Gg - D(@-D
Therefore, on the whole set SF x °,
Xo+X=2(g— 1D (g —1(g-1 .
Hence, the last condition in (12.8) is equivalent to
(Gog — Ds=0.
Since S = F° - F°, we are done. O

Lemma 12.9. For any ¥ e C(Sp), the distribution T(W), (see (2.7)), is
a function and belongs to S(W). Moreover the map

CX(P) > ¥ — T(W) € SW)
IS continuous.

Proof. By themethod of stationary phase, thelemmaisclear ifSp isreplaced

by §°. For the general case we notice that there are g, 0, ..., gm € °
such that

m
=Ja%"
=1
Hence there are functions Wy, Wy, ..., Wy, € C2(°), such that
m
dwigite=1 (ge.
Therefore for any W e C°(Sp)

(1210) T(w) = / \IJ(g)T(g)dgzz / W, (050 ¥(9)T(g) dg

—Z / Y @UGOTEY = T / (9 %(g,0)T(O) do.

j=1
Since for any g € Sp the map

S(W) 3 ¢ — T(Q)ip € SW)

iswell defined and continuous, the lemmafollowsfrom theformula(12.10).
o
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Lemma12.9 implies, in particular, that the following formula defines adis-
tribution on S

Che(v) = / T(w) dw(¥) = / /N\Il(g)T(w) dgdw
w wJ/S
(Ve C ().
Corollary 12.12. Wth the above definitions we have

(12.11)

(@ Chc_/ T(w) dw = O((—=1))~ 1Aj ;5O

(b)  WF(Che) = {(8, tsp(w)); g(w) = —w, § P, we W).

Proof. For part (a) we notice that

A7 OW) = / w(9)O((—1)g) dg = /Sj (9 T((—-1)9)(0) dg
— T(-1) / W(Q)T(9)(0) dg = / / O(—1)W(g)T(g) (w) dg duw.
S W JS

Part (b) follows from (a) and (12.2). O

Let J be a(not necessarily positive definite) compatible complex struc-
ture on W and let U = (W)’ be the centralizer of J in the symplectic
group. Set

Hy(w, w) = (Jw, w') +i(w, w).

This is a positive definite hermitian form on W, viewed as a complex
vector space where multiplication by i € C is identified with J. For
g € GLc(W), let g € GL¢(W) be the adjoint element, defined by the
equation Hj(gw, w') = Hj(w, g*w’). In these terms, the group U = {g €
GLc(W), g =g'}.

Let Ul™ = S (We)? be the centralizer of J in S (W), and
let U+ be the preimage of U™ in " (We). It is easy to check that
UZ" = {g € GLc(W); g'g < 1}, and that UZ™ = (g = (9,8 g €
Uit g2 = 40 mls). (Here“g"g < 1 means HJ((l g'gw, w) > 0

det(1—g
foral w e W\ {0} ) In particular

det’/?(g)

(12.19 R

whereg € U™ isinthe preimage of g € U/, and ((det'/2(g))? = det(g).
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Thegroup GL¢ (W) isacomplexification of U. LetGL¢ (W) = {(g, h);
g € GLa(W), h? =det(g)}, and let GL. (W) = {(9. ): g € GLc(W),
g‘g < 1, h? = det(g)}. A straightforward cal culation shows that the map

h ~
GLE+(W) =) (g, h) — <g, m) S U@

preserves multiplication. In particular we see that the function ©, described
in (12.13), extends to arational function onGL ¢ (W).

13. Thepair GL,(R), GL1(R)

Here we use the notation developed in Sect. 4.

Lemma 13.1. For any W € C(G), T(¥) isa function on W™ sych that
@ / I T(W) (w)|dw < oo.
G/\Wmax

Let ¥ e Cgo(é) be supported on one sheet of the covering map. Then, with
8 o det understood asin (4.6),

Chc(lIJ):/ T(¥) (w) dw
(b) P

= /G W(9)©(0)|det(g — 1)[5(det(g + 1)) dg.

Moreover,

© (O(g)det(g— 1))* =detg (g€ G).
Thus,

(d) Che(g) = det”*(g)s(det(g + 1)) (g€ G),

where the sign of the square root depends ong in the preimage of g.
Proof. Noticethat for g € G° and x = ¢(g),

det(x — 1) = det(2(g — 1)) # 0 and

(13.2) i
det(x +1) = det(2g(g — 1)) # 0.

LetWw e CgO(GC) be supported on one sheet of the covering map. Then

(133)  T(W)(w) = /é V(@O (@) Xei (w) dg = / Y (X) xx(w) dx,
o
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where the function
(134) Y0 = 2" WEX)OEX)|det(x — (X + D" (x € g),

isin C(g°). Hence, for ¥ e CX(G°), the method of stationary phase
implies (a). Moreover, (4.10) shows that

/ TW)(w) dw = / /w(x)xx(w) dx dw
G\ wmax nwmax J g

= /w(x)s(det(x))dx =LW(Q)®(Q)8(C(Q))dg
g
= /G V(9)O()|det(g — 1)|5(det(g + 1)) dg.

Thus (b) follows for & e C(G°).
Let go € GC and let X = ¢(go). Then for ¥ e CX(G°),

(13.5) T(Go)4T(W) (w')

1
— O(To) 1 (1) /W Yoo () / ) (1) X (5«1 — xo)u, w>) dw
g

as adistribution on W. As shown in (4.11), this distribution coincides with
afunction on WM which is absolutely integrable over G \ W™, Thus,
with the convergence question out of the way, we are free to calculate the
following oscillatory integral (with z, z € g°):

(136) Xzol Xz (w') du’
G/\Wmax

1
= / / Xzo(w/)X <§((1 — Zow', w)) Xzo+2z(w) dw
/\Wmax W

1
=/ ///x(E((X’zOJrX(l—Zo)))/
nxmex Jx Jy Jy

+ (—X'(1 4 20) + X(20 + z))v)) dy dy’ dx dx’

— const / / 8<}(X/Zo +x(1— Zo)))
Grxmax Jx \2

6(%@/(1 +2) — X2+ z))) dx dx’
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= const |det(1 — zp)|~* / §(X'z0 + 2)
G\ Xmax J x

S(X' (14 29) — X(1 — 20)~X(z0 + 2)) dx dX’
_ const|det(L — 2| / SOC(L+ 20 + 20(1 — 20) (20 + 2))) X
G\ Xmax

— congt |det(1 — z)|"t|det(1 — 2)|
/ SOX (14 20+ 201 — 20) Hzo + 2)(L — 207 H dX
G/\ Xmax
— const |det(1 — z)|~t|det(1 — )|

/ SC(L+ (1 — 20 Mz0+ (L — 27 ) d¥
G\ Xmax

= const |det(gy — 1)det(g — 1)| ) (x’}(gog + 1)) dx’
G/\XmaX 2

= const |det(gp — 1)det(g — 1) 8(X'(9og + 1)) dx’
G/\xmax

Thusfor go, g € G,

(13.7) T(G0)5T(@) (w') dw’
G\ wmax

= const ©(go)|det(go — 1)|©(8)|det(g — 1)I/G . 8(X'(gog + 1)) dX’
/\ max

= const det'/?(go)det™2(§)s(det(gog + 1)).

By taking the limit if g goes to 1, we see that the constant is equal to 1,
(const = 1). Since thereare @, g3, ..., Om € G° such that

m
G=|JgG*
j=0

apartition of unity argument completes the proof of (b). Parts (c) iseasy. O

An argument analogous to the one used to prove (12.11) verifies the
following statement:

(138)  WF(Chc) = {(8, 7g(w)); g(w) = —w, §e G, we W}
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14. A general pair G, G’

The proof of Proposition (2.10) is based on (12.12.b) and (13.8), and is
entirely analogous to the proof of Proposition (1.8). Thuswe leaveit for the
reader.

Fix a Cartan subgroup H' € G/, asin Sect. 2, an element ' € Hr.
Assume that Chg, # 0.

Suppose the pair G, G is of type Il. Then we have the decompos-
ition V = V' @ U, (see (7.20)). Let P € G be the parabolic subgroup
preserving V'. Then the unipotent radical of P, N = 1 + n, where n =
Hom(U, V’). The Levi factor of P, M, coincides with the double cover of
GL (V") - GL(U), via(7.20). Let §p be the modular function for P. Recall
the Harish-Chandra transform

WP(m) = s7%(m) / / W (kmnk™1) dk dn
N JK
(¥ € CX(G), me M),

(14.1)

see [W2, 7.2.1]. It is easy to see (as in (7.21)) that (13.1) implies the
following proposition.

Proposition 14.2. For any ¥ € C°(G) andany h' € H™,
/ Che(h'g)¥(g) dg = / / wP(gh’'g~th) dh dg.
G G/'/H JGL(U)

Let G, G’ be apair of typel. ThenV = X o U @ Y’, asin (11.13).
Let P € G be the parabolic subgroup preserving X, and let P' < G’
be the parabolic subgroup preserving X. Let N € P and N € P’ be
the unipotent radicals. The Levi factor of P, M, coincides with the double
cover of GL(X') - G(U), where G(U) isthe restriction of G to U. Let WP
denote the Harish-Chandra transform of W, asin (14.1). Then an argument
analogous to the one verifying (11.14) proves the following proposition.

Proposition 14.3. For any ¥ € C°(G) andany h' € H”,

[ Che(h'g)¥(g) dg
G
= 857%(h") / ~ Chew,(hih)wP(gh’gth) dh dg,
GL(X)/H{ JGU)

where H = H'[x, istherestriction of H" to X, hy = h'|y;, hg = h’|x/, and
. = Hom(V(, U).

From now on we assume that the pair G, G is of type |, and that the
Cartan subgroup H' € G’ is compact.
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Let H € G beacompact Cartan subgroup. Thefunction ®, (12.13), and
hence the function Chc, (12.12.a), uniquely extends to a rational function

on H{:He. In terms of the decomposition (10.4) we have

(144) Chow(h'hy= T[] Chow,(h) (W € Hg, he Ho),
jed’. keg

where the subscript (W or W, i) indicates the symplectic space with respect
to which the corresponding function is defined. Asin (10.7) we have

A(W)Chew(Wh)A(h) = FL i (h),
(14.5) L
FLv(h) = PL(W)CheL (Wh), Che (hy = [ Chew,,, (W'h),
jeg'\(0}
where the summation is over all |nject|ons L: g( \ {0} = ¢\ {0}, each P_
isaregular function onHe, h’ € H/ and h € Hc.

For a strongly orthogonal set S - di‘(h) the Cayley transform cs :
he — hgc liftsto anisomorphism Cs : He — Hge. Thus, asin (10.11),

A(h') Chew(h'h) A o Cgt(h) = A(W) Chow(h'Cg'(h) A o C5t(h)
(14.6) . 5 -
=Y FuwoCsh) (0 eHg, heHso).
L

In terms of (10.13) let
(147) hly = epX) |y = expx|y) = €* =h, (he H, xep).

Thus, each h; isidentified with a complex number of absolute value 1. The
formula (14.7) extends to the complexification Hc. Then each hy is anon-
zero complex number. In these terms, define the following differential forms
on Hc and on Hgc:

dh; dh, dh,
|h1|h2 |h

Recal the Harish-Chandra integral, defined with respect to negative
roots (see [W1, 7.4.8]):

(14.8) fi= . fis=i9Cy.

Ws(h) = Ao Cg'(h)és(h) /G ) w(ghg™) dg,
(14.9) /ls
¢s(h) = ]_[ sgn(l—h™*%) (¥ e CX(G), h e HY).

-1
aoCg™ real
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Asin Sect. 10, we have the Wey! integration formula:

f V(g)dg = Z n3/~ A o Cgt(h) Ws(h) fis.

G HE

Recall the notation introduced between (10.18) and (10.19). Let
(14.10) et h) = hexp(tys)  (he HE, 0<t <1).

For o € @Y, let @], denote the restriction of & to the set of h € Hgc,
where h*%s" = 1. Let @¢(1) denote the restriction of @g tot = 1. We
give orientations to é; é;(l), and é;|a, compatible with those of (fg
C5(1) and €|, viathe exponential map, respectively. Let HY' = {h € Hg;
heets' £ 1foral o e ®3}. By atheorem of Harish-Chandra, [Va, part I1,
p. 219], each function Ws, defined in (14.9), extends to asmooth function on
Hg", which shall be denoted by the same symbol Us. For aninteger N > 0,
let Wsn denote the extension of degree N of s, to the complexification
HE., (see (A.6)).

Theorem 14.11. Fix an element i ¢ H'". Then for any integer N > 0,
large enough, and for all ¥ € C°(Gy),

A(h) /G Che(h'g)w(g) dg

= Zns ﬁL DL x, SN — /~L dLx,sn) —
&5 es

where b v sn = lfL,X/ o Cgl - Wgy - fLs, the unmarked summation is over
a maximal family of mutually non-conjugate Cartan subgroups Hs, and
over all injections L : ¢\ {0} — ¢ \ {0}. Moreover, each integral on
the right hand side of the equation is absolutely convergent, (see (A.7)).

Furthermore, the integrals over ég|a are equal to each other.

Proof. By Harish-Chandra's Method of Descent, [Va, part 1], the problem
isreduced to the case G = Uy 4, G' = Uy, asin the proof of (10.19). |

E /~L VLx,sN | >
esla

n
acdg

Theorem 14.12. For any ¥ € Cgo(Gl) the following integral

I,

is convergent and defines a continuous seminorm on G° (Gy).

A(h) [Chc(h/g) W(g) dg| dh’
fe

Proof. Since, by definition (14.10), é;(t, exp(x)) = C5(t, X), this theorem
follows from (12.12) and (10.38) via the argument used in the proof of
(10.19). O
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Appendix A

Here werecall the notion of aboundary value of an analytic function in the
sense of distribution theory, see [H0, 3.1.15].

Let V be afinite dimensional space over R. For any v € V, let a(v)
denote the derivative in the direction v:

d
WYX = L YyU+lo UV, ¥ € C=(V)).

Let Sym(V¢) denote the symmetric algebra of M. The map d extends to
an isomorphism from Sym(\) onto the algebra of constant coefficient
differential operatorson V. Let

N

en(s) = Z %sp (se Sym(Ve), N=0,1,2, ...).
p=0 "

For anopen set U C V and afunction ¢ € C*(U) define an extension iy
(N=0,1,2,..) of degree N of v to the complexification U + iV by

(A.1) Un(U+iv) = deniv)Pu) (UelU, veV).

By fixing abasis, we obtain real valued coordinates X = (%, X2, ..., Xn)
onV. Let z = (z, 2, ..., Z,) be the corresponding complex coordinates
on Vc. Let dx = dxqdx,...dx, and let dz = dzdz,...dz,.

Let U C V be an open set, and let I € V be an open convex cone. Fix
anorm||onV.Forsomey > 0,set Z={u+ive V; ueU, verl,
lv] < y}. Let f beananalytic function on Z such that for some N > 0,

(A.2) | f(u +iv)| < const [v|~N, U+ive 2).

Let vg € T, with |vg| < y. Then for any v € V), the following limit
exists and defines a temperate distribution on V

/wfdx = lim /w(u)f(u+iv)dx(u)
V; I'sv—0 Vi
(A.3) :/wN(u+ivo) f(u + ivg) dx(u)

\%

1
+ / / A((ivg) N /ND Y (u) f(u + itug)tN dtdx(u).
VvV JO

The formula (A.3) isadirect consequence of Stokes Theorem, and can
be written in more intrinsic terms as follows.
Let ¢ bea(n + 1) chainin Z defined by

C:[0,1] xU > (t,u) > u+ity € Z,
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Let €(0), (C(1)) denote the restriction of Ctot = 0, (t = 1). We declare
the following charts to be positive:

V=CO)>su—x(ueR", V=CA)>3u+ivy— x(u) € R",
C 5 u+ituy — (t, x(u)) € RM".

Then

(A.4) ¥ fdz = wadz—/d(wadz),
C

4] e

where

ynfdz= / ¥ fdx
c(0) \Y

(A.5) Yy fdz= / YN (U + ivg) f(U 4 ivg) dx(u)
\%

el

1
— | dynfdz) = / / A((ivo)NTL/ND Y (u) fu + itug)tN didx(u).
vV JO

e

More generally, let H be acommutative Lie group of dimension n, and
let Hc be the complexification of H. For y € b, the Lie algebraof H, let

= d
a(y) W(h) = E‘I’(h “epty)li—o  (heH, ¥eC*(H).

Asiswell known, 3 extends to an injective homomorphism from Sym(fr)
to the algebra of differential operators on H.

For an open subset X € H and and a function ¥ € C*(X) define an
extenson Wy (N=0,1,2,...) of degree Nof Wto Z = X -exp(ih) € He
by

(A.6) Un(h-exp(iy) = den(y)W(h) (heX, yeh).
In particular, if the group H is connected, we have
Wn(ep(X+iy) = (Woexpn(X +iy)  (Xeexp X(X), yebh),

where the right hand side was defined in (A.1).

Let ' € h be an open convex cone. Fix anorm | | on . For y > 0
set Z, = {h-exp(iy); he X, yeT, |yl <y} Let f beaholomorphic
function on Z, \ X. Assume that the function f satisfies the following
growth condition

|f(h-expy)| <constly|™,  (heX, yel, |yl <.

Suppose € isa(n + 1) chainin Z,, with the boundary 0C = Gy — Cy,
where Cg = Xand C; € Z,\ X. Letdzbeaninvariant holomorphic n-form
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on Hc. Then the corresponding limit distribution is given by the following
formula,

(A.7) /\IJ(X) f(x) dx ::/ Yn(2) f(2) dz—/d(\IJN(z) f(z)dz),
X C1 C

where, for N large enough, the integral s on theright hand side are absolutely
convergent.

Appendix B

Here we prove Lemma (10.38). Notice that
[ e @ md s [ pwan
v[=1 R

1
/ W2 +8) 2wy dv < 2| ¢ e / (W2 + &) H2(v) dv,
lv|<1 0

1 /
/(v2 + &%) 2 (v) dv = log(v + v/v2 + a?)|5 = log (% + & + 1).
0

Moreover,
log (x + /X2 + l)
lim =1
X—>00 log(x + 1)
hence

log = + = +1 <const|og<l +1>
lal | la? - al '

Furthermore, for € > 0,

o 1
/ log <—+1> @ +1)"“°da
0 a
1 1 ~ 1
:/ log <—+1> (a2+1)‘€/2da+/ log <—+1) @ +1)"?da
0 a 1 a

1 1 00
5/ log (— +1> da+/ al“da
0 a 1
=/ log (a+ 1)a‘2da+/ al“da< oo.
1 1

This verifies (10.38.a).
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Notice that, for € > O,
/R i /| | 1(v2 +a°) Y2(0? + b)) 2p(v) do(L + &) A1+ b*)~* dadb
V=
<l ¢l /Rz(l +a) V221 + b7 Y2 dadb < oo.
Furthermore,

1
/ / W2+ a®) Y2? + b?)"Y2duv(1 + a®) %1 + b*)~</?>dadb
R2 JO

(B.1)
1 2
:/ </ (v2+a2)‘1/2(1+a2)‘€/2da) dv,
o \Ur

1
E(v +a)? <’ +a°%

and

Moreover, forv > 0Oanda > 0,

o0 1 00
/ (v+a) '(l+a) “da< / (v+a)tda+ / a 't “da
0 0 1
=logwt+1) +et
Hence the right hand side of (B.1) can be dominated by

1 2
/ (/ (Jol + &) 2L+ [a)) da) dv
0 R

1 2
< 4/ </ W2 +a®) Y21 +a%)~/? da) dv
o \Ur

1
< 4/ (Iog(v_1 + 1)+ 6_1)2 dv < o0.
0

This verifies (10.38.b).
Letz=u+iv,andlet ¥(2) = ¢(u, v). Wewould like to show that

(B.2) / / 1z—a Yy (2) dudv(l + &) ~“/*da < .
R JRR2

It is easy to check that for |z — a| > 1,

1 2 1+ |z 1+ |z
< <2 < .
lz—al “1+|z—a = 1+a -~ (1+a’)l2
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Hence,
/ / |z— al Yy (2) dudv(1 + a%)~“/*da
R J|z—a|>1
< 2/ / 1+ |z)y¥(2) dudv(l + &) ~Y?7? < 0.
R JR2
Moreover,
/ lz—a ty(z)dudv < / max ¢(z)
|lz-a|<1 lz1<1 12-al=1
< const (1 + @) Y2 < .
Hence,
/ / |z— al Yy (2) dudv(1 + &%) ~“/?da < oo.
R J|z—al<1
This verifies (10.38.c).
Since,

(U—a)?+v) V21 +a%) 2 <4(lu—al+ [v) L+ |a)~,
we consider the following integral

(B.3) / (u—al +Jv) (L +a))~* da,
0

for an arbitrary u € R and v > 0. If u < 0, then the integral (B.3) is equal
to

/Ooo(a —u4+v)td+ac“da<log((v—u)yt+1)+et
If u > 0, then theintegral (B.3) isequal to
/Ou(u —a+v)t1l+a “da+ /oo(a —u+v)t1l+a)“da
Notice that “
/u(u —a+v)t1l4+a) “da< /u(u —a+v)lda
i = Igg(u + v) — log(u),
and that
/oo(a— u+v)'(l+a) “da< /Ooo(a— u+v)t(1l+a“da
u

<log((v—uw) 141 +el

Hence, the square of the integral (B.3) is integrable against the rapidly
decreasing function ¢(u, v). This verifies (10.38,d).



A Cauchy Harish-Chandra integral, for areal reductive dual pair 363

References

[A-S]
(B
[D-P1]
[D-P2]
[D-P3]

[He]
[H1]

[H2]
[H3]
[H4]
[H)]
[Ha]
[Li]

[M]

[P1]
(P2]
[R1]
[R2]
[R3]

[RR]
[Sch]

(sl

[vel

(W1]
(w2]

(W]

M. Abramowitz, I. Stegun, Handbook of mathematical functions. National Bureau
of Standards, Applied Mathematics Series 1964

A. Bouaziz, Sur les caractéres des groupes de Lie réductifs non connexes. J. Func.
Anal. 70 (1987), 1-79

A. Daszkiewicz, T. Przebinda, The Oscillator Correspondence of Orbital Integrals,
for pairs of type one in the stable range. Duke Math. J. 82 (1996) 1-20

A. Daszkiewicz, T. Przebinda, The Oscillator Character Formula, for isometry
groups of split formsin deep stable range. Invent. math. 123 (1996) 349-376

A. Daszkiewicz, T. Przebinda, A Cauchy Harish-Chandra Integral for the pair
Up,q, U1. IN preparation

S. Helgason, Groups and Geometric Analysis. Academic Press, INC, 1984

R. Howe, Transcending Classical Invariant Theory. J. Amer. Math. Soc. 2 (1989)
535-552

R. Howe, The oscillator semigroup. Proc. Symp. Pure Math., Amer. Math. Soc.:
Providence 48 (1988) 61-132

R. Howe, Wave Front Sets of Representations of Lie Groups In: Automorphic
forms, Representation Theory and Arithmetic, pp. 117-140. Tata Institute of Fun-
damental Research, Bombay 1981

R. Howe, L2 Duality in the Stable Range. Preprint

R. Howe, A century of Lietheory. American Mathematical Society centennial pub-
lications, Vol. Il (Providence, RI, 1988), 101-320, Amer. Math. Soc., Providence,
RI, 1992

L. Hérmander, The Analysis of Linear Partial Differential Operators, |. Springer
Verlag 1983

Jian-Shu Li, Singular unitary representations of classical groups. Invent. math. 97
(1989) 237-255

L. G. Macdonald, Symmetric Functions and Hall Polynomials. Clarendon Press,
Oxford 1979

T. Przebinda, Characters, Dual Pairs and Unipotent Representations. J. Func. Anal.
98 (1991) 59-96

T. Przebinda, Characters, Dual Pairs and Unitary Representations. Duke Math. J.
69 (1993) 547-592

W. Rossmann, Limit Characters of Reductive Lie Groups. Invent. math. 61 (1980)
53-66

W. Rossmann, Picard-Lefschetz theory and characters of a semisimple Lie group.
Invent. math. 121 (1995) 579-611

W. Rossmann, Lie Groups, An Introduction Through Linear Groups. An unpub-
lished book

R. RangaRao, Orbital integralsin reductive groups. Ann. Math. 96 (1972) 505-510
W. Schmid, On the Characters of the Discrete Series, The Hermitian Symmetric
Case. Invent. math. 30 (1975) 47-144

E. M. Stein, Harmonic analysis: rea-variable methods, orthogonality, and oscil-
latory integrals. With the assistance of Timothy S. Murphy. Princeton University
Press 1993

V. S. Varadaragjan, Harmonic Analysis on Real Reductive Groups. Springer Verlag,
Lecture Notes in Mathematics 576, 1977

N. Wallach, Real Reductive Groups, I. Academic Press, INC, 1988

N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl
group representations. J. Amer. Math. Soc. 6 (1993) 779-816

H. Weyl, The Classical Groups, their invariants and representations. Princeton
University Press 1939



