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1 Introduction

This article was completed in summer 1998, while the work [5] was still in progress. We

publish the original version without any essential changes.

One of the main problems in the theory of dual pairs is the description of the corre-

spondence of characters of representations in Howe duality, [3]. In [2] a formula describing

this correspondence was obtained under some very strong assumptions. In [5] the second

author has developed a notion of a Cauchy Harish–Chandra integral for any real reductive

pair, in order to describe this correspondence of characters. In this paper a special case

of this integral will be studied. The results obtained here are crucial for the estimates

needed in [5]. (See the proof of Theorem 10.19, page 343, in [5].)

∗ E-mail: tprzebin@crystal.math.ou.edu
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In this paper we consider the Lie algebra g = up,q = {z ∈ glp+q(C); z Ip,q+Ip,q z
t = 0}.

We assume, for convenience, that p ≤ q. Let h ⊆ g be the diagonal Cartan subalgebra.

Here Ip,q =

⎛⎜⎝Ip 0

0 −Iq

⎞⎟⎠, as usual. Let Hj = Ejj ∈ hC, 1 ≤ j ≤ p + q, be the diagonal

matrix with 1 in the jth row and jth column and zeros elsewhere. Then H1, H2, ..., Hp+q

is a basis of the vector space hC. Let e1, e2, ..., ep+q ∈ h∗
C

denote the dual basis. We fix the

following system of positive roots of hC in gC, Φ(h) = {ej − ek; 1 ≤ j < k ≤ p + q}. Let

k ⊆ g be the centralizer of Ip,q. Then k is the Lie algebra of a maximal compact subgroup

of G = Up,q = {g ∈ GL(C); g Ip,q g
t = Ip,q}, and h ⊆ k. The set of non-compact roots in

Φ(h) is Φn(h) = {ej − ek; 1 ≤ j ≤ p < k ≤ p + q}. Let π denote the product of all the

roots in Φ(h):

π =
∏

1≤j<k≤p+q

(ej − ek) .

For a root α ∈ Φn(h), let cα ∈ End(gC) be the Cayley transform and let Hα ∈ i h be the

corresponding element, as in [1, 3.1], (Hα = Hj − Hk, if α = ej − ek). For a strongly

orthogonal set S ⊆ Φn(h) let cS =
∏

α∈S cα, and let hS = g∩ cS(hC) be the corresponding

Cartan subalgebra, as in [6, sec. 2]. Denote by HS ⊆ G the corresponding Cartan

subgroup. For any α ∈ S, the root −α ◦ c−1
S = α ◦ c−1

S of hS,C in gC, is real. For x ∈ hr
S,

the set of regular elements in hS, set εS(x) =
∏

α∈S sgn(α ◦ c−1
S (x)). The formula,

P (x, y) = tr(xyt) (x, y ∈ g) (1.0)

defines a real valued, positive definite scalar product on g, viewed as a real vector space.

This scalar product determines a Lebesgue measure dx on g, such that for any basis e1,

e2, ..., en of g the volume of the parallelepiped Ie1 + Ie2 + ...+ Ien, where I = (0, 1) is the

unit interval, is equal to det(P (ei, ej))
1/2. Similarly P determines an Lebesgue measure

on each subspace of g, an invariant measure on the group G, on each closed unimodular

Lie subgroup and on each quotient of two such subgroups.

Recall the Harish–Chandra integral defined with respect to the negative roots:

ψS(x) = π ◦ c−1
S (x) εS(x)

∫
G/HS

ψ(gxg−1) dġ (x ∈ hr
S, ψ ∈ S(g)). (1.1)

Here hr ⊆ h is the subset of regular elements, (see [8, 0.2.1]). Set αj = ej − ep+j ,

1 ≤ j ≤ p, and for m = 1, 2, 3, ..., p, define Sm = {α1, α2, ..., αm}. Let S0 = ∅. Then

each Sm, 0 ≤ m ≤ p, is a strongly orthogonal set and, in terms of the Cartan subalgebras

corresponding to these sets, the Weyl integration formula may be written as follows∫
g

ψ(x) dx =

p∑
m=0

1

(p−m)!(q −m)!

∫
h+

Sm

π ◦ c−1
Sm

(x)ψSm(x) dx, (1.2)

where ψ ∈ S(g), h+
S0

= hr, and for m ≥ 1, h+
Sm

= {x ∈ hS; α̃1(x) > ... > α̃m(x) > 0}, and

α̃j = −1
2
αj ◦ c−1

Sm
. Let

Y =

p∑
j=1

iHj −
p+q∑

j=p+1

iHj , YSm =
∑

ej⊥Sm

ej(Y )Hj (0 ≤ m ≤ p). (1.3)
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Here, “ej ⊥ Sm” means “α(Hj) = 0, for all α ∈ Sm”. If this condition is empty then

YSm = 0. Let g+ = {y ∈ g; −iyIp,q > 0}. This is an open convex cone in g. In terms of

limits of holomorphic functions, [4, 3.1.15], define the following temperate distribution:

1

det(x+ i 0)
= lim

g+�y→0

1

det(x+ i y)
(x ∈ g). (1.4)

Clearly, this distribution is Ad(G)-invariant. The goal of this paper is to prove the

following, seemingly obvious theorem, which expresses the distribution (1.4) in terms of

integrals over various Cartan subgroups.

Theorem 1.5. For any ψ ∈ S(g),∫
g

1

det(x+ i 0)
ψ(x) dx

= lim
ε→0+

p∑
m=0

1

(p−m)!(q −m)!

∫
h+

Sm,ε

π ◦ c−1
Sm

(x+ i ε YSm)

det ◦c−1
Sm

(x+ i ε YSm)
ψSm(x) dx

where h+
S0,ε = hr, h+

Sm,ε = {x ∈ hS; α̃1(x) > ... > α̃m(x) > ε} for m ≥ 1, and the integrals

on the right hand side are absolutely convergent.

Let

G+
C

= {g ∈ GLn(C); the hermitian matrix
(
Ip,q − gtIp,qg

)
is positive definite}.

Clearly, G+
C

is a sub-semigroup of GLn(C), and G · G+
C

⊆ G+
C
. In terms of limits of

holomorphic functions, define the following distribution on G:

1

det(1 − g · 1)
= lim

{p→1, p∈G+
C
}

1

det(1 − g · p) (g ∈ G). (1.6)

For a strongly orthogonal set S ⊆ Φn(h), let HS = exp(hS) ⊆ G be the corresponding

Cartan subgroup, and let CS : HC → HS,C, be the Cayley transform. Let

Δ(h) =
∏
j<k

(h(ej−ek)/2 − h(ek−ej)/2) (h ∈ HC).

Recall the Harish–Chandra integral, defined with respect to the negative roots:

ΨS(h) = Δ ◦ C−1
S (h)ε̃S(h)

∫
G/HS

Ψ(ghg−1)dġ,

ε̃(h) =
∏

α◦c−1
S real

sgn(1 − h−α◦c−1
S ) (h ∈ Hr

S),
(1.7)

where Hr
S ⊆ HS is the subset of regular elements. Set H+

Sm
= exp(h+

Sm
). Then the Weyl

integration formula for G says∫
G

Ψ(g) dg =

p∑
m=0

1

(p−m)!(q −m)!

∫
H+

Sm

Δ ◦ C−1
Sm

(h)ΨSm(h) dh (1.8)
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where Ψ ∈ Cc(G). With the hSm,ε as in (1.5), set H+
Sm,ε = exp(hSm,ε).

Theorem 1.9. For Ψ ∈ C∞
c (G),∫

G

1

det(1 − g · 1)
Ψ(g) dg

= lim
ε→0

p∑
m=0

1

(p−m)!(q −m)!

∫
H+

Sm,ε

Δ ◦ C−1
Sm

(h exp(iεYSm))

det(1 − C−1
Sm

(h exp(iεYSm)))
ΨSm(h) dh,

where the integrals on the right hand side are absolutely convergent.

2 Integration by parts

Let V be a finite dimensional space over the reals. Let V ∗ denote the linear dual to V .

Fix elements e ∈ V and e∗ ∈ V ∗ such that e∗(e) = 1. Let f be a smooth function on V

and let φ be a bounded, smooth function on V \ ker e∗, the complement of ker e∗ in V .

Recall the directional derivative:

∂(e)f(x) =
d

dt
f(x+ t e)|t=0 (x ∈ V ). (2.1)

Assume that f and all derivatives of f are of at most polynomial growth at infinity, and

that φ and all derivatives of φ are rapidly decreasing at infinity. Suppose we have an

Euclidean norm on V . Assume that e has norm 1 and that it is orthogonal to ker(e∗).
Then every subspace of V is equipped with a Lebesgue measure dx, normalized so that

the volume of the unit cube is 1. Integration by parts verifies the following formula∫
e∗(x)>ε

(f(x)(∂(en)tφ(x)) − (∂(en)f(x))φ(x))dx

=

∫
ker e∗

n−1∑
k=0

∂(en−1−k)f(x+ εe)∂(ek)tφ(x+ εe) dx (ε > 0, n = 1, 2, ....).

(2.2)

Here ∂(en)t = (−1)n∂(en) stands for the adjoint of the differential operator ∂(en). Let us

assume that the following limits exist

∂(ek)φ(x± 0 e) = lim
t→0+

∂(ek)φ(x± t e) (x ∈ ker e∗; k = 0, 1, 2, ....). (2.3)

Then (2.2) implies∫
e∗(x)
=0

(f(x)(∂(en)tφ(x)) − (∂(en)f(x))φ(x))dx

=

∫
ker e∗

n−1∑
k=0

∂(en−1−k)f(x)(∂(ek)tφ(x+ 0 e) − ∂(ek)tφ(x− 0 e)) dx,

(2.4)

where n = 1, 2, ... .
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Recall that the map ∂, defined in (2.1), extends to an isomorphism of the symmetric

algebra Sym(VC) and the algebra of constant coefficient differential operators on V . For

any w ∈ Sym(VC) there are uniquely determined elements wn ∈ Sym(ker e∗) such that

w =
∑
n≥0

wne
n. (2.5)

By combining (2.2), (2.4) and (2.5) we deduce that for any w ∈ Sym(VC) and any ε > 0,

the following two formulas hold∫
e∗(x)>ε

(f(x)(∂(w)tφ(x)) − (∂(w)f(x))φ(x))dx

=
∑
n≥1

n−1∑
k=0

∫
ker e∗

∂(en−1−k)∂(wn)f(x+ ε e)∂(ek)tφ(x+ ε e) dx,

(2.6)

∫
e∗(x)
=0

(f(x)(∂(w)tφ(x)) − (∂(w)f(x))φ(x))dx

=
∑
n≥1

n−1∑
k=0

∫
ker e∗

∂(en−1−k)∂(wn)f(x)(∂(ek)tφ(x+ 0 e) − ∂(ek)tφ(x− 0 e)) dx,

(2.7)

3 Proof of the Theorem 1.5

We identify g with g∗ via the bilinear form

B(x, y) = tr(xy) (x, y ∈ g).

(Notice that B takes only real values.) Given a polynomial function P on gC, let P# be

the corresponding element of the symmetric algebra Sym(gC).

Lemma 3.1. In terms of germs of holomorphic functions, the following formula holds:

∂(det #) log(det(z)) =
(n− 1)!

det(z)
(z ∈ gC, det(z) = 0),

where n = p+ q, and log is the natural logarithm.

Proof. Notice that, by the definition (2.1), the map ∂ depends on the real form g ⊆ gC.

We shall write ∂g in order to indicate this dependence. For a function f defined on g and

for an element g ∈ GLn(C), let λ(g)f(x) = f(g−1x) be a function defined on the set gg.

Then for a polynomial P on gC,

λ(g)∂g(P
#)f = ∂gg((ρ(g)P )#)λ(g)f, (3.2)

where ρ(g)P (x) = P (x g). Let g = Ip,q. Then gg = un. Hence, (3.2) implies that, with

f(z) = log(det(z)),

∂up,q(det #)f = λ(g−1)∂un(det(g) · det #)λ(g)f

= det(g)λ(g−1)∂un(det #)λ(g)f = ∂un(det #)f,
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where the last equation holds because (locally) f is a holomorphic function on un,C =

un + i un = gln(C). Thus, in order to prove the lemma, we may assume that g = un.

Harish–Chandra’s theorem on the radial component of an invariant differential oper-

ator, [8, 7.A.2.9], implies that our lemma will follow as soon as we show that

1

π(x)
∂((det |h)#)π(x) log(det(x)) =

(n− 1)!

det(x)
(x ∈ hr). (3.3)

The equation (3.3) is equivalent to

det(z) ∂z1∂z2 ... ∂zn(π(z) log(det(z))) = (n− 1)!π(z) (z ∈ hC), (3.4)

where zj = ej(z), 1 ≤ j ≤ n. Let Sn denote the group of permutations of elements of

the set {0, 1, 2, ... , (n− 1)}. Recall (Vandermonde), that

π(z) =
∑

σ∈Sn

sgn(σ)z
σ(n−1)
1 z

σ(n−2)
2 ... zσ(0)

n (z ∈ hC).

A straightforward calculation shows that for γk = 0, 1, 2, ... ,

z1z2 ... zn ∂z1∂z2 ... ∂zn(zγ1

1 z
γ2

2 ... z
γn
n log(z1z2 ... zn))

= γ1γ2 ... γnz
γ1
1 z

γ2
2 ... z

γn
n log(z1z2 ... zn) +

n∑
k=1

γ1γ2 ... γ̂k ... γn z
γ1
1 z

γ2
2 ... z

γn
n ,

where the hat, γ̂k, indicates that γk is missing in the product. Hence, the left hand side

of (3.4) coincides with∑
σ∈Sn

sgn(σ)
(
σ(n− 1)σ(n− 2) ... σ(0)z

σ(n−1)
1 z

σ(n−2)
2 ... zσ(0)

n log(z1z2...zn)

+

n∑
k=1

σ(n− 1)σ(n− 2) ... σ̂(n− k) ... σ(0)z
σ(n−1)
1 z

σ(n−2)
2 ... zσ(0)

n

)
=
∑
σ∈Sn

sgn(σ)(n− 1)! z
σ(n−1)
1 z

σ(n−2)
2 ... zσ(0)

n = (n− 1)!π(z),

which coincides with the right hand side of (3.4). �

Lemma 3.5. Let u = (deth)
# ∈ Sym(hC), and let F (z) = log ◦ det(z) · π(z), z ∈ hC.

Then for ψ ∈ S(g)∫
g

(p+ q − 1)!

det(x+ i0)
ψ(x) dx

= lim
ε→0+

p∑
m=0

1

(p−m)!(q −m)!

∫
h+

Sm,ε

F (c−1
Sm

(x+ iεYSm))∂(cSmu)
tψSm(x) dx.

Proof. The limit

log(det(x+ i 0)) = lim
{y→0, y∈g+}

log(det(x+ i y)) (x ∈ g)
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exists in the sense of distributions, [4, 3.1.15], and coincides with the indicated locally

integrable function. Also, by (3.1),∫
g

(p+ q − 1)!

det(x+ i0)
ψ(x) dx =

∫
g

log(det(x+ i 0))∂(det #)tψ(x) dx.

Thus the lemma follows from the Weyl integration formula and Harish-Chandra’s theorem

on the radial component of an invariant differential operator, [8, 7.A.2.9]. �
Set

ISm,ε =
1

(p−m)!(q −m)!

∫
h+

Sm,ε

(F ◦ c−1
Sm

(x+ iεYSm)∂(cSmu)
tψSm(x)−

∂(cSmu)(F ◦ c−1
Sm

)(x+ iεYSm)ψSm(x)) dx,

(3.6)

where u = (det |h)#, ψ ∈ S(gC), and h+
Sm,ε is as in (1.5). In order to prove Theorem 1.5

it will suffice to show that

lim
ε→0

p∑
m=0

ISm,ε = 0. (3.7)

For a root α ∈ Φn(h) let (as in (2.5))

u =
∑
n≥0

un,α(iHα)n (un,α ∈ Sym(ker α)). (3.8)

Lemma 3.9. Let us multiply the form (1.0) by a positive constant such that the norm of

each iHα is 1. Then, with the above notation we have

p∑
m=0

ISm,ε =

p∑
m=1

1

(p−m)!(q −m)!

∑
n≥1

n−1∑
k=0

∫
h+

Sm,ε,0

∂((iHαm)n−1−k)∂(un,αm)

F (c−1
Sm

(x+ iεYSm−1))i
(
∂((cαmiHαm)k)tψSm(x)

−∂((cαm iHαm)k)tψSm(x− εcαmHαm)
)
dx,

where h+
Sm,ε,0 = {x ∈ hSm ; α̃1(x) > ... > α̃m−1(x) > ε, α̃m(x) = 0}.

Proof. Consider the integral (3.6). Suppose first that

suppψSm ∩
⋃

β∈Φn(h)∩S⊥
m

ker(β ◦ c−1
Sm

) = ∅.

Notice that

cSmu =
∑
n≥0

cSmun,αm(cSmiHαm)n =
∑
n≥0

cαmun,αm(cαmiHαm)n

=
∑
n≥0

(−i)ncαmun,αm(−cαmHαm)n.
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By applying (2.6) with V = hS, e = −cαmHαm and the w replaced by cSmu, we see that

ISm,ε

=
1

(p−m)!(q −m)!

∑
n≥1

n−1∑
k=0

∫
h+

Sm,ε,0

∂((−cαmHαm)n−1−k)(−i)n∂(cSmun,αm)

(F ◦ c−1
Sm

)(x− εcαmHαm + iεYSm)∂((−cαmHαm)k)tψSm(x− εcαmHαm) dx

= − 1

(p−m)!(q −m)!

∑
n≥1

n−1∑
k=0

∫
h+

Sm,ε,0

∂((iHαm)n−1−k)∂(un,αm)

F (c−1
Sm

(x− εcαmHαm + iεYSm))i∂((cαmiHαm)k)tψSm(x− εcαmHαm) dx

(3.10)

Recall that, with S = Sm, for β ∈ Φn(h) ∩ S⊥ we have the Harish-Chandra’s matching

condition, [1, 3.1],

∂(v)ψS(x+ 0iHβ) − ∂(v)ψS(x− 0iHβ) = i∂(cβv)ψS∪{β}(x), (3.11)

where β ◦ c−1
S (x) = 0, and x is not annihilated by any other non-compact imaginary root

of hS.

Suppose now that the support of ψS is disjoint with the set where α̃(x) = ε for all

α ∈ S. The we apply (2.7) with V = hS and e = iHβ for β ∈ Φn(h) ∩ S⊥, and the

matching condition (3.11), to see that

ISm,ε

=
1

(p−m)!(q −m)!

∑
β

∑
n≥1

n−1∑
k=0

∫
h+

Sm,ε, β◦c−1
Sm

(x)=0

∂((iHβ)n−1−k)∂(cSmun,β)

(F ◦ c−1
Sm

)(x+ iεYSm)i∂((cSm∪{β}iHβ)k)tψSm∪{β}(x) dx.

(3.12)

Notice also that, by definition (1.3),

−Hαm+1 + iYSm+1 = i(iHαm+1 + YSm+1) = iYSm . (3.13)

From the definition (3.6) we deduce that the summands corresponding to various β in

(3.12) are all equal to each other. Since the set Φn(h)∩S⊥
m has (p−m)(q−m) elements,

(3.12) is equal to

ISm,ε

=
1

(p−m− 1)!(q −m− 1)!

∑
n≥1

n−1∑
k=0

∫
h+

Sm+1,ε,0

∂((iHαm+1)
n−1−k)∂(un,αm+1)

F (c−1
Sm+1

(x− εcαm+1Hαm+1 + iεYSm+1))i∂((cSm+1iHαm+1)
k)tψSm+1(x) dx.

(3.14)

The integral (3.14) is non-zero only if m < p. (Otherwise there are no non-compact roots

β.)

Hence, the lemma follows (via partition of unity) by adding (3.10) and (3.14) and

grouping the terms with the same ψSm . �
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Proof of Theorem 1.5 Notice that

(det |h)# =

p+q∏
j=1

Hj. (3.15)

Also, for 1 ≤ m ≤ p, HmHp+m = 1
4
((Hm +Hp+m)2− (Hm−Hp+m)2). Since Hm−Hp+m =

Hαm , the decomposition (3.8) can be rewritten as

(det |h)# =
1

4
(Hm +Hp+m)2

( ∏
j 
=m,p+m

Hj

)
+

1

4

( ∏
j 
=m,p+m

Hj

)
(iHαm)2. (3.16)

Therefore (3.9) shows that

p∑
m=0

ISm,ε

=

p∑
m=1

1

4(p−m)!(q −m)!

1∑
k=0

∫
h+

Sm,ε,0

∂((iHαm)1−k)∂(
∏

j 
=m,p+m

Hj)

F (c−1
Sm

(x+ iεYSm−1))i(∂((cαmiHαm)k)tψSm(x)

− ∂((cαmiHαm)k)tψSm(x− εcαmHαm)) dx.

(3.17)

In the formula (3.17), c−1
Sm

(x+ iεYSm−1) = c−1
Sm−1

(x) + iεYSm−1 . Hence,

c−1
Sm

(x+ iεYSm−1) = i

(
m−1∑
j=1

(zjHj + zjHp+j) +

p∑
j=m

zjHj +

p+q∑
j=p+m

zjHj

)
, (3.18)

where
Im zj > ε for 1 ≤ j ≤ m− 1

Im zj = ε for m ≤ j ≤ p

Im zj = −ε for p+m ≤ j ≤ p+ q.

(3.19)

and

Re zm = Re zp+m. (3.20)

Consider the functions

∂(
∏

j 
=m,p+m

Hj)F (z) = ∂z1∂z2 ... ∂̂zm ... ∂̂zm+p ... ∂zp+q log(z1z2 ... zp+q), (3.21)

and
∂(Hm −Hp+m)∂(

∏
j 
=m,p+m

Hj)F (z)

= (∂zm − ∂zp+m)∂z1∂z2 ... ∂̂zm ... ∂̂zm+p... ∂zp+q log(z1z2 ... zp+q).

(3.22)

The function (3.21) is a linear combination of terms

log(z1z2 ... zp+q) · polynomial(z1, z2, ... , zp+q),

polynomial(z1, z2, ... , zp+q),
zmzp+m

zl
·

∏
1≤j<k≤p+q; j 
=l, k 
=l

(zj − zk), (l = m, l = p+m)
(3.23)
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The function (3.22) is a linear combination of terms

log(z1z2 ... zp+q) · polynomial(z1, z2, ... , zp+q),

polynomial(z1, z2, ... , zp+q),
zp+m

zm
·

∏
1≤j<k≤p+q; j 
=m, k 
=m

(zj − zk),

zm

zp+m
·

∏
1≤j<k≤p+q; j 
=p+m, k 
=p+m

(zj − zk),

za

zl

·
∏

1≤j<k≤p+q; j 
=l, k 
=l

(zj − zk),

(3.24)

where a = m, or a = p + m; l = m, and l = p + m. By combining (3.18) - (3.24)

we see that each of the functions (3.21), (3.22) when evaluated at c−1
Sm

(x + iεYSm−1),

can be dominated by a constant multiple of | log(|x|)| + |x|M , for M ≥ 0 large enough,

independently of 0 < ε < 1. Hence, by dominated convergence, (3.7) holds, and we are

done. �

4 A sketch of a proof of the Theorem 1.9

If the support of the test function Ψ (see the statement of Theorem 1.9) is disjoint with

the singular support of the distribution (1.6), then the limit formula (1.9) holds, for trivial

reasons.

Consider a semisimple point h in the singular support of the distribution (1.6). We

may, and shall, assume that h belongs to one of the Cartan subgroups HS, (see (1.7)).

Let Z = Gh denote the centralizer of h in G. Let U ⊆ Z be a connected, completely

invariant open neighborhood of h, contained in the set of regular elements of Z, (see [7]).

Since the sets of the form G · U = {gug−1; g ∈ G, u ∈ U} cover the singular support of

the distribution (1.6), we may assume that Ψ ∈ C∞
c (G · U).

The group G acts on the space V = Cp+q as the group of isometries of the hermitian

form (u, v) = vtIp,qu, (u, v ∈ V ). Let V = V1 ⊕ V2 ⊕ ... be a decomposition of V into the

direct sum of eigenspaces for h. It is easy to see that the restriction of the form ( , ) to

a Vj is either non-degenerate or zero. Hence, the group Z is isomorphic to a Cartesian

product GLn1(C) × ...GLns(C) × Up1,q1 × ...Upc,qc, by restriction. Moreover, there is only

one factor (necessarily Upj ,qj
) in this product, such that the restriction of the distribution

(1.6) to U is singular on it. Thus, by descent, we may assume that h = 1.

Let U0 ⊆ g be a completely invariant open neighborhood of 0 ∈ g, such that x →
exp(x) is an analytic diffeomorphism of U0 onto U = exp(U0). Then, with the standard

normalization of the Haar measure on G, we have∫
G

Ψ(g) dg =

∫
g

Ψ(exp(x))

∣∣∣∣det

(
exp(−ad(x) − 1

−ad(x)
)∣∣∣∣ dx.

The function

j(x) = det

(
exp(−ad(x) − 1

−ad(x)
)

(x ∈ U0)
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is invariant, analytic and positive. Hence the positive square root j1/2(x), x ∈ U0, is well

defined and extends to a holomorphic function in a neighborhood of U0 in gC. Thus∫
G

1

det(1 − g · 1)
Ψ(g) dg =

∫
g

1

det(1 − exp(x) · 1)
j1/2(x) · j1/2(x)Ψ(exp(x)) dx

=

∫
g

1

det(x+ i0)

[
det

(
x

1 − exp(x)

)
j1/2(x)

]
j1/2(x)Ψ(exp(x)) dx,

where the function in brackets is invariant and holomorphic in a neighborhood of the

support of the test function Ψ(exp(x)).

A slight modification of the proof of Theorem 1.5 shows that this theorem holds with

the 1
det(x+i0)

replaced by f(x)
det(x+i0)

, where f is any invariant, holomorphic function in a

neighborhood of the support of the test function ψ. A straightforward application of the

limit formula 1.5 completes the proof.
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