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CHARACTERS, DUAL PAIRS, AND UNITARY
REPRESENTATIONS

TOMASZ PRZEBINDA

0. Introduction. The main inspiration for this work is an open problem of
constructing irreducible unitary representations of classical groups, attached to
nilpotent coadjoint orbits. At present, it is not clear what the word "attached"
means. We would like to suggest an approach motivated by Howe’s description of
the oscillator representation co in terms of the Weyl transform and the Cayley
transform [H2] (see 1.7). This description implies immediately a "Cayley-Kirillov-
Rossmann"-type character formula for each of the irreducible pieces co+, co_ of co,
where the Fourier transform of character is supported on the closure of a single
nilpotent coadjoint orbit I-P1, (5.4), (6.7)]. Thus the representations co+ and co_ are
attached to this orbit in a classical, easily acceptable way. This phenomenon persists
for a number of other irreducible unitary representations of classical groups [PI-I
(see 6.13), but we do not follow this (thorny) path in this work. Instead, we concen-
trate on the associated varieties and the wave front sets.

Let W be a symplectic space over R and let G, G’ be an irreducible dual pair in
the symplectic group Sp Sp(W), [H7]. Let , ’ denote the Lie algebras of G, G’
respectively. There are canonical moment maps (see (2.6))

which intertwine the actions of G, G’ on W with the coadjoint actions on g*, g’*
respectively. Here is an interesting and easily verifiable [H9] property ofthese maps:

zg,(zl(a nilpotent coadjoint orbit in g*))

(0.2) union of nilpotent coadjoint orbits in 9’*.

The maps (0.1) extend canonically to the complexifications

and intertwine the appropriate actions of the complexified algebraic groups Gc, G’c.
The first fundamental theorem of the classical invariant theory asserts that
are quotient maps (under Gc, G:), in the sense of algebraic geometry [KP1, 2.2-1,
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[KP2, 1.2]. The orbit structure of these maps (0.3) is well known [KP1], [KP2]. In
particular, we have the following result.

THEOREM 0.4 [DKP]. Let O
_
g c z,(Wc) be a nilpotent coadjoint orbit. Then

there is a unique coadjoint orbit O’
_

such that

Here the stands for the closure.

Let us recall Howe’s correspondence [H1]. Let 09 be an oscillator representation
of the metaplectic group p on a Hilbert space Ho. For a reductive subgroup
E
_

Sp, let E be the preimage of E in Sp, under the covering map Sp - Sp. Denote
by (E, 09) the set of infinitesimal equivalence classes of continuous irreducible
representations on a locally convex space, which can be realized as quotients ofH
by 09(E)-invariant closed subspaces. Since the groups G, G’ commute with one
another (in S"), one can express elements of I(G.G’, 09) as II (R) II’, where
H e (G, 09) and H’ (G’, 09). Howe’s theorem follows.

HOWE’S DUALITY THEOREM 0.5 [H 1]. The set I(G. G’, 09) is the graph of bijection
between all of (G, co) and all of(G’, 09). Moreover, an element II (R) II’ I(G. G’, o9)
occurs as a quotient of 0900 in a unique way.

The bijection H - l’I’ defined by this theorem is called Howe’s correspondence
[MVW].
Judging from the title of [H1], one is led to believe that Howe’s correspondence

should be compatible with the maps (0.1) and (0.3). Our first result in this direction
is Corollary 2.8, which says that

(0.6) WF(II) z,(W) (rI (G, o)).

Here WF(H) stands for the wave front set of the distribution character On of H at
the identity I-H5]. We include 0 e * in the WF(II). Notice that the notion of the
wave-front set depends on the choice of a character of the additive group R, and so
does the oscillator representation 09. We assume that both 09 and the Fourier
transform are associated to the same character ;t (see 1.7 and (2.5)).

In 7.10 we show that

(0.7) WF(H’) ,ca,(,c-I(WF(II))) (= z,(zx(0)) the closure of a single orbit)

if the pair G, G’ is in the stable range with G the smaller member ([8], [Li2]),
H e (G, 09) is unitary, and dim II < . A part of this result was previously shown
in [P1, (8.2)].
The equation (0.7) is not true is general. (Consider the pair GL(1, R), GL(2, R).

Here WF(II) {0} for any H e (G, 09). However, the corresponding representa-
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tion II’ (G’, o9) may be either finite-dimensional or infinite-dimensional. In the
first case WF(1-I’) {0}, and in the second one WF(H’) {0}.)
A detailed comparison ofthe two sides of(0.7) in general seems to be a formidable,

but not hopeless, task. Let In denote the annihilator of the Harish-Chandra module
ofH in the universal enveloping algebra of. We define In, similarly. Let us consider
the associated varieties Ass(In) and Ass(In,) (IV2], [Ma]) instead of the
wave front sets. By a theorem of Borho, Brylinski, and Joseph IV2], Ass(In) is the
closure of a single nilpotent coadjoint orbit. Thus in view of Theorem 0.4 one may
investigate the equation

(0.8) Ass(In,)

for a given representation H (R) H’ (G. G’, o9). Again, there are plenty of easy
counterexamples. We prove the equation (0.8) under some very general assump-
tions. Curiously, unitarity seems to play a role in the argument. One should remark
here that the variety on the left-hand side of (0.8) is always contained in the one on
the right-hand side, [P1, (7.1)].
We recall some notation. The groups G, G’ act on their defining modules V, V’,

which are finite-dimensional vector spaces over a division algebra D, over R (see
Sec. 8 and Sec. 9). Let d’ dim V’. We attach a number r (4.10) to the Lie algebra
g and a number (5.7) to the algebra D. Let/ S*(*) be the Fourier transform of
the lowest term in the asymptotic expansion of the distribution character ton of H
(see (2.5) and (5.10)). Denote by max sup la - * the union of orbits of maximal
dimension in supp #. In the discussion preceding 7.9, we define an open set Wgg

___
W

on which the map zg (0.1) is submersive. Let G1 denote the Zariski-identity compo-
nent of G. If G Gx, then G is an orthogonal group over D R or C. In this case
the determinant character det of G may be viewed as a character of G, with the
kernel equal to G. The following theorem is the intersection of the main results of
this paper. We shall prove it in the last section, Section 10.

THEOREM 0.9. Let H be an irreducible unitary representation of G. Suppose the
character On has the rate of growth 7 > 0 (see Sec. 4) such that

(a) d’>7(r-1)+r-t.

Further, assume that there is a vector u in the Harish-Chandra module ofH such that

(b)

(u, H(o)u)(og(O)V, v) do > 0 v H, and this inteoral is nonzero for some v.

(It follows from (a) that the function under the integral (b) is absolutely integrable.)
Then H (G, o9) and the corresponding representation 1-I’ (G’, o9) (via 0.5) is

unitary.
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Moreover, if

(c) max supp # c "c(Wg) v O,

then (0.8) holds, except (possibly?) the case when G v G1 and I-I1,1 is irreducible. In
this case (0.8) holds with Ass(In,) replaced by Ass(In,) Ass((Itn
The nonvanishing of the integral 0.9(b) for some v e H forces rI to be a genuine

representation of G, in the sense that the restriction ofrI to the kernel of the covering
map G --, G (a two element group) is a multiple of the unique nontrivial character of
this kernel.
For such 17 the positivity 0.9(b) holds for pairs of type rI without any further

assumptions (see 9.2). For pairs of type I it holds in the stable range, with G the
smaller member [Lil-! (8.1, 8.6), and in many cases well beyond the stable range (see
8.6, 8.7).

In the stable range, with G the smaller member, all three conditions (a), (b), and
(c) are satisfied.
The representations H, rI’ (in the stable range) have been studied by Howe I-H3],

i-H6] via his theory of rank. This theory has been completed and shown to be
compatible with Howe’s correspondence by Scaramuzzi [Sc-I and Li [Lil], [Li2].
In all this work, Mackey’s theory of unitary induction plays a crucial role. In our
approach we do not use it at all.
A reader interested only in preservation of unitarity under Howe’s correspon-

dence is referred to Theorems 3.1, 8.9, 9.3, and Example 8.10. The proof of these
results occupies a small part of this paper (Sections 3, 8, and 9). Most of the effort
is spent on calculating the associated varieties and wave-front sets (Theorem 7.9
and Corollary 7.10). The main reason for success is Howe’s duality theorem, which
(via Theorem 3.1) enables us to express 17’ in terms of the character of H.

1. The oscillator representation, Weyl transform, and Gaussian functions. We
begin by recalling some results about the oscillator representation, in a form suitable
for our applications. Our main references are IH2], i-H3I, [H4].

Let W be a finite-dimensional vector space over the reals, with a nondegenerate
symplectic form ( ). Fix a unitary character ;t of the additive group R, ;t(x)
exp(2nix), x e R, and a Lebesgue measure dw on W. For 1, 2 e S(W) define a
product fix 2 e $(W) by the formula

(1.1)

Then (S(W), ) is an associative algebra.
We embed S(W) into the space S*(W) of tempered distributions on W by

(1.2) f() fry f(w)q(w) dw (f, q S(W)).
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The symplectic group Sp Sp(W) Sp(W, ( )) acts on S(W) by algebra auto-
morphisms as follows

(1.3) Ol,(a)(w) (a-(w)) (w w, Sp, s(w)).

By dualizing (1.3) we obtain an action of Sp on S*(W)

(1.4) ol,l(g)f(q) f(ol, (g)-l(b)),

where g Sp, f S*(W), b S(W). The formula (1.2) implies that the action (1.4) is
an extension of the action (1.3) from S(W) to S*(W).

Let o ox be the oscillator representation of the metaplectic group p attached
to the character :t, [H2]. Let us choose a realization of o on a Hilbert space H.
Denote by H the space of smooth vectors in H and by H* the linear topological
dual ofH. The symbols B(H), H.S.(H), and Hom(H, H*) will stand respectively
for the space of bounded operators on H, Hilbert Schmidt operators on H, and
continuous linear maps from H to H*.
We recall a version of the classical Stone-von Neumann theorem [H4], combined

with the Schwartz kernel theorem [H6]:

THEOREM 1.5. There is an algebra homomorphism

p: s(w)-, B(H)

which extends to a surjective isometry

p: L2(W)-- H.S.(H)

and even further to a linear bijection

p: S*(W) -, Hom(H, H*)
which has the intertwining property

o)()p(f)o)(-I) p(o)1, ()f),

where f S*(W) and p is in the preimage of g Sp.

The map p is usually called the Weyl transform.
For x End(W), such that x 1 is invcrtible, define the Cayley transform

(1.6) c(x)- (x -4- 1)(x- 1)-1

Let sp sp(W) sp(W, ( )) c End(W) denote the Lie algebra of the symplectic
group Sp End(W). Denote by sp the intersection of sp with the domain of the
Cayley transform c (1.6). A simple argument shows that c(sp) c Sp, [H2-1.



552 TOMASZ PRZEBINDA

THEOREM 1.7 (Howe [H2]). One can choose a function (R)o, on Sp, representing
the distribution character of o via integration aainst the Haar measure on Sp, so
that for any x e sp and any ,(x) e Sp in the preimaoe of c(x) e Sp, and S(W)

(a)

Moreover, there is a real analytic lifting ?.: sp - S’p of c: sp - Sp such that

(b) (R)o((x)) const Idet(1 x)l 1/2 (x sp).

Thus, with the as in (b), we may identify the distribution p- o(6(x)) S*(W), x sp,
with the function

(c) p- og((x))(w) const ,det(1- x)ll/2)(, ( (x(w),

of the variable w W.

Let J be a compatible positive complex structure on W; i.e., J Sp(W),
(J(w), w) > 0 for a nonzero w W, and j2 I, where I is the identity. Define an
euclidian norm on W by IWI 2 (J(W), W), W W and let

m(w) exp -lwl2 (w e W)

by a Gaussian function, as in [H2].
Denote by U the centralizer of J in Sp. Then U is a maximal compact subgroup

of Sp, isomorphic to the unitary group U(n), where dim W 2n. The preimag U
of U in Sp is a maximal compact subgroup of S", and the restriction of o to
decomposes into a direct sum of irreducible representations, each occuring with
multiplicity (at most) one. These are the U-types of o. The lowest U-type, in the
sense of Vogan IV1], is one-dimensional. Pick a unit vector v in it and set

(1.8) n(g) l(o9(g)v, v)l (g P).

For reasons which shall soon become apparent, we shall refer to f as to the
Gaussian function on the metaplectic group p.
Choose a maximal isotropic subspace Y c W and a basis y, Y2, Y, of Y. Let

A be the vector part of a split Cartan subgroup of p which acts diagonally on Y,
with respect to this basis. Define the characters at of A by

ay a(a)y (a A, 1 < < n).

We assume that U.A. U is a Cartan decomposition of Sp.
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PROPOSITION 1.9. The function f is real analytic, strictly positive, and U-bi-
invariant. Moreover, the formulae

(a) (g) [p-co(g)hy/2(O)l (g Sp),

(b) t2((x)) const]det(1 x)l/2ldet(iI- Jx)] -/2,

hold for (x) p in the preima#e of c(x) Sp, x sp, and

(c) (a) const fi (ei(a) + ei(a)-1)-tp (a e A).
i=1

Proof. Formula (a) follows from [H2, (13.1b), (1.3.4)] and [H4, (1.7.18)]. For-
mula (b) follows from (a) and Theorem 1.7. Formula (c) is taken from [H3, page 91].
Since acts on v (1.8) via multiplication by a character, f is t-bi-invariant. Hence
(c) shows that f is real analytic, m

Notice that, with the notation of 1.7, formula 1.9(b) may be rewritten as

(1.10) f(g(x)) const I(R),(g(x))l Idet(il Jx)1-1/2 (x e sp).

Since for x sp the map Jx End(W) is symmetric with respect to the scalar
product (J,) on W, one checks easily that for a fixed norm on the real vector
space sp there are consants C, C’ such that

(1.11) C(1 + Ixl 2) ]det(iI Jx)l 2 < C’(1 + Ix12)2" (x sp).

Let a be the Lie algebra of A. The elements dex, de2, de, form a basis of a*.
Define a norm In on the real vector space a

xl. Idi(x) (x
i=1

This norm is invariant under all permutations and sign changes of the dei’s, i.e.,
under the Weyl group W(S", A). Thus 1.9(c) implies that there are constants C, C’
such that

(1.12) C exp(-lxln) < ff(exp(x)) < C’ exp(-lxln) (x a).

PROPOSITION 1.13. There is a seminorm q on S(W) such that

(a) Ip- o2(/)1:!I(0)1 < n(g)q(b) (g Sp, b S(W)).

For any seminorm q on S(W) there is an integer p > 0 and a seminorm q’ on S(W)
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such that

(b) q(p- o(g)b) < n(g)-q’(q) (g S"p, S(W)).

Proof. This is an elaboration on Howe’s estimates for the matrix coefficients of
o9 [H3, (8.5)]. Since the function

x S(W) x (1 (k, , k2)- p-(og(k)p(qk)og(k2)) S(W)

is continuous (see [H7, (11.4)] and [Wa, 4.11]) and U is compact, it will suffice to
prove the proposition with S" replaced by the closed positive Weyl chamber
A+ {a A; al(a) > o2(a) > > On(a) > 1}.
Choose a maximal isotropic subspace X W complementary to Y. Consider the

Schr6dinger model of o9 attached to the complete polarization W X @ Y, so that
the Hilbert space H LZ(x), [H3]. Then for each b s S(W), P(4)) is an integral
kernel operator with kernel K,(i) in the Schwartz space S(X x X). The formula
rH3, (1.8)] implies that

tr(og(a)p(q))
,=1
fi a’(a)-l/2 fx Kv(q)(a-l(x)’ x) dx

for a A and b S(W). Here we identify A with the corresponding subgroup of Sp.
Let q be a seminorm on S(W) such that

SUpx,x [Kp(b)(x’, x)l dx < q(b) ( s(w).

Then for a A+ and b S(W)

[tr(og(a)p(b))l < fi i(a)-l/2q(q) < const f(a)q(b),
i=1

where the last inequality follows from 1.9(c). This verifies (a).
For part (b) we notice that, by the procedure of doubling [H7, Sec. 11-1, it will

suffice to check that for any seminorm q on H there is an integer p > 0 and a
seminorm q’ on H such that for a A and v H

(b’) q(og(a)v) < fl(a)-Pq’(v).

In our Schr6dinger model, H S(X) and

og(a)v(x) fi i(a)-ll2 v(a-1 (x))
i=1

(a A, v S(X), x X).
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Let us identify X with R" by choosing a basis. Then for some multi-indices r/, r/’,
q(v) supx,xlx’v(x)[, [H6, 7.1.2]. Hence

q(co(a)v) -I ,(a)-l/2+n’-q(v)
i=1

(a A/, v S(X)),

and (b’) follows from 1.9(c). m

2. A Cayley-Bochner theorem for K-finite matrix coefficients. Let G, G’ be a
reductive dual pair in Sp. For any subgroup E Sp denote by E the preimage of
E in Sp. Fix a representation H (R) 17’ e R(G. G’, 09) see [H1]. Since a smooth version
ofrI (R) rI’ may be realized on a subspace ofH* [P2, Proposition 1.2.19], Theorem
1.5 implies that there is a tempered distribution f fn (R)n’ fn S*(_W_), such that
the operator p(f): H --, H* intertwines the restriction of o9 to GG’ with that
realization of rI (R) rI’. This distribution f is unique up to a nonzero scalar multiple
(see 0.5).

Let K be a maximal compact subgroup of G. Since the Harish-Chandra module
of 17 is obtained as a quotient of the restriction to (l,/) of the Harish-Chandra
module of the oscillator representation o of S", we see from Theorem 1.5 that for
any K-finite matrix coefficient/ of 17 there is a function S(W) such that

(2.1) #(g) f(p- og(g))(O) (g ().

Clearlythe function on the right-hand side of the formula (2.1) is well defined for
all 9 Sp. We shall denote it by/. Thus/ is an extension of # from to p.
Proposition 1.13(b) implies that there is an integer p > 0 and a seminorm q on S(W)
such that for any S(W)

(2.2) I(g)l < q(qk)(9)-’ (g P).

Notice that, since we may assume that Il 1, the function on the right-hand side
of (2.2) increases with p.

Let us fix a measurable lifting -: sp Sp of the Cayley transform c: sp Sp.
Then the formulas (1.10) and (1.11) show that for p and q as in (2.2)

(2.3) IO((x))/((x))l const q()(1 + Ixl2)p",

where x sp and S(W). It is important to notice that for p odd the function
(R)((x))#((x)), x sp, does not depend on the choice of the lifting . It is also
clear that () G and -(’) = G’, where c stands for the domain of the Cayley
transform c in , and similarly for fl’. Thus for p odd and where (2.3) holds, we have
a well-defined tempered distribution *((R)#) S*():

(2.4) *(o)() f. o((x))u((x))(x)dx,
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where S(g). The notation g*( (2.4) is consistent with the usual terminology
concerning pullbacks of distributions [H6, 6.1.2].
For a function @ S(g) define the Fourier transform (@) S(*):

(2.) (0)() ; z((x))0(x) dx ( *).

The adjoint of ,.;1 is a Fourier transform on tempered distributions (o--1).:
s,() -o s*(*).
The formula 1.7(a) suggests the following definition ofa moment map z: W g*:

1
(2.6) z(x) -(x(w), w) (w

Notice that the subset z(W) c * is closed. Indeed, the subset %v(W) c sp* is closed
and conical because it is linearly isomorphic to the closed set of endomorphisms of
W which are symmetric with respect to the scalar product (J,). Since z(W) is the
image of %p(W) under the restriction map sp* --. g*, it is closed too. The title of this
section refers to the following theorem.

THEOREM 2.7. Suppose p > 0 is an integer such that (2.3) holds and such that p + 1
is divisible by 4. Then

supp((- )*(*((R)l))) = "c(W).

Proof. Fix a function S(9) with

(1) f Z(’c(w))(x) dx 0 (w W).

We want to show that

(,) Og((x))((x)),(x) ax o.

Since the restriction of the Killing form from sp to g is nondegenerate, we have
a direct sum decomposition

(2) sp g @ g -.
Let 6m (m 1, 2, 3 be a (Dirac) sequence of smooth compactly supported
nonnegative functions on g+/- with the integral equal to one, and the support
contained in the ball centered at the origin and radius 1/m. Set

(3) k,,,(x + y)= k(X)6m(y) (xeg, yeg+/-;m= l, 2,3,...).
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Then $m S(sp); so by [P1, (6.1)3 %*,,,($m) ,($m) o %, S(W), and by (1), (2),
and (3)

(4) *(q,.)(w) I, z(,(w)(x))q.(x) clx

=ffa+/-Z(Zsl,(w)(x))z(zsp(w)(Y))d/(X)6m(y)dydx=O.
By Theorem 1.7(b), g*(R)Pl(x)= (R)’,o+l(’(x))= constdet(1- x)(p+l)/2 is a polyno-
mial function on sp because (p + 1)/2 is an even integer. Thus ,:, 0. S(sp)
and

supp( o, "Ore) supp sp(Cm) sp*\zs,(W).

Hence

f (R)(?(X))#(g(X))@m(X) dx f.* .r-p,- ,p,- --, "@m)b(0) f0k(0) 0.
p

Therefore

f og(e(x))(e(x)),(x) ctx

O((x + y))#O(?,(x + y))m(X + Y)dx dy

dim(y) f I,(x)l IO((x + y))/z((x + y))- (R)(,(x))/z/((x))l dx dy.

In the last expression the integral over g is a continuous function of y lt, by (2.3).
Hence when m oz, the limit of the whole expression is zero, and (,) follows. []

COROLLARY 2.8. Suppose II t(G, o), [H7]. Let WF(II)
_

9* denote the wave-

front set of the distribution character On of H at the identity of G, [HS]. Then
WF(H)_ z(W).

Proof. Suppose II is realized on a Hilbert space Hn. For a trace class operator
T on Hn we have a continuous function trn(T)(9) tr(Tl-l(9)), O G, which may be
viewed as a distribution via integration against the Haar measure do. From the
well-known proof of the existence of the character On, i’W, 8.1.1-1, we know that
there is an orthonormal basis u, u2, u3, of K-finite vectors of Hn, a summable
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operator T, in the sense [W, 8.A.1.4] that

() I(Tu, u,)l < ,
k,l=l

and a differential operator D on G such that

On D trn(T).

Hence, by [H6, (8.1.11)], it will suffice to show that for some open neighborhood
O c G of the identity of G

(,) WF(trn(T)]o) - 0 x z(W).

Set hk (Tu, Uk), lU(g) (II(g)Uk, U), g e G; k, 1, 2, 3, Then

trn(T)(g) t,#u(g) (g G),
k,l=l

where the series is absolutely convergent, by (1). We also have some control of the
rate of growth of the/-finite matrix coefficients #k, independent of the indices k,
l. Indeed, for a fixed norm on G [Wa, 2.A.2], there is s > 0 such that

I,(g)l- I(1-I(g)u, Ul)l IIrI(g)ll const Ilgll

for g and k, 1--1, 2, 3, It follows from [W, 2.A.2.3] and (1.12) that
Ilgll < const.f(g)-p, g G, for some p > 0. Hence the series

fP trn( T) tlkpkl
k,l=l

is absolutely and uniformly convergent. Thus, by (1.10) and (1.11), if p > 0 is large
enough, the series

(2) *((R)’trn(T))= ttk*((R)tu)
k,l=l

converges in S*(g). We may choose p > 0 such that the conditions of the Theorem
2.7 are satisfied. Then (2) implies

(3) supp(-1)*(*((R)" trn(T))
_

The inclusion (.) follows from (3) and [H6, 8.1.7].
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It seems that the above proof could be sharpened to show that the Theorem 2.7
holds with the/ replaced by the character On.
The above argument shows also that, if the representation H is unitary, then the

wave-front set of its restriction to the unipotent radical N of a maximal parabolic
subgroup P of G is contained in the projection of z(W) on the dual n* of the Lie
algebra n of N, i.e. in z,(W). Thus 2.8 extends the notion of N-rank of a representa-
tion of G from the setting of P-orbits in n* to the setting of G-orbits in g*.

3. From a distribution character on G to an irreducible unitary representation of
G’, via Howe’s correspondence. Let G, G’ be a reductive dual pair in Sp, as in
Section 2. We shall always assume, as we may, that K G c U and K’ G’ c U
are maximal compact subgroupsof G and G’ respectively. Denote by G, G’, K, K’
the preimages of G, G’, K, K’ in Sp, as usual. These are real reductive groups in the
sense of Wallach [W, 2.1.1].

Let H be an irreducible unitary representation of G and let On be the distribution
character of H. By the celebrated Harish-Chandra regularity theorem ([W, 8.4.1],
[Bou]), the distribution ton coincides with the Haar measure on G multiplied by a
locally integrable function, which is real analytic on the set G of regular semisimple
elements of G and is equal to zero elsewhere. We shall identify On with this function.

THEOREM 3.1. Suppose

(a)

Then the formula

(*) (o(On)v, v’) On(g)(oJ(g)v, v’)dg (v, v’ e H)

defines a G" G’-invariant hermitian form on H. Let R
_
H denote the radical of

this form. Suppose that

(b) the form (.) is positive semidefinite and nontrivial.

Then the G. G’-module H/R, equipped with the form induced by (.), completes to
an irreducible un_itary representation of G" G’, infinitesimally equivalent to H (R) H’
for some FI’ e G’, the unitary dual of G’. Thus H corresponds to H’ via Howe’s
correspondence.

Moreover, under the assumption (b), the intertwining distribution f fn(R)n’ e
S*(W) is given by the integral

f f6 On(g)p-1 co(g)dg,

which converges in the topology of S*(W).
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It is not easy to see what condition 3.1(a) means in terms of th Langlands
parameters of the representation 17. We shall provide a slightly stronger condition
in Proposition 4.11 in terms of the rate of growth of the character On.

Proof. It follows from formula (2.1) and Proposition 1.13(a) that the integral (,)
is absolutely convergent. Hence the form (,) is well defined.

Since n(g) On(g-t), ", this form is hermitian, and it is obviously . ’.
invariant.

Suppose for the rest of this proof that assumption (b) holds. Let X,o be the space
of 0-finite vectors in H and let Xb th space_of g-finite vectors in Hif, whr
is the irreducible unitary representation of G with the distribution character
O On. As a consequence of Theorem 1.5 and Proposition 1.13(a), the form (,)
is continuous as a function of the two variables v, v’ H. Therefore the restriction
of this form to X,o is nontrivial.

Since the function f is K-bi-invariant (see Proposition 1.9) the Fourier compo-
nents of (R) [W, 8.1.2(1)], and therefore all K-finite matrix coefficients of 1"I, are
absolutely integrable against f, over G. Thus for v’ Xo, and for u’ e Xn we may
define a map Ou,.v," X, X, the vector space dual to Xri, by

O,,v,(v)(u) (II(g)u, u’)(og(g)v, v’) dg (v x,,,, u Xn).

,
The space X carries the usual contragredient action of g and g IW, 3.3.6]. It is
clear that Ou,,v, is a (g, K)-intertwining map. Hence the image of ,,v, is contained
in the subspace Xff

_
X- of/-finite vectors. But the (g,/)-modules Xff and Xn

are isomorphic IV 1, 8.5.3]. Hence X is irreducible and consequently the map

(1) O,.," Xo, --, Xff Xn
is either zero or surjective.
Choose an orthonormal basis of Hn consisting of K-finite vectors ut, u, u,

Then the usual argument [W, 8.1.1] shows that

(2) (o(n)v, v’) (1-I(g)u. u3(o(g)v, v’) dg (v, v’ H(R)).

Hence the space R c X, contains the intersection of the kernels of the maps
1, 2, 3,...; v’ H(R). Therefore there is a (g’, K’)-module X’ such that

(3) Xo,/(R c Xo,) is isomorphic to Xn (R) X’ as a (g + g’, g./’)-module.

Theorem 2.1 in [H1] implies that X’ is admissible and has a unique irreducible
quotient. Since, by (b), X’ is unitarizable, it is completely reducible and hence
irreducible.
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The space ofK. K’-finite vectors in H/R coincides with X,o/R X,o and is dense.
Hence it is clear that H/R completes to an irreducible unitary representation
lI (R) 1-I’ t(G.G’,og).
As a consequence of assumption (a) and Proposition 1.9, the integral (**) is

absolutely convergent. Under assumption (b), the radical R coincides with the kernel
of the map

(4) p(f) (R)n(g)co(g) dg Hom(H, H*).

Thus the representation H (R) II’ is realized on the image of this map, so that f is
indeed the intertwining distribution corresponding to H (R) H’. I

LEMMA 3.2. Condition 3.1(b) may be replaced by the requirement that there be u
in the Harish-Chandra module Xn of II such that

(b’) f?, (u, II(g)u)(co(g)v, v) dg > 0 (v

and there be a vector v for which this integral is nonzero.

Proof. Since the (g, K)-module Xri is irreducible, it is generated by any nonzero
vector. Thus if (b’) holds for one u e Xn, then it holds for all nonzero u Xn.

Indeed, let us fix a nonzero vector u Xn. Since Xn is irreducible, any vector in
it can be written as a finite sum

m

Z n(x )n(k )u

for some positive integer m, X ’(g) (the universal enveloping algebra of ), k K,
1 < j < m. The left and right invariance of the Haar measure on G implies the
formula

Z v)a 
j=l j=l

(u, n(a).) E E
j=l j=l

where q/(g) X (g) is the antiautomorphism of q/(g) whose restriction to g
coincides with the map X -X. Since the v e X,o in (b’) is arbitrary, we see in the
inequality (b’) that nonnegativity holds for all u e Xn. Hence the remark follows
from formula (2) in the proof of Theorem 3.1.

Remark 3.3. Suppose G, G’ is an irreducible pair [H7]. Let G1 denote the Zariski
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identity component of G. The case when G : G1 requires some explanation. From
the classification of dual pair [H1] we know that G is isomorphic to an orthogonal
group; i.e., G can be identified with the isometry group of a symmetric non-
degenerate form on a finite-dimensional space V over D R or C. If dimD V
is odd, then the group G, and hence also G, is of inner type [W, 7.4.1] so that any
element of (,s is conjugate to an element of a Cartan subgroup of t, and there is
nothing to worry about.

Consider the case when dimt V is even. In this case all the Cartan subgroups of
t are contained in_,; thus there is a problem ofunderstanding the character On on
the complement G\GI of (. If the restriction 1117,1 of H to tl is reducible, then it
is a direct sum of two nonequivalent representations of G, which are permuted by
any element of 1-I(G\_G)_. Hence, as a function, (R)nl?,\, 0.

Notice that since G/GI - G/Gx, the determinant character of G may be viewed
as a character det: ( C of t. If HI,I is irreducible, then rl (R) det has the same
property, is not equivalent to II, and

If in this case we replace G by G in 3.1(a) and (,), then the GG’ module H/R is
infinitesimally equivalent to rll?,l (R) (H’ (H (R) det)’) or to rlll (R) rl’.

Remark 3.4. Theorem 3.1 provides a strong criterion for preservation of
unitarity under Howe’s correspondence. We shall see in Sections 8 and 9 that
positivity in 3.2(b’) (and hence 3.1(b)) holds in the stable range (as shown previously
in [Li (50)]) and in many cases beyond the stable range. At present, it is not clear
how far we can go. However, there is a reason for optimism.

Notice that in 3.2(b’) we integrate a positive definite function. Hence, motivated
by abelian harmonic anaysis we expect such an integral to be positive. In fact, this is
true as long as the group is amenable (compact, commutative,); see [G]. In contrast,
for any semisimple group one can find an absolutely integrable positive definite
function on it, whose integral is negative [G-i. It is however not easy to produce
specific counterexamples. It seems even harder to produce positive definite func-

in L’(()and the other in L()(with 1 1
tions, -+-=l,p>l,q>l ,suchthatone

\ p q /
the product of them has negative integral over t. Notice that this is the situation
we encounter in 3.2(b’).
The main difference between our approach and that of [Lil-I is that we deal with

the hermitian form 3.1(,) defined on H rather than with a form defined on the
tensor product H (R) H [Lil, (4)]. This allows us to use Howe’s duality theorem
[HI, Theorem 2.1] to employ the positivity 3.2(b’) to produce unitary representa-
tions of G’.

In [Lil] Howe’s duality theorem is not used. Instead, Li combines Mackey
theory with such a positivity result to construct an irreducible unitary representa-
tion of t’ (the contragredient of II’). His argument is parallel to the one used by
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Howe in [H6] and does not seem to work beyond the stable range. Then one
needs additional work [Lil, sec. 6-1 to show that H’ corresponds to H via Howe’s
correspondence.

Needless to say, the idea of Theorem 3.1 is motivated by [Lil]. In fact, it may
be thought of as "the trace of Li’s construction".

4. Estimates for matrix coefficients. In this section G stands for a member of a
reductive dual pair, as long as G is of inner type. If G is not of inner type, we shall
use the same letter G to denote the Zariski identity component G1 of G (which is of
inner type).

Fix a norm on , l-W, 2.A.2]. Let E, be the Harish-Chandra E-function for
G [W, 4.5.3]. Denote by d, the Weyl denominator of (3 I-W, 2.4.4]. Harish-Chandra
has shown that for some m > 0

(4.1) ld(g)l-X/2(g)(1 + log I111) dg < oo

(see [Wa, 8.3.7.6]). We shall exploit this fact to see when condition 3.1(a) is satisfied
and to obtain some rough estimates for the matrix coefficients of the representation
H’ constructed in 3.1.

Let H be an irreducible unitary representation of G. We identify the distribution
character On of H with the corresponding function on G, as explained in the
discussion preceding 3.1. Recall [M, page 63-] that there is a notion of the rate of
growth of the function On. In particular, On has the rate of growth , > 0 if there
are constants C, C’ > 0 such that

(4.2) IOn(g)l Cldo(g)l-1/e(g)(1 + log I111)c’

see [M, Theorem 1, page 69]. By [M, Theorem 1, page 79], On has the rate of
growth R if and only if for any K-finite matrix coefficient / of FI there are
constants C, C’ > 0 such that

=-, )c, p,).(4.3) I#(g)l < C-e, tg(1 + log Ilgll (g

Since H is unitary, # is bounded and < 1; see [BW, 4.5.1]. If ), 0, then II is
tempered [W, 5.1.1].

Recall that there is a constant C’ > 0 such that

(4.4) log

Hence by (4.3), if On has the rate of growth y R, then for any K-finite matrix
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coefficient # of II

2
=+, for any,>0.(4.5) # L(G/center(G)), where p

1 y

Let o, be the maximal subgroup of (’ with the Lie algebra [g’, g’]. Denote by
A&, the set of pairs (, 2’) R2 such that

(4.6) -m,,;t’ t’-f(gg’) < const. E(g)(1 + log I111, -,,

for # e t, #’ e o, and m 0, 1, 2, The point of introducing o, here is that
t c o, is compact, while c ’ does not have to be compact, and in that case (4.6)
might not make sense. By applying (4.2), (4.6), (4.1), Proposition 1.13, and (4.3)
respectively, we obtain the following result.

PROPOSITION 4.7. Suppose the character On has the rate of growth > 0 and
(1 + y, 1 ’) e A6,6,. Then

(o’ 0’).

Thus in this case condition 3.1(a) holds. Moreover, if condition 3.1(b) is satisfied, then
for any ’-finite matrix coefficient #’ of the representation H’, corresponding to H
(see 3.1 and 3.3),

=-’ ,)

Hence the character On, has the rate of growth y’.

We shall describe the set A6,6, (4.6) geometrically. Let u
_

sp denote the Lie
algebra of the maximal compact subgroup U

_
Sp. Then we have a Cartan decom-

position sp u q, which induces Cartan decompositions for g f p and for
g’= ’ p’, by restriction. Choose maximal abelian Lie subalgebras a G g and
a’_ g’ such that a c p and a’c p’. Let a c a’. Then is a standard split
component of and of g’ [W, 2.2.1]. Set a a c [g, g] and %’ a’ c [’, g’]. From
the structure of dual pairs IH 1], we know that

(4.8) a a’ a a’, a a ) , a’ 0) a’.

Choose Iwasawa decompositions g a ) rt and g’ ’ a’ rt’ [W, 2.1.7].
Let p,(x) tr(ad(x)l,), x a. Then p, a* and the restriction of p, to a is nonzero,
unless a 0. Similarily, we have p,, a’*. Set

Ixl,= max p,(w(x)), Ix’l,= max p.,(w(x’)),
we W(,A) w W(.’,A’)
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where x a and x’ e a’. Then I, and I,, are norms on a and a’ respectively. Since
a + a’ c_ q is a commutative Lie algebra, we can choose a maximal abelian Lie
subalgebra asv sp such that a a’ asv q. Recall the norm la on asp, (1.12).
Denote by A,, the subset of the interior of A,, consisting of pairs (2, 2’) of
positive numbers. This is the essential part of A,w.

PROI’OSITION 4.9. A pair (2, 2’) is in + +A,, if and only if the image of the unit ball
in a + a’, with respect to the norm I, under the projection map a a’ --.
a ( a’ alon9 , is contained in the interior of the unit ball defined by the norm
;t Ixlo / 2 Ix’lo,, x %, x’ %’.

Proof. Fix a norm I on . It follows from (1.12) and from Harish-Chandra’s
estimate for the E-function [W4.5.3], that (2, 2’) A,a, if and only if there is e > 0
such that, for all x a, s , x’ a’,

e(-Ix++’l") < const, e(-(*+)l’l.)(1 + Isl,)-’et-w+)l’’.’),

or equivalently

Ix + s + x’l ( + )lxlo + (2 + )lx’l,, + m log(1 + Isl,) lo#(constm).

Suppose G, G’ is an irreducible dual pair [H7]. Then it is either a pair of type I
or of type II. In the first case there is a finite-dimensional division algebra D over
R with a (possibly trivial) involution, two finite-dimensional vector spaces V and
V’ over D, with nondegenerate forms and ), one hermitian and the other
skew-hermitian, such that G is isomorphic to the group of isometries of and
G’ to the group of isometries of )’. In the second case we have the vector spaces
V, V’ but without the forms ), )’ and G, G’ are isomorphic to GLI)(V),
GLo(V’), respectively. Let

(4.10)
2 dim g/dimi Vr
dimi g/dima V

if G is an isometry group
if G is a general linear group.

Set

/max sup{R; Ix q- sla Ixl., x e % s e },

t/ma sup{2’; Ix’ + s]. Ix’l., x’ e ct’, s e }.

Thus 2,,,. is the supremum of the projection of A,, on the second co6rdinate.

PROPOSITION 4.11. With the above notation, we have

(a) t, dimi V’/(r 1) and ,tma dimi V/(r’ 1).

(b) Condition 3.1(a) holds if On has the rate of growth ? < Y,,ax =/max 1.



566 TOMASZ PRZEBINDA

(C) If < max and if condition 3.1(b) is satisfied, then On, has the rate of growth

’ 1 ’, where ’= 1 - ’mo. In particular, the .’.finite atrx coeffi-
2

cients of II’ are in LP(G’/center(C)), p + , for any > O.

For a reader familiar with the notion of the stable range (see [Lil] or (8.1)) it
might be interesting to notice that condition 4.11 (b) is independent of that notion.
For example, if G is an orthogonal group and (7 is a symplectic group (over D R
or 12), then it makes sense if dim V’ > dim V 1, while stable range (with G the

V’smaller member) requires dim > 1/2 dim V. Thus with G’ fixed we have much
more flexibility in changing G.

Proof. Due to the symmetric nature of the pair G, G’, it will suffice to verify the
first formula in (a). Choose a maximal isotropic subspace

_
V and a basis y, y,

y of Y over D. Let Y be the span of y, y,..., y, 1 <j < n. Let n be the
nilradical of the parabolic Lie subalgebra of g which preserves the ttag Y

_
y c_

_
y. Denote by the vector part of the maximally split Cartan subalgebra

of g, which acts diagonally on Y with respect to this basis

x(y) xiY (xe a, 1 <<.i<n).

Then Y (R) V’ is an isotropic subspace of the symplectic space W V (R) V’ (here
(R) (R)a) [H7] and (see (1.12))

(1) Ixln dimn V’
1

" Ix, (x ).
i=1

Set Pi 1/2(r + 1 2i), 1 < < n. Then, as is well known,

(2)
dimt D" max

i=l

dimn D" max PiXo(i)
i=1

for type I pairs

for type II pairs,

where x e a and a varies over all possible permutations of n elements. Since in any
case

Ixl. dimtt D max.

(a) follows. Statement (b) follows from 4.9.
For (c) one checks that

Ix 4- x’ln Ix’In (X I, X ff OIP)
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and

Ix + x’la Ix’l (X Oll, X’ If’).

Hence for 0 < < 1

Ix + x’ln > t2.lxl. + (1 t)’,,alx’],. (X II, X’ 011’).

Thus (c) follows from 4.9, 4.7, and (4.5). m
Suppose 7=,, > 1 (see 4.1 l(b)) so that 3.1(a) holds for any unitary representation

H of G. Then 4.11 (c), with 7 1, yields

diml V’-2(r- 1) dima V
r’- 1 dima V’

Thus statement 4.11 (c) proves a conjecture of Scaramuzzi [Sc, 3.3.4] if dimD V’ >
2 dimi V(dima V 1) + 1 and improves the estimates of Howe I-H3, Theorem 8.4]
for the pair O(p, q), Sp(m, R) if 2m > 2(p + q)(p + q 5/2) + 4. In fact, a more
careful investigation of the set Ao(,),s(,,,+ m improves all the estimates [H3, Theo-
rem 8.4], but since this method does not lead to sharp results, we shall not pursue
it further. Of course, here we use the fact (see [Li2]) that the representations
considered in [Sc] and [H3] occur in Howe’s correspondence.

5. Lifting of characters via the Cayley transform. Let D be a finite-dimensional
division algebra over R, with an involution, and let V be a finite-dimensional vector
space over D equipped with a hermitian or skew-hermitian form ), which is
either nondegenerate or zero. In this section

G {9 e GLIb(V); (gv, 9v’) (v, v’), v, v’ e V}

stands for the isometry group of the form and

g {x e End(V); (xv, v’) -(v, xv’), v, v’ e V}

for the Lie algebra of G. Clearly, if the form is zero, then G GL(V) and
g Endl(V).
For x End(V) with x 1 invertible, define the Cayley transform

(5.1) c(x) (x + 1)(x 1)-x (x ).

This notation is consistent with the one used in Theorem 1.7.
Let detR(x) denote the determinant of x e Endi(V) viewed as an element of
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x End(V). Motivated by Theorem 1.7(b), we introduce the function on g

(5.2) ch(x) ldeta(1 x)l x/2

[.Idet(1 x)l x/2 Idet(1 + x)l 1/2

if G is an isometry group
if G is a general linear group,

where x e g. Let flch {x ; ch(x) # 0}. Then flch
_

fl,.
Let ( be a finite central extension of G, not necessarily related to the setting of

dual pairs and the metaplectic group. Notice that G is a real reductive group in the
sense ofWallach [W, 2.1.1]. Choose a real analytic lifting C-_ of the Cayley transform
c_ -c (5.1) so that C’_(0) is the identity of G. Thus we have the commutative
diagram

where the vertical arrow stands for the covering map.
Let 19 be a distribution on G. Since C-_ is a diffeomorphism onto its image, the

pullback 6"_(R) is a well-defined distribution gh [H6, 6.1.2]. Hence for any real
number s we have a distribution

(5.4) chs. ?.*(R) C*(gch)

on g. From now until the end of this section, we assume that (R) On is the
distribution character of an irreducible admissible representation II of G. We
identify (R) with the corresponding function on G, as explained previously. Thus the
distribution (5.4) is given by the formula

(5.5) ch’. C’*_O() fg chS(x)(R)(?._(x))(x) dx ( C(gn).

We would like to extend the distribution (5.5) from gCh to g. In order to do so, we
need some preparation.

Let D denote the Weyl denominator on [W, 2.3.1]. Fix a norm Ion and a
Cartan subgroup n

_
( with the Lie algebra b. Let t)’ {x t); D(x) # 0} be the

set of regular elements in I). The proof of Harish-Chandra’s theorem on semisimple
orbital integrals IW, 7.3] verifies the following statement.

THEOREM 5.6. For anyj > 0 there is > 0 such that

supb (1 + IxlYlD(x)lX/2 (1 + lad O(x)l)-’d(oH) <
x /H
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Here Ad denotes the adjoint representation of G on g and d(oH) a (nonzero)
G-invariant measure on the quotient space G/H.

Let d d, denote the Weyl denominator on G [W, 2.4.4]. Recall the number r
(4.10). By a straightforward calculation we obtain the following lemma.

LEMMA 5.7. Set 1 ifD # H (the quaternions) and 1/2/fD H. Then

]D(x)/d(&(x))] 1/2 const" ch’-’(x) (x ).

Fix an Iwasawa decomposition G KAN. Let Ao be the corresponding set of
simple roots of g with respect to a. For a subset F

_
Ao let (Pr, At) be the standard

parabolic pair as defined in [W, 2.2]. Suppose Pr is cuspidal. Let Hr TrAr be a
fundamental Cartan subgroup of Mr MrAr, as in [W, 2.1-2.2]. We identify a,
the real dual vector space to the Lie algebra ar of At, with the subspace of elements
of a* that vanish on *at mr c a. For v e a set

,(a)

_
a (aeA).

W(G, A)

We extend the v to a function on Hr by the formula

v(ta) (a) (t Tr, a A).

Let Y be a maximal isotropic subspace of V stabilized by A. Denote the weights of
a in Y by el, e2, e, e a*. For v vtet + v2e2 + + v,e, a*, set

Ivl max(lvx], Iv21, [v,l}/dimR D.

A straightforward ease by ease analysis implies the following statement.

LEMMA 5.8. Suppose v a* and s > 2Iv[. Then there is rn > 0 such that, for any
Cartan subaloebra I)r, F

_
Ao,

chS(x)(&(x)) < const(1 + Ixl) (x e

By combining a well-known formula for the characters of standard induced
representations [Wo, 4.3.8.3] with [W, 5.5.3] and Lemma 5.7 and 5.8, we obtain
the following lemma.

LEMMA 5.9. Let v a* denote the Langlands parameter of H [W, 5.5.3]. Suppose
s > 21vl- r / (see (4.10), 5.7). Then there is m > 0 such that, for any Cartan
subalgebra t)r, F c Ao,

ID(x)l x/2 ch(x)lO(&(x))l < const(1 + Ixl) (x e ).

Let us denote by x the Gelfand-Kirillov dimension of the representation II [BV].
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Then as was shown in [BV], dim Ass(In) 2x, and there is a function u(x), x e g’,
homogeneous of degree -x, such that

(5.10) lim t6)(exp(tx)) u(x) (x

Since the functions _(x) and exp(2x), x g, have the same derivative at x 0, (5.10)
implies that

(5.11) lim tch(tx)(R)(?_(tx)) const u(x)
tO

THEOREM 5.12.
Suppose

Let v a* denote the Langlands parameter of II [W, 5.5.3].

(,) s > 21vl- r- 1.

Then there is > 0 such that

(a) + Ixl)-’ dx < oo,

so that the integral (5.5), with S(g), defines a tempered distribution ch" ?.*_0 S*(g).
Moreover, if H has the Gelfand-Kirillov dimension , then the function u (5.9) is

locally integrable and defines a tempered distribution via integration against the Haar
measure (without the assumption (.)), and for any S(g),

(b) lim t f ch’(tx)O(?.-(tx))(x) dx g u(x)(x) dx.

Proof. Since the function u is equal to IDI -x/2 times a locally bounded func-
tion and since the IDI -x/2 is locally integrable [W, 7.3.9-1, so is u. Hence the
integral

f u.(x)O(x) ax (0 s())

converges absolutely and defines a tempered distribution; see [H6, 7.1.18].
The integral formula [W, 2.4.31, expressing the integral over g as a sum of

integrals over Cartan subalgebras, together with Theorem 5.6 imply that the state-
ments (a) and (b) will follow if we show that for any Cartan subalgebra Dr

(a’) there isj > 0 such that f ID(x)l x/2 ch(x)lO(_(x))l(1 4- Ixl)- dx < o,
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and for any e S(be),

(b’) lim t f ID(x)l/2 ch(tx)(R)(-(tx))(x) dx f [D(x)lX/2 u(x)(x) dx.
t-, O r F

By the assumption (,) and Lemma 5.9, we have

(1) IO(x)l t/2 ch(x)lO(_(x))] < const, ch’(x)(1 + Ixl)m (x e Dr)

for some m > 0 and s’ > -2t. The condition on s’ is chosen so that the function
ch" is locally integrable on Dr, and hence (a’) follows.

Recall from [BV] that for each connnected component ff(D) of I). there is e > 0
such that the function on the left-hand side of the inequality (1), when restricted to
the region of x e (I)) with xl < , has a real analytic extension to an open
neighborhood of the closure of this region. Hence Taylor’s formula [H6, (1.1.7)’]
reveals that for , e S(br)

lim t l ID(x)lt/2chS(tx)(R)(?.-(tx))(x) dx fb ID(x)ll/2u(x)tp(x) dx.
tO tx] <e

Denote the homogeneity degree of the function ID(x)l x/e by m’. Set x’ m’- x.
Then x’ > 0 and by (1)

t t,t , ID(x)l x/2 ch’(tx)l(R)(_(tx))k(x)l dx

t-’,xl > ID(tx)l /2 ch(tx)l(R)(_(tx))@(x)l dx

chS’(tx)(1 + Itxl)ml,(x)l dx.

An elementary argument shows that the last integral tends to zero if 0. m
Let p,(x) 1/2 tr(ad(x)l,), x a, as in Section 4. Then Ip.I (r 1)/2 (see (4.3)) and

the character O (or (R)1., if G is an orthogonal group with dimD V even (see 3.3) in
the Theorem 5.12 has the rate of growth y Ivl/Ip.I, if II is unitary. Thus (if H is
unitary) the condition 5.12(,) may be rewritten as

(5.12,’) s > y(r- 1)-- r- t.

6. Asymptotic behaviour of the integral intertwining distributions. Consider an
irreducible dual pair G, G’ Sp, as in Section 3. Let H be an irreducible unitary
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representation of ( __. S". Then, under the assumption 3.1(a), the formula

(6.1) f f, n(g)P- og(g) dg

defines a tempered distribution on W. We shall always assume that the restriction
of H to the kernel of the covering map G G is a multiple of the unique nontrivial
character of this kernel, so that the function under the integral sign (6.1) is constant
on the fibers of the covering map. The title of this section refers to the distribution

f (6.1). If the condition 3.1(b) holds too, then the representation of G.G’ on the
image of the map p(f): H ---, H* is (infinitesimally) irreducible, and f is indeed
the intertwining distribution corresponding to FI, as defined in Section 2, or in
[P1, Sec. 5-1.

Recall that G1 denotes the Zariski-identity component of G. As we have already
noticed, the complement Go G\G1 is empty unless G is an orthogonal group over
R or C. Set

(6.2) jr , n(g)p-1 o(g) dg, ] f 3i(o)p-o(o) cto.
o

Then obviously f f + f’. We shall study the asymptotic behaviour of these
distributions using Howe’s Theorem 1.7.

Let us fix a real analytic lifting C-: spC Sp as in 1.7(b). Set g_(x)= g(x)g(0)-x,
x sp. Then g_ is a lifting of the Cayley transform c_, as in 5.3. Let j(x), x
denote the Jacobian of g_. Notice that C-(0) is in the center of Sp and hence in the
center of G. Hence

(6.3) 2 fm n(O)P-’O(9)dg 2 f n((x))j(x)p-’o((x))dx

const .. n(_(x))j(x)p- o(C-(x))dx.

Since im g
_

(1, the distribution f (6.3) is well defined under the condition 3.1(a)
with G replaced by G1. We shall study the f distribution under this possibly more
general assumption.

Recall (Sec. 4) that the groups G, G’ act on the defining modules V, V’. Thus we
may identify G with a subgroup of GLIb(V), with a Lie subalgebra of Endi(V),
and likewise for G’, ’. Set d’ dimi V’. Recall the number r (4.10) and the function
ch (5.2). One can normalize the Lebesgue measure on so that the Jacobian
j(x) ch-2r(x), x g; see [P1, (3.11)-!. From the structure of dual pairs and from
1.7(b) we see that, for x I, Oo,((x))= O,((O))chd’(x). For x g set a(x)=
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Idet(i Jx)l 1/2n’ (see (1.10)) so that

(6.4) I((x))l- const cha’(x)a-a’(x) (x ).

LEMMA 6.5. There is a seminorm q on S(W) such that

(a) x((w)x)(w) aw < q(b)a-a’(x) ( e s(w), x ),

(b) IOr(-(x))l cha’-2r(x)a-a’(x) dx <

The distribution (6.3) is given by the explicit formula

(c) f(q) const n(_(x)) ch’-2"(x) fw X(z(w)x)(w) dw dx,

where ke S(W) and the integral over is absolutely convergent. Moreover, if G is

Zariski-connected, then

(d) f 2f

and

(e) f f, if G v GI and 1716, is reducible.

Proof. By substituting g (x) in 1.13(a) and comparing the result with 1.7(c),
(5.2), and (6.4), we obtain 6.5(a). Since we work under the condition

the change of variables g (x) implies the finiteness 6.5(b). Statement (c) follows
directly from (a), (b), and (6.3). For (d) see (6.2)=and (6.3). Finally, if rIl, is reducible,
then the character On is zero on o, so that f 0 and (e) follows. I

For a function k on W and for > 0 let bt(w) t-2"k(t-Xw), w e W, 2n dim W,
as usual [H6, (3.2.18)].

THEOREM 6.6. Let G, G’ be an irreducible dual pair, with 2r < d’. Then there is a
seminorm q on S(W) such that

x(.(w)x)(w) dw dx < q(q) (q e S(W)).
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Suppose dim H < and set m 2 direr . Then the condition 3.1(a) holds, and the
distribution (6.3) satisfies

(b) lim t’f(t) C Z(zg(w)x)q(w) dw dx

for all b S(W), where C is a nonzero constant.

Proof. It follows from 4.11 and (4.4) that

(1) ’(2r-1)/d’(g) dg < .
Hence (see (6.4))

(2) tr-2’(x) dx f (ch(x)tr-l(x))2rch-2r(x) dx

const ,. fzr/n’(9)d9 < const f2-l)/a’(9)d9 < .
Since the function det(iI Jx) (1.10) is a product of terms like 1 + a2, where a is an
eigenvalue of the symmetric map Jx End(W), we see that

(3) 1 < a(ex) < a(x) (0 < e < 1, x e 9).

In particular, a-a’(x) dx < a-2"(x) dx < , and (a) follows from 6.5(a).
If dim H < , then the function (R)n(9), 9 e (, is bounded, and (1) implies that

the condition 3.1(a) holds.
Further (3), (6.4), and the fact that f is bounded imply that for 0 < e < 1

(6.7) IOn(_(ex))lcha’-2r(ex) < const cha’-2(ex) < const trn’-2’(x) (x e ).

A straightforward change of variables shows that for t > 0 and S(W)

tmf(bt) cnst f n(-(t-2x))cha’-2r(t-2x) rv j((za(w)x)q(w) dw dx.

By combining this formula with (6.7), 6.5(a), and (2), we obtain (b). m
THEOREM 6.8. Under the assumptions of Theorem 6.6, suppose that the function

n(_(x))cha’-2(x) a.(x) (x
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where the sum is finite and each function aj(x), x e fl, is homogeneous of degreej. Then
there is a seminorm q on S(W) such that for all j

z((w)x)(w) aw dx < q(q) (q e S(W)),

so that the formula

f() a(x) ((w)x)(w) dw ,tx ( s(w))

defines a tempered distribution f on W, homogeneous of dearee -2 dimt g 2j, and
the distribution (6.3)

is a finite sum of homogeneous distributions.

Proof. Notice that there are continuous functions pj: [1/2, 1] - C such that the
integral

is equal to 1 ifj j’ and is equal to 0 ifj d: j’ for all aj - 0, a, # 0. Thus

a(x) p(e)n(_(ex))cha’-2"(ex) de
/2

(x e g).

Therefore, (6.7) implies that

la(x)l const aa’-2"(x) (x e g),

and (a) follows from 6.5(a) and 6.6(2). The rest is clear.

if the representation II is infinite-dimensional, then the estimates 6.5(a) and (b)
do not seem to be sufficient to obtain limit formulas like 6.6(b). Our main tool in this
ease is Theorem 5,12. In order to be able to use it, we need to know that the function
on the left-hand side of 6.6(a) is rapidly decreasing. For that reason we have to
impose some additional conditions on the function .

Each element w W defines a linear map

(6.9) g x x(w) e W.
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Let Wq {w e w; the map (6.9) is injective}. The fundamental estimate of the
method of stationary phase [H6, 7.7.1], i.e. integration by parts, yields the following
lemma.

LEMMA 6.10. Suppose Wg # 0 and b C(Wg). Then for any > 0 there is a
constant Ct < such that

Z(’c(w)x)q(w dw < C(1 + Ix12)-’ (x ).

Proof. For a fixed x , the derivative of the function

W w --, ,,(w)x R,

at w W, coincides with the linear map

W w’ --, - (x(w), w’) R.

Let b Cc(%). Fix a norm Ion W and on . Then

inf inf Ix(w)l > 0.
{xl--1 (w) 0

Thus the lemma follows from [H6, 7.7.1].

Denote by x the Gelfand-Kirillov dimension of H and let u be the lowest term
in the asymptotic expansion of On (5.10). Then the Fourier transform (-l),(u) is
a finite sum of nonzero G-invariant measures, supported on closures of nilpotent
coadjoint orbits, of the same dimension 2x, [BV].

Since the restriction of the moment map z to W is a submersion, it defines a
continuous pullback

(6.11) : cy*(,(w,))--, cy*(w,);

see [H6, 6.1.2].

THEOREM 6.12. Let G, G’ be an irreducible dual pair. Suppose the character On
has the rate of growth > 0 such that d’ > 7(r 1) + r t. Then the condition 3.1(a)
holds. (Here we replace G by GI and II by IIll in the case explained in 3.3.) Let
m 2 dima 2. Then

=cnstffw,(*,(w)x)b(w)dwuK(x)dx ( e cy(w,)).
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Proof. Since t< 1, the rate of growth < max (4.11(b)), and therefore On
satisfies 3.1(a). Notice that

f’(b) f cha’-2"(x)n(_(x))(x) dx,

where

O(x) x(,(w)x)(w) clw

is a rapidly decreasing function, by 6.10. Since d’- 2r > ,(r 1) r-- t, all the
assumptions of 5.12 are satisfied (see (5.11,’)), and our theorem follows from
5.12(b). []

Remark 6.13. Theorems 6.8 and 6.12 prove Theorem (5.9) in [P1] without any
use of deep microlocal results like [H6, 8.2.4]. Notice also that if the pair G, G’ is
in the stable range with G the smaller member, then the distribution fo (6.8) is a
measure. This was conjectured in [P1, (5.23)].
The purpose of Theorem 6.8 is to distinguish a class of irreducible unitary

representations of G’ which are attached to nilpotent coadjoint orbits via a "Cayley-
Kirillov-Rossmann" character formula. In fact, if G is compact, then we have the
character formula [P1, (6.7)]

(,) ch-.a ,On, constn .*, o zg,(f)

where z,(f)() f(ff o z,), ff S(t’*). Suppose further that the pair G, G’ is in
the stable range with G the smaller member and that the representation II satisfies
the conditions of 6.8. Then z,(f) is a finite sum of homogeneous distributions with
the support equal to the closure of a single nilpotent coadjoint orbit; see 7.10. Thus
in such a case, (,) is the formula we are looking for.

Suppose G is not Zariski-connected. Then D R or C and G is an orthogonal
group. Let V1 be a one-dimensonal anisotropic subspace of V. Set V2 V. Then
V V V2. Define an element b G by blv, 1, blv,_ 1. Then the determinant
of b is 1, so that b e Go. Denote the 1, 1 eigenspaces of Ad b in I by 11, 12,
respectively. Then I g g2. The space 12 coincides with the Lie subalgebra of
t preserving the subspace I/2 - E The elements of map V2 into Vx. Recall that
the symplectic space W Homi(V’, V). Let W {w W; im w }, 1, 2.
Then W W @ W2 and W2 W.
LEMMA 6.14. There is a seminorm q on S(W) such that

(a) f x((w)x)(x(w) + w) < q()a-a’(x + x2),
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for X ff 61, X2 ff 62, and S(W). Fix an element [ ; in the preimage of b. Then
(recall that we work under the assumption 3.1(a))

(b) f IOi.i(_(x))l cha’-2"(x)-a’(x) dx

The distribution f (6.2) is iven by the explicit formula

(C) ()=constf f rx(-(xl-Fx2))cha’-2"(xl-Fx2)

frv ;t(z2(w2)xE)(x(w2) + w2)dw2 dx2 dx,

where S(W).

Proof. For x sp and e S(W) set

Let Xl 6:, x2 62, and x Xl + x2. Then

(1) Tp-1m()(#)

Hence, vi_a rep_lacin_g by p-109 ~in 6.5(a), we obtain (a). To check (b) we use the
fact that b e K _. U and that f is U-bi-invariant:

lOn(_(x))l cha’-2"(x)-a’(x) dx , IOn(_(x))ln((x))ch-2"(x) dx

< f lOn(gF)ln(g) dg f lOla(g)ln(g) dg f, lOn(g)ln(g) dg < oo

where the finiteness follows from 3.1(a). Finally, (c) follows from (1) because, by the
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definition (6.2) and 1.7,

f const l)ri(_(x))cha’-2r(X)Tx[p-1 o)() dx.

LEMMA 6.15. Let W {w W; im w V). Then for any function qb e C(W)
and for any >/O, there is a constant C < c such that

(a) fw z((w2)x,)(x(w2) + w2) atw2 < C(1 + Ixx + x212)-/

for all xl 9 and x2 92.
Suppose dim 1-I < o and d’ > 2r. Let m 2 diml 9. Then

(b) lim tmf(q) 0 ( C(W)).

Proof. Fix b Cc(W). Since inf{ Ix2(w)l; Ix2l 1, wl + w2 supp b} > 0 and
sup{Ixxl; x(w2) 4- w2 supp b} < o, (a) follows by the argument used in the proof
of 6.10. Set m’ (d’ 2r) dimn D. A straightforward change of variables yields

W .(T,2(W2)X2)O(XI(W2) -{" W2) dw2 dx2 dxx

hence (b) follows from (a).

CONJECTURE 6.16. The statement 6.15(b), with rn 2 diml 2x, holds under
the assumptions of 6.12.

We summarize the main results of this section in the following statement.

THEOREM 6.17. Let G, G’ be an irreducible dual pair and let II be an irreducible
unitary representation of satisfying the assumptions explained in the definition of
the distribution f (6.1). Denote by x the Gelfand-Kirilloo dimension of iI and let us be
the lowest term in the asymptotic expansion of the character On (5.9). Set m
2 dima 9 2x. Then under any of the assumptions

(a) G G1, dim II < , d’ > 2r, and b S(W); or
(b) G G, dim Fl <

and qb C7(We); or
(c) G # G1, IIl,, is irreducible, dim II < o, d’ > 2r, and qb C(W); or
(d) G #: G, IIll is reducible, dim 1-I < , d’ > 2r, and S(W); or
(e) G G, lIltl is reducible, dim II < o, (R)nl, has the rate of #rowth > O,

d’ > (r 1) + r , and C(W),
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there is a constant C 0 such that formula

(,) limt"f(b,)=cffve;g(zg(w)x)b(w)dwu(x)dx.
holds.

In all cases (a)-(e), the integral over g in (,) is absolutely convergent and defines a
distribution on W, Wo, Wg respectively, supported on z-l(supp #), where lax
(f)*(u).

Proof. Suppose G G1. Thenf 2 by 6.5(d). Hence the theorem follows from
6.6 and 6.12. This takes care of cases (a) and (b).

Suppose G # Gt. In case (c) the theorem follows from 6.6 and 6.15(b). In cases
(d) and (e) f by 6.5(e); hence the theorem follows from 6.6 and 6.12.

7. Associated varieties and wave-front sets. Let us choose some linear coSrdi-
nates w, w2, w2, on W. Then a polynomial coefficient differential operator P
on W may be written as a finite sum

P P(w, ) Z aaw dw

where (z, 2,..., 2,) and fl (fl, f12,..., f12) are multi-indices. Set I1
al + 2 +"" + a2. Let k max(ll- I/1; aa - 0}. Put

(7.1) P,ax emax(w, ) E flaaw cO
lal-I#l--k

LEMMA 7.2. Suppose Wo is an open cone in W, f, and fo are distributions on Wo
and suppose m is an integer such that

lim tmf(qkt) fo(qk) (q e C(Wo).

Then for any polynomial coefficient differential operator P on IV, f o p 0 implies
foo P.x o, on Wo.

Proof. We calculate

0 t’-f o P(,)= aat"-+ tf((w Owqb),)

tmf((Pmax(/)),)+

_
-k+lal-I#l<O

a,t -k+I1-la t’f((w"Oq),)

and take the limit with .
Let Wc W (R) C denote the complexification of I4. The form ( ) extends to
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Wc. Let W be the Weyl algebra associated to the form 2i( ) on Wc, i.e. W is
the quotient of the tensor algebra of Wc by the ideal generated by the elements

w (R) w’ w’ (R) w 2ti(w, w’ (w, w’

Let Wk be the subspace ofW spanned by the identity and products of at most k > 0
elements of Wc. Then Wo Wl - W2 -"" is an exhaustive filtration of W. The
associated graded algebra

r w w/w_x (w_ o)
k=O

may be identified with the algebra (Wc) of polynomial functions on Wc by the
formula

(7.3)
1

r(w)(w) . ["" [[w, w] w]’" w]
y

k times

(w e w\w_, w wc).

Let (W) denote the algebra of polynomial coefficient differential operators
on W. For w e W define t3(w) e (W) by

(7.4)

(w)(w’) lim t-((w’) (w’)) lim t-(ei<’w’>b(w tw) (w’))
O t",O

hi(w, w’)(w’) + ,(w’) ( s(w), w’e w),

where tg, indicates the usual abelian directional derivative of b in the direction
of -w [H2, (19.2.2)]. Then extends to an injective algebra homomorphism

(7.5) c9: W fl(W).

Recall the symplectic Fourier transform IH4, 2.1]

(7.6)

( S(W), w’ W, 2n dim W, f S*(W)).

LEMMA 7.7. Suppose Wo is an open cone in W, f S*(W), fo C*(Wo) and there
is m R such that

lim tmf(,) fo(qb) ( C(Wo)).
oO

Then for any w W, iff o (w) O, then gr wlsupp fo O.
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Proof. Let O(w) e (W) denote the operator obtained via conjugation by the
symplectic Fourier transform (7.6), i.e.,

f o (w)= (f o c(w))^ (f e S*(W), w e W).

Then (7.1), (7.3), and (7.4) imply that for w e W

(W)m,x(W, tg) g(W)m,x(W) const 9r w(w) (w W).

Thus the lemma follows from 7.2. m
Let G, G’ be an irreducible dual pair in Sp(W). Let H be an irreducible unitary

representation of G and let #x S*(g*) be the Fourier transform of the lowest term
in the asymptotic expansion ofthe character ton (see (5.9)). Denote by max sup lx the
union of the coadjoint orbits of maximal dimension (= 2x) in supp lax. Let gc, ’c
denote the complexifications of , ’ respectively, and let Ass(In,) be the
associated variety of In,, the annihilator of the Harish-Chandra module of H’ in
the universal enveloping algebra of g’, [Ma].

PROPOSITIOY 7.8. Assume that the positivity condition 3.1(,) holds.
(a) If G and II satisfy the assumptions of6.17, then the irreducible unitary represen-

tation II’ of G’ constructed in 3.1 satisfies

(,) Ass(In,

in all the cases 6.17(a)-(e) except (possibly?) 6.17(c). In this last case, (.) holds with

W replaced by W.
(b) If G :/: G1, HI, is irreducible and On has the rate of 9rowth > 0 such that

d’ > 7(r 1) + r (as in 6.12), then (.) holds with Ass(In,) replaced by Ass(In,)w
Ass(In (R)et)’); see 3.3.

Proof. The positivity assumptions ensures that the formula (6.1) does indeed
define the intertwining distribution f corresponding to the representation II (R) II’;
see 3.1.

Let us work under the assumptions of6.17 first. Denote by fo the limit distribution
defined by the right-hand side of 6.17(,). This is a distribution on W, W
depending on the assumption 6.17(a)-6.17(e) we are considering. In fact, W occurs
only in the case 6.17(c). Each of these sets is an open cone in W and the support of
fo coincides with the preimage under of the support of

Suppose w W and f o c(w) 0. Then since f is a nonzero constant multiple of
f, we have f o (w) 0. Therefore, gr wl,,vv Yo 0 by 7.7.

A og(q/(g’); wf 0}, then Ass(In,On the other hand, if (, f)= {w e p-
r,{w We; 9r(w)(w) 0 for all w p-lo(q/(fl’))}; see [P1, (7.26)]. Hence part (a)
of the theorem follows.
The difficulty with part (b) is that Lemma 6.15 does not apply. Thus we do not

have full control of the asymptotic behaviour of the intertwining distribution f,
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still given by the formula (6.1). However, we do know the asymptotic behaviour of
the distribution f (6.2); see 6.12. By 3.3 the image of p(f) is a realization of
H (R) H’ )(H (R) det)(R) (H (R) det)’. Hence part (b) follows by an argument parallel
to the one used to verify (a). m

If the pair G, G’ is of type I and W HomD(V’, V), set Wgg {w e W; im w V}.
(We have defined this set previously (6.15) only for the orthogonal groups.) If the
pair G, G’ is of type II and W HomD(V, V’) Homa(V’, V), set Wgg {w
(S, T); ker S 0 and im T V}. In all cases Wgg Wg, see (6.9).
The polynomial maps z g, zg, extend canonically to the complexification Wc of W.

We denote these extended maps by the same letters.

THEOREM 7.9. Suppose that

(,) max supp #,, c z(W) O.

Then
(a) under the assumptions of 7.8(a),

Ass(In, .c ,,(.c (Ass(Irl)

(b) under the assumptions of 7.8(b),

Ass(In, w Ass((Itn (R)de,r) zg’(z-X(Ass(In)))

Proof. Consider the case 7.9(a). As was shown in I-P1, (7.1)], there is an inclusion

(1) Ass(In,)
_

z,,(z-l(Ass(In))).

By a theorem of Borho, Brylinski, and Joseph IV2, Cor. 4.7] and [BV, Theorem
4.1], Ass(In) coincides with the closure On of the complex coadjoint orbit On - g*
of any element of max supp !. Thus from 7.9(.) and 7.8(a) we see that

(2) Ass(In,)

The complexified algebraic groups Gc, G’c form a complex reductive dual pair,
which is either irreducible or is a direct sum of two such pairs [H7]. In either ease,
we may define Wc,c,c. Since, by 7.9(.), z(On)c Wc,c,c 4: 0, some analysis of the
Gc, G’c-orbits in We [KP2, 4.3] shows that

(3) z(On) c Wc,c,c contains a unique orbit On (R)ri’ of maximal dimension

and

(4) z,(z-i(On))) On,, where On, z,,(On(R)n,).
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Hence

Ass(In,)
_
z(’rl(On))= l"],(’’’l(OiI))= OII,.

This completes the proof of 7.9(a). The case 7.8(b) is analogous.

Notice that the above proof of 7.9(a) shows that Ass(In,) is the closure of a single
nilpotent orbit. Thus knowing the Borho-Brylinski-Joseph theorem for In, we get it
automatically for In,.
COROLLARY 7.10. Suppose the pair G, G’ is in the stable ranoe, with G the smaller

member (see 8.1), H (R) H’ (G. G’, o9), dim I-I < , and H is unitary. Then

WF(1-I’) ,(,(WF(n)))(= ,,(,T(0))).

Here the "WF" stands for the wave-front set of a unitary representation [H5].

Proof. We shall see in 8.6 that in this case the positivity condition 3.1(.) holds.
Further, if G # G1, then G is an orthogonal group and d’ > 2r; see (4.10). Another
nice property of the stable range is that 0 za(W); see [P1, (2.14)]. Thus we may
apply 7.9(a):

(1) Ass(In,) "cs,(’rl(O)).

Some simple linear algebra shows that the intersection of the subset (1) of g with
zg,(W)

_
g* coincides with z,(zl(0)). Since the wave-front set is contained in the

associated variety, (1) and 2.8 imply the inclusion

(2) WF(II’) =_ .,((0)).

The set on the right-hand side of (2) is the closure of a single G’-orbit in g’* of real
dimension equal to the complex dimension of the variety Ass(In,), which in turn is
equal to the real dimension of any maximal orbit in WF(H’), by [BV]. Thus the
inclusion (2) is an equality, m

8. Positivity for a pair G, G’ of type I. In this and in the next section, we take a
closer look at the condition 3.1(b), or rather 3.2(b’). We do not have any final results
describing it. We show that it holds in, and in many cases well beyond, the stable
range I-H3]; see 8.6 and 8.7.

In this section, D (R, C, H) is a finite-dimensional division algebra, with an
involution, over R; V and V’ are finite-dimensional vector spaces over D equipped
with nondegenerate forms and )’, respectively--one hermitian and the
other skew-hermitian. The groups G, G’ are the isometry groups of the forms ),

)’ respectively. The symplectic space W HomD(V’, V). The groups G and G’
act on W via postmultiplication and premultiplication by the inverse, respectively.
These actions embed G and G’ into the symplectic group Sp(W), [H7-1.



CHARACTERS, DUAL PAIRS, AND UNITARY REPRESENTATIONS 585

Here is a slight generalization ofthe notion ofthe stable range introduced in [H8].

Definition 8.1. The pair G, G’ is in the almost stable range, with G the smaller
member, if either of the following two conditions holds:

(a) if the form is hermitian, then there is an isotropic subspace X’
_

V’ such
that dimI X’ dimI V 1;

(b) ifthe form is skew-hermitian, then there is an isotropic subspace X’
_

V’
such that dimi X’ dimi V.

Recall [H8] that the stable range requires diml X’ dimi V in both cases 8.1(a)
and 8.1(b).
For X’ as in 8.1 let ’(X’) denote the space of forms on X’ of the same type as

). Denote by (X’) the Zariski-open set of nonsingular forms in ’(X’). Set
X Homl(X’, V) and let

(8.2) #:Xx-(, )ox(X’).

LEMMA 8.3.
The stabilizers

The subset Xmax-- -l(,(xt)max) X is Zariski-open and dense.

6(x) {g e 6; gx x} (x Xre"x)

are compact.

Proof. The first statement is obvious. For the second one, we notice that each
x X""x defines a direct sum decomposition

V im x @ (ira x)+/-.

The restriction to the second summand is an isomorphism from G(x) onto the group
of isometries of the form restricted to (im x) +/-. By 8.1, if (ira x) +/- 4: O, then
dimi(im x)1 1 and the restricted form is hermitian and nondegenerate. Hence the
corresponding group of isometries is compact, m
Choose an isotropic complement Y’ to X’ in V’ and let Vd be the orthogonal

complement to X’ + Y’ in V’, so that

V’=X’@ Vd@ Y’.

Set Y Homi(Y’, V) and Wo Homi(V, V). Then, with the obvious identifica-
tions,

(8.4) W X @ Wo @ Y,

where X, Y are isotropic subspaces of W and Wo (X + Y) +/- is a symplectic space,
or zero.
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We consider the mixed model of the oscillator representation a attached to the
decomposition (8.4). Suppose Wo # 0. Then there is an oscillator representation O2o
of Sp(Wo) on a Hilbert~ space Ho,o such that the Hilbert space of to, H,o Lz(x, Ho,o),
and the group G

_
Sp(W) act according to the formula

(8.5) oO)v(x) Oo()(v(a- x)),

where e G is in the preimage of 0 G, v e Ho,, and x X, [H8]. If Wo 0, then
(8.5) holds with O)o, a unitary character of G, and Ho,o C. From now on let X’ be

X’an isotropic subspace of V", maximal with dimD < dimD V.
In the next lemma we reproduce an argument of Jian-Shu Li [Lil, (50)1, in our

slightly more general situation.

LEMMA 8.6. Suppose the pair G, G’ is in the almost stable range, with G the smaller
member. Let H be an irreducible unitary representation of G, whose restriction to the
kernel of the covering map G G is a multiple of the unique nontrivial character of
this kernel. Denote by Hn the Hilbert space of II. Suppose 0 v u HI is such that

(a)

Then

I(u, rI(a)u)l n(a) da < .

(b) 0 < I (u, l’I(#)u)(og(#)v, v) d# < oo (v H2).

There is a v for which the integral (b) is nonzero if either dim X’= dim V, or

dim X’= dimD V- 1 and the trivial representation of the stabilizer of an aniso-
tropic line in V, occurs in H (R) Oo.

Proof. It follows from (a) and 1.13(a) that the integral (b) is a continuous
function of v H. Hence it will suffice to verify the nonnegativity in (b) for all
v C(Xre"x, Ho). Lemma 8.3 shows that, for such a v, the support ofthe function

x x + (0, x) ---, (Oo(O)(v(- x)), v(x)) C

is compact. Hence we may interchange the order of integration:

(1) f(u, rI(#)u)(o(#)v,v)d=yxy(u, rI()u)(Oo(#)(v(a-x)),v(x))d#dx.

Let db denote a Lebesgue measure on (X’). As a consequence of 8.1, there is a
nonnegative function j on (X’)’"’, such that

fx.ox(x) dx=ftx,).xfo(h-lx)dhj(fl(x))dfl(x)
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for b Cc(Xmax). Hence we may rewrite the integral (1) as one-half times

f’ f, f,(u, Fl(O)u)(ooo(O)(v(g-lh-Xx), v(h-lx)) dO dj(fl(x)) dfl(x)
(X,).,.x

(X’)

2

rl(O)u (R) Oo(O)(v(o- x)) clO j.(fl(x)) aft(x) > o.

This proves (b).
Suppose the last integral vanishes for all v. Then it also vanishes for all u and all

v (see 3.2). Thus

(2) rI(0)u (R) OOo(O)(v(o- x)) clO o (X t Xmax, u nl 13 e Cc(Xmax, Ho)).

Fix x e X and a vector w s H2,. Let b, e Cff(Xmax, C) (n 1, 2, 3,...) be a Dirac
sequence converging to the Dirac delta at x. Set v, b.. w. By substituting v. for v
in (2) and taking limit if n oe, we get (for G(x), see 8.3)

(3) f6 1-I(0)u (R) COo(O)w dO 0 (u e H, w e H,).
(x)

By our assumption I-I() (R) COo factorizes to a representation of G(x). Thus (3) means
that the trivial representation of G(x) does not occur in II() (R) COo. This is possible
only if G(x) is nontrivial. Thus dimI X’ dimi V 1. Since the x s X is arbi-
trary, we are done. m

Consider another irreducible dual pair G, G;, where G is the isometry group of
a form )z on a finite-dimensional vector space V over D, of the same type as
the form( )’. Set W2 nomi(V, V)and W3 nom(V’ V, V). Here V’ V
is equipped with the form ); )’ )z. Let G; denote the isometry group
of this form. Then G, G; is again an irreducible dual pair in Sp(W3). We shall assume
that the form ); is split. Then the preimages of G in Sp(W) and in Sp(W2) are
isomorphic. We shall identify them and denote both ofthem by the same symbol G.

Let CO2 and o93 denote the oscillator representations of the metapleetie groups
Sp(W2) and Sp(W3 associated to the same character Z (1.1) ofR [H3], respectively.

LEMMA 8.7. With the above notation, assume that
(a) the pair G, G’3 is in the almost stable range, with G the smaller member,
(b) dimi V’ / diml V > 2r- 1 (see (4.10)),
(c) the form )’a is split,
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(d) the form )’2 is anisotropic, and
(e) II is an irreducible unitary representation of G such that the contraoradient II

occurs as a subrepresentation of the Hilbert space Ho,2 of 002 [r"
Then for any K-finite vector u in the Hilbert space Hn of H,

(*) 0 < f (u, H(g)u)(00(g)v, v) dg < (v . H),
and there are vectors u, v such that the above inteoral is nonzero.

Proof. Let~ G denote the preiage of G in Sp(Wa). It follows from (c) that
the covering ( --* G splits. Let e: G --. { + 1, 1} be the character whose kernel is
G. The condition (b) together with 6.6(1) imply that the Gaussian function on Sp(Wa
is integrable over G. Consequently, 8.6 shows that

(1) 0

Since taking direct sums of symplectic spaces results in tensoring of the corre-
sponding oscillator representations [H3], the second equation in the following
calculation is justified:

(2) rI(a)u)(o(a)v, v) da f (oz(a)u, u)(o(a)v, v) do

;, (g)(os(o)(u (R) v), u (R) v) /o > 0

by (1). This proves the nonnegativity in (,).
Assume for simplicity that the form ) is positive definite. Then by (c), there

is a subspace V_’ 2 in V’ of the same dimension as V, such that the restriction of the
form )’ to V’2 is negative definite. The orthogonal complement of V" 2 in V’ can
be written as V V_’, where the restriction of the form )’ to V is positive
definite, the restriction to V" is negative definite, and these spaces are perpen-
dicular to each other. Set W+ HomD(V, V), I/V_ Homi(V’, V), and W-2
Homo(V’_2, V). Then W3 W2

_
W W2..() W_2.. W+ W_. Let 00_2, 00+,00_ be

the oscillator representations of Sp(W_2), Sp(W+), Sp(W_) realized on Hilbert spaces
Ho,_2, H,o/, H,o_ respectively. Then 003 may be realized on the space H,o H,o (R)
Ho,_ (R) H,o+ (R) Ho,_. Since 00-2 is isomorphic to co, we may identify Ho,_ with Ho,.
Similarly, 00_ is isomorphic to co*+, and we identify Ho,_ with Ho,+. Let u Hn -H,o H,o_ be a nonzero K finite vector and~ let v+ Ho,+ H

_
be a nonzero

vector. Then for v v+ (R) v+, t, and ( in the corresponding preimage of



CHARACTERS, DUAL PAIRS, AND UNITARY REPRESENTATIONS 589

(3) (u, H()u)(09()v, v) (092()u, u)(u, 092()u)(09/()v/, v/)(v/, 09/()v/) O,

and for almost all g G this number is nonzero. Hence the integral (2) is nonzero.

Remark 8.8. It seems plausible that 8.7 holds without the assumption (d).

THEOREM 8.9. Suppose the groups G, G’ and the irreducible unitary representation
H of G satisfy the conditions of Lemma 8.6 or Lemma 8.7. Then H I(G, 09) and the
representation 1-I’ of G’ corresponding to II via Howe’s correspondence is unitary.

Proof. Lemmas 8.6 and 8.7 ensure that the condition 3.2(b’) is satisfied. Hence
in 3.1(b) positivity holds, and consequently our theorem follows from Theorem
3.1. 1

Example 8.10. Consider the pair G Sp(n, R), G’ O(p + q, q). Suppose for
simplicity that the numbers n, p are even. This allows us to forget about all the
coverings. The conditions of Lemma 8.7 can be expressed as follows:

(a) p+q>2n;
(b) 2p+2q>2(2n+l)-l;
(c) and (d) hold by the choice of the dual pair, because the forms )’, )z,

) are symmetric with signatures (p + q, q), (0, q), (p + q, p + q) respec-
tively;

(e) 1-I (R) 1-I’2 (Sp(n, R)" O(p), 092) for some Hz.
The first two conditions, (a) and (b), may be put together as p / q > 2n + 1.

Theorem 8.9 says that there is an irreducible unitary representation H’ ofO(p + q, q)
such that II (R) II’ e 2l(Sp(n, R). O(p + q, q), 09). Notice that this dual pair is not in
the stable range (with Sp(n, R) the smaller member) if 2n > q. Thus in this case the
unitarity of II’ does not follow from [Lil].

Further it is clear from the proof of 8.7 that the trivial representation of Sp(n, R)
corresponds to some irreducible unitary representation II of O(p + q, p + q) and
that the representation H’(R) IIz occurs in the restriction of II to the subgroup
O(p / q, q) x O(q). (Compare the formula (2) in the proof of 8.7 with 3.1(,).) This
seems to be of independent interest.

9. Positivity for a pair G, G’ of type II. Here D, V, V’ are as in the previous
section, but G GLD(V) and G’ GLI(V’). The symplectic space

(9.1) W=X@ Y

where X Homi(V’, V) and Y Homi(V, V’) are maximal isotropic subspaces.
The groups G, G’ act on W in the obvious fashion, via the post- and premultiplica-
tion by the inverse.
We work in the Schr6dinger model of 09 attached to the decomposition (9.1),
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[H3]. Then the Hilbert space H, L2(X)and

o(,3)v(x) (#)-x v(a-x)

where ( is in the preimage of g G, v H,o, x X, ()2 (detl g)d,, d’
dimI) V’.
The argument used in the proof of 8.6, with Xmax {x; im x V}, verifies the

following lemma.

LEMMA 9.2. Let H be an irreducible unitary representation of G, whose restriction
to the kernel of the covering map G --. G is a multiple of the unique nontrivial character
of this kernel. Suppose 0 : u Hn is such that

(a) l(u, l’l(g)u)l f(g) dg < .
Then

(b) 0 < (u, rI(o)u)(o(o)v, v) de < o (v H),

and there is a vector v for which this integral (b) is nonzero.

THEOREM 9.3. Suppose the groups G, G’ and the irreducible unitary representation
II of G satisfy the conditions of Lemma 9.2. Then II 9(G, 09) and the representation
H’ of G’ corresponding to II via Howe’s correspondence is unitary.

Proof. This is of course well known. However, the argument verifying 8.9 works
too. Lemma 9.2 ensures that condition 3.2(b’) is satisfied. Hence in 3.1(b) positivity
holds, and consequently our theorem follows from Theorem 3.1.

10. Proof of Theorem 0.9. The nonvanishing of the integral 0.9(b) for some
v H forces II to be a genuine representation of G, in the sense that the restriction
of H to the kernel of the covering map ( --. G (a two element group) is a multiple
of the unique nontrivial character of this kernel.
The assumtion 0.9(a) ensures that we can use Theorem 6.12. The first part of 6.12

shows that the condition 3.1(a) is satisfied. Further, 0.9(b) and 3.2 show that 3.1(b)
holds. Hence Theorem 3.1 says that H (R) H’ (G. G’, co) and that 17’ is unitary.
The assumption 0.9(c) is the same as 7.9(.). By 0.9(a) G and H satisfy 6.17(b)

or 6.17(e). Thus the statement about the associated varieties follows from
Proposition 7.9. I

[Bou]
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