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Abstract. Let G̃ and G̃′ be a reductive dual pair of the type mentioned in the
title, with G̃ the smaller member. Let � and �′ be unitary representations
of G̃; G̃′ which occur in Howe’s correspondence. We express the distribution
character of �′ in terms of the character of � via an explicit integral kernel
operator.

1. Introduction

Let W be a �nite dimensional vector space over R with a non-degenerate
symplectic form 〈 ; 〉. Let Sp = Sp(W ) ⊆ End(W ) denote the corresponding
symplectic group with the Lie algebra sp = sp(W ) ⊆ End(W ). Let
(1:1) c(z) = (z + 1)(z − 1)−1 (z ∈ End(W ) with z − 1 invertible)
denote the Cayley transform. This is a birational isomorphism form sp to Sp
and vice versa. Set c− = −c, so that c−(0) = 1 is the identity.

Let �(x) = exp(2�ix); x ∈ R. Normalize the Lebesgue measure dw on W
so that for any positive de�nite compatible complex structure J on W

(1:2)
∫
W

�
(

i
2
〈J (w); w〉

)
dw = 1 :

Let S̃p be the metaplectic group and let � denote the distribution character of
the oscillator representation ! of S̃p attached to �, as in [H2]. We view � as
a function on S̃p, see (2.18). Set

(1:3) �z(w) = �
(
1
4
〈zw; w〉

)
(z ∈ sp; w ∈ W ) :
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Let G;G′ ⊆ Sp be an irreducible dual pair, see [H1]. Denote the corre-
sponding Lie algebras by g; g′ respectively. Recall the unnormalized moment
maps �g : W → g∗; �g′ : W → g′∗:

(1:4) �h(w)(z) = 1
4 〈zw; w〉 (w ∈ W; z ∈ h; h = g or g′) :

By the Howe–Witt theorem [H3] there is a G ·G′-invariant open dense subset
Wmax ⊆ W such that for any G orbit O ⊆ �g(Wmax) the set

(1:5) O′ = �g′(W
max ∩ �−1g (O))

is a single G′ orbit. Let Wmax 3 w → ẇ ∈ G\Wmax denote the quotient map
and let dẇ denote the measure on G\Wmax de�ned by

(1:6)
∫
W

�(w)dw =
∫

G\Wmax

∫
G
�(gw)dg dẇ (� ∈ Cc(Wmax)) :

Let !∞ be the smooth representation of S̃p associated to !. Let ! be
realized on a Hilbert space H!, and let the subspace of smooth vectors, on
which !∞ is de�ned, be written H∞

! .
Let G̃; G̃′ be the preimages of G; G′ in S̃p under the covering map S̃p 3

g̃ → g ∈ Sp.
For E = G;G′ or G ·G′ let R(E;!) denote the set of in�nitesimal equiv-

alence classes of continuous irreducible admissible representations of Ẽ on
locally convex spaces which are realized as quotients by !∞(Ẽ) – invariant
closed subspaces on H∞

! .

Theorem [H1, Theorem 1]. The set R(G ·G′; !) is the graph of bijection
between all of R(G;!) and all of R(G′; !). Moreover an element � ⊗ �′

occurs as a quotient of !∞ in a unique way.

The bijection R(G;!) 3 � ↔ �′ ∈ R(G′; !) is called Howe’s correspon-
dence.
We assume from now on that G;G′ is an irreducible dual pair of type I in

the stable range with G the smaller member. (This notion was introduced by
Howe and is explained in Sect. 3).
Fix an irreducible unitary representation � of G̃, whose restriction to

the kernel of the covering map G̃ → G is a multiple of the unique non-
trivial character of this kernel. Then, as shown by Li, [Li], � occurs in
Howe’s correspondence and the irreducible admissible representation �′ of G̃′

associated to � is unitary. Let �� denote the character of � and let ��′
denote the character of �′. Recall that G is the isometry group of a non-
degenerate form ( ; ) on a �nite dimensional vector space V over a division
R-algebra D. Similarly G′ is the isometry group of a non-degenerate form
( ; )′ on a �nite dimensional vector space V ′ over D. We prove the following
theorem:

Theorem 1.7. Suppose that
(a) the form ( ; )′ is split;
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(b) if G is a symplectic group over D = R or C then dimDV ¡ the Witt
index of ( ; )′;

(c) if G′ is an orthogonal group over D = R or C then dimDV ′ is a
multiple of 4;
(d) if G is an orthogonal group over D = R or C and G1 is the Zariski

identity component of G then the restriction of � to G̃1 is reducible;
(e) d′ = (d+ 2)2; where d′ = dimDV ′ and d = dimDV .

Then there is a non-empty Zariski open subset G′′′ ⊆ G′ and a measurable
section G\Wmax 3 ẇ → w ∈ Wmax such that for any 	 ∈ C∞c (G̃′′′)

��′(	) =
∫
G̃

∫
G\Wmax

∫
G̃′

	( g̃′)�( g̃′)�c(g′)+c(g)(w)�( g̃)��( g̃)dg̃′dẇ dg̃ ;

where each consecutive integral is absolutely convergent. In other words; the
function of g̃ and w obtained after integrating over G̃′ is absolutely integrable
over G\Wmax; and the resulting function of g̃ is absolutely integrable over G̃.

Remarks. (a) The title of this paper refers to the character formula of
Theorem 1.7, and the “deep stable range” to the assumption (e). Since

�c(g′)+c(g)(w) = �c(g′)(w)�c(g)(w) = �(�g′(w)(c(g
′)))�(�g(w)(c(g))) ;

the above character formula may be understood as a microlocalization of the
orbit correspondence (1:5) provided by the moment maps.
(b) Changing the order of integration in the character formula of

Theorem 1.7 is impossible. We shall explain it in some detail. Consider the
integral

(∗) ∫
G\Wmax

∫
G̃

∫
G̃′

	( g̃′)�( g̃′)�c(g′)+c(g)(w)�( g̃)��( g̃)dg̃′dg̃ dẇ :

By our choice of G′′′, the support of the function 	 does not touch the
singularities of �. In other words, 	 ·� is a compactly supported bounded
function, hence the integral over G̃′ is absolutely convergent. Let

(∗∗) �(w) =
∫
G̃′

	( g̃′)�( g̃′)�c(g′)(w)dg̃
′ :

Then ∫
G̃

∣∣∣∣∣ ∫
G̃′

	( g̃′)�( g̃′)�c(g′)+c(g)(w)�( g̃)��( g̃)dg̃′
∣∣∣∣∣dg̃

=
∫
G̃

|�(w)�c(g)(w)�( g̃)��( g̃)|dg̃ = |�(w)|∫
G̃

|�( g̃)��( g̃)|dg̃ :

Thus “every consecutive integral in (∗) is absolutely convergent” if and only
if ∫

G̃′
|�( g̃)��( g̃)|dg̃ ¡ ∞ :

But this never happens! If G is not compact then obviously the above integral
is in�nite. Suppose G is compact. Then �� is a continuous positive de�nite
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function, so it is enough to see that � is not locally absolutely integrable in
any neighborhood of the identity. This is clear from the Weyl integral formula
on G and from the formula (2.18) for �. For example, let G = O(2) and let
G′ = Sp2n(R). Then∫
G̃

|�( g̃)|dg̃ = const ∫
G
|det(g− 1)|−n dg

= const
∫

SO(2)
|det(g− 1)|−ndg = const

2�∫
0
|1− cos(t)|−n dt = +∞ :

Thus the integral (∗) does not make sense.
Now few words explaining why the original integral in (1.7) works in the

case when G is compact. Then∫
G̃

��( g̃)!( g̃)dg̃

makes sense as an operator in the Hilbert space of !. By de�nition (2.14)
!( g̃) = �(T ( g̃)), (see (2.7) and (2.8) for T ). The above statement follows
from the fact that the following integral∫

G̃

��(g̃)T ( g̃)dg̃

makes sense as a tempered distribution on W . But this means, in particular,
that for any test function � ∈ S(W )∫

G̃

∣∣∣∣ ∫
W

��( g̃)T (g̃)(w)�(w)dw
∣∣∣∣dg̃ ¡ ∞

If � is de�ned by (∗∗) then in the following formula
��′(	) =

∫
G̃

∫
W

∫
G̃′

	( g̃′)�( g̃′)�c(g′)+c(g)(w)�( g̃)��( g̃)dg̃′ dw dg̃

=
∫
G̃

∫
G\Wmax

∫
G̃′

	( g̃′)�( g̃′)�c(g′)+c(g)(w)�( g̃)��( g̃)dg̃′ dẇ dg̃

every consecutive integral is absolutely convergent. It gives the character ��′
as shown in [P1], and the last equality is clear because G is compact.
The analytic di�culty in the case of a non-compact G is to kill as many

oscillations as possible before we get to the integral over G̃. This is accom-
plished by a correct choice of the model of ! and by lemma 4.3.
In the rest of this section we work under the assumptions of (1.7).
For s ∈ EndD(V ) let detR(s) denote the determinant of s viewed as an

element of EndR(V ). De�ne

(1:8) r = 2dimR(g)= dimR(V ); chg(z) = |detR(z − 1)|1=2 (z ∈ g) :

Let us �x a real analytic lifting c̃ : sp → S̃p of the Cayley transform
c : sp → Sp. Set c̃−(z) = c̃(z)c̃(0)−1; z ∈ sp. Then c̃− is a lifting of the
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Cayley Transform c− and c̃−(0) = 1, the identity element of S̃p. By restriction
c̃ : g → G̃, and similarly for G′. One can normalize the Lebesgue measure on
g so that

(1:9)
∫
G1

	(g)dg =
∫
g

	(c(z)) chg(z)−2r dz (	 ∈ Cc(G1)) ;

see [P1, (3.11)]. The same formula (1.9) holds with c replaced by c−, and
similarly for G′.

Let

(1:10) ��(z) = �( c̃(z))��( c̃(z)) chg(z)−2r (z ∈ g) :

This function does not depend on the choice of c̃. It follows from the ex-
plicit formula (2.18) for � that for a speci�c choice of c̃; �(c̃(z)) =
const · chd′

g (z); z ∈ g, so that the product �(c̃(z))chg(z)−2r is often a polyno-
mial.

Corollary 1.11. Let g′′′ = c(G′′′). Then for  ∈ C∞c (g
′′′)

c̃∗−��′

c̃∗�
( ) = const

∫
g

∫
G\Wmax

∫
g′

 (z′)�z′+z(w) ��(z)dz′ dẇ dz ;

where each consecutive integral is absolutely convergent; and “const” is such
that �′(c̃(0)−1) = const · identity.
For a function  ∈ S(g) de�ne the Fourier transform Fg =  ̂ ∈ S(g∗) by

(1:12) Fg (�) =  ̂ (�) =
∫
g

�(�(x)) (x)dx (� ∈ g∗) :

This extends to a map Fg : S∗(g) → S∗(g∗) by taking the adjoint of the
inverse. Similarly we have the Fourier transform Fg′ on g′. Here is our main
theorem, which should be viewed as a natural contribution to Howe’s theory
of reductive dual pairs.

Theorem 1.13. Suppose the function �� (1:10) is a �nite sum of homogeneous
functions. Then c̃∗−��′ = c̃∗� is a �nite sum of homogeneous functions. If
D = H; the quaternions; assume (in addition to (1:7:a–e)) that dimDV ′ ¿
4
3 (dimDV )

2. Then both �� and c̃∗−��′ = c̃∗� de�ne tempered distributions via
integration against Lebesgue measures on g; g′ respectively and

WF(�′) = supp
(
Fg′

(
c̃∗−��′

c̃∗�

))
= �g′(�

−1
g (suppFg′(��)))

= �g′(�
−1
g (WF(�))) :

In particular if WF(�) is the closure of a single orbit; then so is WF(�′).

The point of Theorem 1.13 is that it provides an algorithm for construct-
ing irreducible unitary representations of isometry groups of split forms;
whose characters are supported on single nilpotent coadjoint orbits. Indeed,
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if the wave front set of � is the closure of a single nilpotent orbit, then so
is supp(Fg′(c̃∗−��′ = c̃∗�)). Then we can take another dual pair G′; G′′ with
G′ the smaller member, and under the assumptions of (1.13) construct an
irreducible unitary representation of G̃′′, whose character has the Fourier trans-
form supported on a single orbit : : : .
We would like to thank W. Rossmann for keeping us informed on the

recent progress in his character theory [R]. In fact [R] had a catalytic in
uence
on our project.

2. The oscillator representation

Here we recall Howe’s construction of the oscillator representation ! of the
metaplectic group S̃p [H2], in a way suitable for our applications.
Let W be a real vector space of dimension 2n, with a non-degenerate

symplectic form 〈 ; 〉. The symplectic group Sp and the symplectic Lie algebra
sp are de�ned as follows

Sp = Sp(W ) = {g ∈ End(W ); 〈g(w); g(w′)〉 = 〈w; w′〉 for all w; w′ ∈ W} ;

sp = sp(W ) = {z ∈ End(W ); 〈z(w); w′〉 = −〈w; z(w′)〉 for all w; w′ ∈ W} :

We shall use the superscript c to indicate the domain of the Cayley transform
c. Thus Spc is the domain of c in Sp and spc is the domain of c in sp. De�ne
the following set

S̃pc = {(g; �); g ∈ Spc; �2 = det(i(g− 1))−1} :

This is a real analytic manifold, and a two fold covering of Spc via the map

(2:1) S̃pc 3 (g; �)→ g ∈ Spc :

For z ∈ sp the formula 〈z(w); w′〉 de�nes a symmetric bilinear form 〈z; 〉 on W .
The signature of this form, sgn〈z; 〉, is the di�erence between the dimension of
the maximal subspace on which the form is positive de�nite, and the dimension
of the maximal subspace on which the form is negative de�nite. Let

(2:2) 
(z) = |det(z)|1=2 exp
(
−�
4
i sgn〈z; 〉

)
(z ∈ sp; det(z)-0) :

This is a Fourier transform of one of the two non-zero minimal nilpotent adjoint
orbits in sp(W ). For (g1; �1); (g2; �2) ∈ S̃pc with c(g1) + c(g2) invertible in
End(W ) set

(2:3) (g1; �1) · (g2; �2) = (g1g2; 2n�1�2
(c(g1) + c(g2))−1) :

Theorem 2.4 [H2]. (a) Up to a group isomorphism there is a unique connected
group S̃p containing S̃pc with the multiplication given by (2.3) on the indicated
subset of S̃pc × S̃pc.

(b) The group S̃p is a connected Lie group which contains S̃pc as an open
submanifold.
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(c) The map (2.1) extends to a double covering homomorphism of Lie
groups: S̃p → Sp.

The metaplectic group S̃p may be realized as a subset of S∗(W ), the space
of tempered distributions on W , as follows.
For �; �′ ∈ S(W ), the Schwartz space of W , de�ne the twisted convolution

�“�′ and �∗ by

�“�
′(w′) =

∫
W
�(w)�′(w′ − w)�( 12 〈w; w′〉)dw ;(2:5)

�∗(w) = �(−w) (w; w′ ∈ W ) :

For a tempered distribution f ∈ S∗(W ) de�ne f∗ ∈ S∗(W ) by f∗(�) = f(�∗).
The functions �z (1.3) do not belong to S(W ), but we may convolve them in
the sense analogous to the formula of (2.5). Indeed, let � ∈ S(W ). Then for
w′ ∈ W and y ∈ sp∫

W
�y(w)�(w′ − w)�( 12 〈w; w′〉)dw

= �y(w′)
∫
W
�( 12 〈(1− y)(w′); w〉)�y(w)�(w)dw :

Thus, for 1 − y invertible, the above is a Schwartz function of w′. Denote
this function by �y“�(w′). Suppose x ∈ spc. Then by the same argument
�x“(�y“�) ∈ S(W ). Suppose moreover that x+ y is invertible in End(W ). Let
z = (y− 1)(x+y)−1(x− 1)+1. Then z ∈ spc and, by [H�o, 3.4], �x“(�y“�) =
2n
(x + y)−1�z“�. Thus,

(2:6) �x“�y = 2n
(x + y)−1�z :

The formula (2.6) is the key to Howe’s construction.
De�ne the following functions

� : S̃pc 3 g̃ = (g; �)→ � ∈ C ;(2:7)

T : S̃pc 3 g̃ = (g; �)→ �(g̃)�c(g) ∈ S∗(W ) :

(We shall see shortly that � coincides with the distribution character of !).

Theorem 2.8 [H2]. The map T extends to a unique injective continuous map
T : S̃p → S∗(W ); and the following formulas hold

(a) T (g̃1)“T (g̃2) = T (g̃1 · g̃2) (g̃1; g̃2 ∈ S̃pc; det(c(g1) + c(g2))-0)

(b) T (g̃)∗ = T (g̃−1) (g̃ ∈ S̃p)

(c) T (1) = � :

Here � ∈ S∗(W ) is the Dirac delta at the origin.

In order to realize S̃p in the group of unitary operators on a Hilbert space,
choose a complete polarization W = X + Y and Lebesgue measures dx, dy on
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X; Y respectively, so that

(2:9)
∫
W
�(w)dw =

∫
X

∫
Y
�(x + y) dy dx (� ∈ S(W )) :

For f ∈ S(W ) de�ne K(f) ∈ S(X × X ) by

(2:10) K(f)(x; x′) =
∫
Y
f(x − x′ + y)�( 12 〈y; x + x′〉)dy (x; x′ ∈ X ) :

Conversely, for K ∈ S(X × X ) de�ne f ∈ S(W ) by

(2:11)

f(x + y) = 2−n∫
X
K
(
x′ + x
2

;
x′ − x
2

)
�
(
1
2
〈x′; y〉

)
dx′ (x ∈ X; y ∈ Y ) :

Furthermore, given f ∈ S(W ) de�ne a bounded operator �(f) on the Hilbert
space L2(X ) :

(2:12) �(f)v(x) =
∫
X
K(f)(x; x′)v(x′)dx′ (x ∈ X; v ∈ L2(X )) :

Here is the classical Stone–von Neumann, Segal, Schwartz, : : : .

Theorem 2.13 [H4]. The maps (2.10) and (2.11) are mutual inverses; and the
map � (2.12) has the following properties

�(f1“f2) = �(f1)�(f2) (f1; f2 ∈ S(W )) ;(a)

�(f)∗ = �(f∗) (f ∈ S(W )) :(b)

Moreover the map (2.10) extends to a linear bijection

K : S∗(W ) 3 f →K(f) ∈ S∗(X × X )

with the inverse given by the corresponding extension of (2.11) (we view
functions as distributions via multiplication by the Lebesgue measure dw).
The map � extends to a linear bijection

� : S∗(W )→ Hom(S(X ); S∗(X )) ;

with �(�) = the identity. The above � restricts to a bijective isometry

� : L2(W )→ H:S: (L2(X )) ;

the space of Hilbert–Schmidt operators on L2(X ).

De�nition 2.14. The Schr�odinger model of the oscillator representation of S̃p
attached to the polarization W = X + Y is the unitary representation ! on the
Hilbert space L2(X ) de�ned by

!(g̃) = �(T (g̃)) (g̃ ∈ S̃p) :

Thus !(g̃) is an integral kernel operator with the integral kernel K(T (g̃));
g̃ ∈ S̃p.
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It is important for us to realize that for g in a Zariski open subset of Sp
this integral kernel can be explicitly calculated.
De�ne the following map

End(X ) 3 A → A∗ ∈ End(Y ); 〈A(x); y〉 = 〈x; A∗(y)〉; (x ∈ X; y ∈ Y )

and let

Hom(X; Y )− = {B ∈ Hom(X; Y ); 〈B(x); x′〉 = −〈x; B(x′)〉; x; x′ ∈ X }
Hom(Y; X )− = {C ∈ Hom(Y; X ); 〈C(y); y′〉 = −〈y; C(y′)〉; y; y′ ∈ Y} :

We embed End(X ), Hom(X; Y )− and Hom(Y; X )− into sp(W ) as follows

A(x + y) = A(x)− A∗(y) (A ∈ End(X ))
B(x + y) = B(x); C(x + y) = C(y) (B ∈ Hom(X; Y )−; C ∈ Hom(Y; X )−) :
This gives a direct sum decomposition

(2:15) sp(W ) = End(X )⊕ Hom(X; Y )− ⊕ Hom(Y; X )− :

Notice that for an invertible element C ∈ Hom(Y; X )− the inverse C−1 ∈
Hom(X; Y )−: Moreover the formula 〈C(y); y′〉; y; y′ ∈ Y de�nes a symmetric
form on Y . Denote the signature of this form by sgn〈C; 〉, as before.
Lemma 2.16. Let A ∈ End(X ); B ∈ Hom(X; Y )−; C ∈ Hom(Y; X )− and let
z = A + B + C ∈ sp. Assume that z ∈ spc and that C is invertible. Let
c̃(z) ∈ S̃p be in the preimage of c(z) ∈ Sp under the covering map (2.1).
Then the distribution K(T (c̃(z))) ∈ S∗(X × X ) coincides with the following
function

K(T (c̃(z)))(x; x′) = const�(c̃(z))|det(C)|−1=2exp
(�
4
i sgn〈C; 〉

)
× �B(x − x′)�−C−1(x + x′ − A(x − x′)) (x; x′ ∈ X )

(multiplied by the Lebesgue measure dx dx′).

Proof. This is a straightforward calculation:

K(T (c̃(z)))(x; x′) =
∫
Y
�(c̃(z))�z(x − x′ + y)�( 12 〈y; x + x′〉)dy

= �(c̃(z))�z(x − x′)
∫
Y
�z(y)�( 12 〈y; x + x′ − z(x − x′)〉)dy

= �(c̃(z))�B(x − x′)
∫
Y
�( 14 〈C(y); y〉)

× �( 12 〈y; x + x′ − A(x − x′)〉)dy
= �(c̃(z))�B(x − x′)const�|det(C)|−1=2exp

(�
4
i sgn〈C; 〉

)
× �−C−1(x + x′ − A(x − x′))

where the last equality follows from [H�o, 7.6.1].
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Similarly we verify the following lemma:

Lemma 2.17. Let A ∈ End(X ). Assume det(A ± 1)-0. Consider A as an
element of sp; as in (2:15). Let c̃(A) ∈ S̃p be in the preimage of c(A) ∈ Sp.
Then

K(T (c̃(A)))(x; x′) = 2n�(c̃(A))|det(A+ 1)X |−1�(c(A)−1x − x′) :

Moreover
2n|�(c̃(A))||det(A+ 1)X |−1 = |det(c(A)X )|−1=2 :

Since formally tr!(g̃) = tr �(T (g̃)) = T (g̃)(0) = �(g̃); g̃ ∈ S̃p (see (2.7)
and (2.10)), the distribution character of ! can be identi�ed with the function
�. Since this function �gures prominently throughout our paper we recall it
again in a concise form:

(2:18) �(g̃) = �; g̃ = (g; �); g ∈ Spc; �2 = det(i(g− 1))−1 :

3. Explicit realization of representations in the stable range

Let G;G′ be a reductive dual pair of type I in the stable range with G the
smaller member. Let G̃; G̃′ denote the preimages of G;G′ in S̃p respectively.
Let � ⊗ �′ ∈ R(G · G′; !) be unitary [H1]. Suppose � is realized on a
Hilbert space H�. Following [Li] we describe in this section an explicit Hilbert
space realization of the representation �′. We shall do it under the following
additional assumption on the pair G;G′.

Let D = (R;C;H) be a �nite-dimensional division algebra, with an in-
volution, over R. Let V and V ′ be �nite dimensional vector spaces over D
equipped with non-degenerate forms ( ; ) and ( ; )′, respectively – one hermitian
and the other skew-hermitian. The groups G;G′ are the isometry groups of the
forms ( ; ), ( ; )′ respectively.

We assume that the form ( ; )′ is split; (see (1.7a)).
De�ne a map Hom(V ′; V ) 3 w → w∗ ∈ Hom(V; V ′) by

(3:1) (w(v′); v) = (v′; w∗(v)) (w ∈ W; v ∈ V; v′ ∈ V ′) :

Let W = Hom(V ′; V ). The formula

(3:2) 〈w; w′〉 = trD=R(ww′∗) (w; w′ ∈ W )

de�nes a symplectic form on W . The groups G and G′ act on W via post-
multiplication and pre-multiplication by the inverse, respectively. These actions
embed G and G′ into the symplectic group Sp(W ).
Let V ′ = X ′ ⊕ Y ′ be a complete polarization of V ′. The assumption that

the pair G;G′ is in the stable range with G the smaller member, means that
dim V 5 dim X ′.

Set X = Hom(X ′; V ) and Y = Hom(Y ′; V ). Then W = X ⊕Y is a complete
polarization of W . Let B(X ′) denote the space of forms on X ′ of the same
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type as ( ; ). Recall the pullback of forms

� : X 3 x → ( ; ) ◦ x ∈ B(X ′) :
Let Xmax = {x ∈ X ; rank of �(x) is equal to the dimension of V}. This is a
G-stable subset of X . Let Xmax 3 x → ẋ ∈ G\Xmax denote the quotient map.
De�ne a Borel measure dẋ on G\Xmax by the formula

(3:3)
∫

Xmax
v(x)dx =

∫
G\Xmax

∫
G
v(gx)dg dẋ (v ∈ Cc(Xmax)) :

Fix a positive de�nite scalar product on the real vector space X : x · x′;
x; x′ ∈ X . Let |x| = (x · x)1=2 denote the corresponding norm. For g ∈ EndR(X )
let gt ∈ EndR(X ) denote the adjoint, de�ned by gx · x′ = x · gtx′ and let |g|2 =
tr(gtg) be the Hilbert–Schmidt norm of g. Notice that since G is an isometry
group we may choose the above scalar product on X so that |g| = |g−1| for
g ∈ G.
Suppose x ∈ Xmax. Then x : X ′ → V is surjective, so there is a constant

const, depending on x, such that |gx| = const|g| for all g ∈ EndR(X ). Recall
[W, 2.A.2.4] that for N ¿ 0 su�ciently large

∫
G |g|−Ndg ¡ ∞. Hence for

N ¿ 0 large enough

(3:4)
∫
G
(1 + |gx|2)−Ndg ¡ ∞ (x ∈ Xmax)

and under the assumption (1.7.b), which from now on is in e�ect;

(3:5)
∫

G\Xmax

(∫
G
(1 + |gx|2)−Ndg

)2
dẋ ¡ ∞ :

It follows from (2.17) that

!(g̃)v(x) = 2n�(g̃)|det(c(g) + 1)X |−1v(g−1x) and(3:6)

|2n�(g̃)||det (c(g) + 1)X |−1 = 1 (g̃ ∈ G̃c; v ∈ S(X )) :

In fact the function 2n�(g̃)|det(c(g) + 1)X |−1 extends to a character �(g̃) of
the group G̃. Let � denote the representation conjugate to �, realized on a
Hilbert space H�. (The character of � is �� = ��). Since � occurs as a
non-zero quotient of the oscillator representation, the restriction of � to the
(two element) kernel of the covering map G̃ → G has to be a multiple of the
unique non-trivial character of this subgroup. The same holds for �. Hence
the function g̃ → �(g̃)�(g̃) is constant on the �bers of this covering map. Let

(3:7) �(g) = �(g̃)�(g̃) :

This is an irreducible unitary representation of G on H�.
The Haar measure on G̃ is normalized in such a way that the measure of

a small open set in G is equal to the measure of its inverse image in G̃.
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By (3.4) and (3.6) the integral

(3:8)∫
G̃

!(g̃)v(x)�(g̃)� dg̃ =
∫
G
v(g−1x)�(g)� dg (v ∈ S(X ); x ∈ Xmax; � ∈ H�)

is absolutely convergent and de�nes a continuous, H�-valued, function on Xmax.
Notice that for h ∈ G

(3:9)
∫
G
v(g−1hx)�(g)� dg = �(h)

∫
G
v(g−1x)�(g)� dg :

Thus the norm of the function (3.8) is G-invariant, and by (3.5) square
integrable with respect to the measure dẋ on G\Xmax. Let H be the space
of H�-valued functions on Xmax which satisfy the equivariance condition (3.9)
and are square integrable with respect to the measure dẋ. Let S(X )⊗ H� de-
note the algebraic tensor product of the vector spaces S(X ) and H�. De�ne a
linear map Q : S(X )⊗ H� → H by

Q(v⊗ �)(x) =
∫
G̃

!(g̃)v(x)�(g̃)� dg̃(3:10)

=
∫
G
v(g−1x)�(g)� dg (x ∈ Xmax; v ∈ S(X ); � ∈ H�) :

Lemma 3.11. The range of Q is dense in H .

Proof. Indeed, notice that G\Xmax is a single orbit under the obvious action of
the group GL(X ′) and that one can choose a smooth densely de�ned section
� : G\Xmax → Xmax. The pullback by � gives an isomorphism of H and
L2(G\Xmax; H�). Fix � ∈ H� and u ∈ C∞c (G\Xmax) supported in the set of
regular points of �. Let � ∈ C∞c (G). De�ne a function v on Xmax by

v(g−1�(ẋ)) = �(g)u(ẋ) (g ∈ G; ẋ ∈ G\Xmax) :

Clearly v ∈ C∞c (X
max). Moreover

Q(v⊗ �)(x) = u(ẋ)
∫
G
�(g)�(g)� dg :

Thus u(ẋ)� is in the closure of the range of Q. Since the set of such functions
is dense in L2(G\Xmax; �; H�), we are done.

Let ( ; )� denote the pullback of the inner product of H to S(X )⊗H� via
Q. A straightforward calculation analogous to the one verifying (3.5) shows
that

(3:12) (v⊗ �; v′ ⊗ �′)� =
∫
G̃

∫
X
!(g̃)v(x)v′(x)dx (�(g)�; �′)dg̃ :

The group G̃′ acts on S(X ) ⊗ H� via ! on S(X ) and identity on H�. Since
the integral over X is a matrix coe�cient of ! it is clear from (3.12) that the
form ( ; )� is G̃′-invariant. Hence the radical of ( ; )� is G̃′-invariant. But this
radical coincides with the kernel of Q.
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Theorem 3.13 [Li, 6.1]. The representation �′ associated to � via Howe’s
correspondence coincides with the completion of (S(X ) ⊗ H�)= ker(Q) with
respect to the inner product de�ned by the form ( ; )�.

This gives a realization of �′ on the Hilbert space H; which we shall denote
from now on by H�′ . It remains to shed some light at the action of G̃′ on
H�′ . We shall do it in the next section.

4. G̃ ′ acts on H�′ via integral kernel operators

We retain the notation and assumptions of the previous section. Let 	 ∈
C∞c (G̃

′). Then T (	) =
∫
G̃′ 	(g̃)T (g̃)dg̃ is a well de�ned tempered distri-

bution on W , (see (2.8)). Further, K(T (	)) is a tempered distribution on
X ×X , (see (2.13)). Under an additional assumption on the support of 	 this
last distribution is a function.
Indeed, by our choice of the complete polarization W = X + Y the direct

sum decomposition (2.15) of sp induces, by restriction, an analogous decom-
position of g′. Thus, as in (2.16) we may write each element z ∈ g′ as
z = A+B+C. Let g′′ denote the Zariski open subset of g′c consisting of these
z for which the C ∈ Hom(Y; X )− is invertible. For this set to be non-empty we
must exclude the pairs Sp2n; Om;m with m odd (this is the assumption (1.7.c)).
Let G′′ = c(g′′).
Suppose, in addition, that supp	 ⊆ G̃′′. Then by (2.16) K(T (	)) is a

function given by

K(T (	))(x; x′)(4:1)

=
∫
G̃′

	(g̃)const�(g̃)|det(C)|−1=2exp
(�
4
i sgn〈C; 〉

)
× �B(x − x′)�−C−1(x + x′ − A(x − x′))dg̃ (x; x′ ∈ X ) ;

where under the integral c(g) = z = A + B + C is the decomposition ex-
plained above. The integral (4.1) is absolutely convergent because the support
of 	 does not touch neither the singularities of �(g̃) nor the singularities of
| det(C)|−1=2.

Recall the map Hom(V ′; V ) 3 w → w∗ ∈ Hom(V; V ′) de�ned by

(4:2) (w(v′); v) = (v′; w∗(v)) (w ∈ W; v ∈ V; v′ ∈ V ′) :

By abuse of notation we have for x ∈ X = Hom(X ′; V ) the correspond-
ing element x∗ ∈ Hom(V; Y ′). Thus for x; x′ ∈ X the composition x∗x′ ∈
Hom(X ′; Y ′). Fix a norm | | on the real vector space Hom(X ′; Y ′). Here is the
main technical lemma of this paper.

Lemma 4.3. There are: a non-empty Zariski open subset G′′′ ⊆ G′′ and
continuous seminorms qN : C∞c (G̃

′′′) → R; N = 0; 1; 2; 3; : : : ; such that the
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following estimate holds

|K(T (	))(x; x′)|5 qN (	)(1 + 1
2 |x∗x + x′∗x′|+ |x∗x′|)−N

(	 ∈ C∞c (G̃
′′′); x; x′ ∈ X ; N = 0; 1; 2; : : :) :

Proof. Consider the integral (4.1) with x; x′ ∈ X �xed. This is an oscillatory
integral, [H�o, 7.8.1], with the phase function

g̃ → 〈B(x − x′); x − x′〉+ 〈−C−1(x + x′ − A(x − x′)); x + x′ − A(x − x′)〉 :
In the coordinates provided by the Cayley transform this function is linear
with respect to B. Hence its derivative, which is a linear functional on g′,
can be estimated from below by |(x − x′)∗(x − x′)|. Hence, by the method of
stationary phase [H�o, (7:7:1)′], there are continuous seminorms q′N : C

∞
c (G̃

′′)→
R such that

|K(T (	))(x; x′)|5 q′N (	)(1 + |(x − x′)∗(x − x′)|)−N(4:4)

(	 ∈ C∞c (G̃
′′); x; x′ ∈ X ; N = 0; 1; 2; : : :) :

Fix an element h ∈ G′c which preserves X and Y . Then by (2.17)

K(T (	))(x; x′) =K(T (	h̃))(h(x); x
′)(4:5)

where 	h̃(g̃) = 2
−n	(h̃g̃)�(h̃−1)−1|det((c(h)−1 + 1)X )| :

Choose a �nite number of elements h1; h2; h3; : : : ∈ G′c which preserve X and
Y . Let

(4:6) G′′′ = G′′ ∩ h−11 G′′ ∩ h−12 G′′ ∩ : : : :

Suppose 	 ∈ C∞c (G̃
′′′): Then (4.4) and (4.5) imply that for all j

|K(T (	))(x; x′)|5q′N (	hj)(1 + |(hj(x)− x′)∗(hj(x)− x′)|)−N

(x; x′ ∈ X ; N = 0; 1; 2; : : :) :

Let q′′N (	) = q′N (	h1)+q′N (	h2)+q′N (	h3)+ : : : . We may replace the q′N (	hj)
in the above estimate by q′′N (	), and then take minimum over j. This gives
the following estimate

|K(T (	))(x; x′)|
5 q′′N (	)(1 + max{|(hj(x)− x′)∗(hj(x)− x′)|; j = 1; 2; 3; : : :})−N :

Since the average of a �nite number of non-negative numbers does not exceed
their maximum, we obtain

|K(T (	))(x; x′)|5 q′′′N (	)(1 + |(h1(x)− x′)∗(h1(x)− x′)|(4:7)

+ |(h2(x)− x′)∗(h2(x)− x′)|+ : : :)−N ;
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where q′′′N = const q′′N (	) and the �nite constant const depends on the number
of elements in (4.6). De�ne a map Hom(X ′; Y ′) 3 z → z? ∈ Hom(X ′; Y ′) by

(z(v′); v)′ = (v′; z?(v))′ (z ∈ Hom(X ′; Y ′); v; v′ ∈ X ′) :

Notice that for h; x; x′ as in (4.5)

|(h(x)− x′)∗(h(x)− x′)|+ |(h(x) + x′)∗(h(x) + x′)|
= |h(x)∗x′ + x′?h(x)| = |hx∗x′ + x′∗xh−1| = |hx∗x′ + (hx∗x′)?| :

Some elementary linear algebra shows that the only z ∈ Hom(X ′; Y ′) such
that hz + (hz)? = 0 for all h is z = 0. Thus there are �nitely many elements
h1; h2; h3; : : : as in (4.6) and a nonzero constant const such that

|h1z + (h1z)?|+ |h2z + (h2z)?|+ : : := const |z| (z ∈ Hom(X ′; Y ′)) :
Since we may assume that ±h1; ±h2; ±h3; : : : belong to the sequence h1; h2;
h3; : : : ; the estimate (4.7) implies

|K(T (	))(x; x′)|5 q′′′N (	)(1 + |h1x∗x′ + (h1x∗x′)?|
+ |h2x∗x′ + (h2x∗x′)?|+ : : :)−N

5 qN (	)(1 + |x∗x′|)−N ;

where the qN is a constant multiple of q′′′N . This combined with (4.4) completes
the proof of the lemma.

Proposition 4.8. Suppose 	 ∈ C∞c (G̃
′′′): Then �′(	) =

∫
G̃′ 	(g̃)�

′(g̃)dg̃ is
an integral kernel operator on H�′ ∼= L2(G\Xmax; H�). Explicitly

�′(	)u(x) =
∫

G\Xmax
K�′(	)(x; x

′)u(x′)dẋ′ (u ∈ H�′ ; x ∈ Xmax) ;

where

K�′(	)(x; x
′) =

∫
G
K(T (	))(g−1x; x′)�(g)dg (x; x′ ∈ Xmax)

is a continuous, operator valued, G × G-invariant function on Xmax × Xmax.
Moreover

tr(K�′(	)(x; x
′)) =

∫
G̃

K(T (	))(g−1x; x′)�(g̃)�(g̃)��(g̃)dg̃ (x; x′ ∈ Xmax) :

All the above integrals are absolutely convergent.

Proof. Recall that for any x; x′ ∈ Xmax there is a non-zero constant const such
that |x∗gx′| = const |g|; for all g ∈ G. Thus for v ∈ C∞c (X

max) and N ¿ 0
su�ciently large∫

G
(1 + |x∗gx′|)−N dg5 const

∫
G
(1 + |g|)−N dg ¡ ∞ and(4:9) ∫

G

∫
X
(1 + |x∗gx′|)−N |v(x′)|dx′ dg ¡ ∞ (x; x′ ∈ Xmax) :
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Let 	 ∈ C∞c (G̃
′′′) and let � ∈ H�. Recall the quotient map Q (3.10). It is

clear from (4.9) and (4.3) that for a �xed x ∈ Xmax the following integrals are
absolutely convergent:

Q(!(	)v⊗ �)(x)

=
∫
G
!(	)v(g−1x)�(g)� dg

=
∫
G

∫
X
K(T (	))(g−1x; x′)v(x′)�(g)� dx′ dg

=
∫
X

∫
G
K(T (	))(g−1x; x′)v(x′)�(g)� dg dx′

=
∫

G\Xmax

∫
G

∫
G
K(T (	))(g−1x; h−1x′)v(h−1x′)�(g)� dh dg dẋ′

=
∫

G\Xmax

∫
G

∫
G
K(T (	))(g−1x; x′)v(h−1x′)�(gh)� dh dg dẋ′

=
∫

G\Xmax

(∫
G
K(T (	))(g−1x; x′)�(g)� dg

)(∫
G
v(h−1x′)�(h)� dh

)
dẋ′ ;

where the �fth equality holds because G commutes with G′. This veri�es the
�rst part of our proposition. It remains to calculate the trace.
Fix x; x′ ∈ Xmax. By the argument given at the beginning of this proof,

(4.3) implies that the function

(4:10) G 3 g →K(T (	))(g−1x; x′) ∈ C
is rapidly decreasing in the sense of [W, 2.A.2.1, 7.1.1]. The usual argument
involving (2.17) shows that this function is di�erentiable and all the derivatives
are rapidly decreasing too. Hence by [W, 8.1.2] the integral∫

G
K(T (	))(g−1x; x′)�(g)dg

is a trace class operator with the trace equal to ��, the character of �, applied
to the function (4.10). Thus

tr
(∫

G
K(T (	))(g−1x; x′)�(g)dg

)
=
∫
G
K(T (	))(g−1x; x′)��(g)dg ;

where the integral is absolutely convergent.
Indeed, let us �rst work under the assumption (1.7.d). Then the character

�� can be majorized by some power ��; � 5 0, of the Harish–Chandra
�-function divided by the square root of the Weyl denominator (see [M,
Theorem 1, page 69]):

(4:11) |��(g)|5 const�(g)�|dG(g)|−1=2 (g ∈ G) :

Moreover
∫
G |dG(g)|−1=2�(g)dg ¡ ∞ [Wa, 8.5.7.3]. But there is � ¿ 0 such

that for any g ∈ G; |g|−1 5 const��(g); [W, 2.A.2.3, 4.5.3]. Hence the claim
follows.
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The argument in the remaining case (without the assumption (1.7.d)) is the
same but uses results of [B].
Since by the de�nition of � (3.6–7) ��(g) = �(g̃)�(g̃)��(g̃), we are

done.

5. The trace

We retain the notation and assumptions of the previous two sections.

Lemma 5.1. For all N = 0 there are continuous seminorms qN : C∞c (G̃
′′′)→

R such that for 	 ∈ C∞c (G̃
′′′)∫

G\Xmax
|tr K�′(	)(x; x)|dẋ

5 qN (	)
∫

G\Xmax

∫
G
(1 + |x∗x|+ |x∗gx|)−N |��(g)|dg dẋ :

The integral on the right hand side is �nite for N large enough if dimDV ′ =
(dimDV + 2)2; (this is the “deep stable range” assumption (1.7.e)).

Proof. The inequality follows directly from (4.3) and (4.8). We defer the proof
of �niteness to the Appendix.

If the form ( ; ) is hermitian and positive de�nite then |x∗x| = const |x|2
for some non-zero constant const and x ∈ X . Hence for N ¿ 0 su�ciently
large the function under the integral (5.1) is bounded. Since, in this case, G is
compact, the integral is �nite without the additional assumption. However in
this case the Theorems 1.7 and 1.13 are already known [P1]. Therefore in this
and in the next section we shall work under the additional assumption (1.7.e).
Let H be a Cartan subgroup of G. As in (3.3), we de�ne a measure dẋ on

the quotient space H\Xmax by the formula

(5:2)
∫

Xmax
v(x)dx =

∫
H\Xmax

∫
H

v(hx)dh dẋ (v ∈ Cc(Xmax)) ;

where Xmax 3 x → ẋ ∈ H\Xmax denotes the quotient map. Recall the Weyl
denominator dG(h); h ∈ H; [W, 2.4.4].

Theorem 5.3. The character of the representation �′; when applied to a test
function 	 ∈ C∞c (G̃

′′′); is equal to

��′(	) =
∫

G\Xmax
tr K�′(	)(x; x)dẋ(a)

=
∫

G\Xmax

∫
G
K(T (	))(g−1x; x)��(g)dg dẋ :

Under the additional assumption (1.7.d)

(b) ��′(	) =
∑
H

1
�

∫
H\Xmax

∫
H
K(T (	))(h−1x; x)��(h)|dG(h)|dh dẋ ;
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where � is the index of G1 in G (equal to 1 unless G is an orthogonal group, in
which case it is equal to 2) and the summation is over a set of representatives
of conjugacy classes of Cartan subgroups H ⊆ G.

All the integrals are absolutely convergent and may be estimated by q(	);
for some continuous seminorm q : C∞c (G̃

′′′)→ R:

Proof. Everything except the formula (b) is a straightforward consequence
of (5.1), (3.11) and a standard fact about integral kernel operators [Ki, 13.6].
Since, by (1.7.d), �� = 0 on the complement of G1 in G (see [P2, 6.5]), (b)
follows by a direct calculation.

From now on we work under the additional assumption (1.7.d).

Theorem 5.4. The character ��′ of the representation �′; when applied to
the test function 	 ∈ C∞c (G̃

′′′); is equal to

��′(	) =
∫

G\Xmax

∫
G

∫
Y

∫
G̃′

	(g̃′)�(g̃′)�c(g′)+c(g)(x + y)�(g̃)��(g̃)dg̃′dy dg dẋ ;

where the consecutive integrals over G̃′; Y and G\Xmax × G are absolutely
convergent.

In the proof of Theorem 5.4 we’ll need the following lemma the proof of
which is left to the reader.

Lemma 5.5. Suppose H is a unimodular subgroup of G; � is the canonical
measure on the quotient space H\Xmax de�ned in (5:2); v is an H-invariant
function on Xmax-integrable over H\Xmax; and s ∈ GL(X ) commutes with H .
Then ∫

H\Xmax
v(sx)d�(ẋ) = |det(s)|−1 ∫

H\Xmax
v(x)d�(ẋ) :

Proof of Theorem 5.4. We begin by establishing convergence of the integrals
involved. Since the function 	(g̃)�(g̃) is smooth and compactly supported, the
integral

(5:6)
∫
G̃′

	(g̃′)�(g̃′)�c(g′)(x + y)dg̃′

is a rapidly decreasing function of (x + y)∗(x + y): But (x + y)∗(x + y) =
x∗x+ y∗y+ x∗y+ y∗x; and (with obvious identi�cations) x∗x ∈ Hom(X ′; X ′);
y∗y ∈ Hom(Y ′; Y ′); x∗y ∈ Hom(Y ′; X ′); y∗x ∈ Hom(X ′; Y ′): Hence the norm
of (x + y)∗(x + y) can be estimated from below by the norm of x∗y. But
x ∈ Xmax implies that x is surjective, so x∗ is injective and therefore the norm
of x∗y can be estimated from below by the norm of y. Hence the integral
(5.6) is a rapidly decreasing function of y. Therefore

(5:7)
∫
Y

∣∣∣∣∣∫
G̃′

	(g̃′)�(g̃′)�c(g′)(x + y)dg̃′
∣∣∣∣∣dy ¡ ∞ (x ∈ Xmax) :

By Theorem 5.3 the integral over G\Xmax × G is absolutely convergent.
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Now we prove the character formula. By Theorem 5.3.b,

(5:8)

��′(	) =
∑
H

1
�

∫
H\Xmax

∫
H
K(T (	))(h−1x; x)��(h)|dG(h)|dh dẋ

=
∑
H

1
�

∫
H\Xmax

∫
H
K(T (	))(− 1

2h
−1(c(h) + 1)x;− 1

2 (c(h) + 1)x)

× 2−n| det(c(h) + 1)X |��(h)|dG(h)|dh dẋ ;

where the summation is over a set of representatives of conjugacy classes of
Cartan subgroups, the last equation follows from (5.5) and all integrals are
absolutely convergent. Then by [W, 2.4.4] (5.8) is equal to∫

G\Xmax

∫
G
K(T (	))(− 1

2g
−1(c(g) + 1)x;− 1

2 (c(g) + 1)x)(5:9)

× 2−n| det(c(g) + 1)X |��(g)dg dẋ :

By the de�nition (2.7), (5.9) is equal to

(5:10) ∫
G\Xmax

∫
G

∫
G̃′

	(g̃′)�(g̃′)K(T (�c(g′)))(− 1
2g
−1(c(g) + 1)x;− 1

2 (c(g) + 1)x)

× 2−n| det(c(g) + 1)X |��(g)dg̃′ dg dẋ

=
∫

G\Xmax

∫
G

∫
Y

∫
G̃′

	(g̃′)�(g̃′)�c(g′)(x + y)�( 12 〈c(g)x; y〉)

× 2−n| det(c(g) + 1)X |��(g)dg̃′ dy dg dẋ

=
∫

G\Xmax

∫
G

∫
Y

∫
G̃′

	(g̃′)�(g̃′)�c(g′)(x + y)�c(g)(x + y)

× 2−n| det(c(g) + 1)X |��(g)dg̃′ dy dg dẋ ;

where the consecutive integrals over G̃′; Y and G\Xmax are absolutely con-
vergent. Since by the de�nition (3.7) 2−n|det(c(g) + 1)X |��(g) = �(g̃)
��(g̃); the formula follows.

Let c̃∗��′(z) = ��′(c̃(z)); z ∈ g′c: By (1.9) we have

c̃∗��′( ) = ��′(	) if  (z) = 	(c̃(z)) chg′(z)
−2r′(z);(5:11)

(z ∈ g′; 	 ∈ Cc(G̃′c)) :

This is consistent with the notion of pullback of distributions, [H�o, 6.1.2].
Similarly we de�ne c̃∗−��′ . Notice that c̃(0)−1 is in the center of S̃p, and

hence in the center of G̃′. Therefore, since �′ is irreducible, �′(c̃(0)−1) =
const · identity: Hence,
(5:12) c̃∗−��′ = const · c̃∗��′ :
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Corollary 5.13. With the above notation

c̃∗−��′

c̃∗�
( ) = const

∫
G\Xmax

∫
g

∫
Y

∫
g′

 (z′)�z′+z(x + y)��(z)dz′ dy dz dẋ ;

where ��(z) = �(c̃(z))��(c̃(z)) chg(z)−2r does not depend on the choice of
c̃ and the consecutive integrals over g′; Y and (G\Xmax) × g are absolutely
convergent.

Recall that the symplectic space W = Hom(V ′; V ). Let

Wmax = {w ∈ W ; ( ; ) ◦ w and ( ; )′ ◦ w∗ are forms of maximal rank} :

Then (1.5) holds. Let Wmax 3 w → ẇ ∈ G\Wmax denote the quotient map.
Recall the measure dẇ (1.6). Notice that (Xmax + Y )∩Wmax is a dense subset
of W and that, by (2.9), for � as in (1.6)∫

Wmax
�(w)dw =

∫
G\Xmax

∫
Y

∫
G
�(g(x + y))dg dy dẋ :

Hence we may think of the double integral over (G\Xmax)×Y as of an integral
over G\Wmax.

Moreover, by �xing any measurable section G\Xmax 3 ẋ → x ∈ Xmax, we
may reverse the integrals over G\Xmax and G in (5.4) and the integrals over
G\Xmax and g in (5.13). Therefore (5.4) and (5.13) may be rewritten as

Theorem 5.14. There is a measurable section G\Wmax 3 ẇ → w ∈ Wmax such
that for 	 ∈ C∞c (G̃′′′)

(a) ��′(	) =
∫
G̃

∫
G\Wmax

∫
G̃′

	(g̃′)�(g̃′)�c(g′)+c(g)(w)�(g̃)��(g̃)dg̃′ dẇ dg̃ ;

and (with the notation of (5:11) and (5:13))

(b)
c̃∗−��′

c̃∗�
( ) = const

∫
g

∫
G\Wmax

∫
g′

 (z′)�z′+z(w)��(z)dz′ dẇ dz ;

where each consecutive integral is absolutely convergent.

Proof. We only need to check that the integral over G\Wmax (i.e. over
G\Xmax×Y ) is absolutely convergent. For that, it su�ces to see that if  ∈ S(g)
then

(5:15)
∫

G\Wmax
| ̂ ◦ �g′(w)|dẇ ¡ ∞ :

The integral (5.15) does not depend on the choice of the section ẇ → w
because the function  ̂ ◦ �g′ is G-invariant. For a speci�c choice of this section
the �niteness (5.15) is obvious, see [D-P. Theorem 1.6].

Theorem 1.7 coincides with part (a) of Theorem 5.14.
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6. Representations with characters supported on nilpotent orbits

Recall the moment maps �g : W → g∗; �g′ : W → g′∗ (1.4) and the notion of
the wave front set of a representation [H5].

Theorem 6.1. Suppose the function �� (1:10) is a �nite sum of homogeneous
functions

(a) ��(z) =
m∑

j=1
��; j(z) (z ∈ g) :

Then
c̃∗−��′
c̃∗�

is a �nite sum of homogeneous functions

(b)
c̃∗−��′

c̃∗�
(z′) =

m∑
j=1

��′ ; j(z
′) (z′ ∈ g′) ;

and (with the notation of (5:14)) for  ∈ C∞c (c(G
′′′))

��′ ; j( ) =
∫
g′

��′ ; j(z
′) (z′)dz′(c)

= const
∫
g

∫
G\Wmax

∫
g′

 (z′)�z′+z(w)��; j(z)dz′ dẇ dz ;

where each single integral is absolutely convergent.
If ��; j is homogeneous of degree dj; i.e. ��; j(tz) = tdj ��; j(z); z ∈ g; then

��′ ; j is homogeneous of degree d′j = dj − n + dimRg; where n = 1
2dimW .

Moreover

(d) WF(�′) = �g′(�
−1
g (WF(�))) :

Proof. For any � ¿ 0 there are continuous functions pj : [1; 1 + �] → R;
j = 1; 2; : : : ; m; such that

1+�∫
1

pj(t)t
d′j′dt =

{
1 if j = j′

0 if j-j′ :

Here the �niteness (a) is crucial of course. De�ne

(6:2)  t(z) = t−p (t−1z) ( ∈ S(g); z ∈ g; p = dimRg)

and similarly for g′. Fix  as in (c). We can choose � ¿ 0 so small that the
dilates  t for 1 5 t 5 1 + � are in C∞c (c(G

′′′)): De�ne the functions 	t on
G̃′′′ by  t(z) = 	t(c̃(z)) chg′(z)−2r

′
; z ∈ gc. Then clearly the map [1; 1 + �]

3 t → 	t ∈ C∞c (G̃
′′′) is continuous. Therefore a straightforward calculation

using (5.5) and (5.14) shows that
1+�∫
1

pj(t)
c̃∗−��′

c̃∗�
( t)dt =

∫
g

∫
G\Wmax

∫
g′

 (z′)�z′+z(w)��; j(z)dz′ dẇ dz :

Hence the last integral is well de�ned and

(6:3)
c̃∗−��′

c̃∗�
( ) = const

m∑
j=1

∫
g

∫
G\Wmax

∫
g′

 (z′)�z′+z(w)��; j(z)dz′ dẇ dz :
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An easy and well known consequence of Harish–Chandra’s regularity theorem
[W, 8.4.1] (and (5.11)) is that c̃∗−��′ = c̃∗�, when restricted to some Zariski
open subset of g′, is a possibly in�nite sum of real analytic homogeneous
functions, and that this sum converges in the sense of distributions on g′c.
Since our test functions are arbitrary in the Zariski open subset c(G′′′) ⊆ g′c,
we see that the formula (6.3) veri�es (b) and (c).
We are left with (d). Suppose d1 ¡ d2 ¡ · · · ¡ dm. Then ��;1 is the

lowest term in the asymptotic expansion of �� (see [P2, (5.11)]), and ��′ ;1 is
the lowest term in the asymptotic expansion of ��′ . By [R, Theorem C]

WF(�′) = the wave front set of
c̃∗−��′

c̃∗�
at 0 = supp �̂�′ ;1 ;

and similarly for �. It remains to show the following equation

(6:4) supp �̂�′ ;1 = �g′ ◦ �−1g (supp �̂�;1) :

Since ��;1 and ��′ ;1 are �nite sums of Fourier transforms of nilpotent orbital
integrals, the equation (6.4) follows from Proposition 7.3 in the next section.

Proof of Theorem 1.13. In view of (6.3) and the fact that the �ber of the
wave front set at the origin of a �nite sum of homogeneous distributions co-
incides with the support of its Fourier transform, it will su�ce to check that
c̃∗−��′ = c̃∗� is locally integrable and de�nes a tempered distribution on g′.
Thus we want to �nd N = 0 such that

(6:5)
∫
g′
ch−d

g′ (z)|��′(c̃−(z))|(1 + |z|)−Ndz ¡ ∞ ;

because |̃c∗�(z)| = const · ch−d
g′ (z); z ∈ g. We know from [P2, 4.11] that ��′

has the rate of growth

(6:6) 
′ = 1−
(
1− 1 + 


d′
(r − 1)

)
d

r′ − 1 ;

where 
 is the rate of growth of ��. Let � = 1 if D-H and � = 1=2 if D = H.
Then [P2, 5.12, (5.12∗

′
)] implies that for (6.5) it su�ces to have the following

inequality
−d ¿ 
′(r′ − 1)− r′ − � ;

which is equivalent to

(6:7) d′ ¿
1 + 

1 + �

(r − 1)d :

Since � is unitary, 
5 1. Also, in all cases r − 15 d. Hence (6.7) holds if
d′ ¿ 2

1+�d
2.

The fact that �� de�nes a tempered distribution was veri�ed in [P2, 6.5].
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7. The correspondence of orbital integrals

We identify the real vector space g with the dual space g∗ via the bilinear
form

(7:1) g× g 3 (z; s)→ 1
4 tr(zs) ∈ R ;

where tr = trD=R. Then the moment map �g coincides with �, where

(7:2) � : W 3 w → ww∗ ∈ g :

Similarly we identify g′ with g′∗ and de�ne �′ : W 3 w → w∗w ∈ g′.
Let O ⊆ g be a G-orbit, and let �O be the canonical G-invariant measure on

O. Then by Harish–Chandra the Fourier transform �̂O coincides with a function
�̂O(z); z ∈ g, which is absolutely integrable against any Schwartz function on
g, [W, 8.4.1]. Let O′ = �′(�−1(O)∩Wmax), as in (1.5). This is a single G′-orbit,
which is nilpotent if O is. Let �O′ denote the canonical invariant measure on
O′. The goal of this section is to verify the following

Proposition 7.3. There is a constant const ¿ 0 such that for any  ∈ S(g′)∫
G\Xmax

∫
g

�̂O(z)
∫
Y

∫
g′

 (z′)�z′+z(x + y) dz′ dy dz dẋ = const
∫
g′
 (z′)d�̂O′(z

′) ;

where each consecutive integral is absolutely convergent.

We need some preparation. Since we work in the stable range we may
assume that

(7:4) V ′ = V ⊕ V ′′ ⊕ V ;

with
((u1; u2; u3); (v1; v2; v3))′ = (u1; v3) + (u2; v2)′ − (u3; v1) ;

where u1; v1; u3; v3 ∈ V and u2; v2 ∈ V ′′. Then

W = Hom(V ′; V ) = End(V )⊕ Hom(V ′′; V )⊕ End(V )
and we may write w ∈ W as

(7:5) w = (w1; w2; w3) (w1; w3 ∈ End(V ); w2 ∈ Hom(V ′′; V )) :
De�ne a map End(V ) 3 s → s] ∈ End(V ) by
(7:6) (su; v) = (u; s]v) (u; v ∈ V ) :

Then for w as in (7.5) the element w∗ ∈ Hom(V; V ′), de�ned in (4.2), may
be identi�ed with w∗ = (−w]

3 ; w
∗
2 ; w

]
1) in the sense that for v ∈ V

(7:7) w∗(v) = (−w]
3(v); w

∗
2 (v); w

]
1(v)) :

In terms of (7.5) de�ne

(7:8) � : g 3 z → (I; 0; 12 z) ∈ W ;
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where I ∈ End(V ) is the identity. Then (7.7) implies that � is a section of the
map � (7.2).
The orthogonal complement of g in End(V ); g⊥ = {s ∈ End(V ); s = s]}.

De�ne a map

e : g⊥ × Hom(V ′′; V )× GL(V )→ End(V ′); by(7:9)

e(S; T; g) = e(S)e(T )e(g); where

e(S)(v1; v2; v3) = (v1 + Sv3; v2; v3)

e(T )(v1; v2; v3) = (v1 + Tv2 − 1
2TT

∗v3; v2 − T ∗v3; v3)

e(g)(v1; v2; v3) = (gv1; v2; (g])−1v3) :

and v1; v3 ∈ End(V ); v2 ∈ Hom(V ′′; V ). Then the image of e coincides with the
parabolic subgroup P′ ⊆ G′ preserving the isotropic subspace 0⊕ 0⊕ V ⊆ V ′.
Notice that in terms of (7.5), (7.8) and (7.9)

(7:10) �(z)e(S; T; g) = (g; T; ( 12 z + S − 1
2TT

∗)(g])−1) :

Since we assume that the form ( ; )′ is split the restriction of it to V ′′ is split.
Let V ′′ = X ′′⊕Y ′′ be a complete polarization. Let X ′ = V ⊕X ′′; Y ′ = Y ′′⊕V ,
(see (7.4)). Then V ′ = X ′⊕Y ′ is a complete polarization, and we may assume
that the proposition (7.3) is written in terms of

X = Hom(X ′; V ) = End(V )⊕ Hom(X ′′; V ) ;(7:11)

Y = Hom(Y ′; V ) = Hom(Y ′′; V )⊕ End(V ) :
Let x = (g; x′); g ∈ GL(V ); x′ ∈ Hom(X ′′; V ). Then a straightforward argu-
ment shows that for a test function � on Wmax

(7:12)∫
Y
�(x + y) dy = const|detR(g)|−d ∫

Hom(Y ′′ ;V )

∫
g⊥

∫
g

�(�(z)e(S; x′; y′; g)) dz dS dy′ ;

where d = dimDV . Moreover, if � is G-invariant then∫
G\Xmax

∫
Y
�(x + y) dy dẋ(7:13)

= const
∫

G\GL(V )

∫
Hom(V ′′ ;V )

∫
g⊥

∫
g

�(�(z)e(S; T; g)) dz dS dT dġ :

where dġ stands for the invariant measure on the quotient space G\GL(V ).

Proof of Proposition 7.3. The argument (5.6)–(5.7) shows that for a �xed
x ∈ Xmax and any  ∈ S(g′) the following function belongs to S(Y ):

Y 3 y → ∫
g′

 (z′)�z′(x + y) dz′ =  ̂ ◦ �′(x + y) ∈ C :
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Hence the function

g 3 z1 →
∫
Y

∫
g′

 (z′)�z1+z′(x + y) dz′ dy ∈ C

is in S(g). Therefore, by Harish–Chandra [W, 8.4.1], the integral

(7:14)
∫
g

�̂O(z1)
∫
Y

∫
g′
 (z′)�z1+z′(x + y) dz′ dy dz1 (x ∈ Xmax)

is absolutely convergent and de�nes a G-invariant function on Xmax. In terms
of the coordinates described in (7.9) and (7.12), the integral (7.14) may be
rewritten as a constant multiple of

(7:15) |detR(g)|−d ∫
g

�̂O(z1)
∫

Hom(Y ′′ ;V )

∫
g⊥

∫
g

∫
g′

 (z′)

×�z1+z′(�(z)e(S; x
′; y′; g)) dz′ dz dS dy′ dz1

= |detR(g)|−d ∫
Hom(Y ′′ ;V )

∫
g⊥

∫
g

 ̂ ◦ �′(�(z)e(S; x′; y′; g))d�O(z) dS dy′ :

There are rapidly decreasing functions (not necessarily smooth)  + = 0 and
 − 5 0 such that  ̂ =  + +  −. Hence, by (7.13) the integral of (7.15) over
G\Xmax coincides with the sum of the following two integrals:

(7:16)
∫

G\GL(V )

∫
Hom(V ′′ ;V )

∫
g⊥

∫
g

 ± ◦ �′(�(z)e(S; T; g))d�O(z) dS dT dġ :

Fix z0 ∈ O. Then (7.16) may be rewritten as
(7:17)

∫
GL(V )z0\GL(V )

∫
Hom(V ′′ ;V )

∫
g⊥

 ± ◦ �′(�(z0)e(S; T; g))d�O(z) dS dT dġ ;

where GL(V )z0 is the stabilizer of z0 in GL(V ), and dġ stands for the invariant
measure on the indicated homogeneous space. Notice that the stabilizer of
�′(�(z0)) in P′ coincides with P′z0 = GL(V )z0 ⊆ P′ (see (7.9)). Hence (7.17)
may be rewritten as

(7:18)
∫

P′z0\P′
 ±(g−1�′(�(z0))g)dġ :

where dġ is the (right) invariant measure on P′z0\P′. Since the P′-orbit of
�′(�(z0)) is dense in O′, (7.18) coincides with a constant multiple of∫

O′
 ±(z′)d�O′(z′) ;

which by [RR] is absolutely convergent.

Appendix

Here we complete the proof of Lemma 5.1. We are going to use the obvious
fact that G\GL(V ) is a symmetric space [F-J] corresponding to the involution
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End(V ) 3 x → −x] ∈ End(V ) where
(1) (xu; v) = (u; x]v) (u; v ∈ V ) :

Let ( ; )+ and ( ; )′+ be positive hermitian (or symmetric) forms on V and V ′,
chosen so that the subgroups of G and G′ preserving these forms are maximal
compact. We may assume that V ′ = X ′ ⊕ Y ′ is orthogonal for ( ; )′+. Let
U ′ ⊆ G′ be the subgroup preserving X ′; Y ′ and the form ( ; )′+. Then U ′ is
isomorphic to a maximal compact subgroup of GL(X ′), by restriction. We shall
identify U ′ with that subgroup.

Let U ⊆ GL(V ) be the isometry group of ( ; )+. Let e1; e2; : : : ; ed be an ( ; )+-
orthogonal basis of V and let B = {b ∈ GL(V ); bei = biei; bi ∈ R; bi ¿ 0}.
Suppose that either D = R and the form ( ; ) is symmetric; or D-R, the

involution on D is non-trivial and the form ( ; ) hermitian. Let p; q, be the
signature of the form ( ; ), with p5 q and p+ q = d = dimDV . Let

B+ = {b∈B; b1¿b2 ¿ · · ·¿bp ¿ 0; bp+1¿bp+2¿ · · ·¿bd ¿0} ;(2)

�(b) = (bd−1
1 bd−3

2 · · · b−d+1
d )dimRD (b ∈ B) :

If D = C is equipped with the trivial involution and the form ( ; ) is
symmetric we use the notation (2) with p = d and q = 0.

Suppose D-H and the form ( ; ) is skew-symmetric or D = H and the
form ( ; ) is skew-hermitian. Then d = dimDV = 2p is an even integer and we
may assume that bi = bp+i, for b ∈ B and 15 i 5 p. Let

B+ = {b ∈ B; b1 ¿ b2 ¿ · · · ¿ bp ¿ 0} ;(3)

�(b) = (bd−2
1 bd−6

2 · · · b−d+2
d )dimRD (b ∈ B) :

In all cases [F-J, (2.13–2.14)] implies that with an appropriate normalization
of the Haar measure dg on GL(V ) the following inequality holds:

(4)
∫

GL(V )
|v(g)|dg5 ∫

G

∫
B+

∫
U
|v(g b k)|�(b)dk db dg (v ∈ Cc(GL(V )) :

Since, by the stable range assumption, dim V 5 dim X ′, we may assume
that V ⊆ X ′ and that the restriction of the form ( ; )′+ to V coincides with
( ; )′+. Let e1; e2; : : : ; ed; ed+1; : : : ; en be an ( ; )′+-orthonormal basis of X ′. Let
I ′ ∈ X = Hom(X ′; V ) denote the map de�ned by

I ′(ei) =

{
ei if 15 i 5 d

0 if d ¡ i 5 n :

By Witt’s theorem Xmax = GL(V ) · I ′ · U ′ is a single GL(V )×U ′-orbit. Hence

(5)
∫

Xmax
v(x)dx =

∫
GL(V )

∫
U ′

v(gI ′k)|detRg|n dk dg (v ∈ Cc(Xmax)) :
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Indeed, both sides are U ′-invariant and transform by |detR|n under the action
of GL(V ).
By combining (4) and (5) we obtain the following integral inequality

(6)
∫

Xmax
|v(x)|dx 5 ∫

G

∫
B+

∫
U ′
|v(gbI ′k)||detRb|n�(b)dk db dg (v ∈ Cc(Xmax)) :

Proof of Lemma 5.4. De�ne a norm | | on (the real vector space) End(V ) by
|x|2 =∑d

i; j=1 |(ei; xej)|2. We may choose a norm | | on Hom(X ′; Y ′), invariant
under multiplication by U ′, so that

(7) |(xI ′)∗(xI ′)| = |x]x| (x ∈ End(V )) :
Recall the character �� of the representation � (3.7). It follows from (6) and
(7) that for N ¿ 0 we have

(8)
∫

G\Xmax

∫
G
|��(g)|(1 + |x∗x|2 + |x∗gx|2)−Ndg dẋ 5

∫
G
|��(g)| L(g)dg ;

where

L(g) =
∫
B+
(1 + |(bI ′)∗(bI ′)|2 + |(bI ′)∗g(bI ′)|2)−N |detRb|n�(b)db

=
∫
B+
(1 + |b]b|2 + |b]gb|2)−N |detRb|n�(b)db :

Notice that |b]b|2 = |b2|2 =∑d
i=1 b

4
i and

|b]gb|2 =
d∑

i; j=1
b2i b

2
j |(ei; gej)|2 = b4k |g|2 ;

where b4k = min{b1; b2; : : :}. Hence,

L(g)5
∫
B+

(
1 +

d∑
i-k

b4i + b4k(1 + |g|2)
)−N

|detRb|n�(b)db :

We replace B+ in the above integral by B, use invariance of the Haar measure
on B, the assumption n= d and the formulas (2) and (3) for �(b), to see that
for N large enough there is a �nite constant const such that for all g ∈ G

(9) L(g)5 const |g|−m (g ∈ G) ;

where m = dimRD(n − d + 1)=2 = dimRD(d′=2 − d + 1)=2 if the form ( ; ) is
hermitian (or symmetric), and m=dimRD(n−p+ 1)= dimRD(d′=2−d=2+1)
otherwise.
A straightforward calculation (see the proof of 4.11 in [P2]), using a fun-

damental estimate of Harish–Chandra for his �-function, shows that |g|−m 5
const�2+2�, for all g ∈ G, if m ¿ dimRD(r − p)p, where r is as in (1.8).
Since the representation � is irreducible and unitary it has the rate of growth
at most 1, in the sense of Mili�ci�c, [M]. Thus for any � ¿ 0 there is a constant
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const ¡ ∞ such that

|��(g)|5 const · |dG(g)|−1=2�(g)−1−� (g ∈ G) ;

where dG is the Weyl denominator. Moreover, for any � ¿ 0∫
G
|dG(g)|−1=2�(g)1+� dg ¡ ∞ ;

see [Wa, 8.3.7.6]. Hence, for m ¿ dimRD(r − p)p,∫
G
|��(g)|L(g)dg5 const

∫
G
|��(g)||g|−m dg5 const

∫
G
|��(g)|�(g)2+2� dg

5
∫
G
|dG(g)|−1=2�(g)1+� dg ¡ ∞ :

Since in all cases r 5 d + 1 and (r − p)p 5 (r=2)2, the assumption d′ =
(d+2)2 implies that m ¿ dimRD(r−p)p. Thus the integral (8) is convergent,
and the lemma follows.
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