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Faculty of Mathematics and Computer Science, Nicholas Copernicus University,
Chopina 12, 87-100 Toruń, Poland
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1. INTRODUCTION

Let �G�G′� be an irreducible real reductive dual pair in Sp�W �, where W
is an appropriate symplectic vector space (see [H1, H2]). Let �� �′ ⊆ ���W �
be the Lie algebras of G and G′. Consider the moment maps

τ� W −→ �∗� τ′� W −→ �′∗(1)

defined by the formula

τ�w��x� = 
x�w�� w�� w ∈ W� x ∈ � ⊆ End �W ��
and similarly for τ′. It is easy to see that for a nilpotent coadjoint orbit
� ⊆ �∗ the set T ��� ⊆ �′∗ defined by

T ��� = τ′(τ−1�
� �)
is a union of nilpotent coadjoint orbits in �′∗.
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Problem 1.1. Understand the structure of the set T ��� for general
reductive dual pairs.

Our interest in the closures of orbits, rather than the orbits themselves,
is motivated by the fact that the wave front set of a representation of a real
reductive group is a closed union of nilpotent orbits [H3, R]. As conjectured
by Howe, the map T of Problem 1.1 is expected to be compatible with the
correspondence of the wave front sets of representations of G̃� G̃′ (the
appropriate double covers of G�G′) under Howe’s correspondence. For
more details on Howe’s conjecture, the reader may consult [DP1, DP2].
As � and �′ are both reductive, we will identify � with �∗ and �′ with

�′∗. The choice of scalar factors in these identifications does not have any
influence on our results as nilpotent orbits are invariant under multiplica-
tion by positive scalars. From now on all moment maps considered in this
paper will have targets in Lie algebras, not in their duals.
As the first result of this paper we show (Theorem 2.4) that for dual pairs

of type II (i.e., for G�G′ being general linear groups over a division algebra
� over �) the set T ��� is always the closure of a single nilpotent orbit � ′.
The same is true for complex groups, as was shown in [DKP1], and for
dual pairs of type I in the stable range (see [DKP2]). On the other hand,
there are simple examples of dual pairs of type I (e.g., �O1� 1���� Sp2��)))
such that T ��� is not always the closure of a single nilpotent orbit (take
� = �0� ⊆ �1� 1—in this case T ��� is equal to the whole nilpotent cone in
��2�. In general, Problem 1.1 remains open.
In this paper we propose a method of studying Problem 1.1 for a general

dual pair by relating it to a similar problem (Problem 1.3) for nilpotent
orbits in vector spaces associated with certain symmetric spaces (in the
sense of Kostant and Rallis [KR] and Sekiguchi [S2]).
Let J be a positive definite, compatible complex structure on W �J ∈

Sp�W �� J2 = −1W , and the bilinear form 
J·� ·� is positive definite), such
that the conjugation by J preserves G and G′. Then the conjugation by J
defines a Cartan involution on Sp�W ��G, and G′. We have Cartan decom-
positions � = � ⊕ � and �′ = �′ ⊕ �′, with maximal compact subgroups
K ⊆ G� K′ ⊆ G′. Let �	� �

′
	� �	, and �′

	 denote the complexifications of
�� �′� �, and �′, respectively. Let W	 be the complexification of W . Let
W +

	 be the +i-eigenspace of J on W	. The moment maps τc� W	 −→
�	� τ

′
c� W	 −→ �′

	 map W +
	 to �	� �

′
	, respectively, so we have the pair of

diagrams

�′ τ′
←− W

τ−→ ��(2)

�′
	

τ′
c←− W +

	

τc−→ �	�(3)
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Let K	 ⊆ G	�K
′
	 ⊆ G′

	 be the complexifications of the maximal compact
subgroups K ⊆ G�K′ ⊆ G′. Then K	 acts via the adjoint action on �	;
similarly, K′

	 acts on �′
	. The Kostant–Sekiguchi correspondence (see [S2,

C-M, Vo]) is a bijection

S� 
�/G −→ 
�	/K	

between the sets 
�/G of nilpotent G-orbits in � and 
�	/K	 of nilpo-
tent K	-orbits in �	 (here 
�/G and 
�	/K	 are sets of orbits, with no
additional structure). Similarly, we have a bijection

S′� 
�′/G′ −→ 
�′
	
/K′

	�

If X = ⋃
�i is a union of nilpotentG-orbits in �, we will denote by S�X� the

union S�X� = ⋃
S��� ⊆ �	 of corresponding nilpotent K	-orbits. Similar

notation will be used in the context of �′.

Conjecture 1.2. Let � ⊆ � be a nilpotent G-orbit. Then

S′(τ′(τ−1�
� �)) = τ′
c

(
τ−1
c �S���)�

so in this sense the correspondence of the closures of orbits via the moment
maps is compatible with the Kostant–Sekiguchi correspondence.

The conjecture is motivated in part by the following observation: for
the dual pair �Sp�W �� O1� and the minimal (nonzero) nilpotent orbit � ⊆
���W �, the inverse image τ−1��� = W \0 mapped to W +

	 by p = �1− iJ�/2
and then to �	 via τc gives the orbit S��� . If this conjecture is true, then
instead of studying Problem 1.1, it would be enough to study the following
problem.

Problem 1.3. For a given nilpotent K	-orbit �c ⊆ �	, understand the set
Tc��c� �= τ′

c�τ−1
c ��c��.

In this paper we prove Conjecture 1.2 for pairs of type II (Corollaries 3.8
and 4.10). Unfortunately, our proof does not show what really is going on,
as it is not a direct proof. In fact, we solve Problems 1.1 and 1.3 (proving
that each of T ��� and Tc��c� is the closure of a single nilpotent orbit), and
Conjecture 1.2 follows from the combinatorics involved in these solutions.
The main technical result is the classification of nilpotent K	 ×K′

	-orbits
in W +

	 for pairs of type II, in terms of certain ab-diagrams (Theorems 3.6
and 4.5). We believe it should be possible to give a direct, intrinsic proof of
Conjecture 1.2 for all dual pairs, thus reducing Problem 1.1 to an apparently
simpler complex problem (Problem 1.3).
The methods we use to solve Problem 1.3 for groups of type II are similar

to those used in our paper [DKP1] and are based on some of the results
and methods of Ohta [O1].
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In [DKP2] we give a combinatorial classification of nilpotent G × G′-
orbits in W and K	 ×K′

	-orbits in W
+
	 for all dual pairs, and for dual pairs

in the stable range we solve Problems 1.1 and 1.3 and verify Conjecture 1.2.
In this paper we will freely use the notation and terminology of [DKP1].

In particular, recall that a nilpotent element of W is, by definition, an
element whose images via moment maps τ and τ′ are nilpotent in � and �′.
The reader should also be warned that we frequently identify linear maps
with their matrices in appropriate bases.

2. CORRESPONDENCE OF G-ORBITS

Let � be a finite-dimensional division algebra over �, i.e., � ∈ ���	���.
Let V� V ′ be finite-dimensional (right, if � = �� vector spaces over � and
let dim V = n� dim V ′ = m. Let G = GL��V ��G′ = GL��V ′�. Let W =
Hom��V� V ′� ⊕ Hom��V ′� V �. Let 
 � � be the skew-symmetric form on W
defined by


�S1� T1�� �S2� T2�� = ReTr�S2T1 − S1T2��(4)

Let Sp�W � be the isometry group of this form. Then there exist natural
embeddings G ↪→ Sp�W ��G′ ↪→ Sp�W �, and �G�G′� is an irreducible dual
pair in Sp�W � of type II.
Let � = ����V �� �′ = ����V ′� and let τ� τ′ be the moment maps

τ� W −→ �� τ�S� T � = T · S�
τ′� W −→ �′� τ�S� T � = S · T�

Recall that nilpotent adjoint orbits in ����V � are parametrized by partitions
of n = dim V � similarly, nilpotent adjoint orbits in ����V ′� are parametrized
by partitions of m = dim V ′ [C-M].
An element X = �S� T � ∈ W is called nilpotent if T · S is a nilpotent

element of � (equivalently, if S · T is nilpotent in �′). The group G × G′

acts on the set 
W of nilpotent elements of W . The classification of G×G′-
orbits in 
W , in terms of combinatorial objects called ab-diagrams, was
described in [K-P]. To convince the reader that the classification is valid
over an arbitrary, not necessarily commutative field F , we give here an
elementary proof of that result.
Let us change notation for a moment. Let U be a right vector space over

F with a direct sum decomposition

U = V 0 ⊕ V 1�

For ε ∈ �0� 1� let ε′ = 1− ε. Let X� U −→ U be a nilpotent endomorphism
of U satisfying the condition

X�V ε� ⊆ V ε′
�
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Proposition 2.1. There exists a basis

�Xαvi � 1 ≤ i ≤ r1� 0 ≤ α ≤ λi − 1� ∪ �Xβv′
j � 1 ≤ j ≤ r2� 0 ≤ β ≤ µj − 1�

of U (called a Jordan basis) such that vi ∈ V 0, v′
j ∈ V 1, Xλivi = Xµjv′

j = 0
for all i� j.

Proof. Let N be the smallest integer satisfying XN = 0. For i ∈
�1� � � � �N� let

Ui = Ker�Xi�� V ε
i = V ε ∩Ui�

Choose vectors f εN� j ∈ V ε
N = V ε, 1 ≤ j ≤ rεN , such that their cosets form

a basis in V ε
N/V

ε
N−1, ε = 1� 2. Let f εN−1� j = X�f ε′

N� j� for j = 1� � � � � rε
′
N .

Lemma 2.2. The cosets of f εN−1� j , j = 1� � � � � rε
′
N , are linearly independent

in V ε
N−1/V

ε
N−2.

Proof. If
∑
f εN−1� jaj ∈ V ε

N−2, then
∑
f ε

′
N� jaj ∈ V ε′

N−1, so by assumption all
aj = 0.

Choose f εN−1� j , j = rε
′
N + 1� � � � � rεN−1, such that the cosets of all f εN−1� j ,

j = 1� � � � � rεN−1, form a basis of V ε
N−1/V

ε
N−2. Let f

ε
N−2� j = X�f ε′

N−1� j� for j =
1� � � � � rε

′
N−1. As before, their cosets modulo V

ε
N−3 are linearly independent

and we can choose f εN−2� j ∈ V ε
N−2 for j = rε

′
N−1 + 1� � � � � rεN−2 to get a basis

of V ε
N−2/V

ε
N−3. Continuing in this way, we finally get a basis f εi� j of U with

the property that in this basis X acts as

f εi� j �−→ f ε
′
i−1� j �−→ f εi−2� j �−→ · · · �−→ f

ε�′�
1� j �−→ 0�

where ε�′� denotes either ε or ε′, depending on the parity of i. Renaming
the basis vectors ends the proof of the proposition.

For a fixed i the basis vectors vi�Xvi�X2vi� � � � �X
λi−1vi are repre-

sented by a string abab · · · of length λi. Similarly, for a fixed j the vectors
v′
j�Xv

′
j� � � � �X

µj−1 are represented by a string baba · · · of length µj . The
collection of strings obtained in this way is called the ab-diagram δX
attached to X. The total number of a’s in δX is equal to the dimension of
V 0; the total number of b’s in δX is equal to the dimension of V 1. The last
(rightmost) entry in each string corresponds to a vector in the kernel of X.
Now we return to the context of dual pairs. We can embed W in End�V ⊕

V ′�, so that a nilpotent element X = �S� T � ∈ W is identified with the nilpo-
tent endomorphism X of U = V ⊕ V ′, X�v� v′� = �T �v′�� S�v��. To such an
endomorphism we associate its ab-diagram δX as above, with V 0 = V ,
V 1 = V ′. Then the total number of a’s in δX is equal to n; the total num-
ber of b’s is equal to m. Two nilpotent elements X�X ′ ∈ 
W are conjugate
under G × G′ if and only if δX = δX ′ , so the correspondence X �−→ δX
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defines a bijection of the set of nilpotent G×G′-orbits in 
W and the set
of ab-diagrams consisting of n a’s and m b’s.
For a given ab-diagram δ, let τ�δ� denote the partition of n counting the

a’s in the strings of δ and let τ′�δ� be the partition of m counting the b’s in
the strings of δ. If X ∈ 
W , then the nilpotent elements τ�X� ∈ �, τ′�X� ∈
�′ belong to the adjoint orbits corresponding to partitions τ�δX�� τ′�δX�,
respectively. For more details, see [K-P, Sect. 4; DKP1, Definition 3.2 and
Theorem 3.3].
Recall also (see, e.g., [C-M, D]) that the closure ordering on nilpotent

orbits in ����V � is compatible with the dominance ordering on partitions: if
��λ denotes the orbit corresponding to a partition λ, then ��µ ⊆ ��λ if and
only if µ ≤ λ, i.e., µ1 + · · · +µi ≤ λ1 + · · · + λi for all i, the same holds for
����V� �. Here, as usual, we identify a partition λ = �λ1� � � � � λp� with the
infinite sequence �λ1� � � � � λp� 0� 0� � � ��.
We can now state and prove the main theorem of this section.

Definition 2.3. Let λ be a partition of n. Let r1 = m. For i ≥ 2 let
ri = ri�λ� = m − �λ1 + 1 + λ2 + 1 + · · · + λi−1 + 1�. Let i0 = i0�λ� be the
smallest i ≥ 1 such that ri ≤ λi. Define a partition λ′ of m by

λ′
i = λi + 1 for i < i0�

λ′
i0

= ri0�

λ′
i = 0 for i > i0�

Example 1. Let λ = �4� 3� 3� 2� 1�. If m = 3, then λ′ = �3�; if
m = 7, then λ′ = �5� 2�; for m = 10, λ′ = �5� 4� 1�, if m = 21,
λ′ = �5� 4� 4� 3� 2� 1� 1� 1�.
Theorem 2.4. Let �λ ⊆ � be the nilpotent orbit corresponding to a par-

tition λ of n. Similarly, let �′
λ′ ⊆ �′ be the nilpotent orbit corresponding to a

partition λ′ of m. Then

τ′(τ−1(�λ)) = �′
λ′ �(5)

Proof. In the case � = 	, this is exactly Theorem 4.2 of [DKP1]. The
proof in the general case is almost the same with one change: instead of
using an argument from invariant theory, we will deduce a necessary com-
binatorial fact from the case � = 	.
Let us recall the steps of the proof of Theorem 4.2 of [DKP1]. First, from

the definition of λ′ (see [DKP1, remark, p. 524]), it immediately follows that

�′
λ′ ⊆ τ′(τ−1��λ�

)
�(6)

Then, using the fact that τ′ is a quotient map in the sense of geometric
invariant theory, we deduce that the right-hand side of (6) is closed in �′
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and that

�′
λ′ ⊆ τ′(τ−1��λ�

)
�(7)

The proof of the opposite inclusion is purely combinatorial—the inclu-
sion is equivalent to the following lemma, proved in [DKP1, p. 525].

Lemma 2.5. Let µ be a partition of n such that µ ≤ λ and let δ be an
ab-diagram such that τ�δ� = µ. Then τ′�δ� ≤ λ′.

The only step of the above proof that does not carry over to the general
case is the proof that the set τ′�τ−1��λ�� is closed in �′. But for an orbit
�′
ν ⊆ �′ we have �′

ν ⊆ τ′�τ−1��λ�� iff there exists an ab-diagram δ with the
properties τ′�δ� = ν, τ�δ� ≤ λ. It follows that the set τ′�τ−1��λ�� is closed
if and only if the following property holds: for partitions ν� σ of m such
that σ ≤ ν, if there exists an ab-diagram δ with τ′�δ� = ν, τ�δ� ≤ λ, then
there exists an ab-diagram δ′ with τ′�δ′� = σ , τ�δ′� ≤ λ.
Now this property is purely combinatorial and it follows from the fact

that the set τ′�τ−1��λ�� is closed in the case � = 	. This ends the proof of
Theorem 2.4.

3. PAIRS OF TYPE II OVER �—CORRESPONDENCE
OF K	-ORBITS

Let G, G′, and W be as in the previous section, with � = �. We fix
bases of V and V ′ and we identify elements of W with pairs of matrices.
Let J� W −→ W be the compatible complex structure defined by

J�S� T � = �−T t� St��(8)

Let V	� V
′
	 denote the complexifications of V� V ′. Define W +

	 as in the Intro-
duction. Let p� W −→ W +

	 be defined by p = �1/2��1 − iJ�, so

p�S� T � = 1
2

· �Z�−iZt��(9)

where Z = S + iT t . In this way the space W +
	 can be identified with the

space Hom	�V	� V ′
	�, via

Hom	�V	� V ′
	� � Z �−→ 1

2
· �Z�−iZt� ∈ W +

	 �(10)

or, equivalently, with the subspace L = L�V	� V ′
	� ⊆ End	�V	 ⊕ V ′

	� con-
sisting of the homomorphisms whose matrices have the form[

0 −Zt

Z 0

]
� Z ∈ Hom	�V	� V ′

	��(11)
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The factor i in (10) is dropped in (11), as it changes the moment maps
(12) only by a scalar factor, which does not change their behavior with
respect to nilpotent orbits. The same remark applies to 1/2 and to other
scalar factors that may appear in similar contexts.
Let G	 = GL�V	�, G′

	 = GL�V ′
	� denote the complexifications of G and

G′ and let K	 = O�V	� ⊆ G	, K
′
	 = O�V ′

	� ⊆ G′
	 be the complexifications

of maximal compact subgroups K = O�V � ⊆ G, K′ = O�V ′� ⊆ G′; here all
orthogonal groups are the isometry groups of the symmetric forms defined
by the identity matrices (recall that the Cartan involutions on G and G′ are
equal to the conjugation by J). Then the identification (10) preserves the
natural actions of K	 ×K′

	.
Now we are ready to describe the solution to Problem 1.3 in the case of

the dual pair �GL�V ��GL�V ′��. Under the identification (10) the diagram

�′
	

τ′
c←− W +

	

τc−→ �	

is equal to

�′
	

τ′
c←− Hom�V	� V ′

	� τc−→ �	�

with Hom�V	� V ′
	� identified with the space Mm�n�	� of m× n matrices, �′

	

identified with the space of symmetric m ×m matrices, �	 identified with
the space of symmetric n × n matrices (m = dim V ′, n = dim V ), and (up
to nonessential scalar factors) the maps τc� τ′

c given by

τc�Z� = Zt · Z� τ′
c�Z� = Z · Zt�(12)

It is known (see [O1, S1]) that every nilpotent GL�V	�-orbit in ���V	�
intersects the subspace �	 along a single O�V	�-orbit, so in a natural way
nilpotent O�V	�-orbits in �	 are parametrized by partitions λ of n. Let �λ
be the orbit corresponding to λ. Similarly, by �′

ν we will denote the O�V ′
	�-

orbit in �′
	 corresponding to a partition ν of m.

Recall the following theorem of Ohta [O1, Theorem 1, p. 447].

Theorem 3.1. Let λ�µ be two partitions of n. Then �µ ⊆ �λ if and only
if µ ≤ λ (i.e., µ1 + · · · + µi ≤ λ1 + · · · + λi for all i).

The main result of this section describes the orbit correspondence in this
case.

Theorem 3.2. Let λ be a partition of n and let λ′ be the partition of m
defined as in Definition 2.3. Then

τ′
c

(
τ−1
c

(
�λ
)) = �′

λ′ �
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For the proof of this theorem, we will need some information on the
classification of nilpotent K	 ×K′

	-orbits in W
+
	 .

Consider the space L′ = L′�V	� V ′
	� ⊆ End	�V	 ⊕ V ′

	� consisting of the
homomorphisms whose matrices have the block form[

0 B
A 0

]
� A ∈ Hom�V	� V ′

	�� B ∈ Hom�V ′
	� V	��(13)

This space contains the subspace L defined above. We note the following
obvious lemma.

Lemma 3.3. The matrix �13� is nilpotent if and only if A · B is a nilpotent
endomorphism of V ′

	, if and only if B ·A is a nilpotent endomorphism of V	.

It follows that in order to classify all nilpotent K	 ×K′
	-orbits in W

+
	 it

will be sufficient to classify nilpotent K	 ×K′
	-orbits in L.

We have the following proposition, due to Ohta [O1, Proposition 4,
p. 459]; see also [MWZ, Proposition 2.1].

Proposition 3.4. Two nilpotent matrices in L are conjugate under the
group K	 × K′

	 if and only if they are conjugate under the group G	 ×G′
	.

Thus, if a G	 ×G′
	-orbit in L

′ intersects L, then it intersects L along a single
K	 ×K′

	-orbit.

It follows that nilpotent K	 × K′
	-orbits in L are in one-to-one corre-

spondence with those nilpotent G	 ×G′
	-orbits in L

′ which intersect L.

Definition 3.5. An ab-diagram is of type BDI if it consists only of
strings of the form

(i) baba � � � ab,
(ii) abab � � � ba,

or pairs of strings

(iii) ba � � � ba
ab � � � ab

both strings of the same length.

Theorem 3.6. Let X ∈ L′ be a nilpotent element. Then the G	 × G′
	-

orbit of X intersects L if and only if its ab-diagram δX is of type BDI. Thus
the nilpotent K	 × K′

	-orbits in W
+
	 are in one-to-one correspondence with

ab-diagrams of type AI containing n a’s and m b’s.

Remark 3.7. This theorem was proved by Ohta in [O2, Proposition 2]
as the classification of nilpotent K	-orbits in �	 for symmetric pairs of type
BDI. One reason that we give the proof is that we want to keep this paper
self-contained, and the second reason is that we believe our proof is more
transparent.
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Proof. Assume that X ∈ L. The proof that δX is of type BDI will pro-
ceed along the lines of the proof of the classification theorem of nilpotent
orbits in complex orthogonal Lie algebras, with a refinement coming from
Vinberg’s theory of nilpotent elements in graded Lie algebras [Vi].
We must prove that in δX strings of even length come in pairs, as in

Definition 3.5(iii). Fix bases of V	 and V ′
	 and let ( , ) be the symmetric

bilinear form on V	 ⊕ V ′
	 such that the union of these bases is an orthonor-

mal basis of V	 ⊕ V ′
	. Let � = ��V	 ⊕ V ′

	� be the Lie algebra of the isometry
group O�V	 ⊕ V ′

	�. Let �0 = ��V	� × ��V ′
	� ⊆ � be the subspace consisting

of matrices of the form [
A 0
0 B

]
and let �1 = L be the subspace of matrices of the form (11). Then � =
�0 ⊕ �1 is a 
2-grading of � and our nilpotent matrix X belongs to �1.
By Vinberg’s refinement of the Jacobson–Morozov theorem ([Vi, Theo-
rem 1(1)]; see also Kostant and Rallis [KR]), there exists a Jacobson–
Morozov triple �X�Y�H� with Y ∈ �1 and H ∈ �0. Now we proceed as
in [C-M, Sect. 5.1]. Let � = span�X�Y�H� ⊆ �� � ∼= ��2�	� and let

V	 ⊕ V ′
	 = ⊕

r≥0
M�r�

be the isotypic decomposition of V	 ⊕ V ′
	 as an �-module, where M�r�

is the sum of irreducible representations of � of highest weight r (and
dimension r + 1). Let H�r� ⊆ M�r� be the highest weight space; i.e., the
kernel Ker�X� M�r� → M�r��. As X�V	� ⊆ V ′

	 and X�V ′
	� ⊆ V	, we have

a decomposition

H�r� = �H�r� ∩ V	� ⊕ �H�r� ∩ V ′
	��(14)

Assume that r is odd (so r + 1 is even). Then the dimension of H�r� ∩ V	 is
equal to the number of strings of δX of the form ba � � � ba of length r + 1;
similarly, the dimension of H�r� ∩ V ′

	 is equal to the number of strings of
δX of the same length, but of the form ab � � � ab. We will show that

dimH�r� ∩ V	 = dimH�r� ∩ V ′
	�

This will show that δX is of type BDI. Let � � �r be the bilinear form onH�r�
defined by �w1� w2�r = �w1� Y

rw2�. By Lemmas 5.1.11 and 5.1.14 in [C-M]
this form is skew-symmetric and nondegenerate. Moreover, for w1� w2 ∈ V	
we have Yrw2 ∈ V ′

	 (r is odd!), so �w1� Y
rw2� = 0. Hence H�r� ∩ V	 is an

isotropic subspace of H�r� with respect to � � �r . The same is true about
H�r� ∩ V ′

	. Hence, by (14), H�r� ∩ V	 and H�r� ∩ V ′
	 are complementary

maximal isotropic subspaces of H�r�; in particular, their dimensions must
be equal. This proves the claim.
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It remains to show that if X ∈ L′ has ab-diagram of type BDI, then the
G	 ×G′

	-orbit of X intersects L. We will show that if X ∈ L′ is a nilpotent
element whose ab-diagram δX is one of (i), (ii), or (iii) in Definition 3.5,
then the G	 ×G′

	-orbit through X contains a skew-symmetric matrix. From
this, the proposition follows easily.
Assume first that δX = bab · · · ab, with k a’s and k+ 1 b’s, is of the form

(i). Then in an appropriate basis

X =
[
0k×k B
A 0�k+1�×�k+1�

]
�

where

A =
[
01×k
Ik

]
� B = �Ik 0k×1��

Let �g� g′� ∈ GLk�	� ×GLk+1�	�. The condition

�g� g′� ·X · �g� g′�−1 is skew-symmetric

can be written as the matrix equation

g · B · g′−1 = −�gt�−1 ·At · g′t �

or, equivalently, as

�gt · g� · B = −At · �g′t · g′��(15)

Let

Fk =



0 · · · 0 1
0 · · · 1 0
��������������������
1 · · · 0 0


 ∈ GLk�	��(16)

and, similarly, let Fk+1 ∈ GLk+1�	� be the “antidiagonal identity” matri-
ces. As Fk and −Fk+1 are symmetric, there exist g ∈ GLk�	� and g′ ∈
GLk+1�	� such that gt · g = Fk and g′t · g′ = −Fk+1. Then (15) holds and
the proposition is true in this case.
In the same way we can prove the existence of a skew-symmetric matrix

in the GLk�	� ×GLk+1�	�-orbit of a nilpotent matrix X ∈ L′ whose ab-
diagram is of the form (ii).
Assume thus that δX is of the type (iii) with the length of each string

equal to 2k. In an appropriate basis

X =
[
02k×2k B

A 02k×2k

]
�
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where

A =
[
C 0k×k

0k×k Ik

]
� B =

[
Ik 0k×k
0k×k C

]
�

with

C =
[
01×�k−1� 0
Ik−1 0�k−1�×1

]
�

Then F2k · B · �−F2k� = −At , so, as before, for g� g′ ∈ GL2k�	� satisfying
gt · g = F2k� g

′t · g′ = −F2k we get a skew-symmetric matrix �g� g′� · X ·
�g� g′�−1 in the G	 ×G′

	-orbit of X, which proves the proposition.

Proof of Theorem 3.2. The proof is identical to the proof of Theorem
4.2 in [DKP1], once we observe the following: for each partition λ of n
there exists an ab-diagram δ of type BDI such that (notation as in Section 2)
τ�δ� ≤ λ� τ′�δ� = λ′ (note that to construct such δ we need only strings of
odd length, so of the form (i) and (ii) in Definition 3.5). This allows us to
deduce that

�′
λ′ ⊆ τ′

c

(
τ−1
c ��λ�

)
�(17)

Now the map τ′ is a quotient map [O1 Theorem 3, p. 453], so the set
τ′
c�τ−1

c ��λ�� is closed, and the rest of the proof carries over with no change
(Lemma 2.5 applies here).

Corollary 3.8. Let � ⊆ ���V � be a nilpotent orbit in the real Lie algebra
���V �. Then

S′(τ′(τ−1�
� �)) = τ′
c

(
τ−1
c

(
S���))�

Proof. Immediate from Theorems 2.4 and 3.2, if we use the fact that on
the level of partitions the Kostant–Sekiguchi correspondence for GL(V) is
just the identity (it follows from the fact that both � and S��� are contained
in the same GL �V	�-orbit in ���V	� and all three orbits correspond to the
same partition).

4. PAIRS OF TYPE II OVER �—CORRESPONDENCE
OF K	-ORBITS

Let V� V ′ be right vector spaces over � of dimensions n = dim�V , m =
dim�V

′. Fix a basis v1� � � � � vn of V over �. Then v1� � � � � vn� v1j� � � � � vnj
is a basis of V over 	, where j ∈ � is one of the standard generating



420 daszkiewicz, kraśkiewicz, and przebinda

quaternions i� j� k. In this way the group G = GL��V � can be identified
with the subgroup of GL2n�	� consisting of matrices of the form[

A B
−
B 
A

]
�

and G	 = GL	�V �.
Similarly, G′ = GL��V ′� can be identified with a subgroup of G′

	 =
GL2m�	�, and the Lie algebras � = ����V � and �′ = ����V ′� with the
appropriate subalgebras of �	 = ��	�V � and �′

	 = ��	�V ′�.
Let

W = Hom��V� V ′� ⊕ Hom��V ′� V ��
As above, W can be identified with the appropriate subspace of

W	 = Hom	�V� V ′� ⊕ Hom	�V ′� V ��
Let

JV =
[
0 −In
In 0

]
� J ′

V =
[
0 −Im
Im 0

]
�

For S ∈ Hom	�V� V ′� let S∗ = −JV · St · JV ′ ∈ Hom	�V ′� V �, and for T ∈
Hom	�V ′� V � let T ∗ = −JV ′ · T t · JV ∈ Hom	�V� V ′�.
Let J� W → W be a complex structure defined by

J�S� T � = �−T ∗� S∗�
(as usual, we identify linear maps with matrices in appropriate bases). Let

 � � be the skew-symmetric form on W defined in the Introduction (for-
mula (4)). Then J is a compatible positive definite complex structure. Con-
jugation by J is a Cartan involution on G and also on G′. Let K ⊆ G
and K′ ⊆ G′ be the corresponding maximal compact subgroups and let
K	 = Sp	�V � ⊆ G	 and K′

	 = Sp	�V ′� ⊆ G′
	 be their complexifications,

equal to the isometry groups of the skew-symmetric forms JV on V	 and
JV ′ on V ′

	.
Let p� W −→ W	 be defined by

p = 1
2

�1 − iJ��
Then

p�S� T � = 1
2

�Z�−iZ∗� for Z = S + iT ∗�

It follows that W +
	 = Im�p� can be identified with Hom	�V� V ′� by

Hom	�V� V ′� � Z �−→ 1
2

�Z�−iZ∗� ∈ W +
	 �(18)
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As in Section 3, W +
	 can also be identified with a certain subspace L =

L�V� V ′� of End	�V ⊕ V ′�. This time L consists of matrices of the form[
0 −Z∗

Z 0

]
�(19)

where Z ∈ W +
	 = Hom	�V� V ′� will be identified with the matrix (19). All

these identifications preserve the natural actions of K	 and K′
	.

Under the identifications (18) and (19) the moment maps

τ	� W +
	 −→ �	 ⊆ ��	�V ��

τ′
	� W +

	 −→ �′
	 ⊆ ��	�V ′�

will be identified with

τ	� Hom	�V� V ′� −→ �	� τ	�Z� = Z∗ · Z�
τ′
	� Hom	�V ′� V � −→ �′

	� τ′
	�Z� = Z · Z∗�

Here �	 = �X ∈ ��2n�	�  X JV = −�X JV �t�, �′
	 = �X ∈ ��2m�	�  

X JV ′ = −�X JV ′ �t�.
Recall from [S1, O1] the basic facts about the nilpotent K	-orbits in �	.
For a partition µ = �µ1� µ2� � � �� ∈ ��n�, let µ2 = �µ1� µ1� µ2� µ2� � � �� ∈

��2n� denote its double. Let ��n�2 = �µ2  µ ∈ ��n��.
Proposition 4.1. Nilpotent K	�V �-orbits in �	 are parametrized by parti-

tions λ ∈ ��n�2. Let �λ denote the orbit corresponding to a partition λ. Then,
for λ�µ ∈ ��n�2,

�µ ⊆ �λ iff µ ≤ λ�

Now we will describe the classification of K	 × K′
	-orbits in W

+
	 . The

idea is similar to Theorem 3.2. Let W	 be identified with the space L′ of
complex matrices [

0 B
A 0

]
�(20)

Lemma 4.2. The matrix (20) is nilpotent if and only if A · B is a nilpotent
endomorphism of V ′, if and only if B ·A is a nilpotent endomorphism of V .

A variant (also due to Ohta [O1, Proposition 4, p. 459]) of Proposition 3.4
holds also in this case.

Proposition 4.3. Two nilpotent matrices in L are conjugate under the
group K	 × K′

	 if and only if they are conjugate under the group G	 ×G′
	.

Thus, if a G	 ×G′
	-orbit in L

′ intersects L, then it intersects L along a single
K	 ×K′

	-orbit.
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It follows that nilpotent K	 × K′
	-orbits in L are in one-to-one corre-

spondence with the set of nilpotent G	 ×G′
	-orbits in L

′ which intersect
L. As before, G	 ×G′

	-orbits in L
′ are classified by ab-diagrams containing

dim	 V = 2n a’s and dim	 V
′ = 2m b’s.

Definition 4.4. An ab-diagram is of type CII if it consists only of pairs
of strings of the form

(i) ba � � � ab
ba � � � ab

both strings of the same odd length,

(ii) ab � � � ba
ab � � � ba

both strings of the same odd length,

(iii) ba � � � ba
ab � � � ab

both strings of the same even length.

Theorem 4.5. Let X ∈ L′ be a nilpotent element. Then the G	 × G′
	-

orbit of X intersects L if and only if its ab-diagram δX is of type CII. Thus
the nilpotent K	 × K′

	-orbits in W
+
	 are in one-to-one correspondence with

ab-diagrams of type CII containing 2n a’s and 2m b’s.

Remark 4.6. As in the case of Theorem 3.6, this result was proved by
Ohta [O2, Proposition 2] as the classification of nilpotent K	-orbits in �	
for symmetric pairs of type CII.

Proof. The proof is similar to the proof of Theorem 3.6. Assume that
X ∈ L. Fix bases of V and V ′ such that in these bases

JV =
[

0 In
−In 0

]
� JV ′ =

[
0 Im

−Im 0

]
�

Let ( , ) be the skew-symmetric bilinear form on V ⊕ V ′ defined by the
matrix [

JV 0
0 JV ′

]
�

Let �� = ���V ⊕ V ′� be the Lie algebra of the isometry group Sp�V ⊕ V ′�.
Let ��0 = ���V � ⊕ ���V ′� ⊆ �� be the subspace consisting of matrices of
the form [

A 0
0 B

]
and let ��1 ⊆ �� be the subspace of matrices of the form (19). Then
�� = ��0 ⊕ ��1 is a 
2-grading of �� and our nilpotent element X ∈ ��1.
As in the proof of Theorem 3.6, we consider a Jacobson–Morozov triple
�X�Y�H�, with Y ∈ ��1 and H ∈ ��0, and study the highest weight space
H�r� in the sum M�r� of irreducible ��2-submodules of V ⊕ V ′ of dimen-
sion r + 1.
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Let ( , )r be the bilinear form onH�r� defined by �w1� w2�r = �w1� Y
rw2�.

As before, this form is nondegenerate.
Assume that r is odd. In this case the form ( , )r on H�r� is symmetric

and as in the proof of Theorem 3.6 we show that

H�r� = �H�r� ∩ V � ⊕ �H�r� ∩ V ′�(21)

is a decomposition of H�r� into the sum of complementary isotropic sub-
spaces, so the dimension of H�r� ∩ V (equal to the number of strings of
δX of the form ba � � � ba of length r + 1) is equal to the dimension of
H�r� ∩ V ′ (equal to the number of strings of δX of the form ab � � � ab of
the same length r + 1). This shows that strings of even length can be paired
as in (iii) of Definition 4.4.
If r is even, then the form ( , )r is skew-symmetric, so the complex dimen-

sion of the space H�r� is even. This dimension is equal to the number of
strings of δX of length r + 1, so the number of strings of δX of each odd
length is even (this is, of course, well known and follows from the classi-
fication of nilpotent orbits in complex symplectic Lie algebras). We must
show that the number of strings ab � � � ba of length r + 1 is even and that
the number of strings ba � � � ab of the same length is also even. This fol-
lows easily from the fact that partitions corresponding to nilpotent orbits in
�	� �

′
	 belong to ��n�2���m�2, respectively (see Proposition 4.1), so parti-

tions counting either a’s or b’s in the strings of δX must have this property.
This proves that the strings of odd length come in pairs as in (i) and (ii)

of Definition 4.4 and shows that δX is of type CII.
It remains to show that if a nilpotent X ∈ L′ has ab-diagram of type CII,

then the G	 × G′
	-orbit of X intersects L. We will show this fact in the

case when X is a nilpotent element whose ab-diagram is one of (i), (ii), or
(iii) in Definition 4.4; the general case follows easily from this special case.

(i) Assume that

δX = ba � � � ab
ba � � � ab

�

both strings of length 2k+ 1. In appropriate bases of V and V ′,

X =
[
02k×2k B
A 0�2k+1�×�2k+1�

]
�

where

A =



01×k 01×k
Ik 0k×k
01×k 01×k
0k×k Ik


 and B =

[
Ik 0k×1 0k×k 0k×1

0k×k 0k×1 Ik 0k×1

]
�
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We must find �g� g′� ∈ GL	�V � ×GL	�V ′� such that

�g� g′� ·X · �g� g′�−1 =
[

0 gBg′−1

g′Ag−1 0

]
∈ L�

i.e., g′Ag−1 = −�gBg′−1�∗ = JV ′ �g′t�−1BtgtJV , so A = �g′−1JV ′ �g′−1�t� ·
Bt · �gtJV g�, which is equivalent to finding two skew-symmetric matrices
C1 ∈ GL2k+2�	�, C2 ∈ GL2k�	� such that

A = C1B
tC2�(22)

Let

C1 =
[

0 Fk+1
−Fk+1 0

]
� C2 =

[
0 −Fk
Fk 0

]
�

where Fk is as in (16). Then (22) holds, proving that the G	 × G′
	-orbit

through X intersects L.
(ii) If

δX = ab � � � ba
ab � � � ba

�

then the proof is almost identical as above (transpose all the matrices).
(iii) Let

δX = ba � � � ba
ab � � � ab

�

with both strings of length 2k. Then in appropriate bases

X =
[
02k×2k B
A 02k×2k

]
�

where

A =
[
C 0k×k

0k×k Ik

]
� B =

[
Ik 0k×k
0k×k C

]
�

with

C =
[
01×�k−1� 0
Ik−1 0�k−1�×1

]
�

Let

C1 =
[

0 Fk
−Fk 0

]
and C2 = −C1�

ThenA = C1 ·Bt ·C2, so, as before, theG	 ×G′
	-orbit throughX intersects

L. This ends the proof of Theorem 4.5.
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Definition 4.7. Let λ ∈ ��n�2. Let r1 = m. For i ≥ 2 let ri = m− �λ1 +
1 + λ3 + 1 + · · · + λ2i−3 + 1�. Let i0 = i0�λ� be the smallest i ≥ 1 such that
ri ≤ λ2i. Define a partition λh ∈ ��m�2 by

λhi = λi + 1 for i < 2i0 − 1�

λh2i0−1 = λh2i0 = ri0�

λhi = 0 for i > 2i0�

In other words, if λ = ν2, then λh = ν′2, where ν′ is the partition of m
defined as in Definition 2.3.

Theorem 4.8. Let λ ∈ ��n�2. Then
τ′
c

(
τ−1
c ��λ�

) = �′
λh
�

Proof. The inclusion

�′
λh

⊆ τ′
c

(
τ−1
c

(
�λ
))

(23)

follows from the definition of λh. As the map τ′
c is a quotient map [O1, The-

orem 3, p. 453], the right-hand side of (23) is closed, so �′
λh

⊆ τ′
c�τ−1

c ��λ��.
The opposite inclusion follows from the following lemma.

Lemma 4.9. Let λ�µ ∈ ��n�2 be two partitions such that µ ≤ λ and let
δ be an ab-diagram of type CII such that τ�δ� = µ. Then τ′�δ� ≤ λh.

Proof. For a partition λ ∈ ��n�2, let λ1/2 ∈ ��n� denote the partition
such that �λ1/2�2 = λ. For an ab-diagram δ of type CII, let δ1/2 denote the
ab-diagram constructed as follows: from each pair of strings ab � � � ba of δ
of the same length, choose one string; from each pair of strings ba � � � ab of
δ of the same length, choose one string; from each pair of strings ab � � � ab,
ba � � � ba of δ of the same length, choose one string ab � � � ab. The lemma
follows from Lemma 2.5 and from the following observations:

(1) for λ�µ ∈ ��n�2 we have µ ≤ λ ⇐⇒ µ1/2 ≤ λ1/2;
(2) for an ab-diagram δ of type CII we have τ�δ� = µ ⇐⇒ τ�δ1/2� =

µ1/2, similarly for τ′.

Corollary 4.10. Let � ⊆ ����V � be a nilpotent orbit. Then
S′(τ′(τ−1�
��)) = τ′

c

(
τ−1
c

(
S���))�

Proof. Immediate from Theorems 2.4 and 4.8 if we use the fact that on
the level of partitions the Kostant–Sekiguchi correspondence for GL��V �
is just the map ��n� � λ �−→ λ2 ∈ ��n�2 (it follows from the fact that both
� and S��� are contained in the same GL	�V �-orbit and all three orbits
correspond to the same partition, where this time nilpotent elements of
����V � are considered as complex matrices of the double size—the effect
of this identification on partitions is precisely the identification λ �−→ λ2).
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