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In this paper, we prove that the Cauchy Harish-Chandra integral maps invariant

eigendistributions to invariant eigendistributions with the correct infinitesimal char-

acter and that it maps the orbital integrals on the larger group to the orbital integrals

on the smaller one. This is the last paper of a series of three.

1 The Main Results

Let W be a finite-dimensional vector space over the reals, with a nondegenerate sym-

plectic form 〈 , 〉. Let J be a positive compatible complex structure on W, Sp(W) (resp.

sp(W)) the symplectic group (resp. the symplectic Lie algebra) associated to 〈 , 〉 and let

χ(r)= exp(2π ir), r ∈ R. Fix a Lebesgue measure dw on W so that

∫
W
χ

(
i
2

〈Jw,w〉
)

dw= 1.

The conjugation by J is a Cartan involution θ on sp(W). The formula

κ̃(x, y)= −tr(θx, y) (x, y∈ sp(W))
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CHC and the Invariant Eigendistributions 3819

defines a positive definite symmetric form on sp(W). We normalize the Lebesgue measure

μ on any subspace of sp(W) by requiring that the volume of the unit cube is 1. For any

Lie subgroups F ⊆ E ⊆ Sp(W), the measure μ induces the left invariant Haar measure on

E and invariant measures on the quotients E/F and F \E . We shall denote these induced

measures also by μ. It should be clear from the context, (such as dμ(a) or dμ(A′′′
s w)

below), which version of μ we are using.

Let (G,G ′) be a reductive dual pair of Sp(W) (see [17] for the definition), with

the rank of G ′ less or equal to the rank of G. Denote by g, g′ the Lie algebras of G, G ′,

respectively. We lift the Cartan involution θ to the group and assume (as we may) that G

and G ′ are preserved by θ . Let H ′ be a Cartan subgroup of G ′ preserved by θ . Consider

the Cartan decomposition of H ′ : H ′ = T ′ A′, where T ′ (resp. A′) is the compact (resp. split)

part of H ′. Consider the commutant A′′ (resp. A′′′) of A′ (resp. A′′) in Sp(W). Then (A′′, A′′′)

is a reductive dual pair of Sp(W); see [18]. Denote by V′ the defining module for G ′. This is

a finite-dimensional vector space V′ over a division algebra D = R,C or H; see [15, p. 278].

Let V′
c = {v ∈ V′ | av = v ∀a∈ A′}. There exists a unique complement V′

s of V′
c in V′ such that

the decomposition

V′ = V′
c ⊕ V′

s

is preserved by H ′. As A′′′ ⊂ H ′, we may consider

A′′′
s = {v ∈ A′′′ | v|V′

c
= id}.

Then A′′′ = A′′′
s if and only if V′

c = 0 and A′′′ = A′′′
s × {±id|V′

c
} otherwise. There exists a dense

open subset WA′′′
s

of W such that the quotient A′′′
s \WA′′′

s
is a smooth manifold. Define the

measure μ on the quotient A′′′
s \ WA′′′

s
by

∫
W

f(w)dw=
∫

A′′′\WA′′′
s

∫
A′′′

s

f(aw)dμ(a)dμ(A′′′
s w).

Let

χx(w)= χ

(
1

4
〈xw,w〉

)
, (x ∈ sp(W), w ∈ W).

Recall [18, p. 302] the Cauchy Harish-Chandra integral on the Lie algebra:

c̃hc(x′ + x)=
∫

A′′′
s \WA′′′

s

χx′+x(w)dμ(A′′′
s w) (x′ ∈ h′reg, x ∈ g).
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3820 F. Bernon and T. Przebinda

Define the normalized Cauchy Harish-Chandra integral by

chc(x′ + x)= 1

μ(A′′′
s \ H ′)

c̃hc(x′ + x) (x′ ∈ h′reg, x ∈ g).

Let S̃p(W) be the connected two-fold cover of Sp(W). This is the metaplectic group with

the canonical surjection

S̃p(W)−→ Sp(W). (1)

For a subset E of Sp(W), denote by Ẽ the preimage of E in S̃p(W).

Let S′(W) be the space of temperate distributions on W. Recall [18, Theorem 2.8]

Howe’s embedding of the metaplectic group into the space of temperate distributions on

the symplectic space:

T : S̃p(W)−→ S′(W).

Recall the definition of the Cauchy Harish-Chandra integral on the group G̃ ′, [18,

Definition 2.11]:

C̃hc(x′x)=
∫

A′′′
s \WA′′′

s

T(x′x)(w)dμ(A′′′
s w) (x′ ∈ H̃ ′reg, x ∈ G̃).

Define the normalized integral by

Chc(x′x)= 1

μ(A′′′
s \ H ′)

C̃hc(x′x) (x′ ∈ H̃ ′reg, x ∈ G̃).

1.1 Statement on the Lie algebra level

For φ ∈D(g) (the space of the compactly supported smooth functions on g) let

chc(φ)(x′)=
∫
g

chc(x′ + x)φ(x)dμ(x) (x′ ∈ h′reg).

The above formula defines a G ′-invariant function, chc(φ), on g′reg. Let us denote by Ĩ(g′)

the space of unnormalized orbital integrals on g′ with no condition on the support. This

means that Ĩ(g′) is the set of all ψ ∈ C ∞(g′reg) such that the functions

|det(ad(x))g′/g′x |1/2ψ(x) (x ∈ g′reg)

satisfy the conditions I1, I2, and I3 of [5, Section 3.2] and we do not assume that the con-

dition I4 is satisfied. We denote also by I(g) the space of unnormalized orbital integrals
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on g assuming this time that all the conditions I1, I2, I3, and I4 are satisfied. In other

words, by a result of Bouaziz [5], I(g) is the space of all the functions of the form

∫
G/Gx

ψ(g.x)dμ(gGx) (x ∈ greg, ψ ∈D(g)).

The first result of this paper is:

Theorem 1.1. Let φ ∈D(g). Then chc(φ) ∈ Ĩ(g′). �

Concerning the support, the functions in the range of chc do not necessarily

satisfy the condition I4. The functions restricted to a given Cartan subalgebra h′ have a

compact support modulo the elliptic part of h′.

1.2 Statements on the Lie group level

Let G1 denote the Zariski identity component of G multiplied by the center of G. Then

G1 = G unless G is a real, even orthogonal group O2p,2q. Similarly, we define G ′
1. Let

φ ∈D(G̃1) (the space of the compactly supported smooth functions on G̃1). Define Chc(φ)

to be a G̃-invariant function on G̃ ′reg
1 by the formula

Chc(φ)(x′)=
∫

G̃1

Chc(x′x)φ(x)dμ(x) (x′ ∈ H̃ ′reg).

Let us denote by I(G̃1) the space of unnormalized orbital integrals on G̃1. This means

that I(G̃1) is the set of function of the form

G̃reg
1  x −→

∫
G̃1/G̃1

x
ψ(g.x)dμ(gG̃1

x) ∈ C,

where ψ ∈D(G̃1). As explained in the remark following Theorem 6.7, I(G̃1) is isomorphic

as a vector space to the space of the Harish-Chandra orbital integrals, which is endowed

with a topology, as explained on [6, p. 580]. Hence, I(G̃1) is a linear topological vector

space.

We denote by IG̃ the map from D(G̃1) onto I(G̃1), defined above, and similarly for

G̃. One of the main results of this paper is

Theorem 1.2. Let φ ∈D(G̃1). Then Chc(φ) ∈ I(G̃1). Moreover, the resulting map

Chc :D(G̃1)→ I(G̃1)

is continuous and, if IG̃(φ) is 0, then Chc(φ) is also 0. �
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3822 F. Bernon and T. Przebinda

This theorem proves that Chc induces a map

Chc : I(G̃1)→ I(G̃1). (2)

Concerning the support of the functions in the range of Chc, their restrictions to a given

Cartan subgroup H̃ ′ of G̃ have a compact support modulo the compact part of H̃ ′. There-

fore, they are compactly supported. Let D′(G̃1) be the space of distributions on G̃1 and

let D′G̃(G̃1) be the space of G̃-invariant distributions on G̃1. Recall, [5] that the transpose

of the map IG̃ induces an isomorphism between I(G̃1)
′ (the dual of I(G̃1)) and D′G̃(G̃1).

Hence, we have

t IG̃ : I(G̃1)
′ �−→D′G̃(G̃1),

t IG̃ : I(G̃1)
′ �−→D′G̃(G̃1).

(3)

We denote also by Chc the resulting map

Chc :D′G̃(G̃1) �−→D′G̃(G̃1) (4)

induced by the transpose of Chc and the isomorphisms (3). Thus, for u′ ∈D′G̃(G̃1),

Chc(u′)= (t IG̃)
−1(u′) ◦ Chc. (5)

In particular, if u′ is given in terms of a locally integrable function, then, for φ ∈D(G̃1),

Chc(u′)(φ)=
∑ 1

|W(H ′)|
∫

H ′reg
|det(1 − Ad(h−1))g′/h′ |u′(h)Chc(φ)(h)dμ(h), (6)

where the summation is over a maximal family of mutually nonconjugate Cartan sub-

groups H ′ ⊆ G̃ and |W(H ′)| stands for the cardinality of the Weyl group of H ′ in G̃.

We denote by U(gC) (resp. U(g′
C
)) the enveloping algebra of gC (resp. g′

C
). Consider

the Capelli Harish-Chandra homomorphism (cf. equality (62)):

Cg,g′ : U(gC)
G −→ U(g′

C
)G

′
.

Let L be the left regular representation of U(gC)
G on D(G̃) (cf. equality (56)) and similarly

for g′.
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Theorem 1.3. Let z∈ U(gC)
G . Then for φ ∈D(G̃1)

Chc(L(ž)φ)= L(Cg,g′(z))Chc(φ),

where z→ ž is the involution on the universal enveloping algebra, extending the map

gC  z→ −z∈ gC. �

The action of U(gC)
G on D(G̃) induces an action on D′(G̃) denoted also by L. By

definition, we have

L(z)u(φ)= u(L(ž)φ)

for z∈ U(gC)
G,u∈D′(G̃), and φ ∈D(G̃). Moreover, U(gC)

G stabilizes D′G̃(G̃). The same

holds for G̃. The following theorem explains the title of the paper.

Theorem 1.4. Let z∈ U(gC)
G and u′ ∈D′G̃(G̃1). Then

Chc(L(Cg,g′(z))u′)= L(ž)Chc(u′). �

This result was the main aim of our project. One might deduce it directly from [3,

Theorem 7.4]; however, it is conceptually easier to see that it follows from Theorems 1.2

and 1.3, because the action of the centers of the universal enveloping algebras intertwine

the maps (3).

1.3 Relation with Howe’s correspondence

Let d ∈ S̃p(W) be any element in the preimage of −1 ∈ Sp(W). Let Π ′ be an irreducible

admissible representation of G̃ and let ΘΠ ′ denote the distribution character of Π ′.

Denote by χΠ ′(d) the scalar by which Π ′(d) acts on the Hilbert space of Π ′. Theorem 1.2

implies that for a test function φ ∈D(G̃) there is a test function φ′ ∈D(G̃1) whose orbital

integrals coincide with Chc(φ). Let

Θ ′
Π ′(φ)= χΠ ′(d)Θ(d)

∫
G̃1

ΘΠ ′(g−1)φ′(g)dμ(g). (7)

Though the function φ′ is not uniquely determined, its orbital integrals are. Hence, for-

mula (7) defines an invariant distribution on G̃1. (Recall that ΘΠ ′(g−1)= Θ̄Π ′(g) if Π ′ is

unitary.)

Let H∞ denote the space of the smooth vectors in the Hilbert space of the oscil-

lator representation ω corresponding to the character χ of the additive group of the

real numbers, as in [16]. Suppose the representation Π ′ occurs as a quotient of H∞ by a
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closed invariant subspace H∞
1 . Let H∞

Π ′ be the intersection of all such subspaces H∞
1 . As

shown in [17],

H∞/H∞
Π ′ is isomorphic to Π ′

1 ⊗Π ′

as a G̃ × G̃-module, where Π ′
1 is a finitely generated admissible quasisimple represen-

tation of G̃, which has a unique quotient Π (the “theta lift” of Π ′). (The notation Π ′
1 is

consistent with that of Howe [17, (1.1)] except that the members of the dual pair are

reversed. Therefore Π ′
1 is a representation of G̃ not of G̃.)

Here, we offer a more precise version of a conjecture formulated in [18, Conjec-

ture 2.18].

Conjecture 1.5. Suppose Π ′ occurs as a quotient of H∞ and the function ΘΠ ′ is sup-

ported in G̃1, that is, the restriction to the complement is zero: ΘΠ ′ |G̃\G̃1
= 0. Then,

Θ ′
Π ′ =ΘΠ ′

1
|G̃1
. �

It is clear from Theorem 1.4 that if γ ′ : U(g′
C
)G

′ → C is the infinitesimal character

of Π ′, then Θ ′
Π ′ is an γ ′ ◦ Cg,g′-eigendistribution, as are ΘΠ ′

1
and ΘΠ . Thus, Θ ′

Π ′ is an

invariant eigendistribution with the correct infinitesimal character!

If our dual pair is in the “deep stable range” with G ′ the smaller member (see

[8]), and Π ′ is genuine and unitary, then Π ′
1 =Π and Θ ′

Π ′ =ΘΠ . (In fact [8] was the main

motivation for [18].) The same holds if the group G ′ is compact. If the dual pair is of

type II, then the explicit formulas for the Chc in [4, Theorem 6] show that the conjecture

holds. Furthermore, these formulas combined with the equation

1

x − i0
− 1

x + i0
= 2π iδ(x) (x ∈ R),

imply and generalize the results of Adams [1] and Renard [20], concerning stable orbital

integrals and the theta lift, see Section 3.

The plan of this paper is as follows. In Section 2, we provide explicit formulas

for chc and for Chc. In Section 3, we consider sums of the integrals corresponding to

various real forms of a dual pair. In Section 4, we prove Theorem 1.1. In [3, 4], we proved

the boundedness of chc. (Specifically, the explicit formulas for chc in [4, Corollary 4 and

Corollary 8] reduce the problem to the case of an elliptic Cartan subalgebra of g′ and in

that case [3, Theorem 1] proves the result.)

In [4, Theorem 10], we proved that the jump relations are satisfied for the dual

pairs (Sp2n(R), O1,2), (Op,q,Sp2(R)), and (Up,q,U1,1). Here, we prove a result of reduc-

tion and deduce that the jump relations are satisfied for all dual pairs. The proof of
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Theorem 1.2 is similar to that of Theorem 1.1, and we provide a sketch in Section 5.

In Section 6, we define a certain open subset of G̃ on which Chc is an explicitly known

smooth function. We prove that on this open subset Chc is compatible with the Capelli

Harish-Chandra homomorphism (see Theorem 6.3). This implies that the compatibility

is satisfied for any regular semisimple element belonging to a fundamental Cartan sub-

group. Then, after recalling some classical result of Harish-Chandra (see Section 6.2),

we prove Theorem 1.3 using the induction method.

The second author wants to express his gratitude to the Université de Poitiers for

the hospitality and support during his visit in June 2003, when our joint work began.

We are also grateful to Abderrazak Bouaziz for several useful discussions. We thank

Detlef Müller for his interest in our work and for an invitation to Christian-Albrechts-

Universität of Kiel in January 2004, where some of the ideas of this paper germinated.

2 Explicit Formulas

Theorem 9 in [4] shows how to compute the Cauchy Harish-Chandra integral on every

Cartan subgroup of G̃, assuming that we know how to do it for a compact Cartan sub-

group. Thus, let H ′ ⊆ G ′ be a compact Cartan subgroup. As a generalized function, the

unnormalized Cauchy Harish-Chandra integral satisfies the following identity:

C̃hc(h′g)= 1

Θ(d)
Θ(dh′g) (h′ ∈ H̃ ′reg, g ∈ G̃), (8)

where Θ is the character of the oscillator representation ω and H ′reg ⊆ H ′ stands for the

subset of regular elements. In Theorem 2.2, we shall give an explicit formula for

∫
G̃1

Θ(h′g) f(g)dμ(g) (h′ ∈ H̃ ′reg, f ∈D(G̃1)).

Since G ′ has a compact Cartan subgroup, there is a division algebra D = R, C or H, with

an involution ι, and a finite-dimensional space V′ over D with a nondegenerate form ( , )′

which is either ι-hermitian or ι-skew-hermitian, so that G ′ may be identified with the

isometry group of that form. Let

V′ = V′
0 ⊕ V′

1 ⊕ · · · ⊕ V′
n′ (9)

be the decomposition into H ′-irreducibles over D. Here V′
0 = 0 unless D = R, the form ( , )′

is symmetric and dim(V′) is odd. In that case h′ acts trivially on V′
0 and dim(V′

0)= 1. There

is an element J ′ ∈ h′ such that J ′2 = −1 on V′
1 ⊕ · · · ⊕ V′

n′ . Let J ′
j denote the restriction of

J ′ to V′
j, 1 ≤ j ≤ n′.
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The group G coincides with the isometry group of a form ( , ) of opposite type to

( , )′ on a finite-dimensional vector space V over D. The symplectic space W = Hom(V,V′),

with the symplectic form given by the formula

〈w′, w〉 = trD/R(w
∗w′) (w,w′ ∈ W),

where w∗ ∈ Hom(V′,V) is defined by

(wv, v′)′ = (v,w∗v′) (v ∈ V, v′ ∈ V′).

We have the obvious inclusions: G,G ′ ⊆ Sp(W) and g, g′ ⊆ sp(W).

If V′
0 �= 0, we choose an element J ∈ g such that J2 = −1 in End(V) and the restric-

tion of the symmetric form 〈J, 〉 to the subspace Hom(V,V′
0)⊆ W is positive definite:

〈J, 〉Hom(V,V′
0)
> 0. We shall view W as a complex vector space by

iw=
⎧⎨⎩J ′(w) if w ∈ Hom(V,V′

1 + V′
2 + · · · + V′

n),

J(w) if w ∈ Hom(V,V′
0).

(10)

Let det : EndC(W)→ C denote the corresponding determinant and let

G̃LC(W)= {g̃ = (g, ξ); ξ2 = det(g), g ∈ GLC(W)}.

Note that this is a linear algebraic group. Define

det1/2
(g̃)= ξ, (g̃ = (g, ξ) ∈ G̃LC(W)).

Let H ′
C
,G i

C
⊆ GLC(W) be the complexifications of H ′ and G i, the centralizer of i in G,

respectively. The character Θ extends to a rational function

Θ(h̃′g̃)= (−1)p− det1/2
(h̃′g̃)

det(1 − h′g)
(h̃′ ∈ H̃ ′

C
, g̃ ∈ G̃ i

C
), (11)

where H̃ ′
C
, G̃ i

C
⊆ G̃LC(W) are the preimages of the complexifications of H ′, G i, and 2p−

is the maximal dimension of real subspace of W on which the symmetric form 〈J ′, 〉,
(or equivalently 〈i, 〉), is negative definite. This follows from Theorem 2.13 and for-

mula (10.10) in [18]. (Indeed, it suffices to consider the pair G = Up,q, G ′ = U1. This is

because Sp(W)i, the centralizer of i in Sp(W), coincides with the subgroup preserving the

Downloaded from https://academic.oup.com/imrn/article-abstract/2014/14/3818/719460
by University of Oklahoma user
on 04 November 2017



CHC and the Invariant Eigendistributions 3827

following nondegenerate hermitian form

〈iw,w′〉 + i〈w,w′〉 (w,w′ ∈ W)

and both H ′ and G i are contained in Sp(W)i. Then dimR(W)= 2(p+ q). Let n= p+ q.

Theorem 2.13 in [18] shows that

lim
t→0

tnΘ(c̃−(tx))= 2− dimR(W)c̃hc(x) (x ∈ g),

where c̃− is the lift of the Cayley transform c−(x)= (1 + x)(1 − x)−1 such that c̃−(0) is the

identity. On the other hand,

lim
t→0

tn det1/2
(c̃−(tx))

det(1 − c−(tx))
= 1

det(−2)

1

det(x)
.

Since by Przebinda [18, (10.10)],

c̃hc(x)= (−1)p2n 1

det(x)
,

we see that

Θ(g̃)
det(1 − g)

det1/2
(g̃)

= 2− dimR(W)det(−2)(−1)p2n = (−1)n+p = (−1)q,

and the claim follows.)

Let H ⊆ G be a fundamental Cartan subgroup and let

V = V0 ⊕ V1 ⊕ · · · ⊕ Vn (12)

be the decomposition into H-irreducibles over D. Here V0 = 0 unless D = R, the form ( , )

is symmetric and dim(V) is odd. In that case h acts trivially on V0 and dim(V0)= 1. The

group H is compact unless D = R, the form ( , ) is symmetric, dim(V) is even but the Witt

index of ( , ) is odd (i.e., G is isomorphic to O2p+1,2q+1). If H is compact, then there is

an element J ∈ h (consistent with (10)) whose square equals minus identity on V1 + V2 +
· · · + Vn. Let Jj = J|V j , 1 ≤ j ≤ n. Suppose H is not compact. Then we may assume that H |V j

is compact for each 2 ≤ j ≤ n and that there is J1 ∈ End(V1) with J2
1 = −1, such that h|V1

is conjugate over C to RiJ1. As before, let J = J1 + J2 + · · · + Jn. In any case, J1, J2, . . . , Jn

is a basis of the complex vector space hC. Let J∗
1 , J∗

2 , . . . , J∗
n be the dual basis, and let
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3828 F. Bernon and T. Przebinda

ej = iJ∗
j , 1 ≤ j ≤ n. Also, we shall identify

V′
j = V j, J ′

j = Jj (1 ≤ j ≤ n′). (13)

In particular, h′
C

⊆ hC. Let

Wh′ =
n′∑

j=1

Hom(V j,V j)
J .

This is a complex subspace of W consisting of all elements that commute with J.

Let HC ⊆ GC denote the complexification of H and let HC,1 denote the identity

component of HC. Then HC,1 is isomorphic to

hC

/⎧⎨⎩
n∑

j=1

2πxj Jj

∣∣∣∣∣∣ xj ∈ Z

⎫⎬⎭ .

Let ȞC,1 denote the connected two-fold cover of HC,1 isomorphic to

hC

/⎧⎨⎩
n∑

j=1

2πxj Jj

∣∣∣∣∣∣
n∑

j=1

xj Jj ∈ 2Z, xj ∈ Z, 1 ≤ j ≤ n

⎫⎬⎭ .

Then we have the following covering maps:

p̌ : ȞC,1 → H̃C,1, p̃ : H̃C,1 → HC,1, p= p̃◦ p̌ : ȞC,1 → HC,1. (14)

Here, p̌ is either an isomorphism or ȞC,1 coincides with the direct product HC,1 × {±1}
and p̌= p. Similarly, we have

p̌ : Ȟ ′
C,1 → H̃ ′

C,1, p̃ : H̃ ′
C,1 → H ′

C,1, p= p̃◦ p̌ : Ȟ ′
C,1 → H ′

C,1. (15)

Fix a system Ψ ′ of positive roots of h′
C

in g′
C

and a system Ψ of positive roots of hC

in gC. Let Φ = −Ψ . Let Z denote the centralizer of h′
C

in G and let W(HC, ZC) be the

corresponding Weyl group. Let Φ(Z)=Φ ∩ h′⊥. This is a system of positive roots of hC in

the Lie algebra of ZC. For h′ ∈ Ȟ ′
C,1 and h∈ ȞC,1 define

ΔΨ ′(h′)= h′ 1
2

∑
α∈Ψ ′ α

∏
α∈Ψ ′

(1 − h′−α),

ΔΦ(h)= h
1
2

∑
α∈Φ α

∏
α∈Φ

(1 − h−α),
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ΔΦ(Z)(h)= h
1
2

∑
α∈Φ(Z) α

∏
α∈Φ(Z)

(1 − h−α), (16)

det1/2
(h)Wh′ = h

1
2

∑n′
j=1 ej .

The choice of the covering is such that the above definitions make sense. Furthermore,

(det1/2
(h)Wh′ )2 = det(p(h))Wh′ ,

where det(p(h))Wh′ is the usual determinant of p(h) ∈ EndC(Wh′
).

Define a number k= −1,0 or 1 as follows:

k=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if (GC,G ′
C
)= (GLn(C),GLn′(C)) and n− n′ ∈ 2Z,

or (GC,G ′
C
)= (O2n+1(C),Sp2n′(C)),

1 if (GC,G ′
C
)= (Sp2n(C), O2n′+1(C)),

0 otherwise.

Define a character sign of the Weyl group W(HC,GC)= W(HC) by

ΔΦ(s.h)
det1/2

(s.h)Hom(V,V′
0)

det(1 − p(s.h))Hom(V,V′
0)

= sign(s)ΔΦ(h)
det1/2

(h)Hom(V,V′
0)

det(1 − p(h))Hom(V,V′
0)

(s ∈ W(HC), h∈ ȞC,1). (17)

The group W(HC) acts on the real span of the J1, . . . , Jn (which is the same as h if H is

compact) and is realized as conjugations by elements of GLC(W) as in [3, Section 3].

Proposition 2.1. There is a constant v= ±1, which depends only on the choice of the

positive root systems Ψ ′, Φ, such that for h′ ∈ Ȟ ′
C,1 and h∈ ȞC,1,

detk/2
(h′)Wh′ΔΨ ′(h′)Θ( p̌(h′) p̌(h))ΔΦ(h)

=
∑

s∈W(HC)

(−1)p− v sign(s)

|W(HC, ZC)|
detk/2

(s−1.h)Wh′ΔΦ(Z)(s−1.h)

det(1 − p(h′)p(s−1.h))Wh′

det1/2
(s−1.h)W0

det(1 − p(s−1.h))W0

,

where W0 = Hom(
∑n

j=n′+1 V j,V′
0). �

This is verified by the argument used in [3, Appendix B] to prove the correspond-

ing statement for the Lie algebra. The factor detk/2 is necessary for the partial fraction
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decomposition to work. Unfortunately, it was overlooked in [18, (14.5)]. Let

U =
⎧⎨⎩VC if D �= C,

V if D = C.

Let Ψ n
st denote the family of strongly orthogonal noncompact imaginary roots in Ψ , as in

[3, (1.1)–(1.2)]. For each S ∈Ψ n
st, there is an element C (S) ∈ GLC(U) such that the map

End(U)  x → c(S)(x)= C (S)xC (S)−1 ∈ End(U),

when restricted to gC, coincides with the Cayley transform. Let H(S)⊆ G be the corre-

sponding Cartan subgroup and let

HS = c(S)−1(H(S))⊆ HC.

The map c(S) lifts to the covering, and we shall use the same symbol c(S) to denote these

lifts. Let HS,1 = HS ∩ HC,1 and let ȞS,1 ⊆ ȞC,1, H̃S,1 ⊆ H̃C,1 be the corresponding preimages

under the covering maps p̌, p̃. Let ΨS,R ⊆Ψ denote the set of the real roots for HS . Define

εΨS,R(h)= sign

⎛⎝ ∏
α∈ΨS,R

(1 − h−α)

⎞⎠ (h∈ Ȟ reg
S,1),

where Ȟ reg
S,1 stands for the set of regular elements in ȞS,1. Recall the Harish-Chandra

orbital integral of a function f ∈D(G̃1):

HS f(h)= εΨS,R(h)ΔΨ (h)
∫

G/H(S)
f(g.c(S)( p̃(h)))dμ(gH(S)) (h∈ Ȟ reg

S,1).

Note that the function ΔΦ(h)HS f(h) is constant on the fibers of the covering map p̌.

Hence, the Weyl integration formula for G̃1 looks as follows:

∫
G̃1

f(g)dμ(g)=
∑
S∈Ψ n

st

mS
∫

H̃S
εΨS,R(h)ΔΦ(h)HS f(h)dμ(h),

where the mS are appropriate, uniquely determined, constants.

For a subset A⊆Ψ , let A= { j | there is α ∈ A such that α(Jj) �= 0}. For s ∈ W(HC)

and S ∈Ψ n
st define

Γs,S = {y∈ h | 〈y, 〉sWh′ ∩∑ j /∈S Hom(V j ,V′) > 0},
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as in [3, Lemma 7.1], and let Es,S = exp(Γs,S)⊆ H̃C,1. Furthermore, let

MS(s)= (−1)p− vmS sign(s)

|W(HC, ZC)| .

Theorem 2.2. Let h′ ∈ Ȟ ′
1(= Ȟ ′

∅,1) and let f ∈D(G̃1). Then

detk/2
(h′)Wh′ΔΨ ′(h′)

∫
G̃1

Θ( p̌(h′)g) f(g)dμ(g)

=
∑

s∈W(HC)

∑
S∈Ψ n

st

MS(s) lim
r∈Es,S , r→1

∫
Ȟ reg
S,1

detk/2
(s−1.h)Wh′ΔΦ(Z)(s−1.h)

det(1 − p(h′)rp(h))sWh′

det1/2
(s−1.h)W0

det(1 − p(s−1.h))W0

εΦS,R(h)HS f(h)dμ(h).

Here the factor ΔΦ(Z)(s−1.h)
det(1−p(s−1.h))W0

is a smooth function. �

This follows from Proposition 2.1 by localization, as in the proof of [3,

Theorem 7.3]. Note that if G ′ is an odd real orthogonal group (i.e., D = R, the form ( , )′

is symmetric and dim(V′) is odd), then d /∈ Ȟ ′
∅,1. However, the element d is in the center of

the metaplectic group, and therefore, we may view it as an element of G̃1.

3 A Relation with Stable Orbital Integrals

The theory of Stable Orbital Integrals or Stable Invariant Eigendistributions leads to

certain identities among some averages of irreducible characters, see [1] and Renard

[20]. Our approach attempts to produce some irreducible characters. In this section, we

check that our construction leads to the same identities and thus provide some evidence

for Conjecture 1.5.

Let us define the following two distributions on the unit circle in the complex

plane:

1

1 − 1+1z
= lim

r>1, r→1

1

1 − rz
,

1

1 − 1−1z
= lim

r<1, r→1

1

1 − rz
(z∈ C, |z| = 1).

Then, as is well known [14, Example 3.1.13],

1

2π

(
1

1 − 1−1z
− 1

1 − 1+1z

)
= δ(z), (18)

where δ stands for the Dirac delta at the identity.
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If D = C, then the Weyl group W(HC,GC) may be identified with the permutation

group Σn so that

σ.Jj = Jσ( j), (σ ∈ W(HC,GC), 1 ≤ j ≤ n).

If D �= C, then W(HC,GC), is identified with the semidirect product of Σn and (Z/2Z)n,

where Z/2Z = {0,1} with the addition modulo 2, so that

s.Jj = ε̂ j Jσ( j), (s = σε ∈ W(HC,GC), ε̂ j = (−1)ε j , 1 ≤ j ≤ n).

In any case (D = C or D �= C) we shall think of elements s ∈ W(HC,GC) as s = σε, where

ε = 0 if D = C.

Let Hom(Vl ,V j)
0 = Hom(Vl ,V j)

J be the subspace of elements that commute with

J and let Hom(Vl,V j)
1 be the subspace of elements that anti-commute with J. (The last

space is zero if D = C.) Thus, for ε j = 0 or 1, we have the subspace Hom(Vσ( j),V j)
ε j ⊆

Hom(Vσ( j),V j). Let

ys =
n∑

j=1

sign〈J, 〉Hom(Vσ( j),V j)
ε j Jσ( j) ∈ h (s = σε ∈ W(HC,GC)). (19)

Here, by definition, the sign〈J, 〉Hom(Vσ( j),V j)
ε j is equal 1 if this form is positive definite and

−1 if it is negative definite.

Let H ′ ⊆ G ′ be the compact Cartan subgroup considered in section 2. For h∈ H

and 1 ≤ j ≤ n let hj = hej ∈ C, and similarly for H ′. Then, in terms of Theorem 2.2,

lim
r∈Es,∅, r→1

1

det(1 − h′rh)sWh′
=

n′∏
j=1

1

1 − h′
j(1J∗

σ( j)(ys)hσ( j))
−ε̂ j

(h′ ∈ H ′reg
, h∈ H).

We note that (18) implies the following identity:

∑
λ∈{±1}n′

n′∏
j=1

λ j

1 − h′
j(1λ j J∗

σ( j)(ys)hσ( j))
−ε̂ j

=
n′∏

j=1

(−ε̂ j) ·
n′∏

j=1

J∗
σ( j)(ys) ·

n′∏
j=1

⎛⎝ 1

1 − h′
j1+1h

−ε̂ j

σ( j)

− 1

1 − h′
j1−1h

−ε̂ j

σ( j)

⎞⎠
= (2π)n

′ ·
n′∏

j=1

ε̂ j ·
n′∏

j=1

J∗
σ( j)(ys) · δ(h′(s−1.h)−1), (20)
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where δ stands for the Dirac delta at the identity of H ′. Furthermore,

lim
r∈Es,S , r→1

1

det(1 − h′rh)sWh′
=

n′∏
j=1, j /∈S

1

1 − h′
j(1J∗

σ( j)(ys)hσ( j))
−ε̂ j

n′∏
j=1, j∈S

1

1 − h′
jh

−ε̂ j

σ( j)

, (21)

and if S �= ∅, then

∑
λ∈{±1}n′

n′∏
j=1, j /∈S

λ j

1 − h′
j(1λ j J∗

σ( j)(ys)hσ( j))
−ε̂ j

n′∏
j=1, j∈S

λ j

1 − h′
jh

−ε̂ j

σ( j)

= 0. (22)

The generalized function Θ(h′g), (8), and the sets Es,S of Theorem 2.2 depend on the form

( , )′ (and the form ( , )). Let Θλ(h′g) and Eλ
s,S denote the corresponding objects for the

form

λ1( , )
′|V′

1
+ λ2( , )

′|V′
2
+ · · · + λn′( , )′|V′

n′ , (23)

where λ= (λ1, . . . , λn′) ∈ {±1}n′
.

Assume from now on that n′ = n. Then H ′ = H via identification (13) and Ȟ ′
1 = Ȟ ′

1.

Formulas (20) and (22) imply that, in terms of Theorem 2.2,

∑
λ∈{±1}n′

λ1λ2 · · · λn′detk/2
(h′)Wh′ΔΨ ′(h′)

∫
G̃1

Θλ( p̃(h′)g) f(g)dμ(g)

=
∑

s∈W(HC,GC)

M∅(s)
∑

λ∈{±1}n′
λ1λ2 · · · λn′ , (24)

lim
r∈Eλ

s,∅, r→1

∫
Ȟ1

1

det(1 − p(h′)rp(h))sWh′
detk/2

(s−1.h)WhH∅ f(h)dμ(h)

=
∑

s∈W(HC,GC)

M∅(s)(2π)n
′ ·

n′∏
j=1

ε̂ j ·
n′∏

j=1

J∗
σ( j)(ys), (25)

∫
Ȟ1

δ(p(h′(s−1.h)−1))detk/2
(s−1.h)Wh′H∅ f(h)dμ(h)

= detk/2
(h′)Whμ(H ′)(−1)p−+n+n′ v

|W(H,G)|
∑

s∈W(HC,GC)

sign(s)
n∏

j=1

ε̂ j ·
n′∏

j=1

J∗
σ( j)(ys) · H∅ f(s.h′).

Suppose, from now on, that the form ( , )′ is hermitian. Then the element yσε (19) does

not depend on ε. Moreover,

n′∏
j=1

J∗
σ( j)(ys)= (−1)−n+p−(Wh′

),
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where 2p−(Wh′
) is the maximal dimension of a subspace of Wh′

on which the symmetric

form 〈J ′, 〉 is negative definite.

Under our assumptions, we have the identification W(H ′
C
,G ′

C
)= W(HC,GC). Let

us denote both groups by W(HC). Furthermore, for s = σε ∈ W(HC),

sign(s)
n∏

j=1

ε̂ j = sign′
(s),

where the sign′ is defined by ΔΨ ′(s.h′)= sign′
(s)ΔΨ ′(h′). For λ ∈ {±1}n′

, define

q(λ)= (−1)p−+p−(Wh′
) (−1)n

′
v

|W(HC)|λ1λ2 · · · λn′ .

Then (24) shows that

∑
λ∈{±1}n′

q(λ)
1

μ(H ′)

∫
G̃
Θλ( p̌(h′)g) f(g)dμ(g)

= 1

|W(H,G)||W(HC)|
∑

s∈W(HC)

1

ΔΨ ′(s.h′)
H∅ f(s.h′). (26)

This function is clearly W(HC)-invariant.

Let γ ∈ h∗ = h′∗ be a regular element. For h∈ Ȟ reg define

F (h)=
∑

s∈W(HC)
sign′

(s)hsγ

Δ−Ψ ′(h)
. (27)

Then (26) shows that

∫
Ȟ ′reg

|ΔΨ ′(h)|2 F (h)
∑

λ∈{±1}n

q(λ)
1

μ(H ′)

∫
G̃
Θλ( p̌(h)g) f(g)dμ(g)dμ(h)

= 1

|W(H,G)|
∫

Ȟ reg
|ΔΨ (h)|2 1

|W(HC)|
∑

s∈W(HC)

(
F (s.h)

Δ−Ψ ′(s.h)

Δ−Ψ (s.h)

)

×
∫

G/H
f(g. p̃(s.h))dμ(gH)dμ(h). (28)

The group Σn acts on the set {±1}n so that

Θσλ(hg)=Θλ((σ−1.h)g) (σ ∈Σn, λ ∈ {±1}n,h∈ H̃ ′reg, g ∈ G̃).
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Hence, the left-hand side of (28) may be rewritten as

∑
λ∈{±1}n

q(λ)
∫

Ȟ ′reg
|ΔΨ ′(h)|2 F (h)

1

μ(H ′)

∫
G̃
Θλ( p̌(h)g) f(g)dμ(g)dμ(h)

=
∑

[λ]∈{±1}n/Σn

∑
[σ ]∈Σn/StabΣn(λ)

q(σλ)
∫

Ȟ ′reg
|ΔΨ ′(h)|2 F (h)

1

μ(H ′)

∫
G̃
Θσλ( p̌(h)g) f(g)dμ(g)dμ(h)

=
∑

[λ]∈{±1}n/Σn

∑
[σ ]∈Σn/StabΣn(λ)

q(λ)
∫

Ȟ ′reg
|ΔΨ ′(h)|2 F (h)

1

μ(H ′)

∫
G̃
Θλ( p̌(h)g) f(g)dμ(g)dμ(h).

(29)

Let G ′
λ be the isometry group of the form (23). Then

|Σn/StabΣn(λ)| =
|W(HC)|

|W(H ′,G ′
λ)|
.

Hence, (29) is equal to

∑
[λ]∈{±1}n/Σn

q(λ)
|W(HC)|

|W(H ′,G ′
λ)|

∫
Ȟ ′reg

|ΔΨ ′(h)|2 F (h)
1

μ(H ′)

∫
G̃
Θλ( p̌(h)g) f(g)dμ(g)dμ(h). (30)

We know from Theorem 1.2 that there are functions fλ ∈D(G̃λ) such that

1

μ(H ′)

∫
G̃
Θλ( p̌(h)g) f(g)dμ(g)=

∫
G̃λ/H̃ ′

fλ(g. p̌(h))dμ(gH ′). (31)

Furthermore,

F (h)=
∑

[s]∈W(H ′,G ′
λ)\W(HC)

Fλ,[s](h), where

Fλ,[s](h)=
∑

s′∈W(H ′,G ′
λ)

sign′
(s′s)hs′sγ

Δ−Ψ ′(h)
.

(32)

Hence, (30) is equal to

∑
[λ]∈{±1}n/Σn

q(λ)|W(HC)|
∑

[s]∈W(H ′,G ′
λ)\W(HC)

1

|W(H ′,G ′
λ)|

×
∫

Ȟ ′reg
|ΔΨ ′(h)|2 Fλ,[s](h)

∫
G̃λ/H̃ ′

fλ(g. p̌(h))dμ(gH ′). (33)
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We may assume that the forms ( , )′ and 〈J, 〉 are positive definite. Then (−1)p−+p−(Wh′
) = 1.

Thus, we see from (33) that the equality (28) may be rewritten as

∑
[λ]∈{±1}n/Σn

(−1)n
′
vλ1λ2 · · · λn

∑
[s]∈W(H ′,G ′

λ)\W(HC)

1

|W(H ′,G ′
λ)|

×
∫

Ȟ ′reg
|ΔΨ ′(h)|2 Fλ,[s](h)

∫
G̃λ/H̃ ′

fλ(g. p̌(h))dμ(gH ′)

= 1

|W(H,G)|
∫

H ′reg
|ΔΨ (h)|2 1

|W(HC)|

×
∑

s∈W(HC)

(
F (s.h)

Δ−Ψ ′(s.h)

Δ−Ψ (s.h)

) ∫
G/H

f(g. p̌(s.h))dμ(gH)dμ(h). (34)

If D = R and dim(V′)= 2n+ 1, then

λ1λ2 · · · λn = (−1)
1
2 dim(G ′

λ/K ′
λ),

where K ′
λ ⊆ G ′

λ is a maximal compact subgroup. In this case (34) simplifies further to

(−1)n
′
v(−1)

1
2 dim(G ′

λ/K ′
λ)

∑
[λ]∈{±1}n/Σn

∑
[s]∈W(H ′,G ′

λ)\W(HC)

1

|W(H ′,G ′
λ)|

×
∫

Ȟ ′reg
|ΔΨ ′(h)|2 Fλ,[s](h)

∫
G̃λ/H̃ ′

fλ(g. p̃(h))dμ(gH ′)

= 1

|W(H,G)|
∫

Ȟ reg
|ΔΨ (h)|2

(
F (h)

Δ−Ψ ′(h)

Δ−Ψ (h)

) ∑
s∈W(HC)

∫
G/H

f(g. p̌(s.h))dμ(gH)dμ(h). (35)

Thus, in this case, the weighted sum of the Cauchy Harish-Chandra integrals (26) coin-

cides with the transfer map studied by Adams [1, Definition 4.5] and Renard [20]. We

formulate this conclusion in the following proposition.

Proposition 3.1. Suppose D = R, dim(V′)= 2n′ + 1, the forms ( , )′ and 〈J, 〉 are positive

definite. For λ ∈ {±1}n′
let ( , )′λ denote the symmetric form on V′ defined by the condition

(23) and let G ′
λ be the corresponding isometry group. Assume n′ = n, so that (G,G ′

λ) is an

orthosymplectic dual pair consisting of groups of equal rank. Let us identify H ′ = H as
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in (13). Let F denote the function (27). Then for any test function f ∈D(G̃),
∫

Ȟ ′reg
|ΔΨ ′(h)|2 F (h)

v′

|W(HC)|
∑

λ∈{±1}n′

(−1)
1
2 dim(G ′

λ/K ′
λ)

μ(H ′)

∫
G̃
Θλ( p̌(h′)g) f(g)dμ(g)dμ(h)

= 1

|W(H,G)|
∫

Ȟ reg
|ΔΨ (h)|2

(
F (h)

Δ−Ψ ′(h)

Δ−Ψ (h)

) ∑
s∈W(HC)

∫
G/H

f(g. p̌(s.h))dμ(gH)dμ(h),

where v′ = (−1)n
′
v= ±1 depends only on the choice of the positive root systems. �

.
4 Proof of Theorem 1.1

4.1 Properties of Cauchy Harish-Chandra integral on the Lie algebra

Let h′ ⊆ g′ be a θ-stable Cartan subalgebra. Denote by ΔI (g
′
C
, h′

C
) the set of imaginary

roots of h′ in g′
C
. Fix a positive system Ψ ⊆ΔI (g

′
C
, h′

C
). For ψ ∈ S(g) and for x′ ∈ h′reg, define

chcW,Ψ,h′(ψ)(x′)=
∏
α∈Ψ

α(x′)
|α(x′)| |det(ad(x′))g′/h′ |1/2

∫
g

chcW(x
′ + x)ψ(x)dμ(x). (36)

Let h′
In−reg = {x′ ∈ h′ |α(x′) �= 0 for all α ∈Ψ }.

The explicit formulas for chc in [4, Corollaries 4 and 8] together with [3,

Theorem 1] show that that the function chcW,Ψ,h′(ψ) is smooth on h′reg and for any

w ∈ Sym(h′
C
) the derivative ∂(w) chcW,Ψ,h′(ψ) is locally bounded. The remaining property

to be proved is the jump relation (see (37)).

Fix a single noncompact imaginary root α ∈Ψ . Let x′ ∈ h′ be such that α(x′)= 0

and the derived Lie algebra [g′x′
, g′x′

] is isomorphic to s2(R). This means that x′ is a sub-

regular element attached to the noncompact imaginary root α. Let Hα ∈ ih′, X±α ∈ g′ x̃′
C,±α

be such that

[Xα, X−α] = Hα, [Hα, X±α] = ±2X±α, X̄α = X−α,

where X → X̄ stands for the conjugation with respect to the real form g′ ⊆ g′
C
. In partic-

ular, (Xα, Hα, X−α) is a s2−triple. Then, we have the decomposition

h′ = RiHα ⊕ ker(α).

Let

c(α)= exp
(
−i
π

4
ad(Xα + X−α)

)
∈ End(g′

C
).
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Then

c(α)(h′
C
) ∩ g′ = RsαHα ⊕ kerα

is another Cartan subalgebra of g′ denoted by h′
α. Let Ψ ∩ α⊥ = {β ∈Ψ |β(Hα)= 0}. Then

Ψ ∩ α⊥ ◦ c(α)−1

is a system of positive imaginary roots of h′
α in g′

C
denoted Ψα. Set

d(α)=
⎧⎨⎩2 if the reflection with respect to α is realized by an element of G̃x′

,

1 otherwise.

Let w ∈ Sym(h′
C
). Put

〈∂(w)chcW,Ψ,h′(ψ)〉(x′)= lim
t→0+

∂(w) chcW,Ψ,h′(ψ)(x′ + tiHα)− lim
t→0+

∂(w) chcW,Ψ,h′(ψ)(x′ − tiHα).

We need to prove the following jump relation

〈∂(w) chcW,Ψ,h′(ψ)〉(x′)= id(x′)∂(sαw) chcW,Ψα,h′
α
(ψ)(x′). (37)

4.2 Some useful facts

Lemma 4.1. Suppose that H is a compact Cartan subgroup of G. Then x ∈ h is not anni-

hilated by any noncompact imaginary roots if and only if Gx is compact. �

Proof. Recall the Cartan decomposition

g = k ⊕ p.

Then

gC = kC ⊕ pC =
⊕
α

kC,α ⊕
⊕
β

pC,β ,

where the α’s are the compact roots and the β’s are the noncompact roots. Thus,

gx
C

= hC ⊕
⊕
α(x)=0

kC,α ⊕
⊕
β(x)=0

pC,β ,

and the lemma follows. �
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Lemma 4.2. Let h ⊆ k be a Cartan subalgebra of g = k ⊕ p. Let

V = ⊕ jV j

be the decomposition into h-isotypic components over D. Let x ∈ h. Then x is annihilated

by precisely one noncompact imaginary root of h in gC if and only if Gx is not compact

and either

(1) there is exactly one pair j < k such that eig(x|V j )= eig(x|Vk), and x|Vl �= 0 for

all l if D = R and the form ( , ) is skew-symmetric, or

(2) D = R, the form ( , ) is skew symmetric, the sets eig(x|V j ) are distinct, and

there is exactly one l such that x|Vl = 0. �

Here eig(x) stands for the set of the eigenvalues of x.

Proof. There is t ∈ G such that θ = Ad(t). Since x = θ(x), t preserves the decomposition of

V. More precisely, if the form ( , ) is hermitian, then t|V j = ε j IV j , where ε j = 1 if ( , )V j > 0,

and ε j = −1 if ( , )V j < 0. If the form ( , ) is skew hermitian, then t is a positive compatible

complex structure on V and there are real numbers rj such that x|V j = rjt|V j for all j. As

an h-module,

p = tg =
⊕

j

tg(V j)⊕
⊕
j<k

tHom(V j,Vk).

Here tE ⊆ F stands for the anticommutant of E in F , that is, tE = {y∈ F ; xy + yx =
0 for all x ∈ E}. Suppose the form ( , ) is hermitian. Then tg(V j)= 0 for all j. Moreover,
tHom(V j,Vk) �= 0 if and only if ε j + εk = 0, and in this case, tHom(V j,Vk)= Hom(V j,Vk).

Thus,

p =
⊕

j<k,ε j+εk=0

Hom(V j,Vk).

Let α be a noncompact imaginary root. Then there is exactly one pair j < k, with ε j + εk =
0, such that α is an eigen-character of h in Hom(V j,Vk)C, that is, Hom(V j,Vk)C,α �= 0. Then

α(x)= 0 is equivalent to

det(ad(x))Hom(V j ,Vk)= 0,

which, by a case-by-case verification, is equivalent to

eig(x|V j )= eig(x|Vk).
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Suppose the form ( , ) is skew-hermitian. We may assume that D �= C. If α is a

noncompact imaginary root, then either

tHom(V j,Vk)C,α �= 0 for some j < k,

or

tg(Vl)C,α �= 0 for some l.

Note that

ad(x)tHom(V j ,Vk) = (rj + rk)ad( 1
2 t)tHom(V j ,Vk)

and

ad(x)tg(Vl ) = rl ad(t)tg(Vl ).

This implies our lemma. �

Corollary 4.3. Let h ⊆ k be a Cartan subalgebra of g = k ⊕ p. Let x ∈ h be such that x is

annihilated by precisely one noncompact imaginary root of h in gC. Then the space V has

a direct sum decomposition

V = V0 ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vm,

such that [gx|V0 , g
x|V0 ] is isomorphic to sl2(R), and for each j ≥ 1, the element (x,V j) is

indecomposable and gx|V j = h|V j .

Moreover, the sets

eig(x|V j ) ( j = 0,1,2, . . . ,m)

are disjoint.

If (x,V0) is indecomposable, then D = R, the form ( , ) is skew-symmetric and

x|V0 = 0. In this case, gx|V0 = g(V0) is isomorphic to sp2(R).

Suppose the element (x,V0) is decomposable. Then (x,V0) is the sum of two dis-

tinct indecomposables. If x|V0 �= 0, then both components are nonzero and gx|V0 = u1,1. If

x|V0 = 0, then D = R, the form ( , ) is symmetric, ( , )V0 has signature (2,1) or (1,2) and

gx|V0 = g(V0) is isomorphic to so(1,2). �
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4.3 The reduction

Proposition 4.4. Suppose H ′ is a compact Cartan subgroup of G ′. Let ψ ∈D(g). Then the

function

h′
In−reg  x′ → chc(ψ)(x′)=

∫
g

chc(x′ + x)ψ(x)dμ(x) ∈ C

is smooth. �

Proof. This may be done via a wave front set computation as in Lemma 15.6, [18], or

explicitly as follows.

Fix x′ ∈ h′
In−reg. It will suffice to consider the function chc(ψ)(x′) for x′ in some

small neighborhood of x′. Furthermore, we may assume that ψ is supported in an

arbitrarily small completely invariant neighborhood of a semisimple point x ∈ g, which

belongs to the singular support of chc(x′+). Let

V′ =
⊕

j

V′
j and V =

⊕
k

Vk

be the isotypic decompositions with respect to x′ and x, respectively. It is not difficult

to check that the sets eig(x′|V′
j
) are disjoint. For each j, let Ṽ j be the sum of all the

Vk such that eig(x′|V′
j
)= eig(x|Vk). We arrange the indices so that Ṽ j �= 0 if and only if

j = 1,2,3, . . . ,m. Then

W =
m⊕

j=1

ker(x′ + x) ∩ Hom(V′
j, Ṽ j)⊕ ker(x′ + x)⊥.

Let U ′ ⊆ g′x′
and U ⊆ gx be slices through x′ and x, respectively. Then for x′ ∈ U ′ and for

x ∈ U ,

chcW(x
′ + y)=

m∏
j=1

chcker(x′+x)∩Hom(V′
j ,Ṽ j)

(x′ + y) chcker(x′+x)⊥(x
′ + y),

where the last factor is a smooth function. Since, by Lemma 4.1, G ′x′
is compact, the

above decomposition of chcW reduces the proof to the case when G ′ is compact. In this

case, ∫
g

c̃hc(x′ + x)ψ(x)dμ(x)=
∫
g

χ

(
1

4
〈xw,w〉

)
φ(w)dw,

where φ ∈ S(W) is the pullback via the moment map W → g∗ of a Fourier transform of

ψ . (Here the fact that φ is rapidly decreasing follows from the compactness of G ′.) In

particular, it is clear that the function in question is smooth. �
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Proof of Theorem 1.1. Theorem 1.1 holds for pairs of type II, as was observed by

Bernon [2]. This is a consequence of an explicit formula [18, Proposition 7.21]. Thus,

we may assume that the pair (G,G ′) is of type I. Then G and G ′ are the isometry groups

G = G(V, ( , )) and let G ′ = G(V′, ( , )′), as in Section 2. Recall the θ-stable Cartan sub-

group H ′ = T ′ A′ ⊆ G ′. Let V′
c ⊆ V′ be the subspace on which A′ acts trivially, and let

V′
s = V′

c
⊥. Then V′

s has a complete polarization

V′
s = X′ ⊕ Y′

preserved by H ′. We may and do assume that V′
s ⊆ V and that the above is also a complete

polarization with respect to the form ( , ). Let U = V′
s
⊥ ⊆ V. Then

V = V′
s ⊕ U.

The above decompositions induce embeddings:

GL(X′)× G(U)⊆ G,

n′ = Hom(X′,V′
c)+ Hom(X′,Y′) ∩ g′ ⊆ g′,

n = Hom(X′,U)+ Hom(X′,Y′) ∩ g ⊆ g.

(38)

We assume that the subgroup GL(X′)× G(U)⊆ G is preserved by θ . Let Wc = Hom(V′
c,U).

Then, by Bernon and Przebinda [4, Corollary 8], there is a nonzero constant

c = γ (V,V′,X′)
η(V,V′,X′)

,

such that, for ψ ∈ S(g), we have

chcW,Ψ,h′(ψ)(x′)

= c
∏

α∈Ψ (gl(X′))

α(x′)
|α(x′)| |det(ad(x′))gl(X′)/h′|X′ |1/2

·
∫

GL(X′)/H ′|X′

∫
g(U)

∏
α∈Ψ (g(V′

c))

α(x′)
|α(x′)|chcWc(x

′|V ′
c
+ y)ψK

n (g · x′|X′ + y)dμ(y)dμ(gH ′|X′), (39)

where, for the purposes of normalization of the measure μ, H ′|X′ ⊆ G ′ ⊆ Sp(W). Moreover,

Ψ is the disjoint union of Ψ (gl(X′))⊆ΔI (gl(X′)C, h′
X′,C) and Ψ (g(V′

c))⊆ΔI (g(V′
c)C, h

′
V′

c,C
), and
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the integral over g(U) is not there if Wc = 0. If Wc �= 0 and h′ acts trivially on Wc (or

equivalently on V′
c), then chcWc(x

′|V′
c
+ y) is replaced by chcWc(y).

If chcWc(y)= 0 or chcWc(y) �= 0 but h′|V′
c
= 0, then we see from (39) that chcW,Ψ,h′(ψ)

is an orbital integral, so there is nothing to prove.

If h′|V′
c
�= 0, then chcW,Ψ,h′(ψ) is essentially the tensor product of an orbital inte-

gral for gl(X′) and chcW,Ψ (g(V′
c)),h

′|V′
c
. Thus, formula (39) shows that, if the jump relations

are satisfied under the assumption that H ′ is compact, then they are satisfied in general.

Therefore, we can assume that H ′ is compact.

Fix an element x′ ∈ h′ that is annihilated by precisely one noncompact imaginary

root of h′ in g′
C
. Then, by Corollary 4.3, the space V′ has a direct sum decomposition

V′ = V′
0 ⊕ V′

1 ⊕ V′
2 ⊕ · · · ⊕ V′

m,

such that [gx′ |V0, g
x′ |V0 ] is isomorphic to sl2(R), and g′x′ |V′

j
= h′|V′

j
for each j ≥ 1. Let x ∈ g be

a semisimple element in the singular support of the distribution chc(x′ + .). Let

V =
⊕

k

Vk

be the x-isotypic decomposition of V. Since det(x′ + x)= 0, there are j and k such that

eig(x′|V′
j
) ∩ eig(x|Vk) �= ∅. (Then eig(x′|V′

j
)= eig(x|Vk).) For each j, let Ṽ j be the sum of all

the Vk such that eig(x′|V′
j
)= eig(x|Vk). Let J ⊆ {0,1,2, · · · ,m} be the set such that Ṽ j �= 0.

Then

W =
⎛⎝⊕

j∈J
ker(x′ + x) ∩ Hom(V′

j, Ṽ j)

⎞⎠⊕ ker(x′ + x)⊥.

Let U ′ ⊆ g′x′
and U ⊆ gx be slices through x′ and x, respectively. Then for x′ ∈ U ′ and for

x ∈ U ,

chcW(x
′ + y)=

∏
j∈J

chcker(x′+x)∩Hom(V′
j ,Ṽ j)

(x′ + y) chcker(x′+x)⊥(x
′ + y),

where the last factor is a smooth function. Also, by Proposition 4.4, for each j ∈J \ {0},
the function

U ′  x′ → chcHom(V′
j ,Ṽ j)∩ker(x′+x)(x

′ + .) ∈D′(U)

is smooth. Hence, the jump may occur if and only if 0 ∈J . In that case we are led to

consider the pair

G ′x′ |V′
0
,Gx|Ṽ0

⊆ Sp(ker(x′ + x) ∩ Hom(V′
0, Ṽ0)). (40)
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Now we use Corollary 4.3. If x′|V′
0
= 0, then x|Ṽ0

= 0 and the pair (40) coincides either with

(Op,q,Sp2(R)) or with (Sp2n(R), O1,2).

If x′|V′
0
�= 0, then x|Ṽ0

�= 0 and there are complex structures J ′ ∈ g′ and J ∈ g such

that x′ = r′J ′ and x = rJ , for some r, r′ ∈ R \ {0}. Furthermore, if we view V′ and V as

complex vector spaces via the actions of J ′ and J , then

G ′x′ |V′
0
= U1,1, Gx|Ṽ0

= Up,q,

ker(x′ + x) ∩ Hom(V′
0, Ṽ0)= HomC(V′

0, Ṽ0).

By Bernon and Przebinda [4, Theorem 10], we know that for the dual pairs (Op,q,Sp2(R)),

(Sp2n(R), O1,2), and (Up,q,U1,1), the jump relations are satisfied. We deduce the result

using a partition of unity. �

5 Proof of Theorem 1.2

As in the case of Theorem 1.1, we need to check the boundedness and the jump rela-

tions. The boundedness shall be verified in Proposition 5.1, where we use the notation

of Section 2 without comments. The verification of the jump relations is done via the

reduction to smaller cases (as in the proof of Theorem 1.1), lifting to the Lie algebra via

the Cayley transform and localization, as in the proof of Proposition 5.1. We leave the

details to the reader.

Proposition 5.1. Let f ∈D(G̃1). Then for any u∈ Sym(h′
C
),

sup
h′∈Ȟ ′reg

∣∣∣∣L(u)(ΔΨ ′(h′)
∫

G̃
Θ( p̌(h′)g) f(g)dμ(g)

)∣∣∣∣<∞. �

Proof. Let us write Θ =ΘV,V′ in order to indicate the dependence of the character Θ on

the underlying spaces, V and V′. (For different vector spaces we get different symplectic

spaces and thus different characters.)

Consider first the case when −1 is not an eigenvalue of any element of supp( f).

Let P = (P +, P −) be a partition of the set {1,2, . . . ,n′}:

{1,2, . . . ,n′} = P + ∪ P −. (41)

For ε > 0 let

H ′(P , ε)= {h′ ∈ H ′ | |h′
j + 1|> ε if j ∈ P +, and |h′

j + 1|< 2ε if j ∈ P −}. (42)
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Also, let

V′+ =
∑
j∈P +

V′
j, V′− =

∑
j∈P −

V′
j. (43)

Then, for ε > 0 small enough, the sets (42) are nonempty and form an open covering of

H ′, and the family of functions

ΘV,V′−(h′g) f(g) (h′ ∈ H̃ ′(P , ε))

is bounded in D(G̃). From now on we fix such an ε.

Let Ψ ′
+ = {α ∈Ψ ′ |α⊆ P +}. Then for any v ∈ Sym(h′

C
), the function

L(v)
ΔΨ ′(h′)
ΔΨ ′+(h

′)
(h′ ∈ H ′ p̃) (44)

is bounded. Furthermore,

ΔΨ ′(h′)
∫

G̃
Θ( p̌(h′)g) f(g)dμ(g)

= ΔΨ ′(h′)
ΔΨ ′+(h

′)
ΔΨ ′+(h

′)
∫

G̃
ΘV,V′+( p̌(h

′)g)(ΘV,V′−( p̌(h
′)g) f(g))dμ(g). (45)

Thus, we may assume that V′
0 = 0 (i.e., P − = ∅) and consider only the h′ ∈ H̃ ′ with | p̃(h)′j +

1|> ε for all 1 ≤ j ≤ n′. Let

p̌(h′)= c̃(x′)d, g = c̃(x)d−1.

Then

Θ( p̌(h′)g)=Θ(c̃(x′)c̃(x))=Θ(h′d−1)c̃hc(x′ + x)Θ(gd). (46)

Thus, (45) coincides with

ΔΨ ′(h′)
πg′/h′(x′)

Θ( p̃(h′)d−1) πg′/h′(x′)
∫
g

c̃hc(x′ + x)(Θ(c̃(x)) f(c̃(x)d−1) jg(x))dμ(x),

where πg′/h′(x′)=∏
α∈Ψ ′ α(x′) and jg is the Jacobian of the Cayley transform c : g → G.

Since any derivative of the function R  t → sin(t)
t ∈ R is bounded, it is easy to check that
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for any v ∈ S(h′
C
), the function

L(v)
ΔΨ ′(h′)
πg′/h′(x′)

(h′ ∈ Ȟ ′) (47)

is bounded. Also, ∣∣Θ( p̌(h′)d−1)
∣∣≤ ∣∣∣∣ 1

det(1 + p(h′))W

∣∣∣∣ .
Hence, the proposition follows from [3, Theorem 1].

Suppose 1 is not an eigenvalue of any element of supp( f). Then the elements

of the support of the function f(dg) do not have −1 as an eigenvalue. Furthermore,

d ∈ G̃ ∩ G̃ and ΔΨ ′(h′)=ΔΨ ′(h′d). Hence, by the left invariance of the measure μ, the left-

hand side of (45) is equal to

ΔΨ ′(h′d)
∫

G̃
Θ( p̌(h′)dg) f(dg)dμ(g), (48)

and we are in the case considered previously, with p̌(h′) replaced by p̌(h′)d, so the result

follows. Thus, we need to consider functions f supported in a completely invariant open

neighborhood V of a semisimple element g0 which has both 1 and −1 as eigenvalues.

If D = C, then G̃ ∩ G̃ is a double cover of the unitary group U1. Hence, by choosing

V small enough, we may translate, as in (48), by an element of G̃ ∩ G̃ to reduce to the case

considered in (45). In order to resolve the general case, we proceed as follows.

For a partition P , as in (41), let

H ′(P )= {h′ ∈ H ′; |h′
j + 1|> 11

10 |h′
j − 1| if j ∈ P +, and |h′

j − 1|> 11
10 |h′

j + 1| if j ∈ P −}.

The sets H ′(P ) are not empty and form an open covering of H ′. Let

V = V+ ⊕ V−

be a direct sum decomposition preserved by g0 and such that −1 is not an eigenvalue

of g0|V+ , and 1 is not an eigenvalue of g0|V− . We may assume that the neighborhood V is

small enough so that the families of functions

V  g →ΘV−,V′+(h′g) (h′ ∈ H̃ ′(P )),

V  g →ΘV+,V′−(h′g) (h′ ∈ H̃ ′(P ))
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are bounded in C ∞(V). Then the families of functions

V  g → ΘV−,V′+(h′g)
ΘV−,V′+(dh′g)

(h′ ∈ H̃ ′(P )),

V  g → ΘV+,V′−(h′g)
ΘV+,V′−(dh′g)

(h′ ∈ H̃ ′(P ))

are also bounded in C ∞(V). Furthermore, for h′ ∈ H̃ ′(P ) and g ∈ V,

Θ(h′g)=ΘV+,V′+(h′g)ΘV+,V′−(dh′g)
ΘV+,V′−(h′g)
ΘV+,V′−(dh′g)

·ΘV−,V′−(h′g)ΘV−,V′+(dh′g)
ΘV−,V′+(h′g)
ΘV−,V′+(dh′g)

. (49)

Let
h′ = (d+c̃(x′+))c̃(x′−), d+ ∈ G̃(V′+), x′± ∈ h′|V′± ,

and let

g = (d+c̃(x+))c̃(x−), d+ ∈ G̃(V+),

x± ∈ g are conjugate to elements of g(V±), respectively.

Then, as in (46),

ΘV+,V′+(h′g)ΘV+,V′−(dh′g)

=ΘV+,V′+(h′d−1
+ )c̃hcV+,V′+(x′+ + x+)ΘV+,V′+(gd+),

ΘV+,V′−(h′)c̃hcV+,V′−(x′− + x+)ΘV+,V′−(g)

=ΘV+,V′+(h′d−1
+ )ΘV+,V′−(h′)c̃hcV+,V′(x′ + x+)ΘV+,V′+(gd+)ΘV+,V′−(g), (50)

where x′ = x′− + x′+. Similarly,

ΘV−,V′−(h′g)ΘV−,V′+(dh′g)=ΘV−,V′−(h′)ΘV−,V′+(h′d−1
+ )c̃hcV−,V′(x′ + x−)

·ΘV−,V′−(g)ΘV−,V′+(gd). (51)

Hence, (49) is equal to

ΘV+,V′+(h′d−1
+ )ΘV+,V′−(h′)ΘV−,V′−(h′)ΘV−,V′+(h′d−1

+ )c̃hcV,V′(x′ + x)

·
(
ΘV+,V′+(gd+)ΘV+,V′−(g)ΘV−,V′−(g)ΘV−,V′+(gd−1)

ΘV+,V′−(h′g)
ΘV+,V′−(dh′g)

ΘV−,V′+(h′g)
ΘV−,V′+(dh′g)

)
. (52)
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The term in parenthesis is a smooth function and the product of the first four terms on

the right-hand side of (52) is dominated by∣∣∣∣ 1

det(1 + p̃(h′))Hom(V+,V′+)

1

det(1 − p̃(h′))Hom(V+,V′−)

1

det(1 − p̃(h′))Hom(V−,V′+)

1

det(1 + p̃(h′))Hom(V−,V′+)

∣∣∣∣ .
Thus, since the c̃hcV,V′ in (52) corresponds to the situation when the rank of g′ is less or

equal to the rank of g, the theorem follows from [3, Theorem 1]. �

6 Proof of Theorem 1.3

As before, let Θ be the distribution character of the Shale Weil (oscillator) representa-

tion (of S̃p(W)). In the first subsection, we prove that there exists a certain subset on

which we can restrict Θ. This proves that Chc has a nice restriction on a dense open

subset of G̃ denoted G̃npb. Proposition 6.3 says that the compatibility of Chc with the

Capelli Harish-Chandra homomorphism is satisfied on G̃npb. The crucial point is that

any regular element belonging to a fundamental Cartan subgroup belongs to G̃npb. The

extension to the whole G̃ is immediate from Theorem 1.2. In Section 1.2, we introduce

some notations and recall some classical results due to Harish-Chandra. In Section 1.3,

we prove Theorem 1.3.

6.1 The restriction of Θ to a dense subset of G̃G̃

For g ∈ Sp(W) the tangent space TgSp(W) may be identified with gsp(W)⊆ End(W). Then

the dual space T∗
g Sp(W) is identified with {g} × sp∗(W) by

sp∗(W)  ξ → (TgSp(W)  gx → ξ(x) ∈ R) ∈ T∗
g Sp(W)

and the cotangent bundle T∗sp(W) with Sp(W)× sp∗(W). Denote by ρ the canonical pro-

jection

ρ : T∗Sp(W)  (g, ξ)→ g ∈ Sp(W).

Similarly, T∗S̃p(W) is identified with S̃p(W)× sp∗(W).

Let (G,G ′) be a dual pair in Sp(W). The conormal bundle to the embedding G̃G̃ →
S̃p(W) is given by

NG̃G̃ = {(gg′, ξ) | g ∈ G̃, g′ ∈ G̃, ξ ∈ sp∗(W), ξ |g+g′ = 0}.
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Recall, [18, Lemma 12.2], that the wave front set of the distribution character

Θ ∈D′((S̃p)(W)) of the oscillator representation is

WF(Θ)= {(g, τsp(w)) | g ∈ S̃p(W)× sp∗(W), w ∈ W, w �= 0, g(w)=w}, (53)

where τg : W → g∗, τ (w)(x)= 〈xw,w〉. Also, the elements of S̃p(W) act on W via the map

(1). Clearly,

WF(Θ) ∩ NG̃G̃

= {(p, τsp(W)(w)) ∈ G̃G̃ × sp(W) |w ∈ W\{0}, τg(w)= 0, τg′(w)= 0, pw=w}, (54)

and therefore,

ρ(WF(Θ) ∩ NG̃G̃)= {p∈ G̃G̃ ′ |w ∈ W\{0} with τg(w)= 0, τg′(w)= 0, pw=w}.

Thus,

G̃G̃ \ (ρ(WF(Θ) ∩ NG̃G̃)
)= {p∈ G̃G̃ | τ−1

g (0) ∩ τ−1
g′ (0) ∩ ker(p− idW)= (0)}.

Let G̃≤n the preimage of the set of all elements of G ′ which do not preserve any nonzero

(isotropic in the type I case) subspaces of the defining module for g′, of dimension ≤ n.

Lemma 6.1. Let V denote the defining module for G. If G is the isometry group of a form

( , ) on V, denote by n the Witt index of the form ( , ). If G = GL(V), let n= dim(V). Then

the set of the elements g′ ∈ G̃, such that gg′ ∈ G̃G̃ \ ρ(WF(Θ) ∩ NG̃G̃) for all g ∈ G̃, is equal

to G̃≤n. �

Proof. Suppose the pair (G,G ′) is of type I. Then G ′ is the Lie group of the isometries

of a form ( , )′ on V′, and the symplectic space W can be realized as W = Hom(V,V′). For

w ∈ W define w∗ ∈ Hom(V′,V) by

(w(v), v′)′ = (v,w∗(v′)) (v ∈ V, v′ ∈ V′).

Let g ∈ G̃, g′ ∈ G̃, and w ∈ W \ {0} be such that τg(w)= 0, τg′(w)= 0, and gg′(w)=w. Then

w∗w= 0 and ww∗ = 0. Hence, im(w)⊆ ker(w∗)= im(w)⊥, and ker(w)⊇ im(w∗)= ker(w)⊥.

Thus, im(w)⊆ V′ is an isotropic subspace, and ker(w)⊆ V is a co-isotropic subspace. In

particular, the dimension of the image of w is not greater than the Witt index of the
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form ( , ). The equation gg′(w)=w translates to g′w=wg and implies that g′ preserves

im(w).

Conversely, suppose g′ ∈ G ′ preserves an isotropic subspace X′ ⊆ V′ of dimension

not greater than the Witt index of ( , ). Then there is an isotropic subspace X ⊆ V and a

linear bijection w : X → X′. Define an element g ∈ GL(X) by

g′w=wg.

Let Y ⊆ V be a subspace complementary to X⊥, and let U = (X + Y)⊥. Then Y is isotropic,

V = X ⊕ U ⊕ Y, and g extends to an element g ∈ G that preserves X, Y, and U. Let us extent

w to an element of W so than ker(w)= U ⊕ Y(= X⊥). Then w is a nonzero element of W

with w∗w= 0, ww∗ = 0, and g′w=wg.

Suppose, from now on, that the pair (G,G ′) is of type II. Let us realize the

symplectic space W as W = Hom(V,V′)⊕ Hom(V′,V). Let g ∈ G, g′ ∈ G ′, and w ∈ W \ {0}
be such that τg(w)= 0, τg′(w)= 0, and gg′(w)=w. Then there are S ∈ Hom(V,V′) and

T ∈ Hom(V′,V), with S or T nonzero, such w= (S, T). Hence, our condition translates

to ST = 0, T S = 0, g′Sg−1 = S, and gTg′−1 = T . Clearly, g′ preserves the image of S and the

kernel of T . Furthermore, dim(im(S))≤ dim(V), co-dim(ker(T))≤ dim(V) and at least one

of these spaces is not zero.

Conversely, suppose g′ ∈ G ′ preserves a nonzero subspace X′ ⊆ V′, with dim(X′)≤
dim(V). Let X ⊆ V be a subspace of the same dimension. Let Y ⊆ V be a complemen-

tary subspace. Let S ∈ Hom(V,V′) be such that ker(S)= Y and S|X : X → X′ is a bijection.

There is g ∈ G with g′Sg−1 = S. Let T = 0 and let w= (S, T). Then w �= 0 and ST = 0, T S = 0,

g′Sg−1 = S, and gTg′−1 = T . �

Let m : G̃ × G̃  (g, g′)→ gg′ ∈ S̃p(W) denote the multiplication. Lemma 6.1

implies that the pull-back m∗(Θ) ∈D′(G̃ × G̃≤n) is well defined. Let KΘ denote the

corresponding integral kernel operator:

KΘ : D(G̃)→D′(G̃≤n),

KΘ(ψ)(ψ
′)= m∗(Θ)(ψ ⊗ ψ ′) (ψ ∈D(G̃), ψ ′ ∈D(G̃≤n)).

Let G ′
npb ⊆ G ′ be the set of all the elements of G ′ that do not belong to any proper

parabolic subgroup of G ′. In other words G ′
npb = G ′

≤∞ is the set of all the elements of

the group that do not preserve any nonzero (isotropic in the type I case) subspaces of V′.

In particular, G ′
npb ⊆ G ′

≤n for any n= 1,2, . . .. Clearly it might happen that the set G ′
npb
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is empty. In fact G ′
npb coincides with the set of the orbits passing through the regular

elements of a compact Cartan subgroup of G ′. In the following lemma, we shall focus on

the cases when G ′
npb �= ∅.

Lemma 6.2. For any ψ ∈D(G̃), the restriction of the distribution KΘ(ψ) to G̃npb is a

smooth function. We shall denote this function by

∫
G̃
Θ(g′g)ψ(g)dμ(g) (g′ ∈ G̃npb). �

Proof. We know from [14, Theorem 8.2.12] and (53) that

WF(KΘ(ψ)|G̃npb
)⊆ {(g′, τg′(w)) | g′ ∈ G̃npb and there is g ∈ supp(ψ)

and w ∈ W \ {0}, such that τg(w)= 0 and g′g(w)=w}.

Let g, g′, and w be as above. Then

τg′(w)= τg′(gg′(w))= g′τg′(w)g′−1. (55)

On the other hand, τg(w)= 0 implies that τg′(w) is nilpotent. But since g′ ∈ G̃npb, (55)

implies that this nilpotent element has to be zero (see [7, Lemma 3.8.4]). Therefore,

WF(KΘ(ψ)|G̃npb
)= ∅, and the lemma follows. �

Recall the left regular representation of g:

L(x)ψ(g)= d

dt
ψ(exp(−tx)g)|t=0 (x ∈ g, g ∈ G̃, ψ ∈ C ∞(G̃)), (56)

and similarly for g′. Then L extends to an injective homomorphism from the universal

enveloping algebra U(gC) to the algebra of the analytic differential operators on G. Recall

the involution U(gC)  z→ ž∈ U(gC) defined by ž= −z, z∈ g. The action of U(gC) on the

space D′(G̃), of the distributions, is defined by

L(z)u(ψ)= u(L(ž)ψ) (u∈D′(G̃), z∈ U(gC)).

(Note that this definition is consistent with the embedding of C ∞(G̃) into D′(G̃) via the

Haar measure.)

Assume from now on that the rank of g′ is less than or equal to the rank of g.

Recall the Capelli Harish-Chandra homomorphism Cg,g′ : U(gC)
G → U(g′

C
)G

′
, [19, equal-

ity (5.5)].
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Theorem 6.3. For any ψ ∈D(G̃) the function

G̃npb  g′ →
∫

G̃
Θ(g′g)ψ(g)dμ(g) ∈ C

is smooth and invariant under the conjugation by G̃. Moreover, for z∈ U(gC)
G ,

∫
G̃
Θ(g′g)L(z)ψ(g)dμ(g)= L(Cg,g′(z)̌)

∫
G̃
Θ(g′g)ψ(g)dμ(g) (g′ ∈ G̃npb).

The above statements hold with Θ replaced by Chc (see (8)). �

Proof. The first part is clear from Lemma 6.2. Furthermore, in terms of the Weyl calcu-

lus as in [18],

∫
G̃
Θ(g′g)L(z)ψ(g)dμ(g)= T(g′)�T(L(z)ψ)(0)= T(g′)�T(z)�T(ψ)(0)

= T(g′)�T(Cg,g′(z))�T(ψ)(0)= T(Cg,g′(z))�T(g′)�T(ψ)(0)

= L(Cg,g′(z)̌)(T(g′)�T(ψ))(0)= L(Cg,g′(z)̌)
∫

G̃
Θ(g′g)ψ(g)dμ(g),

where the third equality follows from [19, 6.12]. �

6.2 Recapitulation of some results of Harish-Chandra

Let H be a Cartan subgroup of a real reductive group G. Let h and g denote the Lie

algebras of H and G, respectively. Fix a positive root system for the pair (gC, hC).

For a root α, let gα ⊆ gC denote the corresponding hC-eigenspace. Let Z(gC)⊆
U(gC) denote the center of U(gC).

Theorem 6.4 ([9, Lemma 36], [10, Lemma 18]). For each element z∈Z(gC), there is a

unique element γ ′(z) ∈ U(hC) such that z − γ ′(z) ∈∑α>0 U(gC)gα. Moreover, the map

Z(gC)  z→ γ ′(z) ∈ U(hC)

is an injective algebra homomorphism. �

Let W be the Weyl group for the pair (gC, hC). Let ρ = 1
2

∑
α>0 α. Let λ denote the

following automorphism of U(hC)

λ(x)= x − ρ(x) (x ∈ hC).
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Define

γ = λ ◦ γ ′.

Theorem 6.5 ([10, Lemma 19, Lemma 20]). The map γ : Z(gC)→ U(hC)
W is a surjective

algebra isomorphism. This map does not depend on the choice of the positive root sys-

tem. If σ is an automorphism of gC which preserves hC, then

γ (σ (z))= σ(γ (z)) (z∈Z(gC)).

If z→ ž denote the anti-automorphism of U(gC) defined by ž= −z if z∈ gC, then

γ (ž)= ˇγ (z) (z∈Z(gC)). �

For a root α, let ηα denote the corresponding character of H :

(exp(x))α = exp(α(x)) (x ∈ h).

(We assume that these characters exist.) Set

Δ′(h)=
∏
α>0

(1 − h−α) (h∈ H).

Define Sc(H reg) to be the space of all smooth functions f on H reg, such that the support

of f is bounded and for every z∈ U(hC),

sup
h∈H reg

|L(z) f(h)|<∞. (57)

Define a topology on Sc(H reg) by taking all the quantities (57) as seminorms. Let

ĨG( f)(h)=Δ′(h)
∫

G/H
f(ghg−1)dμ(gH) (h∈ H reg, f ∈D(G)). (58)

Theorem 6.6 ([11, Theorems 2 and 3]). For a function f ∈D(G), ĨG( f) ∈ Sc(H reg). More-

over, the map

D(G)  f → Ĩ G( f) ∈ Sc(H
reg)

is continuous. Furthermore,

Ĩ G(z. f)= γ ′(z). Ĩ G( f) (z∈Z(gC), f ∈D(G)).

(Here we identify the z with L(z).) �
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For h∈ H let

Δ(h)= hρΔ′(h),

Δ′
R
(h)=

∏
α>0,α real

(1 − ηα(h
−1)),

εR(h)= sign(Δ′
R
(h))

(59)

Theorem 6.7 ([12, Section 22]). For a function f ∈D(G) and for h∈ H reg define

Ǐ G( f)(h)= εR(h)Δ(h)
∫

G/H
f(g.h)dġ.

Then

Ǐ G(z. f)= γ (z). Ǐ G( f) (z∈Z, f ∈D(G)). �

Remark. In Section 1, we defined an unnormalized orbital integral denoted I G which is

not bounded. The normalized orbital integrals Ĩ G and Ǐ G are bounded. The last one is

the original Harish-Chandra orbital integral. �

If needed, we shall write εG
R

and ΔG , in order to indicate the group with respect

to which these functions are defined. Consider a parabolic subalgebra q ⊂ g, with the

Langlands decomposition

q = m ⊕ a ⊕ n.

From now on we assume that the Cartan subalgebra h is θ-stable and that h ∩ p = a. Let

Z(mC ⊕ aC) denote the center of the universal enveloping algebra of the complexification

of m ⊕ a. As in [12, Section 12] set

νg/m⊕a = γ−1
m⊕a/h ◦ γg/h : Z(gC)→Z(mC ⊕ aC). (60)

Let Q be the parabolic subgroup of G such that Lie(Q)= m ⊕ a and L the Levi factor of

Q. We have Lie(L)= m ⊕ a. For f ∈D(G), denote by f Q the Harish-Chandra transform of

f (see [4, (0.4)]).

Theorem 6.8 ([13, Corollary 2, p. 94, and Corollary of Lemma 14, p. 96]). For any function

f ∈D(G) and any z∈Z(gC),

(z. f)L = νg/m⊕a.(z) f L .
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Moreover,

Ǐ G( f)= Ǐ L( f L) ( f ∈D(G)). �

Recall, [9, p. 117], the Harish-Chandra radial component map δ′
G/H from the alge-

bra of analytic differential operators on G to the algebra of analytic differential opera-

tors on H reg. For any analytic Ad(G)-invariant differential operator D on G, δ′
G/H (D) is

the unique analytic differential operator on H reg such that

Dψ |H reg = δ′
G/H (D)(ψ |H reg) (ψ ∈ C ∞(G.[H reg])G),

(see [21, Proposition 6, p. 225]). Let πG/H denote any analytic square root of the determi-

nant

H reg  h→ det(Ad(h−1)− 1)g/h ∈ C.

Then

δ′
G/H (L(z))= π−1

G/H L(γg/h(z))πG/H (z∈ U(gC)
G) (61)

(see [10, Theorem 2, p. 125; 12, Lemma 13, p.466]).

6.3 Chc and the Capelli Harish-Chandra homomorphism

Let (G,G ′)⊆ Sp(W) be a dual pair with the rank of G ′ less than or equal than to the

rank of G. Recall the Cartan subgroup H ′ ⊆ G ′ and the parabolic subgroups Q′ ⊆ G ′,

Q ⊆ G. We identify h′ with a subspace of g, as in [19, Proposition 1.14]. Let z ⊆ g be the

centralizer of h′ and let Z ⊆ G be the normalizer of z in G. If the pair (G,G ′) is of type

I, then there is a nondegenerate subspace U0 ⊆ U such that z = h′ ⊕ z′′, with z′′ = g(U0). If

the pair (G,G ′) is of type II, then z = h′ ⊕ z′′, with z′′ = gl(U). Let Z ′′ = G(U0) in the first

case, and let Z ′′ = GL(U) in the second case. Then

U(zC)
Z = U(h′

C
)W

′ ⊗ U(z′′
C
)Z ′′
,

where W′ is the appropriate Weyl group for G ′. Let

εz′′ : U(z′′
C
)→ C

be the algebra homomorphism by which U(z′′
C
) acts on the trivial representation of z′′,

unless G ′ is an orthogonal group of type B (i.e., the defining module of G ′ has odd dimen-

sion). In this case, Z ′′ is a symplectic group and εz′′ is the infinitesimal character of the
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oscillator representation. Choose a Cartan subalgebra h′′ ⊆ z′′. Then h = h′ ⊕ h′′ is a Cartan

subalgebra of g. Recall the Capelli Harish-Chandra homomorphism, [19, equality (5.5)],

Cg,g′ : U(gC)
G −→ U(g′

C
)G

′
, Cg,g′ = γ−1

g′/h′ ◦ (1 ⊗ εz′′) ◦ γ−1
z/h ◦ γg/h. (62)

Similarly, in the type I case we have,

Cg(U),g(V′
c)

: U(g(U)C)G(U) → U(g(V′
c)C)

G(V′
c).

Also, let h′
s = h′|X′ ⊆ gl(X′) and let h′

c = h′|V′
c
⊆ g(V′

c). Then

U(h′
C
)W

′ = U(h′
s,C)

W′
s ⊗ U(h′

c,C)
W′

c, (63)

where W′
s (resp. W′

c) is the Weyl group of h′
s,C (resp. h′

c,C).

Lemma 6.9. Suppose the pair (G,G ′) is of type I. Then

γg′/h′ ◦ Cg,g′ = (
γgl(X′)/h′

s
⊗ γg(V′

c)/h
′
c
◦ Cg(U),g(V′

c)

) ◦ νg/m⊕a.

If the pair (G,G ′) is of type II, then

γg′/h′ ◦ Cg,g′ = (
γgl(X′)/h′

s
⊗ εz′′

) ◦ νg/m⊕a. �

Proof. From (62) we see that

γg′/h′ ◦ Cg,g′ = (γgl(X′)/h′
s
⊗ εz′′) ◦ γ−1

z/h ◦ γg/h,

and similarly,

γg(V′
c)/h

′
c
◦ Cg(U),g(V′

c)
= (1c ⊗ εz′′) ◦ γ−1

z(U)/h(U) ◦ γg(U)/h(U),

where z(U)= g(U) ∩ z = h′
c ⊕ z′′ and 1c stands for the identity on U(h′

c,C)
W′

c.
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Let us write 1 = 1s ⊗ 1c for the identity, according to the decomposition (63).

Then,

γg′/h′ ◦ Cg,g′ = (1 ⊗ εz′′) ◦ γ−1
z/h ◦ γm⊕a/h ◦ γ−1

m⊕a/h ◦ γg/h

= (1s ⊗ (1c ⊗ εz′′)) ◦ γ−1
z/h ◦ γm⊕a/h ◦ νg/m⊕a

= (
1s ⊗ (1c ⊗ εz′′)

) ◦
(
1s ⊗ γ−1

z(U)/h(U)

)
◦ γm⊕a/h ◦ νg/m⊕a

=
(
1s ⊗ (1c ⊗ εz′′) ◦ γ−1

z(U)/h(U)

)
◦ (γgl(X′)/h′

s
⊗ γg(U)/h(U)

) ◦ νg/m⊕a

=
(
γgl(X′)/h′

s
⊗ (1c ⊗ εz′′) ◦ γ−1

z(U)/h(U) ◦ γg(U)/h(U)

)
◦ νg/m⊕a

= (
γgl(X′)/h′

s
⊗ γg(V′

c)/h
′
c
◦ Cg(U),g(V′

c)

) ◦ νg/m⊕a.

This verifies the first equality. The second one is simpler:

γg′/h′ ◦ Cg,g′ = (1 ⊗ εz′′) ◦ γ−1
z/h ◦ γm⊕a/h ◦ νg/m⊕a

= (1 ⊗ εz′′) ◦ (1 ⊗ γz′′/h′′)−1 ◦ (γgl(X′)/h′
s
⊗ γz′′/h′′) ◦ νg/m⊕a

= (1 ⊗ εz′′) ◦ (γgl(X′)/h′
s
⊗ 1) ◦ νg/m⊕a

= (γgl(X′)/h′
s
⊗ εz′′) ◦ νg/m⊕a. �

Proof of Theorem 1.3. Consider first a dual pair (G,G ′) of type I. Let ψ ∈D(G̃) be sup-

ported in a connected set of a single sheet of the covering map G̃ → G. Our task is to

show that for all x′ ∈ H ′reg,

∫
G̃

Chc(x′g)L(z)ψ(g)dμ(g)= δ′
G ′/H ′(L(Cg,g′(z)))

∫
G̃

Chc(x′g)ψ(g)dμ(g). (64)

Let A′ (resp T ′) be the split (resp. compact) part of H ′. Put, as before,

V′
c = {v ∈ V′ | a.v = 0 ∀a∈ A′}.

Then, there exists a unique complement V′
s of V′

c in V′ such that the decomposition

V′ = V′
c ⊕ V′

s
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is preserved by H ′. The space V′
c has a complete polarization

V′
s = X′ ⊕ Y′.

Let x′ ∈ H̃ ′reg. We put x′ = x′
cx′

s according to the equality H̃ = T̃ Ã. We can assume that V′
s

is contained in V (otherwise Chc is trivial) and we have a decomposition

V = V′
s

⊥⊕ U.

Recall that Wc = Hom(V′
c,U). In [4, Theorem 9], three cases are considered. The first two

are simpler than the last one; therefore, we assume that h′ does not act trivially on Wc.

We have

ε
GL(X′)
R

(x′
s)Δ

GL(X′)(x′
s)|det(Ad(x′)n′)|1/2|det((Ad(x′−1)− 1)n′)|

∫
G̃

ChcW(x
′g)ψ(g)dμ(g)

= C0ε(x
′
s)

∫
GL(X′)/H ′

|X′

∫
G̃(U)

ε
GL(X′)
R

(x′
s)Δ

GL(X′)(x′
s)ε(dx′

sys)

· ChcWc(x
′
cyc)ψ

L̃(h.(dx′
s)y)dμ(y)dμ(hH ′

|X′), (65)

where the constant C0 is explicitly known. Since m ⊕ a = gl(X′)⊕ g(U), there are finitely

many elements si ∈ U(gl(X′)C)GL(X′), ci ∈ U(g(U)C)G(U), such that

νg/m⊕a(z)=
∑

i

si ⊗ ci.

Then, by Theorem 6.8,

(L(z)ψ)L̃ =
∑

i

(L(si)⊗ L(ci))ψ
L̃ .

Hence, if we replace ψ by L(z)ψ on the right-hand side of (65), we obtain

C0ε(x
′
s)
∑

i

∫
GL(X′)/H ′

|X′

∫
G̃(U)

ε
GL(X′)
R

(x′
s)Δ

GL(X′)(x′
s)ε(dx′

s ys)ChcWc(x
′
cyc)

· (L(si)⊗ L(ci))ψ
L̃(h.(dx′

s)y)dμ(y)dμ(hH ′
|X′). (66)

We may rewrite (66) as follows

∑
i

∫
G̃L(X′)

∫
G̃(U)

ε(dx′
s ys) Ǐ

G̃L(X′)
dx′

s
(x)ChcWc(x

′
cyc)(L(si)⊗ L(ci))ψ

L̃(x′y)dμ(y)dμ(x). (67)
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By Theorems 6.3 and 6.7, (67) coincides with

C0ε(x
′
s)
∑

i

∫
G̃L(X′)

∫
G̃(U)

L(γgl(X′)/h′
|X′ (ši))(ε(dx′

sys) Ǐ
G̃L(X′)
dx′

s
(x))

· δ′
G̃(V′

c)/H̃ ′
c
(L(Cg(U),g(V′

c)
(či)))(ChcWc(x

′
cyc))ψ

L̃(x′y)dμ(y)dμ(x). (68)

The reason why we have ši in (68) rather than si, as in (67), is that si ∈ U(gC) in (67) and si ∈
U(g′

C
) in (68). More precisely, on the one hand, GL(X′)⊆ G ′ acts on the symplectic space

W = Hom(V,V′) via the post-multiplication by the inverse, and on the other, GL(X′) is

identified with a subgroup of G via the embedding (38). This inverse forces the transition

si → ši.

The formula (61) implies that (68) is equal to

C0

(
1 ⊗ 1

πG̃(V′
c)/H̃ ′

c

)
L

(∑
i

(γgl(X′)/h′
X′ (ši))⊗ γg(V′

c)/h
′
c
◦ Cg(U),g(V′

c)
(či)

)
(1 ⊗ πG̃(V′

c)/H̃ ′
c
)

·
∫

G̃L(X′)

∫
G̃(U)

Ǐ G̃L(X′)
dx′

s
(x)ChcWc(x

′
cyc)ψ

L̃(xy)dμ(y)dμ(x). (69)

Then, Lemma 6.9 shows that (69) coincides with

C0

(
1 ⊗ 1

πG̃(V′
c)/H̃ ′

c

)
L(γg′/h′ ◦ Cg,g′(ž))(1 ⊗ πG̃(V′

c)/H̃ ′
c
)

·
∫

G̃L(X′)

∫
G̃(U)

I G̃L(X′)
dx′

s
(x′)ChcWc(x

′
cyc)ψ

L̃(xy)dμ(y)dμ(x). (70)

Hence, by (65),(
1 ⊗ 1

πG̃(V′
c)/H̃ ′

c

)
L(γg′/h′ ◦ Cg,g′(ž))(1 ⊗ πG̃(V′

c)/H̃ ′
c
)

· εGL(X′)
R

(x̃′
s)Δ

GL(X′)(x′
s)|det(Ad(x′)n′)|1/2|det((Ad(x′−1)− 1)n′)|

∫
G̃

ChcW(x
′g)ψ(g)dμ(g)

= ε
GL(X′)
R

(x′
s)Δ

GL(X′)(x′
s)|det(Ad(x′)n′)|1/2|det((Ad(x′−1)− 1)n′)|

·
∫

G̃
ChcW(x

′g)(L(z)ψ(g))dμ(g) (71)

Note that

ΔGL(X′)(x′
s)|det(Ad(x′)n′)|1/2|det((Ad(x′−1)− 1)n′)|(1 ⊗ πG̃(V′

c)/H̃ ′
c
)(x′)=ΔG ′

(x′).
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Hence, (71) may be rewritten as

1

ε
GL(X′)
R

(x′
s)Δ

G ′
(x′)

L(γg′/h′ ◦ Cg,g′(ž))εGL(X′)
R

(x′
s)Δ

G ′
(x′)

∫
G̃

ChcW(x
′g)ψ(g)dμ(g)

=
∫

G̃
ChcW(x

′g)(L(z)ψ(g))dμ(g). (72)

Since

1

ε
GL(X′)
R

(x′
s)Δ

G ′
(x′)

(γg′/h′ ◦ Cg,g′(ž))εGL(X′)
R

(x′
s)Δ

G ′
(x′)= δ′

G̃/H̃ ′(Cg,g′(ž)),

we are done.

We consider now a dual pair (G,G ′) of type II. Again, we need to verify the equal-

ity (64). From [4, Theorem 6.5], we see that

εG ′
R
(x′)ΔG ′

(x′)
∫

G̃
ChcW(x

′g)ψ(g)dμ(g)

= C0

∫
G ′/H ′

∫
G̃L(U)

εG ′
R
(x′)ΔG ′

(x′)ψ Q̃(x.(ηx′)u)dμ(u)dμ(xH ′), (73)

where C0 is an explicitly known constant. Since m ⊕ a = g′ ⊕ gl(U), there are finitely many

elements si ∈ U(g′
C
)G

′
, ci ∈ U(gl(U)C)GL(U), such that

νg/m⊕a(z)=
∑

i

si ⊗ ci.

Then, by Theorem 6.8,

(L(z)ψ)L̃ =
∑

i

(L(si)⊗ L(ci))ψ
L̃ .

Hence, if we replace ψ by L(z)ψ on the right-hand side of (73), we obtain

C0

∑
i

∫
G ′/H ′

∫
G̃L(U)

εG ′
R
(x′)ΔG ′

(x′)(L(si)⊗ L(ci))ψ
L̃(x.(dx′

s)u)dμ(u)dμ(xH ′). (74)

We may rewrite (62) as follows

∑
i

∫
G̃

∫
G̃L(U)

εG ′
R
(x′)ΔG ′

(x′)ε(dx′
s Idx′

s
)(x)(L(si)⊗ L(ci))ψ

L̃(xu)dμ(u)dμ(x). (75)
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By Theorem 6.7, (75) is equal to

∑
i

∫
G̃

∫
G̃L(U)

L(γg′/h′(ši))(ε
G ′
R
(x′)ΔG ′

(x′)Idx′(x))εz′′(či)ψ
L̃(xu)dμ(u)dμ(x). (76)

Lemma 6.9(ii) shows that (76) coincides with

L(γg′/h′ ◦ Cg,g′(ž))εG ′
R
(x′)ΔG ′

(x′)
∫

G̃

∫
G̃L(U)

Idx′(x)ψ L̃(xu)dμ(u)dμ(x). (77)

Hence, by (73),

L(γg′/h′ ◦ Cg,g′(ž))εG ′
R
(x′)ΔG ′

(x′)
∫

G̃
ChcW(x

′g)ψ(g)dμ(g)

= εG ′
R
(x′)ΔG ′

(x′)
∫

G̃
ChcW(x

′g)(L(z)ψ(g))dμ(g).

Since
1

εG ′
R
(x′)ΔG ′

(x′)
(γg′/h′ ◦ Cg,g′(ž))εG ′

R
(x′)ΔG ′

(x′)= δ′
G̃/H̃ ′(Cg,g′(ž)),

we are done. �
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[2] Bernon, F. “Propriétés de l’intégrale de Cauchy Harish-Chandra pour les paires duales
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