

Holomorphicity of a Class of Semigroups of Measures Operating on \$L^p(G/H)\$ Author(s): Tomasz Przebinda Source: *Proceedings of the American Mathematical Society*, Vol. 87, No. 4 (Apr., 1983), pp. 637-643 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2043350 Accessed: 04-11-2017 01:36 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society

HOLOMORPHICITY OF A CLASS OF SEMIGROUPS OF MEASURES OPERATING ON $L^{p}(G/H)$

TOMASZ PRZEBINDA

ABSTRACT. In the present paper we consider the class of stable semigroups of measures on a Lie group G. This class contains the Gaussian semigroups. We prove that under certain strongly continuous representations of G acting in $L^{p}(G/H)$, $1 \le p < \infty$, these semigroups are holomorphic and uniformly bounded.

Introduction. For a fixed Lie group G, let (S) denote the smallest family of semigroups of measures in G that contains all Gaussian semigroups (i.e., those semigroups whose infinitesimal generators are sub-Laplacians) and is closed with respect to taking sums of generators and subordination. Hulanicki [2] has posed the problem of determining if semigroups in (S) are holomorphic. It is known that Gaussian semigroups are holomorphic [5], but beyond this, additional assumptions are needed. For example, if G is a class two nilpotent group, any semigroup in (S) with L^2 densities is holomorphic [3]. In this paper we consider semigroups in the image of (S) under strongly continuous representations of G, and show that, for a certain class of representations, these semigroups are holomorphic.

Preliminaries. We identify the Lie algebra of G, g, with left-invariant differential operators by setting

$$Xf(x) = \frac{d}{dt}f(\exp tX)|_{t=0}.$$

For fixed basis $\{X_1, \ldots, X_n\}$ of g and multi-index $\mathbf{z} = (z_1, \ldots, z_n)$ we set $|\mathbf{z}| = z_1 + \cdots + z_n$ and

$$X^{\mathbf{z}}f = X_1^{z_1} \cdots X_n^{z_n}f.$$

We denote by $C_0(G)$ the space of continuous real-valued functions on G that vanish at infinity, and for a positive integer k we set

$$C_0^k = \{ f \in C_0(G) \mid X^{\mathbf{z}} f \in C_0 \text{ for } |\mathbf{z}| \le k \}.$$

 $C_0(G)$ is given the topology of uniform convergence, and $C_1^k(G)$, the topology of uniform convergence for derivatives of order k.

© 1983 American Mathematical Society 0002-9939/82/0000-0607/\$02.25

Received by the editors October 12, 1981 and, in revised form, May 27, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47D05; Secondary 43A10, 22D15, 22E45.

Key words and phrases. Semigroups of measures, holomorphic semigroups, Lie groups, Haar measure, absolutely continuous measures, group representations.

TOMASZ PRZEBINDA

We identify $C_0(G)^*$ with M(G), the space of bounded, regular Borel measures on G. M(G) is a Banach *-algebra with respect to convolution $\mu * \nu$, defined by

$$\langle \mu * \nu, F \rangle = \int_G \int_G F(xy) d\mu(x) d\nu(y),$$

and involution μ^* , defined by

$$\langle \mu^*, F \rangle = \int_G F(x^{-1}) d\mu(x)$$

We let P(G) denote the subalgebra of nonnegative measures with norm ≤ 1 . A subset $\{\mu_t\}_{t \geq 0} \subseteq P(G)$ is said to be a semigroup of measures on G if $\mu_x * \mu_t = \mu_{x+t}$ and

$$\lim_{t \to 0} \|\mu_t * f - f\|_{\infty} = 0, \qquad f \in C_0(G).$$

We denote by $C_{\epsilon}^{\infty}(G)$ the space of test functions on G, and by $\mathfrak{P}(G)$ the space of distributions on G. A distribution D is said to be *dissipative* if $\langle D, f \rangle \leq 0$ whenever $f \in C_{\epsilon}^{\infty}(G)$ and $f(e) = ||f||_{\infty}$.

Given a semigroup of measures on G, $\{\mu_t\}_{t>0}$, the *infinitesimal generator* of $\{\mu_t\}_{t>0}$, A, is the closed operator on $C_0(G)$ defined by

$$Af = \lim_{t \downarrow 0} \frac{1}{t} (\mu_t * f - f),$$

where the domain D(A) of A is the subset of $C_0(G)$ for which the right-hand side exists. One has that $C_c^{\infty}(G) \subseteq D(A)$ and that the mapping $f \to Af(e)$ is a dissipative distribution on G. Conversely, given a dissipative distribution D on G, define the operator A_D on $C_c^{\infty}(G)$ by $A_D f(x) = \langle D, f_{\chi} \rangle$. Then A_D is closable in $C_0(G)$ and is the infinitesimal generator of a unique semigroup of measures on G. (These results are essentially due to Hunt [4], with more modern treatments found in [1 and 2].)

Let $\{\mu_t\}_{t>0}$ and $\{\nu_t\}_{t>0}$ be semigroups of measures on G with infinitesimal generators A and B, respectively. Clearly, $f \to (A + B)f(e)$ is a dissipative distribution, and hence there is a unique semigroup whose infinitesimal generator on $C_c^{\infty}(G)$ is A + B. Also, given 0 < a < 1, the distribution

$$f \to -\Gamma(-a)^{-1} \int_0^\infty t^{-a-1} (\mu_t * f - f)(e) dt$$

is dissipative. We denote the corresponding semigroup of measures by $\{\mu_t^{(a)}\}_{t>0}$ and its infinitesimal generator by $|A|^a$. $\{\mu_t^{(a)}\}_{t>0}$ is said to be *subordinate* to $\{\mu_t\}_{t>0}$. Given a subset $\{X_1, \ldots, X_k\} \subseteq \mathfrak{g}, f \to (X_1^2 + \cdots + X_k^2)f(e)$ is a dissipative distri-

Given a subset $\{X_1, \ldots, X_k\} \subseteq \mathfrak{g}, f \to (X_1^2 + \cdots + X_k^2)f(e)$ is a dissipative distribution. Such distributions generate the *Gaussian semigroups*. The family of *stable* semigroups, (S), consists of those semigroups of measures whose corresponding dissipative distribution belongs to $S(\mathfrak{g}) = \bigcup_{k=0}^{\infty} S_k(\mathfrak{g})$, where

$$S_0(\mathfrak{g}) = \{ f \to X^2 f(e) \mid X \in \mathfrak{g} \},$$

$$S_{2k}(\mathfrak{g}) = \{ D_1 + D_2 \mid D_i \in S_{2k-1}(\mathfrak{g}) \} \cup S_{2k-1}(\mathfrak{g})$$

 $\mathbf{638}$

and

$$S_{2k+1}(\mathfrak{g}) = \{ f \to -1 \mid A \mid {}^{a}f(e) \mid f \to Af(e) \in S_{2k}(\mathfrak{g}) \} \cup S_{2k}(\mathfrak{g})$$

for k = 1, 2, ... For $D \in S(g)$, the *hull* of D is the smallest Lie subalgebra of g, \mathfrak{h} , such that $D \in S(\mathfrak{h})$.

Holomorphicity of represented semigroups.

THEOREM 1. Let $\{\mu_t\}_{t>0}$ be a stable semigroup of measures on G whose corresponding dissipative distribution has hull g as above. There exists a $0 < \theta \le \pi/2$, a positive integer p, and a family of holomorphic functions $\{\omega_n | n \in (\mathbb{Z}^+)^p\}$ defined on $\Omega_{\theta} = \{Z \in \mathbb{C} \mid | \arg Z | < \theta\}$ with values in M(G) satisfying

(i) $\omega_{\mathbf{n}}(t) \ge 0$ and $\|\omega_{\mathbf{n}}(t)\| = 1$, for t > 0,

(ii) $\lim_{n_1 \to \infty} \cdots \lim_{n_p \to \infty} \omega_{\mathbf{n}}(t) * f = \mu_t * f \text{ for } t > 0, f \in L^1(G),$

(iii) there is an $n_0 \in \mathbf{Z}^+$ such that for $n_i \ge n_0$, $1 \le i \le p$, and $z \in \Omega_{\theta}$, $\omega_{(n_1,\ldots,n_p)}(z) \in L^1(G)$.

PROOF. The proof is by induction on the smallest integer k such that dissipative distribution D corresponding to $\{\mu_i\}_{i>0}$ is in $S_k(\mathfrak{g})$. If k = 0 then dim $(\mathfrak{g}) = 1$ and the theorem follows from well-known facts about the Gaussian semigroup on **R** or **T**. For example, on **R** we take $\theta = \pi/2$, p = 1 and for $z \in \Omega_{\theta}$, $n \in \mathbb{Z}^+$, we have $\omega_n(z) = \omega_1(z) = (4\pi z)^{1/2} e^{-x^2/4z} dx$, where dx is Lebesgue measure on **R**.

We assume the theorem for j < 2k + 1 and let $D \in S_{2k+1}(\mathfrak{g})$. There is a $D_1 \in S_{2k}(\mathfrak{g})$ and a 0 < a < 1 so that $\mu_t = \nu_t^{(a)}$ where $\{\nu_t\}_{t>0}$ is generated by D_1 . Now, the hull of D_1 is \mathfrak{g} , and hence, by induction there exist, θ_1 , p_1 and $\{\omega_n^1 | \mathbf{n} \in (\mathbf{Z}^+)^{p_1}\}$ satisfying the conditions of the theorem. We let $\theta = a\theta_1$, $p = p_1$, and for $z \in \Omega_{\theta}$, $\mathbf{n} \in (\mathbf{Z}^+)^p$, we define

$$\omega_{\mathbf{n}}(z) = \int_0^\infty f_a(\lambda) \omega_{\mathbf{n}}^1(\lambda z^{1/a}) \, d\lambda,$$

where

$$f_a(\lambda) = rac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{z\lambda-z^a} dz, \qquad \sigma > 0, \lambda \ge 0.$$

Conditions (i) and (ii) then follow immediately from the properties of f_a and for (ii) we have, for t > 0 and $f \in L^1(G)$,

$$\lim_{n_1 \to \infty} \cdots \lim_{n_p \to \infty} \omega_{\mathbf{n}}(t) * f = \lim_{n_1 \to \infty} \cdots \lim_{n_p \to \infty} \int_0^\infty f_a(\lambda) \omega_{\mathbf{n}}^1(\lambda t^{1/a}) * f d\lambda$$
$$= \int_0^\infty f_a(\lambda) \nu_{\lambda t^{1/a}} * f d\lambda = \lambda_t^{(a)} * f.$$

(The reader is referred to [8], for properties of f_a .)

Finally, we assume the theorem for j < 2k and let $D \in S_{2k}(g)$. Let $D_1, D_2 \in S_{2k-1}(g)$ such that $D = D_1 + D_2$. Let g_i be the hull of D_i and let G_i be the

corresponding connected Lie subgroups of G. (Note that g is generated by g_1 and g_2 .) There exist θ_i , p_i , and ω'_n for $\mathbf{n} \in (\mathbf{Z}^+)^{p_i}$ satisfying the conditions of the theorem with respect to G_i . Let $\theta = \min\{\theta_1, \theta_2\}$, $p = p_1 + p_2 + 1$, and for $z \in \Omega_{\theta}$, $\mathbf{n} \in (\mathbf{Z}^+)^p$ let

$$\omega_{\mathbf{n}}(z) = \left(\omega_{n^{1}}^{1}(z/n_{p}) * \omega_{n^{2}}^{2}(z/n_{p})\right)^{n_{p}},$$

where $\mathbf{n} = (\mathbf{n}^{l}, \mathbf{n}^{2}, n_{p})$. $\omega_{\mathbf{n}}$ is holomorphic on Ω_{θ} and satisfies (i). Furthermore, if $\{\mu_{t}^{i}\}_{t>0}$ is the semigroup generated by D_{t} , then, for $f \in L^{1}(G)$, t > 0, one has, by Chernoff's theorem, that

$$\lim_{n_1 \to \infty} \cdots \lim_{n_p \to \infty} \omega_{\mathbf{n}}(t) * f = \lim_{n_1 \to \infty} \cdots \lim_{n_p \to \infty} \left(\omega_{\mathbf{n}'}^1(t/n_p) * \omega_{\mathbf{n}'}^2(t/n_p)^{n_p} * f \right)$$
$$= \lim_{n_p \to \infty} \left(\mu_{t/n_p}^1 * \mu_{t/n_p}^2 \right)^{n_p} * f = \mu_t * f.$$

Condition (iii) is an immediate consequence of a known theorem:¹ Let G_1, \ldots, G_k be connected Lie subgroups of the Lie group G whose Lie algebras generate the Lie algebra of G. There is an integer N such that

$$\left(L^{1}(G_{1}) * L^{1}(G_{2}) * \cdots * L^{1}(G_{k})\right)^{N} \subseteq L^{1}(G).$$

Let *H* be a closed subgroup of the connected Lie group *G* and suppose there is a measure on G/H that is invariant with respect to the action of *G*. Suppose further that $\gamma: G \times G/H \to \mathbb{C}$ is a continuous function with $\|\gamma\|_{\infty} \leq 1$ such that, for $1 \leq p < \infty$, the mapping $y \to \Gamma_y^p$ of *G* into the bounded operators on $L^p(G/H)$ given by

$$\Gamma_{y}^{p}F(\dot{x}) = \gamma(y, \dot{x})F(y^{-1}\dot{x})$$

for $F \in L^p(G/H)$ and a.e. $\dot{x} \in G/H$ defines a strongly continuous representation of G that is unitary for p = 2.

THEOREM 2. Let G be a connected Lie group, let $\{\mu_t\}_{t>0} \in (S)$, and suppose that the hull of the distribution generating $\{\mu_t\}_{t>0}$ is the Lie algebra of G. Let H and γ be as above and suppose that $\Gamma^p(L^1(G))$ is contained in the space of compact operators on $L^p(G/H)$ for $1 \leq p < \infty$. There is a $0 < \theta \leq \pi/2$ and a holomorphic T^p : $\Omega_{\theta} \rightarrow B(L^p(G/H))$ such that

- (i) $\sup\{||T_z^p|| | z \in \Omega_{\theta}\} \le 1$,
- (ii) for t > 0, $T_t^p = \Gamma^p(\mu_t)$.

PROOF. Let θ , p and ω_n be as in Theorem 1. Notice that $\omega_1(t)$ is the semigroup of probabilistic measures generated by X_1^2 , whose image $\Gamma^2(X_1^2) = A_1$ is an essentially selfadjoint operator [1, Theorem 12, Example 4] and generates the semigroup of contractions $\Gamma^2(\omega_1(t))$, so that

$$\Gamma^{2}(\omega_{1}(z)) = \int_{-\infty}^{0} e^{\lambda z} dP(\lambda)$$

¹See remarks.

where P is the spectral measure of A_1 , and hence $\|\Gamma^2(\omega_1(z))\| \le 1$ for $\operatorname{Re}(z) > 0$. Now by an induction argument analogous to that used in the proof of Theorem 1, one can show that for, $f \in L^p(G/H)$, $1 \le p$ and t > 0,

$$\lim_{n_1\to\infty}\cdots\lim_{n_p\to\infty}\Gamma^p(\omega_{\mathbf{n}}(t))f=\Gamma^p(\mu_t)f$$

and that $\|\Gamma^2(\omega_n(z))\| \leq 1$ for $z \in \Omega_{\theta}$.

Let n_0 be as in Theorem 1, and set $\mathbf{Z}_0 = \{k \in \mathbf{Z}, k > n_0\}$. Then if $\mathbf{n} \in (\mathbf{Z}_0)^p$, $\omega_n(z) \in L^1(G)$ for $z \in \Omega_\theta$, and so $\Gamma^p(\omega_n(z))$ and $\Gamma^2(\omega_n(z))$ are compact operators. By [6], their spectra coincide, and hence also their norms. Thus $\|\Gamma^p(\omega_n(z))\| \le 1$. Therefore, $\{\Gamma^p(\omega_n) \mid \mathbf{n} \in (\mathbf{Z}_0)^p\}$ is a family of holomorphic functions on Ω_θ that is uniformly bounded and convergent on \mathbf{R}^+ . Thus, by Vitali's theorem,

$$\lim_{n_1\to\infty}\cdots\lim_{n_p\to\infty}\Gamma^p(\omega_{\mathbf{n}}(z))=T_z^p$$

exists for $z \in \Omega_{\theta}$, and $z \to T_z^p$ is holomorphic.

Remarks. 1. I have learned from Joe W. Jenkins and Andrzej Hulanicki that the theorem mentioned at the end of the proof of Theorem 1 was known but I could not find it in the literature. Here is a rough outline of a proof.

Assume for simplicity that k = 2. Using the fact that the zero set of a nontrivial real analytic function defined on an open subset of \mathbf{R}^n has Lebesgue measure zero, one can prove the following:

LEMMA. Let M and G be two real analytic manifolds of dimensions N and n respectively ($N \ge n$), with Lebesgue measures μ and ν . Suppose that M is connected. If $F: M \rightarrow G$ is a real analytic function whose derivative has rank n at a point in M, then $F(\mu)$ is absolutely continuous with respect to ν .

Let \mathfrak{g}_i be the Lie algebra of G_i with basis $\{X_{i1}, X_{i2}, \ldots, X_{ip_i}\}$ (i = 1, 2). Let $\mathfrak{M}^0 = \{X_{11}, \ldots, X_{1p_1}, X_{21}, \ldots, X_{2p_2}\}$ and let $\mathfrak{M}^p = \mathfrak{M}^{p-1} \cup [\mathfrak{M}^{p-1}, \mathfrak{M}^{p+1}]$ for $p = 1, 2, 3, \ldots$. The assumption that $\mathfrak{g}_1 \cup \mathfrak{g}_2$ generates \mathfrak{g} implies that there is such a p that \mathfrak{M}^p contains the basis $\{X_1, X_2, \ldots, X_n\}$ of \mathfrak{g} . The Baker-Campbell-Hausdorff formula [7, Theorem 2.15.4] implies that there exists an m such that for every $X \in \mathfrak{M}^p$ there is a function S_X : $\mathbb{R} \to \mathbb{R}^{m(p_1+p_2)}$ such that for |t| small enough we have $f_m(S_X(t)) = \exp(tX + r_X(t))$, where

$$f_{m}(u_{111}, u_{112}, \dots, u_{11p_{1}}, u_{121}, u_{122}, \dots, u_{12p_{2}}, \dots, u_{m11}, \dots, u_{m12}, \dots, u_{m12p_{2}}, \dots, u_{m12p_{2}})$$

$$= \exp\left(\sum_{j=1}^{p_{1}} u_{11j}X_{1j}\right) \exp\left(\sum_{j=1}^{p_{2}} u_{12j}X_{2j}\right) \cdots \exp\left(\sum_{j=1}^{p_{1}} u_{m1j}X_{1j}\right) \exp\left(\sum_{j=1}^{p_{2}} u_{m2j}X_{2j}\right)$$

and

$$r_{X}(t) = \sum_{\alpha+\beta>2^{p}} |t|^{(\alpha+\beta)/2^{p}} (\operatorname{sign}(t))^{\varepsilon_{\alpha\beta}} X_{\alpha\beta} \qquad (X_{\alpha\beta} \in \mathfrak{g}, \varepsilon_{\alpha\beta} \in \{0,1\}).$$

For example, if $p_1 = p_2 = 1$ and $X = [X_{11}, X_{21}]$ then m = 2 and

$$S_X(t) = \left(|t|^{1/2}, |t|^{1/2} \operatorname{sign}(t), -|t|^{1/2}, -|t|^{1/2} \operatorname{sign}(t) \right).$$

Choose S_{x_i} as above for every vector X_i from the basis of g, and put $S(t) = S(t_1, t_2, ..., t_n) = (S_{X_1}(t_1), S_{X_2}(t_2), ..., S_{X_n}(t_n)) \in \mathbf{R}^{N(p_1 + P_2)}$ where N = nm. Define $M = G_1 \times G_2 \times \cdots \times G_1 \times G_2$ (N times),

 $M \ni (x_{11}, x_{12}, \dots, x_{N1}, x_{N2}) \rightarrow F(x_{11}, x_{12}, \dots, x_{N1}, x_{N2}) = x_{11}x_{12} \cdots x_{N1}x_{N2} \in G$ and $\Psi: \mathbf{R}^{N(p_1+p_2)} \rightarrow M$ by the formula

 $\Psi(u_{111}, u_{112}, \ldots, u_{11p_1}, u_{121}, u_{122}, \ldots, u_{12p_2}, \ldots, u_{N11},$

$$u_{N12}, \dots, u_{N1p_1}, u_{N21}, u_{N22}, \dots, u_{N2p_2})$$

$$= \left(\exp\left(\sum_{j=1}^{p_1} u_{11j} X_{1j}\right), \exp\left(\sum_{j=1}^{p_2} u_{12j} X_{2j}\right), \dots, \\ \exp\left(\sum_{j=1}^{p_1} u_{N1j} X_{1j}\right), \exp\left(\sum_{j=1}^{p_2} u_{N2j} X_{2j}\right) \right).$$

Thus

$$F \circ \Psi \circ S(\mathbf{t}) = f_m(S_{X_1}(t_1)) f_m(S_{X_2}(t_2)) \cdots f_m(S_{X_n}(t_n))$$

= $\exp(t_1 X_1 + r_{X_1}(t_1)) \exp(t_2 X_2 + r_{X_2}(t_2)) \cdots \exp(t_n X_n + r_{X_n}(t_n))$

in a neighborhood of the origin in \mathbb{R}^n , which implies that the Jacobian J of the map $F \circ \Psi \circ S$ is equal to the identity at $\mathbf{t} = 0$ and that there exists a neighborhood U of the origin in \mathbb{R}^n such that for $\mathbf{t} \in U$, $J(\mathbf{t}) \neq 0$. Take t from U such that $t_i \neq 0$ for each i = 1, 2, 3, ..., n. Then

$$n = \operatorname{rank}(T_{\mathfrak{t}}(F \circ \Psi \circ S)) = \operatorname{rank}(T(F)_{\Psi(S(\mathfrak{t}))} \circ T_{\mathfrak{t}}(\Psi \circ S))$$

$$\leq \operatorname{rank}(T(F)_{\Psi(S(\mathfrak{t}))}) \leq n,$$

so rank $(T(F)_{\Psi(S(t))}) = n$. By the lemma $F(\mu_1 \times \mu_2 \times \cdots \times \mu_1 \times \mu_2)$ is absolutely continuous with respect to the Haar measure ν on G, i.e.

$$(\mu_1 * \mu_2)^N(E) = \mu_1 \times \mu_2 \times \cdots \times \mu_1 \times \mu_2(F^{-1}(E)) = 0$$

for every set E with $\nu(E) = 0$.

2. Theorem 2 gives only a partial answer to Hulanicki's question: determine if semigroups in (S) are holomorphic. The proof and the boundedness of $||T_{z}^{p}||$ for $z \in \Omega_{\theta}$ depend very much on the assumption that those operators are compact. Suppose G is a locally compact group and H is a subgroup of G such that there exists an invariant measure on G/H. Moreover assume that $\gamma = 1$ and G/H is not compact. Then one can show [6] that if $f \in L^{1}(G)$ and $\int_{G} f(y) dy \neq 0$ it follows that $\Gamma^{p}(f)$ is not compact in any $L^{p}(G/H)$, $1 \leq p < \infty$. The reader who is interested in the importance of having the semigroups holomorphic on all L^{p} spaces, $1 \leq p < \infty$, is referred to [2].

This content downloaded from 129.15.14.45 on Sat, 04 Nov 2017 01:36:11 UTC All use subject to http://about.jstor.org/terms

642

The author is very grateful to Joe W. Jenkins for many simplifications and corrections in this paper and to Romuald Dabrowski, Pawel Glowacki, Andrzej Hulanicki, and Czelsaw Ryll-Nardzewski for many discussions on the subject.

REFERENCES

1 M Duflo, Representations de semi-group de measures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (1978), 225–249.

2. A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, Lecture Notes in Math, Springer-Verlag, Berlin and New York (to appear).

3 _____, private communication.

4. G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293.

5 J. Kisynski, Holomorphicity of semi-groups of operators generated by sublaplacians on Lie groups, Lecture Notes in Math., Springer-Verlag, Berlin and New York.

6. T. Przebinda, Spectrum of convolution operators on $L^{p}(G/H)$, preprint.

7. V. S. Varadajan, Lie groups, Lie algebras and their representations, Prentice Hall, Englewood Cliffs, N.J., 1974

8. K. Yosida, Functional analysis, Springer-Verlag, Berlin, Göttingen and Heidelberg, 1965

DEPARTMENT OF MATHEMATICS, SUNY AT ALBANY, ALBANY, NEW YORK 12222

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, WROCŁAW, POLAND

Current address: Department of Mathematics, Yale University, Box 2155 Yale Station, New Haven, Connecticut 06520