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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 87, Number 4, April 1983

 HOLOMORPHICITY OF A CLASS OF SEMIGROUPS

 OF MEASURES OPERATING ON LP(G/H)

 TOMASZ PRZEBINDA

 ABSTRACT. In the present paper we consider the class of stable semigroups of
 measures on a Lie group G. This class contains the Gaussian semigroups. We prove

 that under certain strongly continuous representations of G acting in LP(G/H),
 I - p < ocx these semigroups are holomorphic and uniformly bounded.

 Introduction. For a fixed Lie group G, let (S) denote the smallest family of

 semigroups of measures in G that contains all Gaussian semigroups (i.e., those

 semigroups whose infinitesimal generators are sub-Laplacians) and is closed with
 respect to taking sums of generators and subordination. Hulanicki [2] has posed the

 problem of determining if semigroups in (S) are holomorphic. It is known that

 Gaussian semigroups are holomorphic [5], but beyond this, additional assumptions

 are needed. For example, if G is a class two nilpotent group, any semigroup in (S)

 with L2 densities is holomorphic [3]. In this paper we consider semigroups in the

 image of (S) under strongly continuous representations of G, and show that, for a

 certain class of representations, these semigroups are holomorphic.

 Preliminaries. We identify the Lie algebra of G, q, with left-invariant differential
 operators by setting

 d
 Xf(x) = df(exp tX) It=0

 For fixed basis {X1,..., X} of g and multi-index z = (z1. z,) we set I z= z

 + + +z, and

 ...= X, K*-X1f.

 We denote by Co(G) the space of continuous real-valued functions on G that vanish
 at infinity, and for a positive integer k we set

 ck {f E Co(G) I Xzf E Co for I z I< k}.

 Co(G) is given the topology of uniform convergence, and C&(G), the topology of
 uniform convergence for derivatives of order k.
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 638 TOMASZ PRZEBINDA

 We identify Q(G)* with M(G), the space of bounded, regular Borel measures on
 G. M(G) is a Banach *-algebra with respect to convolution ,s * v, defined by

 (p * v F)rf JF(xv) d,u(x) dp(y),

 and involution ft*, defined by

 (K*A F)-fF(x-')dv(x).

 We let P(G) denote the subalgebra of nonnegative measures with norm 1 1. A

 subset {p.,}, _ C P(G) is said to be a semigroup of measures on G if , * A, A, t I
 and

 lim11, * f - f X= ?* f (E Q ,G)

 We denote by C(7(G) the space of test functions on G, and by Ti)(G) the space of
 distributions on G. A distribution D is said to be dissipative if (D, f 0 whenever

 f EE C('(G) and f(e) = 11 f 11
 Given a semigroup of measures on G, {p([},(, the infinitesimal generator of

 (Lt, , () A, is the closed operator on Q(G) defined by

 Aft lim-(f, * f-f)f
 t l() t

 where the domain D(A) of A is the subset of Q(G) for which the right-hand side

 exists. One has that C('(G) C D(A) and that the mappingf - Af(e) is a dissipative
 distribution on G. Conversely, given a dissipative distribution D on G, define the

 operator AD, on C(x(G) by ADf(x) KD, fj). Then AD is closable in C,(G) and is
 the infinitesimal generator of a unique semigroup of measures on G. (These results

 are essentially due to Hunt [4], with more modern treatments found in [1 and 2].)

 Let {fi}t,() and {p,},,( be semigroups of measures on G with infinitesimal
 generators A and B, respectively. Clearly, f - (A + B )f( e) is a dissipative distribu-

 tion, and hence there is a unique semigroup whose infinitesimal generator on C(7(G)
 is A + B. Also, given 0 < a < 1, the distribution

 f - -(-a)-' t t- a (,u, * f -f )(e) dt
 ()

 is dissipative. We denote the corresponding semigroup of measures by {4ue)}, ( and

 its infinitesimal generator by I A la. {('a)},,0 is said to be subordinate to pt,)t,>0.
 Given a subset { Xl.XA } C cg, f - (X2 + + . . )f( e) is a dissipative distri-

 bution. Such distributions generate the Gaussian semigroups. The family of stable

 semigroups, (S), consists of those semigroups of measures whose corresponding

 dissipative distribution belongs to S( q) U=() Sk( q) where

 SO() {f - X2f(e) I X E },

 S2;v( ) - {Di + D, I D, E S2A ( )} U S2_ (L)
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 HOLOMORPHICITY OF A CLASS OF SEMIGROUPS 639

 and

 S2k+l(g) = {f -1 IA |af(e) If- Af(e) e S2J(l)} U S2kJO)

 for k = 1, 2,.... For D E S( q), the hull of D is the smallest Lie subalgebra of q, ,
 such that D E S(1).

 Holomorphicity of represented semigroups.

 THEOREM 1. Let {,}utt,o be a stable semigroup of measures on G whose correspond-
 ing dissipative distribution has hull q as above. There exists a 0 < 0 T/2, a positive
 integer p, and a family of holomorphic functions {o wI n E (Z )P} defined on Q

 {Z E C I I arg Z I < 0} with values in M(G) satisfying
 (i) wo(t) 2 0 and II w,(t) 1, for t > 0,
 (ii) limp -n00 * limnpw ...o(t) * f = 1t * ffor t > 0, f E L1(G),
 (iii) there is an nO E Z+ such that for ni > no, 1 < i < p, and z E Qfy, c (n. n (Z)

 E L1(G).

 PROOF. The proof is by induction on the smallest integer k such that dissipative

 distribution D corresponding to {Ut}t>O is in Sk(gA). If k 0 O then dim(q) = 1 and
 the theorem follows from well-known facts about the Gaussian semigroup on R or T.

 For example, on R we take = 7T/2, p = 1 and for z E Qa, n E Z+, we have
 Wn(Z) = WI(Z) = (47Tz)1/2ex2 /4z dx, where dx is Lebesgue measure on R.

 We assume the theorem for j < 2k + 1 and let D E S2k?+ I( ). There is a D1 &

 S2k(q) and a 0 < a < 1 so that lit = (Ia) where {vt}t>O is generated by D,. Now, the
 hull of D1 is g, and hence, by induction there exist, 01, Pi and {wn I n & (Z+ )P}
 satisfying the conditions of the theorem. We let 6 = a01, p p1, and for z E 0,9
 n E (Z+ )P, we define

 00 Jnz) = a()n(z/)d

 where

 fa(X) 2ezx r >, +
 27i01 00

 Conditions (i) and (ii) then follow immediately from the properties of fa and for (ii)
 we have, for t > 0 andf & L' (G),

 ,00

 lim ... lim w(t) * f lim lim fa(X)W(Xtl'a) * fdX
 nxn oo n -o00 npI-- oc np- 00

 0ffa(X)VXti/a * fdX =a) * f.

 (The reader is referred to [8], for properties of fa.)

 Finally, we assume the theorem for j < 2k and let D & S2k(9). Let D,, D2 E
 S2kl(9) such that D = DI + D2. Let gi be the hull of Di and let Gi be the
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 640 TOMASZ PRZE13INDA

 corresponding connected Lie subgroups of G. (Note that q is generated by q , and
 .1 2.) There exist 6, p, and wn for n E (Z4 )P, satisfying the conditions of the theorem
 with respect to G,. Let 6 = mint61, 02), p = p + p, + 1 and for z E Q n E (Z )P
 let

 wn(z) = (w',((zn P) * W2,( z1n,))"'.

 where n = (ln2, np). wn is holomorphic on Qi and satisfies (i). Furthermore, if
 {i',),>o is the semigroup generated by D, then, for f E L'(G), t > 0. one has, by
 Chernoff's theorem, that

 lim lim wn(t) * f tim tim ( tl( np) * W2,( t1p)"" * f
 II l-oc C lip c -II - C0 lip 00

 l tim ( 1/lX,,p * 1L/ r ) * f =, * f.
 l1i - 00

 Condition (iii) is an immediate consequence of a known theorem:' Let G,. G, be
 connected Lie subgroups of the Lie group G whose Lie algebras generate the Lie

 algebra of G. There is an integer N such that

 (L'(GI) * LP(G,) * * * L'(Gk))N C L'(G).

 Let H be a closed subgroup of the connected Lie group G and suppose there is a

 measure on GIH that is invariant with respect to the action of G. Suppose further
 that y: G X G/H - C is a continuous function with 11-y II, I such that, for
 I - p < x, the mapping y - FP of G into the bounded operators on LP(G/H)

 given by

 F,PF(x~) = y(v Yk )F( v-1lx)

 for F E LP(GIH) and a.e. x* E GIH defines a strongly continuous representation of
 G that is unitary for p = 2.

 THEOREM 2. Let G be a connected Lie group, let {ji,},(0 E (S), and suppose that the
 hull of the distribution generating {I,),>o is the Lie algebra of G. Let H and y be as
 above and suppose that FP(L'(G)) is contained in the space of compact operators on

 LP(GIH) for I - p < x. There is a O < 0 7r/2 and a holomorphic TP: -
 B(LP(G/IH)) such that

 (i) sup{Il T! II I Z E Q6R} -, 1,
 (ii) for t > 0, TtP = FP(Lt).

 PROOF. Let 6, p and w,n be as in Theorem 1. Notice that w,(t) is the semigroup of
 probabilistic measures generated by X2, whose image F 2(X12) - A, is an essentially
 selfadjoint operator [1, Theorem 12, Example 4] and generates the semigroup of
 contractions F2(W 1(t)), so that

 F2(W1(z)) 0? Ae dP()
 -00

 'See remarks.
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 HOLOMORPHICITY OF A CLASS OF SEMIGROUPS 641

 where P is the spectral measure of A,, and hence 11F2(wI(z))Ii < 1 for Re(z) > 0.
 Now by an induction argument analogous to that used in the proof of Theorem 1,

 one can show that for,f E LP(GIH), 1 p and t > 0,

 lim ... I P n f=IP(,)
 ?l-X t1p-X

 and that if2((0 ))-I ? 1 for z E Q.

 Let n( be as in Theorem 1, and set Z( ={k E Z, k > n(,}. Then if n E (Z(>)',
 , L1(G) for z- E , and so FP(Wn(Z)) and F2(wn(z)) are compact operators.

 By [6], their spectra coincide, and hence also their norms. Thus l VP(w(:)) < 1.

 Therefore, {rp(Wn) n E (ZO)P} is a family of holomorphic functions on Qo that is
 uniformly bounded and convergent on R+ . Thus, by Vitali's theorem,

 lim lim TP(w("))

 exists for : E Q8, and -: is holomorphic.

 Remarks. 1. I have learned from Joe W. Jenkins and Andrzej Hulanicki that the

 theorem mentioned at the end of the proof of Theorem 1 was known but I could not

 find it in the literature. Here is a rough outline of a proof.

 Assume for simplicity that k- 2. Using the fact that the zero set of a nontrivial

 real analytic function defined on an open subset of R" has Lebesgue measure zero,

 one can prove the following:

 LEMMA. Let M and G be two real analvtic matnifolds of dimensionis N and n
 respectivelv (N > n), with Lebesgue measures L and P. Suppose that M is connected. if

 F: M - G is a real analytic function whose derivative has rank n at a point in M. thenl
 F(y) is absolutell continuous with respect to P.

 Let l, be the Lie algebra of G, with basis {X,1, X,2. X,,, } (I - 1,2). Let
 -1" {Xi . , X XI 1. X1,} and let '1L ' U 1 I U [ ;h )', -k for
 p 1, 2, 3... The assumption that q ' U *l2 generates implies that there is such a
 p that -)T P contains the basis {Xl, kA,...,X,,} of q. The Baker-Campbell-
 Hausdorff formula [7, Theorem 2.15.4] implies that there exists an ni such that for

 every X (E iNL P there is a function SA: R R"'(P?J') such that for I t small enough
 we have f,,(Sv(t)) = exp(tX + r \ (t)), where

 uLI , Ul 1 Ul 12.* Ul ipW U121. U12*2, U12p*, Unil l.

 UnI2. u Uniplpl. Unul212. u n 'unt2p)

 - exp( ui,X, 3exp( U _ 2_ - - exp u,,x,, exp it2j /

 and

 ( E I t - a +)/2 ' (sign( t Xx# X, E1 *- E { I )
 aY+1>2 p
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 642 TOMASZ PRZEBINDA

 For example, if p = P2 = 1 and X = [ X 1, X2,] then m = 2 and

 SX( t )= (I t 11/2 1 t 11/2 sign(t ). -1 t 11/2, _I- t 11/2 sign( t)) .

 Choose S, as above for every vector X, from the basis of q and put S(t)

 S(M, 2,..., (SGO'1) Sx(?) . G where N = nm. Define
 M= G1 X G2 X -- XGl X G2(Ntimes),

 M (X II, X12... XNl, XN2) F(xI, Xl2, . XNl, XN,2)- XIXI2 ... XNIXV2EG

 and ': RN(PI+P2) - M by the formula

 *( UI, Ul121 .... U1lpl, U121, U122 . u - * U12P2'. * UNIIl'

 UN12.*** UNIpl* UN21, UN,22. sUN2p)

 = exp| I ulyXX expt u12,X-,,

 exp uNIIX1). exp UN2,X

 Thus

 F o o S(t) f="( S,'(Pt ))f,,( SX2( t2)) . .( S,( t1))

 - exp(tL,X, + rx,(1)) exp(t2X, + rjt(2)) ... exp( it,X + r(,t))

 in a neighborhood of the origin in RW, which implies that the Jacobian J of the map

 F o ' o S is equal to the identity at t = 0 and that there exists a neighborhood U of

 the origin in R' such that for t e U, J(t) * 0. Take t from U such that t 0 for

 each i = 1, 2, 3. - n. Then

 n =rank( Tt( F o * o S )) =rank(T( F ),(s(t)) o Tt( * o S ))

 rank( T( F ) +(( t0>)))

 so rank(T(F)q,(s(t)) = n. By the lemma F(LX, X X2 X X l X M2) is absolutely
 continuous with respect to the Haar measure v on G. i.e.

 (M1 * 2)N (E) = i X X ... X X X M2(F-(E)) =0

 for every set E with v(E) = 0.

 2. Theorem 2 gives only a partial answer to Hulanicki's question: determine if

 semigroups in (S) are holomorphic. The proof and the boundedness of ITi I1 for
 z i Q2 depend very much on the assumption that those operators are compact.

 Suppose G is a locally compact group and H is a subgroup of G such that there

 exists an invariant measure on GIH. Moreover assume that y = 1 and GIH is not
 compact. Then one can show [6] that if f E L'(G) and f( f(y') dv 0 0 it follows that
 r"(f ) is not compact in any LP(GIH), 1 - p < co. The reader who is interested in
 the importance of having the semigroups holomorphic on all LP spaces, 1 p < x.

 is referred to [2].
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 The author is very grateful to Joe W. Jenkins for many simplifications and

 corrections in this paper and to Romuald Dabrowski, Pawel Glowacki, Andrzej

 Hulanicki, and Czelsaw Ryll-Nardzewski for many discussions on the subject.
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