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Abstract. We consider a real reductive dual pair (G′,G) of type I, with rank(G′) ≤ rank(G).
Given a nilpotent coadjoint orbit O′ ⊆ g′∗, let O′

C
⊆ g′∗

C
denote the complex orbit con-

taining O′. Under some condition on the partition λ′ parametrizing O′, we prove that, if λ
is the partition obtained from λ by adding a column on the very left, and O is the nilpotent
coadjoint orbit parametrized by λ, then OC = τ(τ ′−1(O′

C
)), where τ , τ ′ are the moment

maps. Moreover, if chc(μ̂O′ ) �= 0, where chc is the infinitesimal version of the Cauchy-
Harish-Chandra integral, then the Weyl group representation attached by Wallach to μO′
with corresponds to OC via the Springer correspondence.

1. Introduction

Consider a real reductive group G, as defined in [40]. Let � be an irreducible
admissible representation of G with the distribution character��, [12]. Denote by
u� the lowest term in the asymptotic expansion of ��, [2]. This is a finite linear
combination of Fourier transforms of nilpotent coadjoint orbits, u� = ∑

O cOμ̂O.
As shown by Rossmann [34], the closure of the union of the nilpotent orbits which
occur in this sum is equal to WF(�), the wave front set of the representation �,
defined in [20]. Furthermore there is a unique nilpotent coadjoint orbit O� in the
complexification g∗

C
of the dual Lie algebra g of G such that the associated variety

of the annihilator of the Harish-Chandra module of � in the universal enveloping
algebra U(g) of g is equal to the closure of O�, [6]. Moreover, the closure of O�

coincides with the complexification of WF(�), see [2, Theorem 4.1] and [34].
Let us be more specific and consider a real reductive dual pair (G′,G) in a

symplectic group Sp(W). We shall always assume that the rank of G′ is less than
or equal to the rank of G. Let�′ be an irreducible admissible representation of G̃′,
the metaplectic cover of G′, and let � be the irreducible admissible representation
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of G̃ which corresponds to�′ via Howe correspondence for the pair (G′,G), [21].
Howe correspondence is governed by a Capelli-Harish-Chandra homomorphism

C : U(gC)
G → U(g′

C
)G

′

which has the property that if γ�′ : U(g′
C
)G

′ → C is the infinitesimal character
of �′ then γ� = γ�′ ◦ C is the infinitesimal character of �, see (25) below. Let
P(g∗

C
)G be the algebra of the G-invariant complex valued polynomials on the dual

of the complexification of g. The homomorphism C may be thought of as a “smooth
deformation" of another homomorphism

c : P(g∗
C
)G → P(g′∗

C
)G

′

defined by the correspondence of the semisimple coadjoint orbits induced by the
moment maps

τ : W → g∗ τ ′ : W → g′∗,
τ (w)(x) = 〈x(w),w〉, τ (w)(x ′) = 〈x ′(w),w〉, w ∈ W, x ∈ g, x ′ ∈ g′,

see Lemma 10 below.
Here are some natural problems in this context. Express the character �� in

terms of��′ , u� in terms of u�′ , WF(�) in terms of WF(�′), O� in terms of O�′ .
Not much is known about them in general, though the following equality holds for
pairs in the stable range with �′ unitary

O� = τ(τ ′−1(O�′)), (1)

see [27]. (Under some strong assumptions the above equality holds for the wave
front sets, see [16].)

As an attempt to solve the first problem the third author constructed an integral
kernel operator Chc which maps invariant distributions on G̃′ to invariant distri-
butions on G̃, [29, Def. 2.17]. In fact, with an appropriate normalization of all the
measures involved, this operator maps invariant eigendistributions with the infini-
tesimal character γ ′ to invariant eigendistributions with the infinitesimal character
γ ′ ◦ C,

Chc : D′(G̃′)G′
γ ′ → D′(G̃)Gγ ′◦C,

see [5, (7) and Theorem 4]. There are reasons to believe that Chc(��′) is a non-zero
constant multiple of��′

1
, where�′

1 is the quasisimple admissible representation of

G̃ whose unique irreducible quotient is�, as in [21]. Often�′
1 = �. (For instance

this equality holds when the dual pair is in the stable range and �′ is unitary.)
By a limiting process, parallel to that one which leads from C to c, one obtains a
Cauchy-Harish-Chandra integral on the Lie algebra

chc : S∗(g′)G′
0 → S∗(g)G0 ,

see (62) and (48) below. Here the subscript 0 indicates the 0-eigensubspace for
the action of non-constant invariant constant coefficient differential operators, see
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Theorem 12 below. Also, the domain of chc is not always the whole space S∗(g′)G′
0 .

The limiting process is such that if Chc(��′) is a non-zero constant multiple of
��, then chc(u�′) is a non-zero constant multiple of u�.

In this context it makes sense to ask if chc maps the Fourier transform of a
nilpotent orbital integral μ̂O′ to a non-zero constant multiple of the Fourier trans-
form of a nilpotent orbital integral μ̂O, and how are the orbits O′, O related. We
don’t know the answer in general, but offer a sort of “diplomatic solution" which
involves Springer correspondence, see Theorem 18 (or Theorem 1-a simplified
version) below.

More precisely, given a Cartan subalgebra of gC we have the corresponding
Weyl group W. The Springer correspondence associates an irreducible represen-
tation of W to each complex nilpotent coadjoint orbit, assuming the group is con-
nected. See [33] for a convenient geometric construction. We shall use this con-
struction in Appendix A to extend the notion of Springer correspondence to cover
the case when the reductive group is an orthogonal group (which is disconnected)
and refer to this extended version as the “combinatorial Springer correspondence",
denote it by CSC, see (18) below. Thus CSC(O�) is an irreducible representation
of W corresponding to the complex nilpotent coadjoint orbit O�.

As explained above, μ̂O′ is “harmonic” with respect to the non-constant invari-
ant constant coefficient differential operators. Hence the product of the restriction
of μ̂O′ to the regular set of any Cartan subalgebra of g, when multiplied by the
product of the positive roots, is a harmonic function, see Corollary 13 below. Hence
the action of the Weyl group W on the polynomial functions defined on that Cartan
subalgebra generates a representation of W. We shall refer to it as to the Weyl group
representation generated by the restriction of chc(μ̂O′) to the Cartan subalgebra.

For simplicity of exposition, let us assume that (G′,G) is not a complex dual
pair. The groups G′, G come with the defining modules V′, V respectively, see [19].
The complexified groups (G′

C
,GC) also form a dual pair with the defining modules

V′(C) and V(C) respectively (which don’t need to be the complexifications of V′,
V). Given a nilpotent coadjoint orbit O′ ⊆ g′∗ let O′

C
⊆ g′∗

C
denote the complex

orbit containing O′. Then O′ = O′(λ′) corresponds to a partition λ′, see [9]. Denote
by ht(λ′) the height of the partition λ′ (see Sect. 3 below).

Theorem 1. Assume that chc(μ̂O′) �= 0. If the pair (G′,G) is of type I , assume
that

ht(λ′) < dim V(C)− dim V′(C).

Let r = dim(V(C))− dim(V′(C)) and let λ = (1r )⊕ λ′ be the partition obtained
by adding a column of length r to λ′ on the very left. Denote by OC(λ) ⊆ g∗

C
the

corresponding nilpotent coadjoint orbit. Then

OC(λ) = τ(τ ′−1(OC(λ
′))

and the Weyl group representation generated by the restriction of chc(μ̂O′) to any
Cartan subalgebra of g is equal to CSC(OC(λ)). In other words, in the context
of Wallach’s approach to the Springer correspondence (see Sect. 2), chc(μ̂O′)
behaves like μ̂O, where the complexification of O is equal to OC(λ).
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In order to prove Theorem 1 we actually compute chc(μ̂O′), see Theorem 14
below. We also show (Theorem 11) that chc intertwines the action of the algebra
of the invariant constant coefficient differential operators on g with the action of
the algebra of the invariant constant coefficient differential operators on g′ via the
canonical algebra homomorphism c (24). As a consequence, chc maps eigendistri-
butions to eigendistribution (Theorem 12), so that chc(μ̂O′) does indeed provide
the harmonic polynomials needed in the Springer correspondence. This may be
seen independently from Theorem 14 and results of Sect. 5.

The idea behind Chc is to make sense out of the following, often divergent,
integral

∫

G′
�(g′g)��′c (g′) dg′ (g ∈ G̃),

where� is the character of the oscillator representation and�′c is the representation
contragredient to �′.

In case of a dual pair defined over a finite field the above integral, with the
G̃ replaced by G, is a finite sum which obviously converges and defines a class
function on G. This class function decomposes into a sum of several irreducible
characters ��. In other words Howe’s correspondence often does not associate a
single irreducible representation to�′ and the situation is quite complex. We study
it in a separate article, [1].

2. Wallach’s approach to Springer’s correspondence

Let g be a semisimple Lie algebra over the reals, G ⊆ End(g) the correspond-
ing adjoint group, h ⊆ g a Cartan subalgebra and W = W(hC,GC), the Weyl
group of (gC, hC). Let D(g)G denote the algebra of the G-invariant polynomial
coefficient differential operators on g, and let D(h)W denote the algebra of the
W-invariant polynomial coefficient differential operators on h. Let a(x) f (y) =
d
dt f (y + t[x, y])|t=0, x, y ∈ g. Set I = D(g)G ∩ (D(g)a(g)). As a culmination of
the works of [14,24,41], and [25] we have the following short exact sequence

0 → I → D(g)G → D(h)W → 0, (2)

where I → D(g)G is the inclusion and δ : D(g)G → D(h)W stands for the
Harish-Chandra homomorphism.

Consider an invariant tempered distribution u ∈ S∗(g)G. Then, a(g)u = 0
and therefore the D(g)G-module generated by u, D(g)Gu, satisfies ID(g)Gu = 0.
Hence, by (2), D(g)Gu may be viewed as a D(h)W-module.

Let P(h) denote the space of the complex valued polynomial functions on h and
let Ŵ be the set of the (equivalence classes of) irreducible representations of W.
The algebra D(h)W acts on P(h), as usual, and so does the group W. Furthermore
these actions commute. Wallach showed that

P(h) =
∑

ρ∈Ŵ

ρ′ ⊗ ρ, (3)
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as a (D(h)W ,W)-module, where ρ′ stands for a simple D(h)W-module and the
function ρ → ρ′, defined on Ŵ, is injective, see [41]. (Here ρ′ ⊗ ρ = P(h)ρ
is the ρ-isotypic component of P(h) under the action of W.) By taking a Fourier
transform on h, the symmetric algebra S(h) becomes a D(h)W-module and (3) is
transformed to

S(h) =
∑

ρ∈Ŵ

ρ̂′ ⊗ ρ, (4)

a (D(h)W ,W)-module, where ρ̂′ is a simple D(h)W-module equal to the Fourier
transform of ρ′.

Let π ∈ P(h) be the product of all the positive roots for the pair (gC, hC), with
respect to some fixed order of the roots, hreg = {x ∈ h; π(x) �= 0} the subset of the
regular elements and let C ⊆ hreg a connected component. Let O ⊆ g be a nilpo-
tent G-orbit and letμO ∈ S∗(g) be the corresponding invariant measure, as in [32].
Let μ̂O be the Fourier transform of μO defined with respect to a non-degenerate
G-invariant symmetric bilinear form on g. According to Harish-Chandra Regularity
Theorem, [15], μ̂O is a function on g. Wallach showed that there is a unique ρ ∈ Ŵ
such that, in terms of (4), D(g)GμO = ρ̂′ and that

(μ̂Oπ)|C ∈ P(h)ρ |C , (5)

where μ̂O is viewed as a function on hreg and |C stands for the restriction of func-
tions from hreg to C . Wallach deduced form [18] that ρ corresponds to the complex
orbit OC = GCO ⊆ gC via the Springer correspondence, [38].

3. Representations of the Weyl groups

Partitions, tableaux, tabloids, etc.: Let n be an integer. A partition of n is a finite
sequence λ = [λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0] of integers λi such that

∑k
i=1 λi = n.

Let ht(λ) denote the height of the partition λ (that is, the largest i with λi �= 0).
Flipping a Young diagram of a partition λ of n over its main diagonal (from upper
left to lower right), we obtain the Young diagram of another partition tλ of n, which
is called the conjugate partition of λ. Thus, for λ = [λ1 ≥ λ2 ≥ · · · ≥ λk], we have
tλ = [tλ1 ≥ tλ2 ≥ · · · ≥ tλl ], where l = λ1 and tλ j = |{i : 1 ≤ i ≤ k, λi ≥ j}|
for 1 ≤ j ≤ l.

First we consider the group of permutations of n letters, W = Sn . The irre-
ducible representations of W are parameterized by partitions λ = [λ1 ≥ λ2 ≥
· · · ≥ λk] of n as follows. A tabloid of the shape λ is the Cartesian product
A1 × A2 × · · · × Ak , where A1 ∪ A2 ∪ · · · ∪ Ak = {1, 2, . . . , n} and |Ai | = λi .
The group Sn acts on the set of all the tabloids of shape λ in the obvious way. Let
Vλ be the complex vector space spanned by all the tabloids of shape λ.

A tableau T of shape λ is defined to be the Young diagram of λ filled labels
1, 2, . . . , n, which are increasing (from left to right) in rows and (from top to bot-
tom) in columns:
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T =
1 4 6
2 5 7
3

To every tableau T we associate a tabloid {T } equal to the Cartesian product of the
sets made of the rows of T :

{T } = {1, 4, 6} × {2, 5, 7} × {3}.
Let C(T ) ⊆ Sn be the subgroup preserving the columns, T1, T2, . . . , T
 of T .

A polytabloid of T is the element of Vλ defined by
∑

σ∈C(T )

sgn(σ )σ {T }. (6)

The subspace of Vλ spanned by all the polytabloids is irreducible under the action of
Sn , is denoted by Sλ and is called the Specht module corresponding toλ. This estab-
lishes a one to one correspondence between the partitions of n and the (equivalence
classes of the) irreducible representations of the group Sn (see for example [22]).
The trivial representation and the sign representation correspond to the partitions
(n), (1n), respectively.

We would like to realize eachSλ in the space of the polynomials C[x1, x2, . . . , xn].
This is done as follows. Let ti1, ti2, . . . , tiλi be the i th row of a tableau T . We asso-
ciate to T the product

ht(λ)∏

i=1

xi−1
ti1

xi−1
ti2

· · · xi−1
tiλi
.

For the above example we get

x0
1 x0

4 x0
6

x1
2 x1

5 x1
7

x2
3

.

This extends to a Sn-intertwining map from Vλ to C[x1, x2, . . . , xn]. The restric-
tion of this map to Sλ is not zero. In fact, the image of (6) is equal to the product
of the Vandermonde determinants made of the variables which are in the columns
of T :

�T = �T1�T2 · · ·�T
 .

Here

�Tj := (xm − xh)(xm − x j )(xh − x j ) if Tj =
x j

xh

xm

.

The polynomial �T where T1 = (1, 2, 3, . . . , tλ1), T2 = (tλ1 + 1, tλ1 +
2, tλ1 + 3, . . . , tλ1 + tλ2), . . ., shall be denoted by �λ. The Sn-submodule of
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C[x1, x2, . . . , xn] generated by�λ is isomorphic to Sλ and shall be denoted by ρλ.
It occurs in the space of the homogeneous polynomials of degree n(λ), the degree
of the polynomial �λ, which is the sum of the degrees of the corresponding Van-
dermonde determinants. This number may be visualized as follows. Fill the first
row of Young diagram λ with zeros, the second row with 1s, the third row with 2s
and so on. Then add all these numbers. The result is n(λ). This is the lowest degree
in which (an isomorphic module to) ρλ occurs in C[x1, x2, . . . , xn] and it occurs
in this degree with multiplicity one (see [26] or [11, 5.4.4]).

Now we consider the hyperoctahedral group Wn = W (Bn), which is equal
to the semidirect product of Sn acting on (Z/2Z)n . There is a unique character
sgnCD,n : Wn → {±1} whose restriction to the normal subgroup (Z/2Z)n is the
product of the sign characters and that is trivial on the subgroup Sn . The kernel of
sgnCD,n is isomorphic to the Weyl group W (Dn). The restriction of the character
sgnCD,n to the subgroup Wn−1 of Wn equals the character sgnCD,n−1. Because of
this, we will denote sgnCD,n simply by sgnCD.

Let (ξ, η) be a pair of partitions with |ξ | = s, |η| = t where s + t = n. We
extend the action of the group Ss on the Specht module Sξ to an action of the Ws by
letting (Z/2Z)s act trivially. Similarly, we extend the action of the group St on the
Specht module Sη to an action of the Wt by letting each Z/2Z act via the non-trivial

character. The induced representation IndWn
Ws×Wt

(Sξ ⊗ Sη) is irreducible. This way
the irreducible representations of Wn are parameterized by the pairs of partitions
of n (see [26]). The trivial representation of Wn corresponds to ((n),∅) while the
sign representation corresponds to (∅, (1n)) and the representation afforded by the
character sgnCD = sgnCD,n corresponds to (∅, (n)).

Let�ξ,η be the product of�ξ (in the variables x2
1 , x2

2 , . . . , x2
s ),�η (in the vari-

ables x2
s+1, x2

s+2, . . . , x2
n ) and the monomial xs+1xs+2 . . . xn . The Wn-submodule

of C[x1, x2, . . . , xn] generated by �ξ,η is isomorphic to the irreducible represen-
tation corresponding to (ξ, η). We denote it by ρ(ξ,η). It occurs in the degree

2n(ξ)+ 2n(η)+ |η|. (7)

As in the previous case, this is the lowest degree in which (an isomorphic module
to) ρ(ξ,η) occurs in C[x1, x2, . . . , xn] and it occurs in this degree with multiplicity
one (see [26] or [11, 5.5.3]).

Notice the following formulas

max
1≤ j≤n

degx j
�λ(x) = ht(λ)− 1, (8)

max
1≤ j≤n

degx j
�ξ,η(x) = max{2 ht(ξ)− 1, 2 ht(η)} − 1.

Definition 2. A partition λ is called symplectic (resp. orthogonal) if each odd (resp.
even) row occurs with even multiplicity.

For N a given integer, let Psp(N ) (resp. Por(N )) denote the set of symplectic
(resp. orthogonal) partitions of N .

Though this article concerns real reductive dual pairs, the combinatorics
involved carries over to a study of dual pairs over a finite field. Therefore, for
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future reference, [1], we consider K, an algebraically closed field of characteristic
p ≥ 0, with p �= 2. (The field K could be equal to C, of course.) For each group
G = GLn(K), Sp2n(K), O2n+1(K) or O2n(K) we have the defining module K

n ,
K

2n , K2n+1, K2n respectively. The nilpotent orbits in the corresponding Lie algebra
are parameterized by partitions λ of the dimension of the defining module, as in
[9]. The partition λ is symplectic (resp. orthogonal) if G = Sp2n(K) [resp. O2n(K)

or O2n+1(K)].
We will now recall the algorithm described in [8, 13.3]. To each partition λ =

(λ1 ≥ λ2 ≥ · · · ≥ λk) we attach the sequence of β-numbers

λ∗ =(λ∗
1<λ

∗
2< · · · < λ∗

k), defined by λ∗
j := λk− j+1 + j − 1, for 1 ≤ j ≤ k.

(9)

For instance, we have

(n)∗ = (n), (n − 1, 1)∗ = (1, n),

(n − 2, 2)∗ = (2, n − 1), (n − 2, 1, 1)∗ = (1, 2, n).

(In the proof of Proposition 5 below it will be simpler to work with partitions with
increasing terms, λ = (λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄k) where λ̄i := λk−i+1).

Consider a symplectic or orthogonal partition λ and the corresponding group
G. We ensure that the number of parts of λ has same parity as the defining module
of G, by calling the last part 0 if necessary. Thus λ1 ≥ λ2 ≥ · · · ≥ λ2k (resp.
λ1 ≥ λ2 ≥ · · · ≥ λ2k+1) if G = Sp2n(K) or O2n(K) [resp. G = O2n+1(K)]. We
then divide λ∗ into its odd and even parts. Let the odd parts and the even parts of
λ∗ be

2ξ∗
1 + 1 < 2ξ∗

2 + 1 < · · · < 2ξ∗
k + 1 (resp. 2ξ∗

k+1 + 1) and

2η∗
1 < 2η∗

2 < · · · < 2η∗
k ,

respectively. Then we have

0 ≤ ξ∗
1 < ξ∗

2 < · · · < ξ∗
k (resp. ξ∗

k+1) and 0 ≤ η∗
1 < η∗

2 < · · · < η∗
k .

Next we define ξi := ξ∗
k−i+1 − (k − i) and ηi := η∗

k−i+1 − (k − i) for each i . We
then have ξi ≥ ξi+1 ≥ 0, ηi ≥ ηi+1 ≥ 0, and |ξ | + |η| = n.

Thus we obtain an injective map

ϕ : λ �→ (ξ, η) (10)

from Psp(2n) or Por(2n) [resp. Por(2n + 1)] to the set of pairs of partitions
of n.

The following lemma and corollary are going to use them in the proof of
Theorem 18.

Lemma 3. Let λ be either a symplectic or an orthogonal partition and let (ξ, η)
be the corresponding pair of partitions. Then

ht(λ) =
{

max{2 ht(ξ)− 1, 2 ht(η)} if |λ| is even,
max{2 ht(ξ)− 1, 2 ht(η)+ 1} if |λ| is odd.

(11)
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Proof. Let λ be a symplectic partition.
Suppose ht(λ) = 2k. If λ2k is even then ηk �= 0. Thus ht(λ) = 2 ht(η). Since

ht(ξ) ≤ k, (11) follows. If λ2k is odd then λ2k−1 = λ2k is odd. Hence, λ∗
2 ≥ 2 is

even. This is the smallest even part of λ∗. Therefore ht(η) = k and (11) follows.
Suppose ht(λ) = 2k − 1. Since λ2k = 0, ht(η) < k. If λ2k−1 is even then λ∗

2 is
odd and greater or equal to 3. Therefore ht(ξ) = k and (11) follows. If λ2k−1 is odd
then λ2k−2 = λ2k−1 and therefore λ∗

3 = λ2k−2 + 2 ≥ 3 is odd. This is the smallest
odd part of λ∗. Thus ht(ξ) = k and (11) follows.

Let λ be an orthogonal partition with |λ| even. Then ht(λ) = 2k.
If λ2k is even then ht(η) = k and (11) follows. If λ2k is odd and greater than

1 then λ∗
1 > 1. Hence the smallest even part of λ∗ is positive. Thus ht(η) = k,

which implies (11). If λ2k = 1, then λ∗
2 > 1, which implies ht(η) = k. Again (11)

follows.
Let λ be an orthogonal partition with |λ| odd. Then ht(λ) = 2k + 1.
If λ2k+1 is even, then ht(ξ) = k + 1 and ht(η) = k. Thus (11) follows. If

λ2k+1 > 1 is odd, then ht(ξ) = k + 1 and ht(η) ≤ k, which implies (11). If
λ2k = 1, then ht(ξ) = ht(η) = k, which implies (11). ��

By combining (8) with Lemma 3 we deduce the following Corollary.

Corollary 4. For any partition λ,

max
1≤ j≤n

degx j
�λ(x) = ht(λ)− 1. (12)

For a symplectic or orthogonal partition λ and the corresponding pair of partitions
(ξ, η)

max
1≤ j≤n

degx j
�ξ,η(x) = ht(λ)− 1, (13)

unless λ is orthogonal with |λ| odd and 2ht(ξ)− 1 < 2ht(η)+ 1. (Equivalently the
smallest part of λ is 1.) In this case

max
1≤ j≤n

degx j
�ξ,η(x) = ht(λ)− 2. (14)

4. Springer correspondence

For an irreducible complex dual pair (G,G ′), let τ , τ ′ be the corresponding moment
maps. We assume that the rank of G ′ is smaller than the rank of G. Let O(λ) denote
the nilpotent orbit in the Lie algebra of G parameterized by the partition λ and let
O(λ) denote the closure of O(λ).

Given a nilpotent orbit O(λ′) there is a unique partition λ such that

τ(τ ′−1(O(λ′))) = O(λ), (15)

see [10]. Let V be the defining module for G and V ′ for G′. If

r := dim V − dim V′ ≥ ht(λ′), (16)
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then [10, Theorems 5.2, 5.6] show that λ is obtained from λ′ by adding a column
of length r on the very left. [The condition (16) implies, that in the notation of [10,
Definitions 5.1, 5.5], we are in the case where i0 = r + 1 and ri0 = 0.] In other
words,

λ = (1r )⊕ λ′, (17)

that is, if λ′ = (λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
k′) (here k′ = ht(λ′)) then λ = (λ1 ≥ λ2 ≥

· · · ≥ λr ), where λi = λ′
i + 1 for 1 ≤ i ≤ k, with the convention that λ′

i = 0
for k′ + 1 ≤ i ≤ r . It is clear that the partition λ defined by (17) has the right
type. Indeed, if λ′ is symplectic, the condition that each odd row of λ′ occurs with
even multiplicity implies that each even row of λ has the same property. Hence λ
is orthogonal. If λ′ is orthogonal, each odd λi with 1 ≤ i ≤ k′ occurs with even
multiplicity. In particular, it implies that the height of λ has same parity as r , that
is, r − k′ is even. Hence λ is symplectic.

Springer constructed irreducible representations of the Weyl group in coho-
mology groups of varieties associated to nilpotent orbits, [38]. This is known as
Springer correspondence. We shall use a combinatorial description of this corre-
spondence, which may be found in [8], Section 13.3. (The description in [9] for the
group Sp2n(C) is incorrect and for the group O2n(C) is rather sketchy.) Since the
orthogonal group O2n(C) occurs as a member of dual pair, we need a “Springer
correspondence” in this case, which seems to be unavailable in the literature. In
order to include this case we provide an extension of Rossmann’s approach to the
Springer correspondence, [33], in Appendix A.

If G = GLn(K) then the Weyl group coincides with Sn and the Springer
correspondence associates to an orbit O(λ) the representation ρλ.

In all remaining cases the Weyl group is the semidirect product of Sn acting on
(Z/2Z)n . For the groups Sp2n(K) and O2n+1(K), we associate the representation
ρξ,η to the orbit O(λ), where (ξ, η) := ϕ(λ), with ϕ defined by (10).

Consider the group O2n(K). In this case the nilpotent orbits are parameterized
by partitions λ of 2n where the even rows occur with even multiplicities. We attach
to such a partition λ the ordered pair of partitions (ξ, η) defined by (ξ, η) := ϕ(λ).
Then we associate to O(λ) the representation ρη,ξ .

Thus in any case we have a “combinatorial Springer correspondence”

CSC : O �→ ρ, (18)

which is compatible with our extension of Rossmann’s work, [33], as explained in
A.2.

The following proposition shows what happens to the Weyl group representa-
tions if we map a nilpotent orbit from one Lie algebra to a nilpotent orbit in the
other Lie algebra via the moment maps, as in (15), and apply our “combinatorial
Springer correspondence".

Proposition 5. Let (G,G′) be an irreducible reductive dual pair of type I over K,
and let O(λ′) be a nilpotent orbit in the Lie algebra of G′ satisfying the condition
(16).
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Let O(λ) be the corresponding orbit in the Lie algebra of G, as in (15), or
equivalently in (17). Let CSC(O(λ′)) = ρξ ′,η′ and CSC(O(λ)) = ρξ,η. Let 
 be
the difference of the rank of G and G′. Then

(ξ, η) =

⎧
⎪⎪⎨

⎪⎪⎩

((1
)⊕ ξ ′, η′) if G′ = Sp2n′(K) and G = O2n(K)

(ξ ′, (1
)⊕ η′) if G′ = O2n′(K) and G = Sp2n(K)

((1
)⊕ η′, ξ ′) if G′ = Sp2n′(K) and G = O2n+1(K)

((1
)⊕ ξ ′, η′) if G′ = O2n′+1(K) and G = Sp2n(K).

(19)

Proof. We proceed via a case by case analysis and write the partitions in the increas-
ing order (λ1 ≤ λ2 ≤ · · ·) as in [8].

Case G′ = Sp2n′(K) and G = O2n(K).
Here λ′

1 ≤ λ′
2 ≤ · · · ≤ λ′

2k and λ = (12n−2n′
)⊕ λ. Therefore,

λ∗
j = λ j + j − 1 =

{
j if 1 ≤ j ≤ 2n − 2n′ − 2k,
λ′

j−2n+2n′+2k + j if 2n − 2n′ − 2k < j ≤ 2n − 2n′,

where λ′
j−2n+2n′+2k + j = λ′∗

j−2n+2n′+2k + 2n − 2n′ − 2k + 1. Therefore,

2η∗
ν = 2ν if 2 ≤ 2ν ≤ 2n − 2n′ − 2k,

2η∗
ν = 2ξ ′∗

ν′ + 1 + 2n − 2n′ − 2k + 1 if ν = n − n′ − k + ν′, 1 ≤ ν′ ≤ k.

Thus,

η∗
ν = ν if 1 ≤ ν ≤ n − n′ − k,
η∗
ν = ξ ′∗

ν′ + n − n′ − k + 1 if ν = n − n′ − k + ν′, 1 ≤ ν′ ≤ k.

If 1 ≤ ν ≤ n − n′ − k then ην = η∗
ν − ν + 1 = 1. If ν = n − n′ − k + ν′ and

1 ≤ ν′ ≤ k then

ην = η∗
ν − ν + 1 = ξ ′∗

ν′ + n − n′ − k + 1 − n + n′ + k − ν′ + 1

= ξ ′∗
ν′ − ν + 1 + 1 = ξ ′

ν′ .

Thus η = (1
)⊕ ξ ′.
Similarly,

2ξ∗
ν + 1 = 2ν − 1 if 1 ≤ 2ν − 1 ≤ 2n − 2n′ − 2k − 1,

2ξ∗
ν + 1 = 2η′∗

ν′ + 2n − 2n′ − 2k + 1 if ν = n − n′ − k + ν′, 1 ≤ ν′ ≤ k.

If 1 ≤ ν ≤ n − n′ − k, then

ξν = ξ∗
ν − ν + 1 = ν − 1 − ν + 1 = 0.

If ν = n − n′ − k + ν′ and 1 ≤ ν′ ≤ k then

ξν = ξ∗
ν − ν + 1 = η′∗

ν′ + n − n′ − k − ν + 1 = η′∗
ν′ + n − n′ − k − n + n′

+k − ν′ + 1 = η′
ν′ .

Hence, ξ = η′. Recall that in this case we associate to λ the pair (η, ξ), which (as
we just computed) is equal to ((1
)⊕ ξ ′, η′).
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Case G′ = O2n′(K) and G = Sp2n(K).
Here, λ′, λ, ξ and η are exactly as in the previous case except that we associate

to λ the pair (ξ, η) = (η′, (1
)⊕ ξ ′).
Case G′ = Sp2n′(K) and G = O2n+1(K).
Here, λ′

1 ≤ λ′
2 ≤ · · · ≤ λ′

2k and λ = (12n−2n′+1)⊕ λ′. Therefore,

λ∗
j =

{
j if 1 ≤ j ≤ 2n − 2n′ + 1 − 2k,
λ′

j−2n+2n′−1+2k + j if 2n − 2n′ + 1 − 2k < j ≤ 2n − 2n′ + 1,

where λ′
j−2n+2n′−1+2k + j = λ′∗

j−2n+2n′−1+2k + 2n − 2n′ + 1 − 2k + 1
Therefore,

2ξ∗
ν + 1 = 2ν − 1 if 1 ≤ ν ≤ n − n′ + 1 − k,

2ξ∗
ν + 1 = 2ξ ′∗

ν′ + 1 + 2n − 2n′ + 1 − 2k + 1 if ν = n − n′ + 1 − k + ν′,
1 ≤ ν′ ≤ k.

Thus, for 1 ≤ ν ≤ n − n′ + 1 − k,

ξν = ξ∗
ν − ν + 1 = 0

and for the remaining ν,

ξν = ξ∗
ν − ν + 1 = ξ ′∗

ν′ + n − n′ + 1 − k − ν + 1 = ξ ′∗
ν′ − ν′ + 1 = ξ ′

ν′ .

Hence, ξ = ξ ′. Also,

2η∗
ν = 2ν if 1 ≤ ν ≤ n − n′ − k,

2η∗
ν = 2η′∗

ν′ + 2n − 2n′ + 1 − 2k + 1 if ν = n − n′ − k + ν′, 1 ≤ ν′ ≤ k.

Therefore ην = 1, if 1 ≤ ν ≤ n −n′ −k. If ν = n −n′ −k +ν′ and 1 ≤ ν′ ≤ k,
then

ην = η∗
ν − ν + 1 = η′∗

ν′ + n − n′ + 1 − k − ν + 1 = η′
ν′ + 1.

Hence, η = (1
)⊕ η′. Thus (ξ, η) = (ξ ′, (1
)⊕ η′).
Case G ′ = O2n′+1(K) and G = Sp2n(K).
Here, λ′

1 ≤ λ′
2 ≤ · · · ≤ λ′

2k−1 and λ = (12n−2n′−1) ⊕ λ′. Since the number
of the parts (rows) of λ is odd, we introduce artificially λ1 = 0, as required by
Lusztig’s algorithm [8]. Then

λ1 = 0, λ2 = 1, λ3 = 1, . . . , λ2n−2n′−2k+1 = 1,

λ2n−2n′−2k+2 = λ′
1 + 1, λ2n−2n′−2k+3 = λ′

2 + 1, . . . , λ2n−2n′ = λ′
2k−1 + 1.

Hence,

λ∗
1 =0, λ∗

2 =2, λ∗
3 =3, . . . , λ∗

2n−2n′−2k+1 =2n−2n′−2k+1,

λ∗
2n−2n′−2k+2 =λ′∗

1+2n−2n′−2k+2, λ∗
2n−2n′−2k+3 =λ′∗

2+2n−2n′−2k+2, . . . ,

λ∗
2n−2n′ =λ′∗

2k−1+2n−2n′−2k+2.
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Therefore,

ξ∗
1 = 1, ξ∗

2 = 2, ξ∗
3 = 3, . . . , ξ∗

n−n′−k = n − n′ − k,

ξ∗
ν = ξ ′∗

ν′ + n − n′ − k, ν = n − n′ − k + ν′.

Thus,

ξ1 = 1, ξ2 = 1, ξ3 = 1, . . . , ξn−n′−k = 1,

ξν = ξ ′∗
ν′ + n − n′ − k − ν + 1 = ξ ′

ν′ + 1.

Hence, ξ = (1
)⊕ ξ ′. Therefore,

η∗
1 = 0, η∗

2 = 1, η∗
3 = 2, . . . , η∗

n−n′−k = n − n′ − k − 1,

η∗
ν = η′∗

ν′ + n − n′ − k, ν = n − n′ − k + ν′.

Thus,

η1 = 0, η2 = 0, η3 = 0, . . . , ηn−n′−k = 0,

ην = η′∗
ν′ + n − n′ − k − ν + 1 = η′

ν′ .

Hence, η = η′. ��

5. W-harmonic polynomials

For a Weyl group W, as before, let us define the type of W, say [W], to be A if
W = Sn and B otherwise.

Let HW
C[x1, x2, . . . , xn] ⊆ C[x1, x2, . . . , xn] be the space of the W-harmonic

polynomials. Let

�A = �(1n) (20)

�B = �∅,(1n) (21)

Then

HW
C[x1, x2, . . . , xn] = C[∂1, ∂2, . . . , ∂n]�[W](x1, x2, . . . , xn). (22)

Lemma 6. If f ∈ C[x1, x2, . . . , xn] transforms under the sign representation of
W then it is divisible by �[W].

For both (22) and Lemma 6, see [17].

Corollary 7. For any irreducible representation ρ of the Weyl group W, the cor-
responding polynomial�ρ is W-harmonic. (In this notation we identify ρ with the
corresponding partition or a pair of partitions.)

Proof. Let D ∈ C[∂1, ∂2, . . . , ∂n] be W-invariant of positive degree. Suppose W =
Sn . Then �ρ = �λ = �T , where T is the standard tableau, as in Sect. 3. �T is
skew-symmetric with respect to the group C(T ) ⊆ Sn . Hence, so is D�T . Lemma
6 implies that it is divisible by �T . However the degree of D�T is smaller than
the degree of �T . Therefore, D�T = 0.

The case W �= Sn is analogous. ��
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Let (G,G′) be a complex dual pair with the rank of G equal n and the rank of
G′ equal n′ < n, and let 
 = n − n′. In these terms define the following map.

C[x1, x2, . . . , xn′ ] � P �→ Q ∈ C[x1, x2, . . . , xn],
Q(x1, x2, . . . , xn′ , . . . , xn) = P(x1, x2, . . . , xn′)�ρ(xn′+1, xn′+2, . . . , xn),

(23)

where

ρ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1
) if (G,G ′) = (GLn(C),GLn′(C)),
(1
,∅) if (G,G ′) = (O2n(C),Sp2n′(C)),
(∅, 1
) if (G,G ′) = (Sp2n(C),O2n′(C)),
(∅, 1
) if (G,G ′) = (O2n+1(C),Sp2n′(C)),
(1
,∅) if (G,G ′) = (Sp2n(C),O2n′+1(C)).

Lemma 8. The map (23) sends W′-harmonic polynomials to W-harmonic polyno-
mials.

Proof. We see from (22) that there is a differential operator D′ such that P =
D′�[W′]. Notice that �[W′](x1, x2, . . . , xn′)�ρ(xn′+1, xn′+2, . . . , xn) is W-har-
monic (by the argument used in the proof of Corollary 7). Hence, by (22), Q
is W-harmonic. ��

(Lemma 8 also follows from Corollary 13 below.) As an obvious consequence
of Proposition 5 we obtain the following Theorem.

Theorem 9. Let (G,G ′) be an irreducible complex dual pair and let O(λ′) be a
nilpotent orbit in the Lie algebra of G ′ satisfying the condition (16). Let O(λ) be
the corresponding orbit in the Lie algebra of G, as in (15). We identify CSC(O(λ′))
and CSC(O(λ) with their realizations in harmonic polynomials as in Sect. 5. Then
the image of CSC(O(λ′)) under the map (23) is equal to CSC(O(λ)).

6. Differential operators and chc

Let G, G′ be a real reductive pair acting on the symplectic space W, with rk(G) ≥
rk(G′), as before. Let τ : W → g∗, τ ′ : W → g′∗ be the corresponding moment
maps. Let P(g∗

C
)G be the algebra of the G-invariant complex valued polynomials

on the dual of the complexification of g. There is an algebra homomorphism

c : P(g∗
C
)G → P(g′∗

C
)G

′
, (24)

determined by f ◦ τ = c( f ) ◦ τ ′, f ∈ P(gC)
G . (See the beginning of the proof of

Lemma 10 below for an explanation).
Similarly, if U(gC)

G denotes the algebra of the G-invariants in the universal
enveloping algebra of g over C, then we have the Capelli Harish-Chandra homo-
morphism

C : U(gC)
G → U(g′

C
)G

′
, (25)
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which determines the relation between the infinitesimal characters for represen-
tations which occur in Howe’s correspondence, [28] or [30]. (Specifically, if a
representation � with the infinitesimal character γ� : U(gC)

G → C corresponds
to a representation �′ with the infinitesimal character γ�′ : U(g′

C
)G

′ → C, then
γ� = γ�′ ◦C.) Recall the symmetrization map, from the symmetric algebra S(gC)

onto the universal enveloping algebra U(gC)

s : S(gC) → U(gC), (26)

[14]. The action of C
× on gC, gC � x → t x ∈ gC, extends to an action on S(gC),

denoted by

S(gC) � u → t.u ∈ S(gC). (27)

We shall identify the symmetric algebra S(gC) with the polynomial algebra on
the dual P(g∗

C
). Then t.u(ξ) = u(tξ), ξ ∈ g∗

C
. Also, since the Lie algebra h is

commutative, U(hC) = S(hC) = P(h∗
C
).

The following Lemma points to a known fact that C is a “smooth deforma-
tion/quantization” of c.

Lemma 10. The following formula holds

lim
t→0

t−1.s−1(C(s(t.u))) = c(u) (u ∈ S(gC)
G).

Proof. The map (24) may be explained in more detail as follows. Let us view the
symplectic space W as the odd part of the Lie superalgebra corresponding to our
dual pair. Then we may talk about the semisimple elements in W. Every semisimple
GG′-orbit in W passes through a Cartan subspace h1 ⊆ W, [31]. Let us identify
g with the dual g∗ via a G-invariant bilinear symmetric non-degenerate form on
g, and similarly for g′. Then the moment maps τ and τ ′ take values in g and g′
respectively. The linear span, span(τ ′(h1)) ⊆ g′, is a Cartan subalgebra of g′. Also,
the subset

{(τ ′(w), τ (w)); w ∈ h1} ⊆ span(τ ′(h1))× span(τ (h1))

extends to a linear bijection

span(τ ′(h1)) → span(τ (h1)). (28)

We shall use (28) to identify

span(τ ′(h1)) = span(τ (h1)) (29)

and denote both by h′. Thus h′ is a Cartan subalgebra of g′ and a commutative
subalgebra of g, consisting of semisimple elements. In these terms, f ∈ P(gC) and
c( f ) ∈ P(g′

C
) have the same restriction to h′, and this determines the map c.

Next we recall the definition of the homomorphism (25), [30, (5.5)]. Let z ⊆ g
be the centralizer of h′ and let z′′ be the orthogonal complement of h′ in z so that
z = h′ ⊕ z′′. Denote by Z,Z′′ ⊆ G the corresponding subgroups. Let

γg/h : U(gC)
G → U(h)W (30)
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be the Harish-Chandra isomorphism and let

εz′′ : U(z′′
C
)Z → C (31)

be the augmentation homomorphism, if G′ is not an orthogonal group of type B, i.e.
G′ �= Oodd . If G′ is an orthogonal group of type B, then z′′ is a symplectic Lie alge-
bra and we denote by εz′′ the infinitesimal character of the oscillator representation
of z′′. (Unfortunately, this case is misrepresented in [30], but the necessary correc-
tion is easy (see http : //crystal.ou.edu/ t pr zebin/chch corrected.pd f ). The
corresponding statement in [28] is correct.)

Fix a Cartan subalgebra h ⊆ z. Then h′ ⊆ h, h is a Cartan subalgebra of g and

C : U(gC)
G →
γg/h

U(h)W →
γ−1
z/h

U(zC)
Z →

1⊗εz′′
U(h′)W′ →

γ−1
g′/h′

U(g′
C
)G

′
. (32)

The isomorphism (30) is constructed as follows, [40, sec. 3.2]. Fix a system of
positive roots of h in gC and let n+ denote the sum of the corresponding positive
root subspaces of gC. Similarly, n− is the sum of the negative root subspaces so
that gC = n− ⊕ hC ⊕ n+. Then

U(gC) = U(hC)⊕ (n−U(gC)+ U(gC)n
+). (33)

Denote by

Pg/h : U(gC) → U(hC) (34)

the projection onto the first summand. Similarly we have

S(gC) = S(hC)⊕ (n−S(gC)+ S(gC)n
+). (35)

Let

Rg/h : S(gC) → S(hC) (36)

be the projection onto the first summand. If we identify the symmetric algebra with
the algebra of the polynomials, as above, then (36) coincides with the restriction
from gC to hC.

Since h is commutative, U(hC) = S(hC). Therefore

Pg/h ◦ s : S(gC) → S(hC).

Furthermore,

lim
t→0

t−1.Pg/h ◦ s(t.u) = Rg/h(u) (u ∈ S(gC)). (37)

Indeed, if u ∈ S(hC) then

t−1.Pg/h ◦ s(t.u) = t−1.Pg/h(t.u) = t−1.(t.u) = u

and (37) follows. Suppose u ∈ (n−S(gC)+ S(gC)n
+) is homogeneous of degree

d ≥ 1. Then Pg/h ◦ s(u) ⊆ S(hC) is a sum of terms of degrees smaller than d.
Since t.u = tdu, the left hand side of (37) is zero. In this case the right hand side
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of (37) is also zero. Since a general element of the symmetric algebra is the sum of
the two elements just considered (37) follows.

For ρ ∈ h∗
C

let

Trρ : P(h∗
C
) → P(h∗

C
) (38)

denote the translation byρ, that is the linear map which transforms f (ξ) to f (ξ−ρ).
If we identify the polynomial algebra with the symmetric algebra then (38) coin-
cides with the unique linear map

Trρ : S(hC) → S(hC) (39)

which is obtained from the linear transformation

hC � X → X − ρ(X) ∈ S(hC)

via the universal property of S. We see from the definition that

Tr−1
ρ = Tr−ρ and Trρ(t.u) = t.Trtρ(u). (40)

If ρ = ρg is equal to one half times the sum of all the positive roots, then the restric-
tion of Trρ ◦ Pg/h to U(gC)

G is the Harish-Chandra isomorphism γg/h. Notice that,
by (40) and (37),

t−1. ◦ Trρ ◦ Pg/h ◦ s ◦ t. = t−1. ◦ Trρ ◦ t. ◦ (t−1. ◦ Pg/h ◦ s ◦ t.)

= Trtρ ◦ (t−1. ◦ Pg/h ◦ s ◦ t.) →
t→0

Tr0 ◦ Rg/h = Rg/h.
(41)

Furthermore,

t.(S(gC)
G) = S(gC)

G and s(S(gC)
G) = U(gC)

G.

Therefore,

lim
t→0

t−1. ◦ γg/h ◦ s ◦ t.(u) = Rg/h(u) (u ∈ S(gC)
G), (42)

and by taking the inverse,

lim
t→0

t−1. ◦ s−1 ◦ γ−1
g/h ◦ t.(u) = R−1

g/h(u) (u ∈ S(hC)
W). (43)

Moreover, if εz′′ is the augmentation map then clearly

lim
t→0

(t−1. ◦ (1 ⊗ εz′′) ◦ s ◦ t.) = Rz/h′ (44)

is the restriction from zC to h′
C

. Suppose εz′′ is the infinitesimal character of the
oscillator representation of z′′, or in fact any algebra homomorphism from U(z′′

C
)Z

to C
×. Let h′′ ⊆ z′′ be a Cartan subalgebra. Then there is an element λ ∈ h′′

C

∗
such that εz′′(z) = γz′′/h′′(z)(λ) for z ∈ U(z′′

C
)Z. Hence, (43) shows that for any

u ∈ S(z′′
C
)Z,

εz′′(t.u) = γz′′/h′′(s(t.u))(λ) = (t.t−1.γz′′/h′′(s(t.u)))(λ)

= (t−1.γz′′/h′′(s(t.u)))(t.λ) →
t→0

Rz′′/h′′(u)(0) = u(0).
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Therefore the equation (44) still holds when both sides are applied to an element
of S(gC)

G.
Furthermore,

t−1. ◦ s−1 ◦ C ◦ s ◦ t.

= (t−1. ◦ s−1 ◦ γ−1
g′/h′ ◦ t.) ◦ (t−1. ◦ (1 ⊗ εz′′) ◦ s ◦ t.

◦(t−1. ◦ s−1 ◦ γ−1
z/h ◦ t.) ◦ (t−1 ◦ γg/h ◦ s ◦ t.).

Hence, (37), (42) and (44) show that

lim
t→0

t−1. ◦ s−1 ◦ C ◦ s ◦ t. = R−1
g′/h′ ◦ Rz/h′ ◦ R−1

z/h ◦ Rg/h = c.

��
Let

∂(x)ψ(y) = d

dt
ψ(y + t x)|t=0 (x, y ∈ g, ψ ∈ C∞(g)).

The map ∂ extends to an isomorphism from S(gC) onto the algebra of the constant
coefficient differential operators on g. Recall the Cauchy Harish-Chandra integral

chc : C∞
c (g) → C∞(g′reg)G

′
, (45)

[5,29], where g′reg is the set of the regular semisimple elements in g′.

Theorem 11. The following formula holds,

∂(c(u)) ◦ chc = chc ◦ ∂((−1).u) (u ∈ S(gC)
G).

Proof. Recall that G̃′ denotes the preimage of G′ in the metaplectic group, G̃′reg is
the set of the regular semisimple elements in G̃′ and let L be the left regular represen-
tation. We shall use analogous notation for G̃. Recall the Cauchy Harish-Chandra
integral

Chc : C∞
c (G̃) → C∞

c (G̃
′reg)G

′
, (46)

and the formula

L(C(u)) ◦ Chc = Chc ◦ L(ǔ) (u ∈ U(gC)
G), (47)

where u → ǔ be the involution on the universal enveloping algebra, extending the
map gC � u → −u ∈ gC, [5, Theorem 3]. Furthermore, the following equation
holds,

lim
t→0+ tm

∫

g

Chc(−c̃(t x ′)c̃(t x)) ψ(x) dx

= �(−1̃)
∫

g

chc(x ′ + x) ψ(x) dx (x ′ ∈ g′reg, ψ ∈ C∞
c (g)),

(48)
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where c : g � x → (x + 1)(x − 1)−1 ∈ G is the Cayley transform (defined where
x − 1 is Invertible), c̃ : g → G̃ is a lift of c, m is one half of the dimension of the
symplectic space W and �(−1̃) ∈ C is the value of the character � of the under-
lying oscillator representation at the preimage of minus identity in the metaplectic
group, [29, Theorem 2.13]. Our Theorem follows from (46) and (48), as explained
below.

Let c−(x) = −c(x), so that c−(0) = 1. For y ∈ g we have the differential
operator L(y) on the group and its pullback to the Lie algebra, c∗−(L(y)) defined
by

c∗−(L(y))ψ(x) = (L(y)(ψ ◦ c−1− )) ◦ c−(x).

Recall the following formula

c∗−(L(y))ψ(x) = ∂

(
1

2
(x − 1)y(x + 1)

)

ψ(x), (49)

[30, (2.3)]. We also have

c∗(L(y))ψ(x) = ∂

(
1

2
(x − 1)y(x + 1)

)

ψ(x). (50)

Indeed, by definition, the left hand side of (50) is equal to

d

dt
(ψ ◦ c)(exp(−t y)c(x))|t=0 = 1

2

d

dt
ψ(c(c−(t y)−1c(x)))|t=0,

because c = c−1 and the derivative of c− at zero is two times the identity. Notice
that c−1− (g) = c(−g). Hence,

c(c−(y)−1c(x)) = c(−c(y)−1c(x)) = c−1− (c(y)−1c(x)) = c−1− (c(−y)c(x))

= c−1− (c−(−y)c−(x)) = c−1− (c−(y)−1c−(x)).

Thus (50) follows from (49). Let

δtψ(x) = ψ(t−1x) (t ∈ R, x ∈ g).

Then

(δt−1c∗−(L(−2t y)δt )ψ(x) = ∂((1 − t x)y(t x + 1))ψ(x) (51)

and

(δt−1c∗(L(2t y)δt )ψ(x) = ∂((1 − t x)(−y)(t x + 1))ψ(x). (52)

Indeed, the left hand side of (51) is equal to

(c∗−(L(−2t y))δt )ψ(t x) = c∗−(L(−2t y))(δtψ)(t x)

= ∂

(
1

2
(t x − 1)(−2t y)(t x + 1)

)

(δtψ)(t x)

= ∂

(
1

2
(t x − 1)(−2y)(t x + 1)t−1

)

ψ(x),
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which coincides with the right hand side. Similarly, the left hand side of (52) is
equal to

(c∗(L(2t y))δt )ψ(t x) = c∗(L(2t y))(δtψ)(t x)

= ∂

(
1

2
(t x − 1)(2t y)(t x + 1)

)

(δtψ)(t x)

= ∂

(
1

2
(t x − 1)(2y)(t x + 1)t−1

)

ψ(x),

which coincides with the right hand side.
In particular, (51) and (52) imply

lim
t→0

δt−1 ◦ c∗−(L(s((−2t).u))) ◦ δt = ∂(u) (u ∈ S(gC)), (53)

and

lim
t→0

δt−1 ◦ c∗(L(s((2t).u))) ◦ δt = ∂((−1).u) (u ∈ S(gC)). (54)

Let ψt = t− dim g δtψ . In these terms, (48) shows that for t > 0,

tm
∫

G̃

Chc(c̃(t x ′)g)(ψt ◦ c̃−1− )(g) dg = tm
∫

g

Chc(c̃(t x ′)c̃−(x))ψt (x) j (x) dx

= tm
∫

g

Chc(−c̃(t x ′)c̃(t x))ψ(x) j (t x) dx →
t→0

�(−1̃) j (0)

×
∫

g

chc(x ′ + x)ψ(x) dx

(55)

where j (x) is the Jacobian of c−. On the other hand, since s(u)̌ = s((−1).u) for
u ∈ S(gC)

G , (46) shows that

L(C(s((2t).u)))
∫

G̃

Chc(g′g)(ψt ◦ c̃−1− )(g) dg

=
∫

G̃

Chc(g′g)L(s((−2t).u))(ψt ◦ c̃−1− )(g) dg.
(56)
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By (53) and (55),

tm
∫

G̃

Chc(c̃(t x ′)g)L(s((−2t).u))(ψt ◦ c̃−1− )(g) dg

= tm
∫

g

Chc(c̃(t x ′)c̃−(x))L(s((−2t).u))(ψt ◦ c̃−1− )(c̃−(x)) j (x) dx

= tm
∫

g

Chc(c̃(t x ′)c̃−(x))c̃∗−(L(s((−2t).u)))ψt (x) j (x) dx

= tm
∫

g

Chc(c̃(t x ′)c̃−(t x))(δt−1 c̃∗−(L(s((−2t).u)))δt )ψ(x) j (t x) dx

→
t→0+ �(−1̃) j (0)

∫

g

chc(x ′ + x)(∂(u)ψ)(x) dx .

(57)

Moreover, if g′ = c̃(t x ′), then

L(C(s((2t).u)))tm
∫

G̃

Chc(g′g)(ψt ◦ c̃−1− )(g) dg

= (δt−1 c̃∗(L(C(s((2t).u))))δt )t
m

∫

G̃

Chc(c̃(t x ′)g)(ψt ◦ c̃−1− )(g) dg
(58)

We see from Lemma 10 and (54) that

(δt−1 c̃∗(L(C(s((2t).u))))δt )

= (δt−1 c̃∗(L(s((2t).(2t)−1.s−1C(s((2t).u))))δt )

→
t→0+ ∂(c((−1).u)).

(59)

Therefore,

tmL(C(s((2t).u)))
∫

G̃

Chc(c̃(t x ′)g)(ψt ◦ c̃−1− )(g) dg (60)

→
t→0+ �(−1̃) j (0)∂(c((−1).u))

∫

g

chc(x ′ + x)ψ(x) dx .

The theorem follows from (56), (57) and (60). ��
A G-invariant distribution f on g is called an S(gC)

G-eigendistribution if there
is an algebra homomorphism γ : S(gC)

G → C such that

f ◦ ∂(u) = γ (u) f (u ∈ S(gC)
G). (61)

By Harish-Chandra’s Regularity Theorem on a semisimple Lie algebra, [15, The-
orem 1], any such distribution coincides with a locally integrable function which
is real analytic on greg .



102 A.-M. Aubert et al.

For a G′-invariant, S(g′
C
)G

′
-eigendistribution f ′ on g′ define a G-invariant dis-

tribution chc( f ′) on g by the formula

chc( f ′)(ψ) =
∑ 1

|W(H′)|
∫

h′reg

f ′(x ′)|πg′/h′(x ′)|2chc(ψ)(x ′) dx ′, (62)

where ψ ∈ C∞
c (g), the summation is over a maximal family of mutually non-con-

jugate Cartan subgroups H′ ⊆ G′, W(H′) = W(H′,G′) is the Weyl group of H′ in
G′, πg′/h′ is the product of all the positive roots of h′ in g′

C
under some fixed order

of roots, and we assume that all the integrals in (62) are absolutely convergent. We
shall quantify this last assumption later, in (94), for the case when f ′ is the Fourier
transform of a nilpotent orbital integral.

Theorem 12. If f ′ is a G′-invariant S(g′
C
)G

′
-eigendistribution corresponding to

a homomorphism γ ′ : S(g′
C
)G

′ → C as in (61), then chc( f ′) is a G-invariant
S(gC)

G-eigendistribution corresponding to the homomorphism γ : S(gC)
G �

u → γ ′ ◦ c((−1).u) ∈ C.

Proof. Let ψ ∈ C∞
c (g). Fix a completely G′-invariant open set U ′ ⊆ g′ and a

subset K ′ ⊆ U ′ which is compact, modulo the conjugation by G′. Assume that the
closure of U ′ is also compact modulo the conjugation by G′. Then, by [7, Corollary
2.3..2] there is a smooth G′-invariant function χ supported in U ′ which has values
between 0 and 1, and is equal to 1 on K ′. Theorem 1 in [5] says that the function
chc(ψ) satisfies the conditions I1(g

′), I2(g
′) and I3(g

′) in [7, page 171]. Hence
the product χ chc(ψ) satisfies I1(g

′), I2(g
′), I3(g

′) and I4(g
′). Therefore, by [7,

Theorem 4.1.1 (i)], there is a function ψχ ∈ C∞
c (g

′) whose orbital integrals are
equal to χ chc(ψ):

I(ψχ)(x ′) =
∫

G′/G′x ′
ψχ(g.x

′) d(gG′x ′
) = χ(x ′) chc(ψ)(x ′) (x ′ ∈ g′reg).

(63)

(Here G′x ′
is the centralizer of x ′ in G′.)

If the sets K ′ ⊆ U ′ increase to fill up g′, i.e. χ → 1, then by Lebesgue’s
Dominated Convergence Theorem,

chc( f ′)(ψ) = lim
χ→1

∑ 1

|W(H′)|
∫

h′reg

f ′(x ′)|πg′/h′(x ′)|2χ(x ′)chc(ψ)(x ′) dx ′

= lim
χ→1

∑ 1

|W(H′)|
∫

h′reg

f ′(x ′)|πg′/h′(x ′)|2I(ψχ)(x ′) dx ′

= lim
χ→1

f ′(ψχ). (64)

Furthermore, by (63) and Theorem 10, for u ∈ S(gC)
G,

I((∂(u)ψ)χ ) = χ chc(∂(u)ψ) = χ ∂(c((−1).u))chc(ψ)

= ∂(c((−1).u))(χ chc(ψ))

= ∂(c((−1).u))I(ψχ) = I(∂(c((−1).u))ψχ).
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Therefore,

f ′((∂(u)ψ)χ ) = f ′(∂(c((−1).u))ψχ). (65)

We see from (64) and (65) that

chc( f ′)(∂(u)ψ) = lim
χ→1

f ′((∂(u)ψ)χ ) = lim
χ→1

f ′(∂(c((−1).u))ψχ)

= lim
χ→1

γ ′(c((−1).u)) f ′(ψχ)

= γ ′(c((−1).u))chc( f ′)(ψ).

��
Harish-Chandra homomorphism (2), when restricted to ∂(S(gC)

G) is an isomor-
phism of algebras

δg/h : ∂(S(gC)
G) → ∂(S(hC)

W) (66)

given explicitly by

δg/h(∂(u)) = ∂(Rg/h(u)) (u ∈ S(hC)
W). (67)

(Here W is the complex Weyl group.) Thus, for a G-invariant S(gC)
G-eigendistri-

bution f corresponding to a homomorphism γ : S(gC)
G → C,

∂(Rg/h(u))(πg/h f |hreg ) = πg/h (∂(u) f )|hreg (u ∈ S(gC)
G). (68)

By a theorem of Chevalley, [40, sec. 3.1.2], the restriction map Rg/h is bijective.
Hence, πg/h f |hreg corresponds to the homomorphism γ ◦ R−1

g/h : S(hC)
W → C:

∂(u)(πg/h f |hreg ) = γ ◦ R−1
g/h(u)(πg/h f |hreg ) (u ∈ S(hC)

W). (69)

A G-invariant S(gC)
G-eigendistribution f corresponding to a homomorphism γ :

S(gC)
G → C is calledS(gC)

G-harmonic if the homomorphismγ annihilates all the
elements of positive degree. In this case (69) shows that πg/h f |hreg is S(hC)

W-har-
monic in the same sense. Furthermore, an argument of Harish-Chandra, [13, pages
130–133] shows that the restriction of πg/h f |hreg to any connected component
C(h) ⊆ hreg is a polynomial. Moreover, by [15, Theorem 2, page 19], πg/h f |hreg

coincides with an analytic function on each connected component Cr (h) in the
complement of the union of the zeros of the real roots for h. Thus, for every such
component, πg/h f |Cr (h) is a S(hC)

W-harmonic polynomial.

Corollary 13. For any nilpotent orbit O′ ⊆ g′ satisfying the condition (94) below,

chc(μ̂O′) is S(gC)
G-harmonic, (70)

and for each component Cr (h),

πg/h chc(μ̂O′)|Cr (h) is a S(hC)
W-harmonic polynomial. (71)

Proof. The condition (94) ensures that the integrals in (62) are absolutely conver-
gent, so that chc(μ̂O′) is well defined. As is well known, the Fourier transform of an
invariant measure supported on a nilpotent orbit is harmonic. Therefore Theorem
12 implies (70). The statement (71) follows from (69). ��
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7. A closer look at Cartan subalgebras and the orbit correspondence

In this section we describe representatives of the conjugacy classes of Cartan sub-
algebras in a way suitable for the explicit computation of the action of chc on the
Fourier transform of a nilpotent orbital integral. This description will be used in
the proof of Theorem 14 in Sect. 8 below.

Fix a Cartan involution θ on G and consider a θ -stable Cartan subgroup H ⊆ G.
Then H = TA, where T is the compact part and A is the "vector part", as in [40,
2.3.6]. [Explicitly, A = H ∩ exp(p), where p ⊆ g is the (−1) - eigenspace for θ .]
Let V be the defining module for G. (This is a finite dimensional left vector space
over a division algebra D = R,C or H.) Then V = Vs ⊕ Vc, where Vc is the trivial
component for the action of A and both summands are preserved by H. It could
very well happen that Vc = 0. In fact this is always the case if G is a general linear
group or a complex group other than Oodd(C) or a group isomorphic to O1,1.

Denote by Hs the restriction of H to Vs and by Hc the restriction of H to
Vc. Then H = HsHc is isomorphic to the direct product Hs × Hc. As before, let
W(H) = W(H,G) be the Weyl group equal to the normalizer of H in G divided by
H. Let h be the Lie algebra of H. Then

h = hs ⊕ hc, (72)

where hs , hc are the Lie algebras of Hs , Hc respectively. Fix a positive root system
� = �(h) for the roots of h in gC and let πg/h = ∏

α∈� α, as before. Then we
have the Weyl integration formula

∫

g

ψ(x) dx =
∑ 1

|W(H)|
∫

h

|πg/h(x)|2
∫

G/H

ψ(g.x) d(gH) dx, (73)

where ψ is a test function and the summation is over a maximal family of mutually
non-conjugate Cartan subgroups H ⊆ G and, unlike in Sect. 6, g.x denotes the
adjoint action of G on g.

The group Hc is compact (and is contained in T). Let

Vc = Vc,0 ⊕
n(hc)∑

j=1

Vc, j (74)

be the decomposition into Hc-irreducibles over D. [Here Vc,0 = 0 unless G(Vc) is
isomorphic to the real orthogonal group Oodd,even , in which case Hc acts trivially
on Vc,0 and dim Vc,0 = 1.] There is an element J ∈ hc such that the restriction of

J to
∑n(hc)

j=0 Vc, j is a complex structure on that space (i.e. the square of it equals
minus the identity). Let J j denote the restriction of J to Vc, j . Then every element
x ∈ hc may be written uniquely as

x =
n(hc)∑

j=1

x j J j , (75)
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where x j ∈ R. According to [35], the Cartan subalgebras of g(Vc) are parameter-
ized by certain equivalence classes [S] of sets S of positive non-compact roots of
hc in g(Vc)C. Let us pick an S in each [S] and write hc(S) for the corresponding
Cartan subalgebra. Then there is a Cayley transform

c(S) : hcC → hc(S)C. (76)

Furthermore, c(S) extends to

ch,h(S) : hC → h(S)C, (77)

where h(S) = hs ⊕ hc(S), the restriction of ch,h(S) to hs is the identity and the
restriction of ch,h(S) to hc(S) is equal c(S). As in (72) we have

h(S) = h(S)s ⊕ h(S)c, (78)

where h(S)s = hs ⊕ hc(S)s and h(S)c = hc(S)c.
We shall select a representative h from each conjugacy class of the Cartan sub-

algebras of g. For that selection (72) holds. Then we choose the strongly orthogonal
sets S so that (78) is consistent with (72). For two Cartan subalgebras h1 �= h2 in
that selection we have the Cayley transform

ch1,h2 : h1C → h2C, (79)

if and only if h1c ⊇ h2c (and h1s ⊆ h2s). We shall also assume that our systems of
positive roots �(h) for each Cartan subalgebra h are chosen so that they coincide
via the Cayley transform (79):

�(h2) ◦ ch1,h2 = �(h1). (80)

If G is a general linear group or a complex group or a group isomorphic to O1,1,
then h = hs for all h and we don’t need any Cayley transforms.

Consider a dual pair G, G′ with the defining modules V, V′. We shall always
assume that the rank of G is greater or equal to the rank of G′. The embedding

h′ ⊆ g, (81)

introduced in (29) may be realized as follows. As in the case of the group G we have
a selection of Cartan subgroups H′ = H′

sH′
c ⊆ G′ and the corresponding decompo-

sitions V′ = V′
s ⊕ V′

c. Because of our assumption on the ranks, dim V′
s ≤ dim V .

Hence, we may assume that

V = V′
s ⊕ U, (82)

where U = V′
s
⊥ in the type I case. This leads to an embedding

h′
s ⊆ g(V′

s) ⊆ g. (83)
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If h′ = h′
s then (72) is the embedding (81). Suppose h′

c �= 0. Then our pair is of
type I. Assume that G(U) is not isomorphic to any real orthogonal group of the
form Oodd,odd . Then G(U) has a compact Cartan subgroup H(U). Let

U = U0 ⊕
n(U)∑

j=1

U j (84)

be the decomposition into H(U)-irreducibles over D. Similarly, we have

V′
c = V′

c,0 ⊕
n(h′

c)∑

j=1

V′
c, j (85)

with respect to H′
c. We shall identify

U j = V′
c, j (1 ≤ j ≤ n(h′

c)), (86)

which is possible, again because of our assumption on the ranks. Hence,

h′
c ⊆ h(U) ⊆ g(U) ⊆ g. (87)

The combination of (83) and (87) gives the embedding (81).
Suppose G(U) is isomorphic to Oodd,odd . Let H(U) be a fundamental Cartan

subgroup of G(U). Then again we have the decomposition (84) with U = 0 and the
identifications (86). We may assume that H(U)|U j is compact for 1 ≤ j ≤ n(U)−1.
If n(h′

c) ≤ n(U) − 1, then again we have the embedding (87). If n(h′
c) = n(U),

then there is no such embedding and (81) doesn’t happen. However, in this case we
shall encounter an inclusion

h′ ⊆ gC, (88)

constructed as follows. Let h̃′ ⊆ g′ be another Cartan subalgebra defined by

h̃′|Vs = h′|Vs = h′
s, h̃′|V′

c, j
= h′|V′

c, j
for 1 ≤ j ≤ n(h′

c)− 1, and

h̃′|V′
cn(h′

c)
is a split Cartan subalgebra of g′(V′

cn(h′
c)
)(= sl2(R)).

(89)

There is an R-linear injection

h′|V′
cn(h′

c)
→ (h̃′|V′

cn(h′
c)
)C, (90)

and (81) holds for h̃′. This leads to (88).
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8. An explicit formula for chc(µ̂O′ )

Let O′ ⊆ g′ be a nilpotent G′-orbit and let μO′ be a positive G′-invariant measure
supported on O′ and viewed as a tempered distribution on g′. Recall that for any
Cartan subalgebra h′ ⊆ g′,

πg′/h′(x ′) = (−1)aπg′/h′(x ′) (x ′ ∈ h′),

where a is the number of the positive imaginary roots. Therefore, as explained at
the end of Sect. 6, the restriction of

μ̂O′(x ′)πg′/h′(x ′) (x ′ ∈ h′)

to any connected component Cr (h
′) ⊆ h′ of the complement of the union of the

kernels of the real roots is a S(h′
C
)W

′
-harmonic polynomial.

Recall that for a non-complex dual pair of type I there is a number p, [29,
(1.12)] which plays a role in the estimates for the Cauchy Harish-Chandra integral.
Explicitly,

Dual pair G,G′ division algebra D p

Op,q , Sp2n(R) R p + q − 2n
Sp2n(R), Op,q R 2n − p − q + 1

Up,q , Ur,s C p + q − r − s
Spp,q , O∗

2n H 2p + 2q − 2n + 1
O∗

2n, Spp,q H 2n − 2p − 2q

(91)

Let V(C) be the defining module for the complexification GC of G and let V′(C)
be the defining module for the complexification G′

C
. (If D = R, then V(C) is the

complexification of V, if D = C, then V(C) = V and if D = H then V(C) is the
space V, considered as a vector space over C.) We see from (91) that

p =
{

dim V(C)− dim V′(C) if G′
C

= Sp2n(C) or GLn(C),

dim V(C)− dim V′(C)+ 1 if G′
C

= Op(C).
(92)

Let p = p if D = C or if p is even. If D �= C and p is odd, let p = p − 1. Then a
simple case by case verification shows that

p=
{

dim V(C)−dim V′(C)− 1 if G′ =Sp2n(R) and G=Or,s with r +s odd,
dim V(C)−dim V′(C) otherwise.

(93)

If G′ is not a general linear group, a complex group, or a group isomorphic to O1,1,
then we shall assume that for all the Cartan subalgebras h′ ⊆ g′, in terms of (75),

max
1≤ j≤n(h′

c)
degx ′

j
μ̂O′(x ′)πg′/h′(x ′) < p. (94)

Then, [3, Theorem 1] shows that the integrals (62), with f ′ = μ̂O′ , are absolutely
convergent and therefore chc(μ̂O′) is well defined. Furthermore, we know from
(70) that chc(μ̂O′) is a G-invariant S(gC)

G-harmonic distribution on g and from



108 A.-M. Aubert et al.

(71) that the restriction of πg/hchc(μ̂O′) to any connected component Cr (h) is a
S(hC)

W-harmonic polynomial. We shall give a formula for that polynomial below.
Given Cartan subalgebras h′ ⊆ g′ and h ⊆ g such that h′

s = h|V′
s
, let h00 ⊆

gh′
s ∩ h′

s
⊥ be a fundamental Cartan subalgebra containing h′

c [see (87)] and let

h0(h
′) = h′

s + h00. (95)

This is a Cartan subalgebra of g and, as explained in (77), there is a Cayley transform

ch0(h′),h : h0(h
′)C → hC.

Furthermore, h0(h
′) = h′ ⊕ h0(h

′) ∩ h′⊥, so that any function defined on h′
C

may
be extended to a function defined on h0(h

′)C by the composition with the projec-
tion h′

C
⊕ h0(h

′)C ∩ h′⊥ → h′
C

. Moreover, the condition h′
s = h|V′

s
implies that

h = h′
s ⊕ h ∩ h′

s
⊥. Hence each real root of h′ in g′

C
may be first restricted to h′

s and
then extended to h via the composition with the projection onto the first summand.
We shall use these conventions in Theorem 14 below.

Let z = gh′ ⊆ g be the centralizer of h′, as in (32). Let πz/h denote the product
of all the positive roots of h in zC, as usual. If G′ is not isomorphic to Oodd,even , let
π̃z/h = πz/h. If G′ is isomorphic to Oodd,even , let π̃z/h be the product of the short
roots only. (In this case G is a symplectic group.) Similarly, for the purpose of the
proof of the Theorem 14, we define π̃

gh′
s /h0(h′) and a character

s̃gn : W(H0(h
′)C,G

h′
s

C
) → C

×, (96)

π̃
gh′

s /h0(h′)(s.x) = s̃gn(s)π̃
gh′

s /h0(h′)(x) (x ∈ h0(h
′))

and notice that the group W(H0(h
′)C,G

h′
s

C
)may be identified with the stabilizer of

h′
s in W(H0(h

′)C,GC) and, via the Cayley transform, with the stabilizer of h′
s in

W(HC,GC).

Theorem 14. Under the assumption (94), for any Cartan subalgebras h′ ⊆ g′,
h ⊆ g and s ∈ StabW(HC,GC)(h

′
s) there are (explicitly computed in the proof below)

functions Fh′,h,s : h → C, constant on each connected component of the comple-
ment of the union of the kernels of the real roots of h in gC and the kernels of the
real roots of h′ in g′

C
, such that, for any regular element x ∈ h,

(πg/hchc(μ̂O′))(x)

=
∑

h′,h′
s=h|V′

s

∑

s∈StabW(HC,GC)
(h′

s )

(μ̂O′πg′/h′)(c−1
h0(h′),hs−1.x)π̃z/h(s

−1.x)Fh′,h,s(x).

(97)

Here, the first sum is over all the Cartan subalgebras h′ ⊆ g′ such that h′
s = h|V′

s
.

If h′ = h′
s , then the summation over StabW(HC,GC) in (97) is equal to one term

(μ̂O′πg′/h′)(x)π̃z/h(x)Fh′,h,1(x). (98)
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Proof. We shall proceed via a case by case analysis, following [4, Theorems 3
and 7] and [3, Theorem 7.3]. Also, since we already know that the distribution in
question coincides with a function, we may assume that the test function ψ we are
going to use is compactly supported in the set of the regular semisimple elements of
g. Then all the orbital integrals of ψ define smooth compactly supported functions
on the corresponding Cartan subalgebras.

Let G = GL(V), G′ = GL(V′), n = Hom(U,V′) ⊆ g and λ =
√

2
dimR W

√
dimD VdimR V′ .

Theorem 3 in [4] says that
∫

g

chc(x ′ + x)ψ(x) dx

= λ

∫

G/H′G(U)

∫

g(U)

| det ad(x ′ + y)n|ψ(g.(x ′ + y)) dy d(g(H′G(U)))

=
∫

G/H′G(U)

∑

h(U)

λ

|W(H(U),G(U))|
∫

h(U)

| det ad(x ′+y)n|| det ad(x ′+y)g(U)/h(U)|
∫

G(U)/H(U)

ψ(g.(x ′ + k.y)) d(k(H(U)) dy d(g(H′G(U)))

=
∑

h(U)

λ

|W(H(U),G(U))|
∫

h(U)

| det ad(x ′ + y)g′/h′ |− 1
2 | det ad(x ′ + y)g(U)/h(U)| 1

2

| det ad(x ′ + y)g/(h′+h(U))| 1
2

∫

G/H′H(U)

ψ(g.(x ′ + y)) d(g(H′H(U)) dy. (99)

Notice that in terms of (29)–(30), g(U) = z′′. Hence (99) may be rewritten as

|πg′/h′(x ′)|
∫

g

chc(x ′ + x)ψ(x) dx =
∑

h′′

λ

|W(H′′,Z′′)|
∫

h′′
|πz′′/h′′(x ′′)|

|πg/(h′+h′′)(x
′ + x ′′)|

∫

G/H′H′′
ψ(g.(x ′ + y)) d(g(H′H′′)) dx ′′. (100)

Therefore,
∫

h′
μ̂O′(x ′)|πg′/h′(x ′)|2

∫

g

chc(x ′ + x)ψ(x) dx

=
∑

h′′

λ

|W(H′′,Z′′)|
∫

h′

∫

h′′
μ̂O′(x ′)|πg′/h′(x ′)||πz′′/h′′(x ′′)|

|πg/(h′+h′′)(x
′ + x ′′)|

∫

G/H′H′′
ψ(g.(x ′ + y)) d(g(H′H′′)) dx ′′ dx ′. (101)
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=
∑

h′′

λ

|W(H′′,Z′′)|
∫

h′

∫

h′′
μ̂O′(x ′)πg′/h′(x ′)πz′′/h′′(x ′′)

(
|πg′/h′(x ′)|
πg′/h′(x ′)

|πz′′/h′′(x ′′)|
πz′′/h′′(x ′′)

|πg/(h′+h′′)(x ′ + x ′′)|
πg/(h′+h′′)(x ′ + x ′′)

)

πg/(h′+h′′)(x
′ + x ′′)

∫

G/H′H′′
ψ(g.(x ′ + y)) d(g(H′H′′)) dx ′′ dx ′.

The term in the large parenthesis is equal to a constant multiple of

det(x ′ + x ′′)n
| det(x ′ + x ′′)n| (102)

which is smooth, except for the zeros of some real roots. Also, h′ = h′
s . We see that

with Fh′,h′+h′′,1(x ′ + x ′′) equal to an appropriate constant multiple of (102), (97)
follows from (101).

From now on we consider dual pairs of type I. Let

V′
s = X′

s + Y′
s (103)

be a complete polarization. Define

n′ = Hom(X′,V′
c)⊕ Hom(X′,Y′) ∩ g′ ⊆ g′,

n = Hom(X′,U)⊕ Hom(X′,Y′) ∩ g ⊆ g.
(104)

(These are nilradicals of some parabolic subalgebras.) Recall the numberγ (V,V′,X′),
[4, (0.5)].

Suppose V′
c = 0 and U = 0. Then, according to [4, Theorem 7],

| det(ad x ′)n′ |
∫

g

chc(x ′ + x)ψ(x) dx = γ (V,V′,X′)| det(ad x ′)n|
∫

G/H′
ψ(g.x ′) d(gH′). (105)

Hence,
∫

h′
μ̂O′(x ′)|πg′/h′(x ′)|2

∫

g

chc(x ′ + x)ψ(x) dx

=
∫

h′
μ̂O′(x ′)|πg′/h′(x ′)|2| det(ad x ′)n′ |−1γ (V,V′,X′)

| det(ad x ′)n|
∫

G/H′
ψ(g.x ′) d(gH′) (106)
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= γ (V,V′,X′)
∫

h′
μ̂O′(x ′)|πg′/h′(x ′)||πg/h′(x ′)|

∫

G/H′
ψ(g.x ′) d(gH′)

= γ (V,V′,X′)
∫

h′
μ̂O′(x ′)πg′/h′(x ′)

(
|πg′/h′(x ′)|
πg′/h′(x ′)

|πg/h′(x ′)|
πg/h′(x ′)

)

πg/h′(x ′)
∫

G/H′
ψ(g.x ′) d(gH′)

The term in the large parenthesis is equal to 1 unless (G′
C
,GC) is isomorphic to

(O2n(C),Sp2n(C)) or (Sp2n(C),O2n(C)). In these cases, it is equal to the product
of the signs of the long real roots for the symplectic Lie algebra. Thus this case
gives the contribution to (97), with h = h′ = h′

s and Fh′,h,1(x) is equal to a constant
multiple of the term in the parenthesis. [There might be additional summands for
this h coming from different h′, see (62)].

Suppose h′ acts trivially on V′
c and U �= 0. Recall the symplectic space Wc =

Hom(V′
c,U). Then, by [4, Theorem 7],

1

γ (V,V′,X′)
| det(ad x ′)n′ |

∫

g

chc(x ′ + x)ψ(x) dx (107)

=
∫

G/H′G(U)

∫

g(U)

| det ad(x ′ + y)n|chcWc (y)ψ(g.(x
′ + y)) dy d(g(H′G(U)))

=
∫

G/H′G(U)

∑

h(U)

1

|W(H(U),G(U))|
∫

h(U)

| det ad(x ′ + y)n|chcWc (y)|πg(U)/h(U)(y)|2

∫

G(U)/H(U)

ψ(g.(x ′ + k.y)) d(kH(U)) dy d(g(H′G(U)))

=
∑

h(U)

1

|W(H(U),G(U))|
∫

h(U)

| det ad(x ′ + y)n|chcWc (y)

×|πg(U)/h(U)(y)|2πg/(h′+h(U))(x
′ + y)−1

πg/(h′+h(U))(x
′ + y)

∫

G/H′H(U)

ψ(g.(x ′ + y)) d(g(H′H(U))) dy

Therefore,

∫

h′
μ̂O′(x ′)|πg′/h′(x ′)|2

∫

g

chc(x ′ + x)ψ(x) dx

=
∫

h′
μ̂O′(x ′)πg′/h′(x ′)πg′/h′(x ′)| det(ad x ′)n′ |−1
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| det(ad x ′)n′ |
∫

g

chc(x ′ + x)ψ(x) dx dx ′

=
∑

h(U)

γ (V,V′,X′)
|W(H(U),G(U))|

∫

h′

∫

h(U)

μ̂O′(x ′)πg′/h′(x ′) (108)

(
πg′/h′(x ′)| det(ad x ′)n′ |−1| det(ad(x ′ + y)n)|chcWc (y)|πg(U)/h(U)(y)|2
πg/(h′+h(U))(x

′ + y)−1)

πg/(h′+h(U))(x
′ + y)

∫

G/H′H(U)

ψ(g.(x ′ + y)) d(g(H′H(U))) dy dx ′.

Here if V′
c = 0 then Wc = 0 and chcWc = 1. If V′

c �= 0, then G′ = Oodd,even and
chcWc (y) is a constant multiple of det(y)−1

Wc
, which is a constant multiple of the

reciprocal of the product of the long roots for the symplectic Lie algebra. Also,

πg′/h′(x ′h) det(ad x ′)−1
n′ = πgl(X′)/h′|X′ (x

′)

and

det(ad(x ′ + y)n)πg(U)/h(U)(y)πg/(h′+h(U))(x
′ + y)−1 = πgl(X′)/h′|X′ (x

′)−1.

Therefore the term in the parenthesis is equal to a constant multiple of

sgn(det ad x ′)n′ · sgn(det ad(x ′ + y)n′) · π̃g(U)/h(U)(y)

and (97) follows, with Fh′,h′+h(U),1(x
′ + y) equal to a constant multiple of

sgn(det ad x ′)n′ · sgn(det ad(x ′ + y)n′).
Now we consider the remaining case when h′ does not act trivially on Wc. We

assume first that h′ = h′
c is elliptic and begin with the following two well known

lemmas, included for reader’s convenience.

Lemma 15. For any non-zero y ∈ R,

lim
R→∞

R∫

−R

dx

x − iy
= π i sgn(y).

Proof. By taking the complex conjugate we may assume that y > 0. Then, for R
large enough,

2π i =
R∫

−R

dx

x − iy
+

π∫

0

Reiθ i dθ

Reiθ − iy

and

lim
R→∞

π∫

0

Reiθ i dθ

Reiθ − iy
=

π∫

0

i dθ = π i.

��
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Lemma 16. As a generalized function of x ∈ R, i.e. in terms of distributions,

lim
R→∞

R∫

−R

1

x ′ − x − εi0
dx ′ = εiπ (ε = ±1).

Proof. Let ln(z) = ln(|z|)+ i Arg(z), z ∈ C \ 0, so that

ln(x + i0) =
{

ln(|x |) if x > 0,
ln(|x |)+ iπ if x < 0.

Thus, for a test function ψ ∈ C∞
c (R),

∫

R

1

x + i0
ψ(x) dx = −

∫

R

ln(x + i0)
d

dx
ψ(x) dx = −iπψ(0)

−
∫

R

ln(|x |) d

dx
ψ(x) dx .

Hence, with ψ ′(t) = d
dtψ(t),

∫

R

1

x ′ − x − εi0
ψ(x) dx = εiπψ(x ′)+

∫

R

ln(|x |)ψ ′(x ′ − x) dx . (109)

Furthermore, if ψ is supported in the bounded interval [−A, A], with A + Z > 1,
then the integral

∫

R

|ln(|x |)||ψ ′(x ′ − x)| dx

is dominated by

R∫

−R

A∫

−A

|ln(|x ′ − x |)| dx dx ′ ≤
R∫

−R

⎛

⎝

1∫

−1

|ln(|x |)| dx + 2A ln(A + R)

⎞

⎠ dx ′,

which is finite. Therefore,

∫ R
−R

∫
R

ln(|x |)ψ ′(x ′−x) dx dx ′ =∫
R

∫ R
−R ln(|x |)ψ ′(x ′−x) dx ′ dx

=∫
R

ln(|x |)(ψ(R−x)−ψ(−R−x)) dx =∫
R
(ln(|x−R|)−ln(|x+R|))ψ(x) dx

=∫
R

ln
( |x−R|

|x+R|
)
ψ(x) dx . (110)

We may assume that R is so large comparing to A that
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2 < R − A ≤ |x ± R| ≤ R + A (|x | ≤ A).

Then

A∫

−A

∣
∣
∣
∣ln

( |x − R|
|x + R|

)∣
∣
∣
∣ dx ≤ 2A ln

(
R + A

R − A

)

→
R→∞ 0.

Therefore (110) tends to zero if R → ∞. Hence, by (109),

R∫

−R

∫

R

1

x ′ − x − εi0
ψ(x) dx dx ′ →

R→∞ εiπ
∫

R

ψ(x ′) dx ′.

��
In order to formulate Corollary 17 below we need to recall some notation from

[3]. Let h ⊆ g be an elliptic Cartan subalgebra. For a strongly orthogonal set S
of no-compact positive roots α of h in gC let hS = c(S)−1h(S) ⊆ hC. Define the
support of S, S to be the set of the integers j between 1 and n = dim h such that
there is α ∈ S with α(J j ) �= 0. (We shall denote the dimension of h′ by n′.) The
Weyl group W(HC) = W(HC,GC) is isomorphic either to the permutation group
on n letters Sn or to the semidirect product Sn � Z

n
2, where Z2 = {0, 1}. We shall

denote by σ the elements of Sn and by ε the elements of Z
n
2. Thus any element

of the Weyl group may be written uniquely as σε. For ε ∈ Z2 let ε̂ = (−1)ε .
Recall the embedding h′ ⊆ h induced by (86). Let Wh′ ⊆ W be the subspace of
the elements which commute with h′.

As explained in [3, Sec.3], the Weyl group W(HC) acts on the symplectic space
W. In particular, for s ∈ W(HC), sWh′

is image of Wh′
under this action. Further-

more, given s = σε ∈ W(HC) there is ys ∈ h [3, Def. 3.4] a convex cone �s,S ⊆ h
[3, Lemma 7.1] and a positive definite symmetric bi-linear form κ̃ on sp(W) [4,
Page 1].

Corollary 17. For R > 0 let BR = {x ∈ h′; |x ′
j | ≤ R, 1 ≤ j ≤ n′}. Then, as a

generalized function of x ∈ hS,

lim
R→∞ lim

y∈�s,S , y→0

∫

BR

1

det(x ′ + x + iy)sWh′
dx ′

=
n′
∏

j=1

(πκ̃(J j , J j )
1
2 ε̂ j ) ·

∏

1≤ j≤n′, σ ( j)/∈S

sgn(J ∗
σ( j)(ys))

·
∏

α∈S, 1≤ j≤n′, σ ( j)∈α
sgn(α(i Jσ( j)))sgn(α(x)).

(111)

Proof. Recall, that if we view W as Hom(V,V′), as we may, then [3, Appendix B]

det(x ′ + x + iy)sWh′ =
n′
∏

j=1

i(x ′
j − ε̂ j (xσ( j) + iyσ( j))).
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Hence, up to the constant multiple
∏n′

j=1 κ̃(J j , J j )
1
2 , coming from the normaliza-

tion of all the measures involved [4], the limit (111) is equal to

lim
R→∞ lim

y∈�s,S , y→0

n′
∏

j=1

1

i

R∫

−R

dx ′

x ′
j − ε̂ j xσ( j) − ε̂ j iyσ( j)

. (112)

Notice that for α ∈ S and k ∈ α,

sgn(I m xk) = sgn(α(i Jk)) sgn(α(x)). (113)

Indeed,

α = α(Jk)J
∗
k + α(Jl)J

∗
l , α(Jk) ∈ iR, and α(x) ∈ R,

and either α(Jl) = 0 or α(Jl) �= 0. In the first case,

α(x) = α(Jk)J
∗
k (x) = α(Jk)xk = α(i Jk)(−i xk)

= Re(α(i Jk)(−i xk)) = α(i Jk)Re(−i xk) = α(i Jk)I m xk .

In the second case, α(Jl) = −α(Jk) and

α(x) = α(Jk)(xk − xl) = α(Jk)2i I m xk,

and (113) follows.
We see from (113) and Lemma 15 that

lim
R→∞ lim

y∈�s,S , y→0

∏

(α, j)∈S×[1,n′], σ ( j)∈α

1

i

R∫

−R

dx ′

x ′
j − ε̂ j xσ( j) − ε̂ j iyσ( j)

= lim
R→∞

∏

(α, j)∈S×[1,n′], σ ( j)∈α

1

i

R∫

−R

dx ′

x ′
j − ε̂ j xσ( j)

=
∏

(α, j)∈S×[1,n′], σ ( j)∈α
πε̂ j sgn(I m xσ( j)).

(114)

Also, Lemma 16 implies that

lim
R→∞ lim

y∈�s,S , y→0

∏

1≤ j≤n′, σ ( j)/∈S

1

i

R∫

−R

dx ′

x ′
j − ε̂ j xσ( j) − ε̂ j iyσ( j)

=
∏

1≤ j≤n′, σ ( j)/∈S

πε̂ j sgn(J ∗
σ( j)(ys)).

(115)

The corollary follows from (112), (114) and (115). ��
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We shall need some more notation from [3]. Let�S,R denote the set of the positive
roots for h which are real on hS . For a set of roots A, let A(A) = ∏

α∈A
α
|α| . Given

our test function ψ defines the pull-back of the Harish-Chandra orbital integral of
ψ , from h(S) to hS via c(S) by

HSψ(x) = A(�S,R)(x)πg/h(x)
∫

G/H(S)

ψ(g.c(S)x) d(gH(S)) (x ∈ hS).

(116)

Let �̃S,R = �S,R unless G′ = Oodd,even . In this case we let �̃S,R be the product
of the short roots only. For S as above define

m[S] = u
√

2
dim W

|W(H(S))| |W(HC,ZC)| ·
{

1 if G′ �= Oodd,even,

2n−n′
if G′ = Oodd,even,

(117)

where u = 1,−1, i,−i depends on our choice of the positive roots for h′ in g′
C

and
for h in gC. Recall also the normalizing factor

μ(H′) =
n′
∏

j=1

(κ̃(J j , J j )
1
2 2π), (118)

which is used to pass from the un-normalized chc in [3] to the normalize chc in [4]
and [5]. The function μ̂O′(x ′)πg′/h′(x ′), x ′ ∈ h′, is a polynomial, which we shall
denote by P(x ′) below. Then,

∫

h′
μ̂O′(x ′)πg′/h′(x ′)πg′/h′(x ′)

∫

g

chc(x ′ + x)ψ(x) dx dx ′

= lim
R→∞

∫

BR

P(x ′)πg′/h′(x ′)
∫

g

chc(x ′ + x)ψ(x) dx dx ′

= lim
R→∞

∑

[S]

∑

s∈W(HC)

m[S]
μ(H′)

s̃gn(s)

∫

BR

lim
y∈�s,S , y→0

∫

hS

P(s−1.x)π̃z/h(s
−1.x)

det(x ′ + x + iy)sWh′
A(−�̃S,R)(x)HSψ(x) dx dx ′,

(119)

where the first equality holds because we have absolute convergence in (62) and the
second one follows from [3, Theorem 7.3]. Furthermore, sinceψ is supported in the
set of the regular semisimple elements, HSψ is smooth and compactly supported,
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and therefore Corollary 17 applies. Hence, (119) is equal to

∑

[S]

∑

s∈W(HC)

m[S]
μ(H′)

s̃gn(s)
∫

hS

P(s−1.x)π̃z/h(s
−1.x)

⎛

⎝
n′
∏

j=1

(πκ̃(J j , J j )
1
2 ε̂ j ) ·

∏

1≤ j≤n′, σ ( j)/∈S

sgn(J ∗
σ( j)(ys))

∏

α∈S, 1≤ j≤n′, σ ( j)∈α
sgn(α(i Jσ( j)))sgn(α(x))

⎞

⎠ ·

A(−�̃S,R)(x)HSψ(x) dx .

(120)

Furthermore, by [3, Definition 3.4],

sgn(J ∗
σ( j)(ys)) = sgn〈J , 〉s(Hom(V j ,V j )

J ) (1 ≤ j ≤ n),

where the right hand side is 1 if the symmetric form 〈J , 〉s(Hom(V j ,V j )
J ) on the

two-dimensional real vector space s(Hom(V j ,V j )
J ) is positive definite and −1 if

it is negative definite. The indefinite case doesn’t occur. Therefore,

∫

h′
μ̂O′(x ′)πg′/h′(x ′)πg′/h′(x ′)

∫

g

chc(x ′ + x)ψ(x) dx dx ′

=
∑

[S]

1

|W(H(S))|
∫

h(S)

∑

s∈W(H(S)C)

P(c(S)−1s−1.x)π̃z/h(S)(s
−1.x)

⎛

⎝s̃gn(s)|W(H(S))|m[S]2−n′
n′
∏

j=1

(ε̂ j ) ·
∏

1≤ j≤n′, σ ( j)/∈S

sgn〈J , 〉s(Hom(V j ,V j )
J )

∏

α∈S, 1≤ j≤n′, σ ( j)∈α
sgn(α(i Jσ( j)))sgn(α(c(S)−1x))A(−�̃S,R)(c(S)

−1x) ·

A(�S,R)(c(S)
−1x)

)

πg/h(S)(x)
∫

G/H(S)

ψ(g.x) d(gH(S)) dx, (121)

where π̃z/h(S)(x) = π̃z/h(c(S)−1x) and πg/h(S)(x) = πg/h(c(S)−1x). In this case
Fh′,h(S),s(x) is a constant multiple of the term in the parenthesis. This is the con-
tribution to (97) associated to the Cartan subalgebras h(S) ⊆ g and h′ ⊆ g′.
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Suppose h′ = h′
s + h′

c with both h′
s �= 0 and h′

c �= 0. Then, by [4, Theorem 7],

| det(ad x ′)n′ |
∫

g

chc(x ′ + x)ψ(x) dx

= γ (V,V′,X′)
∫

G/H′G(U)

∫

g(U)

| det(ad(x ′ + y)n)|chcWc (x
′ + y) (122)

ψ(g.(x ′ + y)) dy d(g(H′G(U))).

Let C ′ ⊆ h′ be a connected component in the complement of the union of the
kernels of the real roots. Then C ′ = C ′ ∩ h′

s + h′
c. Hence, for a fixed x ′

s ∈ C ′ ∩ h′
s ,

the function

h′
c � x ′

c → μ̂O′(x ′
s + x ′

c)πg′/h′(x ′
s + x ′

c) ∈ C (123)

is a polynomial, which shall be denoted by P(x ′
s + x ′

c), (see [39, Theorem 3, page
93]). We don’t include the C ′ in the notation, because this information is encoded
in x ′

s . For a fixed x ′
s and g ∈ G consider the integral

∫

h′
c

P(x ′
s + x ′

c)πg′(V′
c)/h′

c
(x ′

c)

∫

g(U)

chcWc (x
′
c + y)ψ(g.(x ′ + y)) dy dx ′

c, (124)

where x ′ = x ′
s + x ′

c. Notice that h′
c ⊆ g′(V′

c) is an elliptic Cartan subalgebra, that
(G′(V′

c),G(U)) is a dual pair in Sp(Wc) and that the number p, [29, (1.12)] for this
dual pair is the same as for the pair (G′,G). Hence, we may apply the argument
leading to (121). Let h(U) ⊆ g(U) be as in Sect. 7 and let�n

st (U) denote the family
of the sets S of positive strongly orthogonal non-compact imaginary roots of h(U)
in g(U)C. Let z(U) = g(U)h

′
c . Then (124) is equal to

∑

[S]⊆�n
st (U)

1

|W(H(U)(S),G(U))|
∫

h(U)(S)

∑

s∈W(H(U)(S)C,G(U)C)

P(x ′
s + c(S)−1s−1.x)π̃z(U)/h(U)(S)(s

−1.x) s̃gn(s)
⎛

⎝|W(H(U)(S))|m[S](U)2−n′(U)
n′(U)∏

j=1

(ε̂ j ) ·
∏

1≤ j≤n′(U), σ ( j)/∈S

sgn〈J , 〉s(Hom(Vc, j ,Vc, j )
J ) ·

∏

α∈S, 1≤ j≤n′(U), σ ( j)∈α
sgn(α(i Jσ( j)))sgn(α(c(S)−1x)) A(−�̃S,R(U))(c(S)−1x)A(�S,R(U))(c(S)−1x)

⎞

⎠

πg(U)/h(U)(S)(x)
∫

G(U)/H(U)(S)

ψ(g.(x ′
s + k.x)) d(kH(U)(S)) dx . (125)

Notice that the function

h′
c � x ′

c → det ad(x ′
s + x ′

c)Hom(X′,V′
c)

∈ R

has no zeros. Furthermore,

sgn(det(ad x ′)Hom(X′,Y′)∩g′)
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is constant on C ′. Therefore,

| det(ad x ′)n′ | = ε′(x ′) det(ad x ′)n′ (x ′ ∈ h′), (126)

where ε′(x ′) = ±1 is constant on each C ′. Similarly,

| det(ad( x ′ + y))n| = ε(x ′) det(ad( x ′ + y))n (x ′ ∈ h′, y ∈ g(U)), (127)

where ε(x ′) = ±1. Furthermore,

πg′/h′(x ′) = πgl(X′)/h′
s
(x ′) · det(ad x ′)n′ · πg′(V′

c)/h
′
c
(x ′) (x ′ ∈ h′) (128)

and

πg/(h′+h(U)(S))(x) = πgl(X′)/h′
s
(x) · det(ad x)n · πg(U)/h(U)(S)(x)

(x ∈ h′ + h(U)(S)). (129)

Moreover,

z = gh′ = h′
s + g(U)h

′
c = h′

s + z(U). (130)

By combining (122)–(130) we obtain the following formula,
∫

h′
μ̂O′(x ′)πg′/h′(x ′)πg′/h′(x ′)

∫

g

chc(x ′ + x)ψ(x) dx dx ′

=
∑

[S]⊆�n
st (U)

γ (V,V′,X′)
|W(H′H(U)(S),G)|

∫

h′
s

∫

h(U)(S)

∑

s∈W(H(U)(S)C,G(U)C)

μ̂O′(x ′
s + c(S)−1s−1.x)πg′/h′(x ′

s + c(S)−1s−1.x)π̃z/(h′
s+h(U)(S))(x

′
s + s−1.x)

⎛

⎝s̃gn(s)γ (V,V′,X′)ε(x ′)ε′(x ′)|W(H′H(U)(S),G)|m[S](U)2−n′(U)
n′(U)∏

j=1

(ε̂ j )·
∏

1≤ j≤n′(U), σ ( j)/∈S

sgn〈J , 〉s(Hom(Vc, j ,Vc, j )
J ) (131)

∏

α∈S, 1≤ j≤n′(U), σ ( j)∈α
sgn(α(i Jσ( j)))sgn(α(c(S)−1x))A(−�̃S,R(U))(c(S)

−1x)

A(�S,R(U))(c(S)
−1x)

)
· πg/(h′+h(U)(S))(x)

∫

G/H′H(U)(S)

ψ(g.(x ′
s + x))

d(g(H′H(U)(S))) dx dx ′
s .

Here we see the contribution to (97) on the Cartan subalgebra h = h′
s + h(U)(S).

The function Fh′,h,s(x) is a constant multiple of the term in the parenthesis.
This ends the proof of Theorem 14. ��
Here is our main result.
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Theorem 18. Suppose G,G′ is not a complex dual pair, so that the complexification
GC,G′

C
is an irreducible dual pair over C.

Let O′ ⊆ g′ be a nilpotent G′-orbit. Let h′ ⊆ g′ be a Cartan subalgebra and
let H′ ⊆ G′ be the Cartan subgroup with the Lie algebra h′. Let C ′ ⊆ h′ be a
connected component of the complement of the union of the kernels of the real
roots of h′ in g′

C
. Denote by ρ′ the irreducible representation of the Weyl group

W(H′
C
,G′

C
) generated by the harmonic polynomial equal to μ̂O′πg′/h′ on C ′. Let

λ′ be the partition associated to the nilpotent G′
C

-orbit in g′
C

attached to ρ′ via the
Springer correspondence. Assume (16). Recall the number p (93). If the pair G,G′
is of type I, assume that

ht(λ′) ≤ p. (132)

Then the integrals defining chc(μ̂O′)are absolutely convergent. Assume chc(μ̂O′) �=
0.

Let h ⊆ g be a Cartan subalgebra and let H ⊆ G be the Cartan subgroup
with the Lie algebra h. Let C ⊆ h be a connected component of the complement
of the union of the kernels of the real roots of h in gC. Then (πg/hchc(μ̂O′))|C is
W(HC,GC)-harmonic and generates an irreducible representation ρ of this Weyl
group. Let λ be the partition associated to the nilpotent GC-orbit in gC attached to
ρ via the Springer correspondence. Then λ is obtained from λ′ by adding a column
of the appropriate length, as in (17).

If the irreducible dual pair G,G′ is complex, then the complexification GC,G′
C

is the direct sum of two copies of G,G′. Assume chc(μ̂O′) �= 0. Let ρ′ = ρ′
1 ⊗ ρ′

2
denote the irreducible representation of the Weyl group W(H′

C
,G′

C
) = W(H′,G′)×

W(H,G′) generated by the harmonic polynomial μ̂O′πg′/h′ on h. Denote by λ′
1,

λ′
2 the pair of partitions associated to the nilpotent G′

C
-orbit in g′

C
attached to

ρ′ = ρ′
1 ⊗ ρ′

2 via the Springer correspondence. Assume (16) for both λ′
1 and λ′

2.
Then πg/hchc(μ̂O′) is W(HC,GC) = W(H,G)× W(H,G)-harmonic and gener-
ates an irreducible representation ρ = ρ1 ⊗ρ2 of this Weyl group. Let λ1, λ2 be the
pair of partitions associated to the nilpotent GC-orbit in gC attached to ρ = ρ1⊗ρ2
via the Springer correspondence. Then λi is obtained from λ′

i (i = 1, 2) by adding
the same column of the appropriate length, as in (17).

Proof. By Corollary 4, (132) implies (94). Therefore, according to [3, Theorem 1],
the integrals defining chc(μ̂O′) are absolutely convergent. Also, the formulas (97)
and (98) of Theorem 14 holds.

Assume first that G,G′ is not a complex dual pair. The polynomial π̃z/h does
not depend on the real form G,G′ of the complexification GC,G′

C
. If we choose the

real form to be compact and introduce the coordinates on the Cartan subalgebras
as in (75), then we obtain the following identifications

hC = {x = (x1, x2, . . . , xn); x j ∈ C}, (133)

h′
C

= {x ′ = (x1, x2, . . . , xn′); x j ∈ C},
so that the complex Weyl groups act via the permutations of the coordinates if the
dual pair is of type II, and the permutations and all the sign changes if the dual
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pair is of type I. Recall that we assume n′ ≤ n. If n′ < n, then (for an appropriate
choice of the positive root system) π̃z/h(x), is equal to

∏

n′+1≤i< j≤n

(xi − x j ) if GC = GLn(C),G′
C

= GLn′(C) (134)

∏

n′+1≤i< j≤n

(x2
i − x2

j ) if GC = O2n(C),G′
C

= Sp2n′(C),

∏

n′+1≤i< j≤n

(x2
i − x2

j )
∏

n′+1≤ j≤n

2x j if GC = Sp2n(C),G′
C

= O2n′(C),

∏

n′+1≤i< j≤n

(x2
i − x2

j )
∏

n′+1≤ j≤n

x j if GC = O2n+1(C),G′
C

= Sp2n′(C),

∏

n′+1≤i< j≤n

(x2
i − x2

j ) if GC = Sp2n(C),G′
C

= O2n′+1(C).

If n = n′, then π̃z/h(x) = 1.
Recall the Cartan subalgebra h0(h

′) ⊆ g, (95). By the construction

h0(h
′) = h′ ⊕ h′⊥ ∩ h0(h

′).

Any function f : h′
C

→ C may be extended to f : h0(h
′)C → C via the composi-

tion with the projection h0(h
′)C → h′

C
. Then (134) implies that the map

P(h′
C
) � f → f π̃z/h ∈ P(hC) (135)

coincides with (23).
By assumption, (μ̂O′πg′/h′)(x) generates the irreducible representation ρ′ of

the Weyl group W(H′
C
,G′

C
). Hence, every non-zero term

(μ̂O′πg′/h′)(c−1
h0(h′),hs−1.x)π̃z/h(s

−1.x) (s ∈ W(HC,GC)),

in Theorem 14, generates the representation ρ of W(HC,GC), constructed in The-
orem 9. In particular the statement about the partitions follows.

If G,G′ is a complex dual pair, then (135) coincides with (23) on each of the
two copies of h in hC = h ⊕ h. Hence, the term (98) in Theorem 14 generates the
representation ρ = ρ1 ⊗ρ2 of W(HC,GC), where each ρi (i = 1, 2) is constructed
in Theorem 9 and the statement about the pairs of the partitions follows. ��

Appendix A

We begin by recalling Rossmann’s construction of Springer’s correspondence, [33].
At this point it seems fair to mention that the first construction of the Springer cor-
respondence independent of étale cohomology, [38], was done in [23]. In fact on
the level cohomology (see below) Rossmann’s construction coincides with that
of [23], as explained in [33, Appendix]. We prefer to use [33] mainly because of
the connection with the Weyl group action on harmonic polynomials on a Cartan
subalgebra described explicitly in [33].
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Rossmann considers the adjoint group, but everything he does is valid for
any connected semisimple complex group. For our applications G = Sp2n(C),
SO2n+1(C) or SO2n(C). Also, in these cases the adjoint group and G have the same
Weyl group and the same nilpotent orbits.

Let g be the Lie algebra of G and let B be the flag manifold realized as the
variety of the Borel subalgebras b ⊆ g. Denote by B∗ the cotangent bundle of
B. Explicitly, B∗ = {(b, ν); b ∈ B, ν ∈ b⊥ ⊆ g∗}. When convenient, we shall
identify g∗ with g via a Killing form. Then the ν belongs to the nilradical of b.

Let us fix a Borel subalgebra b1 ⊆ g and let h ⊆ b1 be a Cartan subalgebra of
g. Denote by W the Weyl group, equal to the normalizer of h in G divided by the
centralizer of h in G.

Fix a regular element λ ∈ h∗ and let �λ ⊆ g∗ be the G-orbit through λ. Let
U ⊆ G be a maximal compact subgroup. Then U acts transitively on B and we
have a bijection

pλ : B∗ � u.(b1, ν) → u.(λ+ ν) ∈ �λ (u ∈ U, ν ∈ b⊥
1 ). (A.1)

Since for any w ∈ W, �wλ = �λ, the following formula defines a transformation
of B∗:

aλ(w) = p−1
wλ ◦ pλ : B∗ → B∗ (w ∈ W). (A.2)

Then

aλ(w1w2) = aw2λ(w1)aλ(w2) (w1, w2 ∈ W). (A.3)

Let N ⊆ g be the nilpotent cone. Fix an element ν ∈ N . Define

B∗(ν) = {(b, ν) ∈ B∗} = {(b, ν′) ∈ B∗, ν′ = ν}. (A.4)

Let | | denote an Euclidean norm on g. For ε > 0 let Uε = {ν′ ∈ N ; |ν′ − ν| < ε}
and let

B∗(Uε) = {(b, ν′) ∈ B∗, ν′ ∈ Uε} = {(b, ν′) ∈ B∗, |ν′ − ν| < ε}. (A.5)

According to Rossmann, for any sufficiently small ε, the inclusion ι : B∗(ν) →
B∗(Uε) has a proper homotopy inverse p : B∗(Uε) → B∗(ν):

p ◦ ι ∼ 1 on B∗(ν) and ι ◦ p ∼ 1 on B∗(Uε). (A.6)

Rossmann shows that for all λ small enough,

aλ(w)(B∗(ν)) ⊆ B∗(Uε) (w ∈ W). (A.7)

The transformations

aνλ(w) = p ◦ aλ(w) ◦ ι : B∗(ν) → B∗(ν) (w ∈ W) (A.8)

are well defined for all regular λ ∈ h∗ in a small ball about zero. Since these λ form
a connected set, the proper homotopy class of aν(w) of aνλ(w) is independent of λ
and the Equation (A.3) implies

aν(w1w2) = aν(w1)a
ν(w2) (w1, w2 ∈ W). (A.9)
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This way aν gives a proper homotopy action of W on B∗(ν). As a consequence,
we have a representation of W on the relative homology

H∗(B∗(ν)) := H∗(B∗(ν), ∂B∗(ν); C). (A.10)

The group U acts on B∗ by

B∗ � u.(b1, ν) → vu.(b1, ν) ∈ B∗ (u, v ∈ U, ν ∈ b⊥
1 ) (A.11)

Since the maps pλ, (A.1), are U-equivariant, the operators aλ(w) = p−1
wλ ◦ pλ,

(A.2), commute with the action of U. Let A(ν) denote the component group of the
stabilizer of ν in G. This group acts on H∗(B∗(ν)) via (A.11). Hence, the actions
of A(ν) and W on H∗(B∗(ν)) commute. Denote by H∗(B∗(ν))A(ν) the subspace of
the A(ν)-invariants in H∗(B∗(ν)). Let e(ν) = dimC H∗(B∗(ν)). Rossmann proved
(a theorem of Springer) that

H2e(ν)(B∗(ν))A(ν) is an irreducible W module. (A.12)

Let O(ν) ⊆ N be the G-orbit through ν. Since G is connected, this representation
does not depend on the choice of ν in the orbit. Thus each nilpotent orbit provides
an irreducible representation of W. This is known as the Springer correspondence
for G. Let Bν = {b ∈ B; ν ∈ b⊥}. Obviously the projection B∗ → B restricts to a
bijection

B∗(ν) � (b, ν) → b ∈ Bν (A.13)

and e(ν) = dimC Bν . We may use (A.13) to transfer the actions of the groups
W and A(ν) from H2e(ν)(B∗(ν)) to H2e(ν)(Bν). In these terms, the Springer cor-
respondence attaches the orbit O(ν) to the irreducible representation of W on
H2e(ν)(Bν)A(ν).

The Weyl group acts on the flag manifold B by

B � u.b1 → uw.b1 ∈ B (u ∈ U, w ∈ W). (A.14)

(Here, for any w ∈ W, we choose a representative of w in U.) Rossmann showed
that the inclusion Bν ⊆ B induces a W-equivariant injection

H2e(ν)(Bν)A(ν) → H2e(ν)(B). (A.15)

[On the left W acts via (A.8) and on the right by (A.14)]. Furthermore, we have
Borel’s isomorphism

H∗(B) → H(h∗), (A.16)

where H(h∗) is the space of the W-harmonic polynomials on h∗. The map (A.16)
is W-equivariant. (For the obvious action of W on the polynomials.) By compos-
ing (A.15) and (A.16) we obtain a realization of the Springer representation in a
subspace H(h∗)ν ⊆ H(h∗) of the harmonics, which is contained in He(ν)(h

∗) - the
subspace of the harmonic polynomials homogeneous of degree e(ν).
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The groups SO2n+1(C) and O2n+1(C) have the same Weyl group and the same
co-adjoint orbits. Hence, we have (the obvious) Springer correspondence for the
group O2n+1(C).

From now on let G = SO2n(C) and let G′′ = O2n(C). Then G ⊆ G′′. Let W′′
be the normalizer of h in G′′ divided by the centralizer of h in G′′ (which is equal to
the centralizer of h in G). Then W is a subgroup of W′′ of index 2. Fix an element
s ∈ W′′ \ W. When convenient we’ll think of s as of an element of G′′ \ G.

As before, we have a fixed nilpotent ν ∈ N and the G-orbit O(ν) through ν.
Let O′′(ν) be the G′′-orbit through ν. There are two possibilities: either

O′′(ν) = O(ν) i.e. there is g ∈ G such that g.ν = s.ν, (A.17)

or

O′′(ν) = O(ν) ∪ O(s.ν) (disjoint union). (A.18)

Lemma A.1. The representation of W′′ on the subspace of He(ν)(h
∗) generated

by He(ν)(h
∗)ν + He(ν)(h

∗)s.ν is irreducible.

We shall refer to this representation as to “Springer representation attached to
the orbit O′′(ν)".

Proof. We may assume that s.b1 = b1. Recall, [33] the following U-invariant
two-form on B:

τλ(xb1, yb1) = λ([x, y]) (x, y ∈ u).

Then

τs−1.λ(xb1, yb1) = λ([sx, sy]) (x, y ∈ u).

Hence, the map

B � u.b1 → sus−1.b1 ∈ B (A.19)

intertwines the action of s on H∗(B) with the action of s on H(h∗) via Borel iso-
morphism (A.16).

We need to construct an action of s on H∗(Bν) compatible with (A.15). Notice
that

B∗ � u.(b1, ν
′) →

pλ
u.(λ+ ν′) →

s
su.(λ+ ν′) = sus−1.(sλ+ sν′) ∈ �sλ

(A.20)

and

B∗ � u.(b1, ν
′) →

psλ
u.(sλ+ ν′) ∈ �sλ.

Set aλ(s) = p−1
sλ ◦ pλ. Then

aλ(s) : B∗ � u.(b1, ν
′) → sus−1.(b1, sν′) = su.(b1, ν

′) ∈ B∗. (A.21)
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In particular aλ(s) = a(s) does not depend on λ. Furthermore, the action of s on
B∗ defined by (A.21) coincides with the action induced by the adjoint action on the
Borel subalgebras b ⊆ g.

Notice that for any w ∈ W and any regular λ ∈ h∗,

a(s)aλ(w)a(s)
−1 = asλ(sws−1). (A.22)

Indeed, suppose

a(s)aλ(w)a(s)
−1(u.(b1, ν

′)) = u′′.(b1, ν
′′).

Then

pλa(s)−1(u.(b1, ν
′)) = pwλa(s)−1(u′′.(b1, ν

′′)).

Equivalently,

pλ(s
−1us.(b1, s−1ν′)) = pwλ(s

−1u′′s.(b1, s−1ν′′)),

which means that

s−1us.(λ+ s−1ν′) = s−1u′′s.(wλ+ s−1ν′′).

Hence,

u.(sλ+ ν′) = u′′.(sws−1(sλ)+ ν′′) = psws−1(sλ)(u
′′.(b1, ν

′′)).

Therefore,

u′′.(b1, ν
′′) = p−1

sws−1(sλ)
◦ pλ(u.(b1, ν

′)),

which verifies (A.22).
Clearly, a(s) : B∗(ν) → B∗(sν) and the resulting map

ã(s) : H∗(B∗(ν)) → H∗(B∗(sν)) (A.23)

intertwines the action of A(ν) with the action of A(sν) = sA(ν)s−1.
Suppose O(ν) = O(sν) as in (A.17). Since G is connected, there is a homotopy

equivalence B∗(ν) ∼ B∗(sν). Hence, (A.23) gives

s̃ : H∗(B∗(ν)) → H∗(B∗(ν)). (A.24)

Also, the action (A.24) commutes with the action of A(ν). Thus

s̃ : H2e(ν)(B∗(ν))A(ν) → H2e(ν)(B∗(ν))A(ν). (A.25)

This way, H2e(ν)(B∗(ν))A(ν) = H2e(ν)(Bν)A(ν) becomes a representation of W′′
which restricts to an irreducible representation of W.

SupposeO(ν) �= O(sν) as in (A.18). Then H2e(ν)(Bν)A(ν) and H2e(sν)(Bsν)A(sν)

are two non-isomorphic W-modules. As representations of W, the second one is
isomorphic to the first one transformed via the composition with the automorphism
of W equal to the conjugation by s. Furthermore, e(sν) = e(ν). Thus

H2e(ν)(Bν)A(ν) ⊕ H2e(ν)(Bsν)A(sν) (A.26)
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is a representation of W′′ which restricts to the sum of the two inequivalent repre-
sentations of W corresponding to O(ν) and O(sν) via Springer. The representation
(A.26) is irreducible, because (as is easy to check) the only endomorphism which
commutes with the action of W′′ is a constant multiple of the identity. ��

We still need to explain the combinatorial description of the representation
described in Lemma A.1.

Let λ be the partition of 2n associated to the orbit O′′(ν). Suppose O′′(ν) =
O(ν)∪O(sν) as in (A.18). Then all the parts of λ are even and Lusztig’s algorithm
associates to λ a pair of identical partitions (ξ, η), ξ = η. The corresponding repre-
sentation of W′′, ρ(ξ,η), has the property that its restriction to W splits into the direct
sum of two inequivalent representations. These representations occur in the har-
monics of degree e(ν) and not in any lower degree. Thus this is the representation
constructed in Lemma A.1.

Suppose O′′(ν) = O(ν) as in (A.17). Then there are two representations of W′′
which restrict to the same irreducible representation of W and we have to make
the correct choice in our combinatorial description, (18). We’ll show that one of
these representations occurs in the correct degree e(ν) among the harmonics and
the other one does not.

Lemma A.2. Let λ be the partition of 2n corresponding to the orbit O′′(ν) and let
(ξ, η) be the ordered pair of partitions obtained from λ via the modified Lusztig
algorithm, as described in Proposition 5. Then

deg �ξ,η = e(ν) (A.27)

and

deg �η,ξ = e(ν) if and only if ξ = η. (A.28)

Proof. We shall transfer the problem from the orthogonal group O2n(C) to the sym-
plectic group Sp2m(C), m > n, using Proposition 5 which is purely combinatorial
in nature.

In order to use this proposition we change the notation. Let λ′ be the orthogonal
partition of 2n′ and let (ξ ′, η′) be the ordered pair of partitions obtained from λ′
via the modified Lusztig algorithm. Let λ = (12
)⊕ λ′ be the symplectic partition
obtained from λ′ by adding a column of height 2
. Denote by (ξ, η) the ordered pair
of partitions obtained from λ via Lusztig’s algorithm [8, 13.3]. Let G′ = O2n′(C)
and let G = Sp2(n′+l)(C). Denote by ν′ ∈ g′ a nilpotent element in the G′-orbit
described by λ′ and let ν ∈ g a nilpotent element in the G-orbit corresponding to
λ. Let C(ν′) ⊆ G′ be the centralizer of ν′ and let C(ν) ⊆ G be the centralizer of ν.
Then, [8, Theorem 5.10.2(a)],

2e(ν′)+ rank G′ = dim C(ν′) (A.29)

and

2e(ν)+ rank G = dim C(ν). (A.30)
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We would like to compare deg �ξ,η and deg �η,ξ to e(ν′). Since Lusztig’s
algorithm does describe the Springer correspondence for the symplectic group,
(A.30) translates to

2 deg �ξ,η + rank G = dim C(ν). (A.31)

We see from (A.29) that in order to verify (A.27) we need to show

2 deg �ξ ′,η′ + rank G′ = dim C(ν′). (A.32)

Proposition 5 shows that (ξ, η) = (ξ ′, (1
)⊕η′). Notice that rankG = rank G′ + 

and that

deg �ξ,η = 2n(ξ)+ 2n(η)+ |η| = 2n(ξ ′)+ 2n(η′)+ 
(
− 1)+ 
+ |η′|
= deg �ξ ′,η′ + 
2.

Also, in terms of the notation in [9, page 89]

dim C(ν) = 1

2

⎛

⎝
∑

i≥1

s2
i +

∑

i odd

ri

⎞

⎠ = 1

2

⎛

⎝(2
)2 +
∑

i≥2

s2
i +

∑

i odd

ri

⎞

⎠

= 2
2 + dim C(ν′)+ 1

2

(
∑

i odd

r ′
i +

∑

i odd

ri

)

= 2
2 + dim C(ν′)+ 1

2

(
∑

i odd

r ′
i +

∑

i even

r ′
i + 2
− ht(λ′)

)

= 2
2 + dim C(ν′)+ 
.

Hence, (A.32) follows. This completes the proof of (A.27).
In order to verify (A.28) we choose 
 > ht(ξ), greater than the number of parts

in ξ = ξ ′. Then, as in [8, page 420] we extend ξ to ξ̃ by adding zeros so that ξ̃
has 
+ 1 parts, which is one more than the number of parts in η. Then ξ̃1 = 0. As
shown by Lusztig [8, page 420], the pair (ξ̃ , η) satisfies the following inequalities:

ξ̃1 ≤ η1 + 1 ≤ ξ̃2 + 2 ≤ η2 + 3 ≤ ξ̃3 + 4 ≤ η3 + 5 ≤ ξ̃4 + 6 ≤ . . .

≤ η
 + 2
+ 1 ≤ ξ̃
+1 + 2
+ 2.

Since, ηi = η′
i + 1, we have

ξ̃1 ≤ η′
1 + 2 ≤ ξ̃2 + 2 ≤ η′

2 + 4 ≤ ξ̃3 + 4 ≤ η′
3 + 6 ≤ ξ̃4 + 6 ≤ . . .

≤ η′

 + 2
+ 2 ≤ ξ̃
+1 + 2
+ 2.

Therefore

η′
1 ≤ ξ̃2, η

′
2 ≤ ξ̃3, . . . , η

′

 ≤ ξ̃
+1. (A.33)

Since ξ̃1 = 0, we have |ξ̃ | = |ξ | = |ξ ′|. Thus (A.33) implies

|η′| ≤ |ξ ′|. (A.34)
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Also, equality in (A.34) implies equalities in (A.33). Thus

|η′| ≤ |ξ ′| if and only if η′ = ξ ′. (A.35)

Since, deg �ξ ′,η′ − deg �ξ,η = |η′| − |ξ ′|, (A.35) implies (A.28). ��
The aim of the last part this section is to extend the above results to the case of

an orthogonal group O2n(K) where K is the algebraic closure of a finite field Fq of
odd characteristic. We shall need them in [1].

Let TC ⊂ SO2n(C) and T ⊂ SO2n(K) be maximal tori such that the root data
of SO2n(C) and SO2n(K) with respect to TC and T, respectively, are isomorphic.
We also fix a Borel subgroup B ⊂ SO2n(K) containing T. Let W be the Weyl
group of SO2n(K) with respect to T and let S ⊂ W denote the set of simple reflec-
tions determined by B. Then the pair (W, S) can be canonically identified with the
corresponding pair in SO2n(C) defined with respect to TC ⊂ BC.

Let N (SO2n(C)), N (SO2n(K)) denote the set of unipotent classes of SO2n(C),
SO2n(K), respectively. Let � : N (SO2n(C)) → N (SO2n(K)) be Spaltenstein’s
map, see [37, Théorème III 5.2]. This map is uniquely characterized by the follow-
ing three properties:

(1) It preserves the usual partial orderings ≤ on N (SO2n(C)) and on N (SO2n(K));
(2) it preserves the dimensions of classes;
(3) it satisfies certain compatibility conditions with respect to parabolic subgroups

in SO2n(C) and SO2n(K) containing BC and B, respectively.

Moreover, since q is assumed to be odd, � is an isomorphism of partially
ordered sets. We can also canonically identify the component group

A(u) := π0(CSO2n(K)(u))

of the centralizer of u in SO2n(K) with the component group π0(CSO2n(C)(u
′))

where u ∈ O for some O ∈ N (SO2n(K)) and u′ ∈ �(O). Then it follows from its
explicit description that the Springer correspondence coincides for SO2n(K) and
for SO2n(C) (see [36] and the references there).

Let u be a unipotent element in SO2n(K), let O(u) ∈ N (SO2n(K)) denote
the conjugacy class of u in SO2n(K), and let O′′(u) denote the conjugacy class
of u in O2n(K). As before, there are two possibilities: either O′′(u) = O(u), or
O′′(u) = O(u) ∪ O(sus−1) (disjoint union), where we think of s ∈ W′′\W as an
element of O2n(K)\SO2n(K).

We assume first that O′′(u) = O(u) ∪ O(sus−1) (disjoint union). Then the
inverse images by � of O(u) and O(sus−1) are also disjoint, and similarly for
O(ν) and O(sν), with u = exp ν. It follows from the above discussion that

H2e(ν)(Bν)A(ν) ⊕ H2e(ν)(Bsν)A(sν) (A.36)

is an irreducible representation of W′′ which restricts to the sum of two inequiv-
alent representations of W corresponding to O(u) and O(sus−1) by the Springer
correspondence for the group SO2n(K). Let λ be the partition of 2n associated to
O′′(u). All the parts of λ are even and Lusztig’s algorithm associates to λ a pair of
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identical partitions (ξ, η), ξ = η. The restriction to W of the corresponding repre-
sentation of W′′, ρξ,η, splits into the direct sum of two inequivalent representations.
The b-invariant of these representations [as defined in (7)] equals

e(ν) = 1

2
dim Bu,

where Bu is the Springer fiber of all the Borel subgroups of SO2n(K)which contain
u. Thus ρξ,η is the representation given in (A.36).

We suppose now that O′′(u) = O(u). As previously, we have then two repre-
sentations of W′′ which restrict to the same irreducible representation of W (and
we have made the correct choice). Formulas (A.29) and (A.30) are still valid with
K instead of C. Then the same proof as that of Lemma A.2 gives the result.
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