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Introduction

The purpose of this article is to present a few elementary facts about the local structure

of orbits in the symplectic space under the action of a real reductive dual pair, see [6] and

[7]. We shall use this material later to study the characters of the representations which

occur in Howe’s correspondence. The corresponding facts for the adjoint action of a real

reductive group on its Lie algebra is essentaily contained in section one (eleven pages) of

part one of [11].

The main results are presented as quickly as possible, with the proofs deffered to

further sections. These proofs, based on elementary linear algebra, are rather non-

interesting, but had to be included.

Some of the material included here is contained in an unpublished work of Howe, [5].

However our approach through the Lie superalgebras seems more akin to the standard

theory, [11].

∗ E-mail: tprzebinda@ou.edu
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1 A slice through a point

Let M be a manifold and let G be a Lie group acting on M . Let x ∈ M and let Gx

be the stabilizer of x in G. Assume that the orbit Gx ⊆ M is a regularly embedded

submanifold.

A connected submanifold U ⊆ M is called an admissible slice through x if and only if

x ∈ U, (1.1)

U is Gx − stable, (1.2)

the tangent space Tx(M) = Tx(U) ⊕ Tx(Gx), (1.3)

if g ∈ G and u, u′ ∈ U are such that gu = u′ then g ∈ Gx, (1.4)

the map G × U � (g, u) → gu ∈ M is a submersion. (1.5)

The condition (1.3) implies that the map

μ : GU � gu → gx ∈ Gx (1.6)

is well defined. As shown in [11, part I, pages 15, 16], μ is a locally trivial fibration

with the fiber U . In other words, for every point gx ∈ Gx there is an open neighborhood

W ⊆ Gx, and a diffeomorphism φ such that the following diagram commutes:

W × U
φ−−−→ μ−1(W )

⏐
⏐
� μ

⏐
⏐
�

W
=−−−→ W,

(1.7)

where the left vertical arrow is the projection on the first component.

Let N ⊆ M be a complete metric subspace. Suppose N is the union of a finite set

of G-orbits. Then, as shown in [12, 8.A.4.5], we can label the orbits O1,O2, ...Ok so that

for 1 ≤ j ≤ k the set

Nj =
k⋃

l=j

Ol (1.8)

is closed in N . Suppose x ∈ Oj for some 1 ≤ j ≤ k. A connected manifold U ⊆ M is

called a weakly admissible slice through x if and only if the conditions (1.0), (1.2), (1.5)

hold and

the intersection of the image of the map (1.5) with Nj

is equal to Oj,
(1.9)

and

U ∩ Oj = {x}. (1.10)
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2 Ordinary classical Lie supergroups and dual pairs

Let D = R, C or H, and let V0, V1 be two finite dimensional left vector spaces over D. Set

V = V0 ⊕ V1 (2.1)

and define an element S ∈ End(V ) by

S(v0 + v1) = v0 − v1 (vo ∈ V0, v1 ∈ V1). (2.2)

Set
End(V )0 = {x ∈ End(V ); Sx = xS},
End(V )1 = {x ∈ End(V ); Sx = −xS},
GL(V )0 = GL(V ) ∩ End(V )0.

(2.3)

The real vector space End(V )0 is a Lie algebra, with the usual commutator [x, y] =

xy − yx. The adjoint action of GL(V )0 on End(V )

Ad(g)x = gxg−1 (g ∈ GL(V )0, x ∈ End(V ))

preserves both End(V )0 and End(V )1. Furthermore the anticommutator

End(V )1 × End(V )1 � (x, y) → {x, y} = xy + yx ∈ End(V )0 (2.4)

is R-bi-linear and GL(V )0-equivariant. Set

〈x, y〉 = trD/R{Sx, y} (x, y ∈ End(V )). (2.4’)

(Here trD/R(y) is the trace of y ∈ End(V ) viewed as an endomorphism of V over R.) It

is easy to see that the form 〈 , 〉 is preserved under the action of GL(V )0.

Lemma 2.1. The restriction of the bilinear form 〈 , 〉 to End(V )1 is symplectic and

non-degenerate. Moreover, the group homomorphism

Ad : G → Sp(End(V )1, 〈 , 〉)

maps the groups

G0 = {g ∈ GL(V )0; g|V1 = 1}, and G1 = {g ∈ GL(V )0; g|V0 = 1}

injectively onto an irreducible dual pair of type II in the symplectic group Sp(End(V )1, 〈 , 〉).

Proof. The following map

Hom(V0, V1) ⊕ Hom(V1, V0) � (A,B) → xA,B ∈ End(V )1

xA,B(v0 + v1) = Bv1 + Av0 (v0 ∈ V0, v1 ∈ V1),
(2.5)
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is an R-linear bijection. Furthermore, for v0 ∈ V0 and v1 ∈ V1, and for any A,A′ ∈
Hom(V0, V1) and B,B′ ∈ Hom(V1, V0) we have

xA,B xA′,B′(v0 + v1) = BA′v0 + AB′v1,

and therefore

S(xA,B xA′,B′ − xA′,B′ xA,B)(v0 + v1) = (BA′ − B′A)v0 + (A′B − AB′)v1.

Hence,
〈xA,B, xA′,B′〉 = trD/R(SxA,BxA′,B′ + xA′,B′SxA,B)

= trD/R(S(xA,BxA′,B′ − xA′,B′xA,B))

= trD/R(BA′ − B′A) + trD/R(A′B − AB′)

= 2trD/R(BA′ − B′A).

(2.6)

Thus the form 〈 , 〉 is symplectic. It is easy to check that if trD/R(BA′ −B′A) = 0 for all

A′ and B′ then A = 0 and B = 0. Thus the form 〈 , 〉 is non-degenerate.

The groups G0 and G1 are isomorphic to GL(V0) and GL(V1) by restriction. Further,

the action of the groups G0 and G1 on Hom(V0, V1) induced by the isomorphism (2.5),

embeds these groups into GL(Hom(V0, V1)). It is not hard to check that G0 and G1 are

mutual centralizers in GL(Hom(V0, V1)), and hence form a dual pair of type II in the

symplectic group. �

Let ι be a possibly trivial involution on D. Let τ0 be a non-degenerate ι-hermitian

form on V0, and let τ1 be a non-degenerate ι-skew-hermitian form on V1. Set τ = τ0 ⊕ τ1.

Then

τ(u, v) = ι(τ(v, Su)) (u, v ∈ V ). (2.7)

Define
g(V, τ)0 = {x ∈ End(V )0; τ(xu, v) = τ(u,−xv), u, v ∈ V },
g(V, τ)1 = {x ∈ End(V )1; τ(xu, v) = τ(u, Sxv), u, v ∈ V },
G(V, τ)0 = {g ∈ GL(V )0; τ(gu, gv) = τ(u, v), u, v ∈ V }.

(2.8)

Clearly, G(V, τ)0 is a Lie subgroup of GL(V )0, with the Lie algebra g(V, τ)0. Moreover,

it is easy to check that the anticommutator (2.4) maps g(V, τ)1 × g(V, τ)1 into g(V, τ)0.

Furthermore, the adjoint action of G(V, τ)0 preserves g(V, τ)0, g(V, τ)1, and the form 〈 , 〉.

Lemma 2.2. The restriction of the bilinear form 〈 , 〉 to g(V, τ)1 is symplectic and

non-degenerate. Moreover,

Ad : G(V, τ)0 → Sp(g(V, τ)1, 〈 , 〉)

maps the groups

G0 = {g ∈ G(V, τ)0; g|V1 = 1}, and G1 = {g ∈ G(V, τ)0; g|V0 = 1}

injectively onto an irreducible dual pair of type I in the symplectic group Sp(g(V, τ)1, 〈 , 〉).
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Proof. Recall the map

End(V0) � A → A� ∈ End(V0),

τ0(Au0, v0) = τ0(u0, A
�v0) (A ∈ End(V0)).

Let v1, v2, v3, ... be a basis of V0, and let v′
1, v

′
2, v

′
3, ... be the dual basis, in the sense that

τ0(vi, v
′
j) = δij. (Here δij is the Kronecker delta: δij = 1 if i = j, and δij = 0 if i = j.)

Then for A ∈ End(V )0

∑

i

τ0(Avi, v
′
i) =

∑

i

τ0(vi, A
�v′

i) =
∑

i

ι(τ0(A
�v′

i, vi)).

Thus

trD/R(A) = trD/R(A�) (A ∈ End(V0)). (2.9)

Define the following maps

Hom(V0, V1) � w → w∗ ∈ Hom(V1, V0),

τ1(wv0, v1) = τ0(v0, w
∗v1) (v0 ∈ V0, v1 ∈ V1),

Hom(V1, V0) � w → w∗′ ∈ Hom(V0, V1),

τ0(wv1, v0) = τ1(v1, w
∗′v0) (v0 ∈ V0, v1 ∈ V1).

(2.10)

Then
τ1(wv0, v1) = τ0(v0, w

∗v1) = ι(τ0(w
∗v1, v0))

= ι(τ1(v1, w
∗∗′v0)) = τ1(−w∗∗′v0, v1).

Thus (as is well known, [5])

w∗∗′ = −w (w ∈ Hom(V0, V1)). (2.11)

For x ∈ g(V, τ)1 let wx ∈ Hom(V0, V1) be the restriction of x to V0. Then

x(v0 + v1) = w∗
xv1 + wxv0 (v0 ∈ V0, v1 ∈ V1). (2.12)

Since for x, y ∈ g(V, τ)1

〈x, y〉 = trD/R(S(xy − yx)),

the form 〈 , 〉 is symplectic. Furthermore, by (2.12),

Sxy(v0 + v1) = w∗
xwyv0 − wxw

∗
yv1 (v0 ∈ V0, v1 ∈ V1).

Thus

S(xy − yx)(v0 + v1) = (w∗
xwy − w∗

ywx)v0 + (wyw
∗
x − wxw

∗
y)v1.

Hence,

〈x, y〉 = trD/R(w∗
xwy − w∗

ywx) + trD/R(wyw
∗
x − wxw

∗
y)

= 2trD/R(w∗
xwy) − 2trD/R(wxw

∗
y).
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But, by (2.9), (2.10) and (2.11),

trD/R(wxw
∗
y) = trD/R(w∗

ywx) = trD/R((w∗
ywx)

�)

= trD/R(w∗
xw

∗
y
∗′) = −trD/R(w∗

xwy).

Thus

〈x, y〉 = 4trD/R(w∗
xwy) (x, y ∈ g(V, τ)1). (2.13)

As shown in [5], the right hand side of (2.13) defines a non- degenerate symplectic form

on Hom(V0, V1). Since (2.12) defines an R-linear bijection

g(V, τ)1 � x → wx ∈ Hom(V0, V1), (2.13)

the first part of the Lemma follows.

The groups G0, G1 defined in (b), are isomorphic to the isometry groups G(V0, τ0),

G(V1, τ1), by restriction. As is well known, [5], these isometry groups form an irreducible

dual pair of type I in the symplectic group on Hom(V0, V1), equipped with the symplectic

form defined by the right hand side of (2.13). �

Definition 2.3. An irreducible ordinary classical Lie supergroup is a pair (G, g) with

g = g0 ⊕ g1, where either

G = GL(V )0, g0 = End(V )0, g1 = End(V )1, as in (2.3), (II)

or

G = G(V, τ)0, g0 = g(V, τ)0, g1 = g(V, τ)1, as in (2.9). (I)

The pair (G, g) is a supergroup of type II in the case (II) and of type I in the case (I). The

space V shall be called the defining module or the defining space for (G, g). If needed,

we shall indicate this by writing G = G(V ) and g = g(V ).

For the general theory of Lie superalgebras and Lie supergroup see, [8] and [9].

The following Proposition is easy to verify.

Proposition 2.4. The restriction of the form 〈 , 〉, (see (2.4’)), to g0 is symmetric,

non-degenerate and G-invariant. Furthermore, the spaces g0 and g1 are orthogonal. If

we identify g with the dual g∗ by

y(x) = 〈y, x〉 (x, y ∈ g) (a)

then, for x ∈ g1, the map

g1 � z → {x, z} ∈ g0 (b)

is adjoint to the map

g0 � y → [x, y] ∈ g1. (c)

In other words,

〈{x, z}, y〉 = 〈z, [x, y]〉 (y ∈ g0, x, z ∈ g1). (d)
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Theorem 2.5. Let (G, g) be an irreducible ordinary classical Lie supergroup. Up to

conjugation by G there is exactly one automorphism θ of g such that θ|g0 is a Cartan

involution on g0 and θ|g1 is a positive compatible complex structure on g1.

The automorphism θ may be realized as follows. Let V = V0 ⊕ V1 be the defining

module for (G, g). Then there is a positive definite hermitian form η on V such that V0

is orthogonal to V1 with respect to η, and if End(V ) � x → x† ∈ End(V ) is the adjoint

with respect to η, (η(xu, v) = η(u, x†v)), then

θ(x) =

{

−x† if x ∈ g0,

Sx† if x ∈ g1.

Moreover, if the Lie supergroup (G, g) is of type I and (D, ι) = (C, 1), then there is an

element T ∈ G, unique up to conjugation, such that η( , ) = τ(T , ).

Proof. The existence of θ is known (see, for example [3, 8.1, 10.2]). We shall verify the

uniqueness.

Since θ is an automorphism of g, the restriction θ|g1 is invertible in End(g1) and

[θy, x] = θ[y, θ−1x] (y ∈ g0, x ∈ g1).

In other words,

ad(θy)|g1 = (θ|g1)(ad(y)|g1)(θ|g1)
−1 (y ∈ g0).

Suppose θ1 is another automorphism of g such that θ1|g0 is a Cartan involution on g0

and θ1|g1 is a positive compatible complex structure on g1. Since the Cartan involution

on g0 is unique up to conjugation by a element of G, [12, 2.3.2], we may assume that

θ1|g0 = θ|g0 . Then for y ∈ g0,

(θ|g1)(ad(y)|g1)(θ|g1)
−1 = ad(θy)|g1 = ad(θ1y)|g1 = (θ1|g1)(ad(y)|g1)(θ1|g1)

−1.

Hence,

(θ|g1)
−1(θ1|g1) ∈ Sp(g1, 〈 , 〉)ad(g0).

(Here, XY is the centralizer of Y in X.) But we know from the structure of dual pairs,

[7], that this last set is contained in (the centralizer of the identity component of Ad(G)

in) Ad(G). �

For i = 1, 2, 3, ..., n, let (G(i), g(i)) be irreducible ordinary classical Lie supergroups,

not necessarily of the same type, with the defining modules V (i). The group

G = G(1) × G(2) × G(3) × ... × G(n)

and the Lie superalgebra

g = g(1) ⊕ g(2) ⊕ g(3) ⊕ ... ⊕ g(n)
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act on the vector space

V = V (1) ⊕ V (2) ⊕ V (3) ⊕ ... ⊕ V (n)

componentwise. The resulting pair (G, g) shall be called the direct product of the ordinary

classical Lie supergroups (G(i), g(i)), with the defining module V .

An ordinary classical Lie supergroup (G, g) is a finite direct product of irreducible

ordinary classical Lie supergroups, as defined above. Notice that the group G corresponds

to the unique reductive dual pair obtained via the action of G on the symplectic space

g1. This correspondence is bijective.

3 The tangent space to the G-orbit through a point x ∈ g1

Let (G, g) be an irreducible ordinary classical Lie supergroup and let x ∈ g. Since the

derivative of the adjoint action of the group G on g coincides with the adjoint action of

the Lie algebra g0 on g, we may identify the tangent space to Gx at x with

[g0, x] = {[y, x]; y ∈ g0}. (3.1)

For x ∈ g1 let
xg1 = {z ∈ g1; {x, z} = 0}. (3.2)

This is the anticommutant of x in g1. For any subset W ⊆ g1 let

W⊥ = {y ∈ g1; 〈y, z〉 = 0 for all z ∈ W}. (3.3)

Since our symplectic form 〈 , 〉 is non-degenerate, we have

W⊥⊥ = W, (3.4)

if W is a vector subspace of g1.

Lemma 3.1. For any x ∈ g1 we have [g0, x] = (xg1)
⊥.

Proof. Let z ∈ g1. Then by (2.4.d), z ∈ [g0, x]⊥ if and only if {x, z} = 0. Thus

[g0, x]⊥ = xg1, and our claim follows from (3.4). �

Let θ be as in the Theorem 2.5. Then the formula

(x, y) = −〈x, θy〉 (x, y ∈ g) (3.5)

defines a symmetric positive definite form on g. In particular, for any x ∈ g1, the

orthogonal complement to [g0, x] in g1, with respect to the form (3.5), is equal to θ(xg1).

The form (3.5) restricts to any subspace of g, and induces a positive definite form on

the quotient of g by any subspace.

Let U , V be two vector spaces, over the reals, of the same dimension. Suppose U , V
are subspaces or quotients of g (one could be a subspace and the other one the quotient).
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Let L : U → V be a linear map. We define the absolute value of the determinant of L,

|det(L)|, to be the absolute value of the determinant of the matrix of L with respect to

any orthonormal basis of U , V , with respect to the form induced by (3.5).

Fix x ∈ g1. The derivative of the map

G/Gx � gGx → gx ∈ g1 (3.6)

at x may be identified with the following linear map

g0/g
x
0 � y + gx

0 → [y, x] ∈ [g0, x]. (3.7)

Denote by

J(x) (x ∈ g1)

the absolute value of the determinant of the map (3.7). We shall give a formula for the

function J(x), for x ∈ g1 semisimple, in Corollary 6.9.

4 A G-equivariant localization in g1

In this section we state several theorems which shall be verified later.

As in the previous section, let (G, g) be an irreducible ordinary classical Lie supergroup

and let x ∈ g1. The element x ∈ g1 is called semi-simple (or nilpotent) if and only if x is

semi-simple (or nilpotent) as an endomorphism of V .

Theorem 4.1. Let x ∈ g1 and let x = xs + xn be the Jordan decomposition of x, as an

element of End(V ). (Here xs stands for the semisimple part of x, and xn for the nilpotent

part of x.) Then xs and xn belong to g1. Furthermore, an element y ∈ g1 anti-commutes

with x if and only if y anti-commutes with xs and xn.

Theorem 4.2. For any x ∈ g1 the semisimple part xs belongs to Cl(Gx), the closure of

the orbit Gx.

Theorem 4.3. For any x ∈ g1, x is semisimple if and only if the orbit Gx is closed.

Notice that if x ∈ g1, then x2 = 1
2
{x, x} ∈ g0. Let Gx2 ⊆ G denote the centralizer of

x2, and let gx2
, gx2

0 , gx2

1 denote the centralizer of x2 in g, g0, g1 respectively.

Theorem 4.4. Let x ∈ g1 be semisimple.

(a) Suppose ker(x) = 0. Then (Gx2
, gx2

) is the direct product of the irreducible ordinary

classical Lie supergroups, with the corresponding dual pairs isomorphic either to (Un, Un)

or to (GLn(D), GLn(D)), where the division algebra D may be different than the division

algebra over which the defining module V for the supergroup (G, g) was defined.

The restriction of the symplectic form 〈 , 〉 to gx2

1 is non-degenerate and

gx2

1 = xg1 ⊕ gx
1
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is a complete polarization. (Here gx
1 = {y ∈ g1; xy = yx}.)

(b) Let V 0 = ker(x) and let V + = xV . Then

V = V 0 ⊕ V +

is a direct sum (orthogonal in the type I case) decomposition into graded non-zero sub-

spaces preserved by x. Moreover,

Gx2

= G(V 0) × G(V +)x2

and

g1
x2

= g1(V
0) ⊕ g1(V

+)x2

,

where the sum is orthogonal, with respect to the symplectic form 〈 , 〉, and g1(V
0) = 0

unless V 0 ∩ V0 = 0 and V 0 ∩ V1 = 0. Moreover, the double anticommutant of x in g1

coincides with the double commutant of x in g1(V
+):

(xg1)g1 = g1(V
+)(g1(V +)x).

(c) The maximal possible dimension of the real vector space (xg1)g1 is equal to the minimum

of the rank of G(V0) and the rank of G(V1), viewed as real reductive Lie groups. For the

x such that the dimension of (xg1)g1 is maximal, we have V 0 ⊆ V0 or V 0 ⊆ V1, so that

g1(V
0) = 0, and

(xg1)g1 = g
(gx

1 )
1 .

An explicit description of the double anticommutant (xg1)g1 will be given in the proof

of the theorem (see (13.13.1), (13.22.1), (13.31.1), (13.42.1), (13.47.1), (13.47.2), and

(13.53.1)).

Theorem 4.5. Let x ∈ g1 be semisimple. Then gx
1 has a basis for the Gx-invariant

neighborhoods of x consisting of admissible slices Ux through x, such that for i = 0, 1, the

map

Ux � y → y2|Vi
∈ g0(Vi)

x2

is an (injective) immersion, (see [10] Vol 1, for the definition of an immersion.)

Theorem 4.6. [3] The set of nilpotent G-orbits in g1 is finite.

Theorem 4.7. Let x ∈ g1 be nilpotent and let W ⊆ g1 be a subspace such that

g1 = [g0, x] ⊕ W.

Then the affine space x + W ⊆ g1 has a basis for the neighborhoods of x consisting of

weakly admissible slices through x.

The following theorem has a substantial overlap with the Proposition 8.2 in [5]
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Theorem 4.8. The map

g1 ⊇ Gx → Gx2 ⊆ g0

is injective on the set of semisimple orbits. (Here, in order to simplify the notation we

write Gx rather than Ad(G)x, and similarly for Gx2.)

5 The G-orbits in g1

We retain the notation of the previous section. An element x ∈ g1, or the pair (x, V ),

is called decomposable if and only if there are two non-zero Z/2Z-graded subspaces

V ′, V ′′ ⊆ V , (which are orthogonal if (G, g) is of type I), preserved by x and such that

V = V ′ ⊕ V ′′. In this case we say that (x, V ) is the direct sum of the elements (x|V ′ , V ′)
and (x|V ′′ , V ′′). The element (x, V ) is called indecomposable if and only if (x, V ) is not

decomposable.

Theorem 5.1. For any x ∈ g1, (x, V ) is the direct sum of indecomposable elements.

Proof (a reduction to the case when x is semisimple). Let x = xs + xn be the

Jordan decomposition of x. Then, as we know from Theorem 4.1, xn ∈ g1. Suppose

xn = 0. There is a decomposition

V = V 1 ⊕ V 2 ⊕ V 3 ⊕ ...

into indecomposables with respect to xn, [3, sections 5 and 6]. Since x commutes with xn,

each V j is x-invariant, and indecomposable with respect to x (because xn is a polynomial

of x). Thus we may assume that x is semisimple. We shall consider this case and complete

the argument in sections 8 and 9. �

Let (G, g), (G′, g′) be two irreducible ordinary classical Lie supergroups with the

defining spaces V , V ′ respectively. We’ll say that two elements x ∈ g1, x′ ∈ g′
1 are

similar if and only if the supergroups (G, g), (G′, g′) are of the same type and there is

a Z/2Z-graded linear bijection φ : V → V ′ (an isometry in the type I case) such that

x = φ−1x′φ. In particular if V = V ′ and (G, g) = (G′, g′) then x is similar to x′ if and

only if x and x′ are in the same G-orbit. In that case we shall write x ≈ x′.

Theorem 5.2. Let (G, g) be of type I. The following is a complete list of all non-zero

semisimple indecomposable elements (x, V ), x ∈ g1, up to similarity. In each case we

indicate which elements of the list are similar, describe an element g ∈ G which provides

the similarity, and list the eigenvalues of x.
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V0 = Dv0 ⊕ Dv′
0, V1 = Dv1 ⊕ Dv′

1;

τ(v0, v0) = τ(v′
0, v

′
0) = τ(v1, v1) = τ(v′

1, v
′
1) = 0, τ(v0, v

′
0) = τ(v1, v

′
1) = 1;

if ι = 1 then let ξ ∈ D \ 0,

if ι = 1 then let ξ ∈ C ⊆ D and ξ2 /∈ iR;

x = x(ξ) : v0 → ξv1, v1 → ξv0, v′
0 → −ι(ξ)v′

1, v′
1 → ι(ξ)v′

0;

if D = R then x(ξ) ≈ x(−ξ) has eigenvalues ξ, iξ,−ξ,−iξ;

if D = C and ι = 1 then x(ξ) ≈ x(iξ) ≈ x(−ξ) ≈ x(−iξ) has eigenvalues

ξ, iξ,−ξ,−iξ;

if D = C and ι = 1 then x(ξ) ≈ x(−ξ) has eigenvalues

ξ, iι(ξ),−ξ,−iι(ξ);

if D = H then

x(ξ) ≈ x(−ξ) ≈ x(ι(ξ)) ≈ x(−ι(ξ))

has eigenvalues ξ, ι(ξ),−ξ,−ι(ξ), iξ, iι(ξ),−iξ,−iι(ξ);

for all D, gx(ξ)g−1 = x(−ξ) if g : v0 → −v0, v1 → v1, v
′
0 → −v′

0, v
′
1 → v′

1;

for D = C and ι = 1, gx(ξ)g−1 = x(iξ) if

g : v0 → −iv′
0, v1 → −v′

1, v
′
0 → iv0, v

′
1 → v1;

for D = H, gx(ξ)g−1 = x(ι(ξ)) if

g : v0 → jv′
0, v1 → jv′

1, v
′
0 → jv0, v

′
1 → jv1;

(a)

V0 = Dv0, V1 = Dv1, C ⊆ D, ι = 1;

τ(v0, v0) = ε = ±1, τ(v1, v1) = δi = ±i;

ξ2 ∈ iR \ 0, sgn(im(ξ2)) = −εδ;

x = x(ξ) : v0 → ξv1, v1 → ξv0;

x(ξ) ≈ x(−ξ) has eigenvalues ξ,−ξ;

gx(ξ)g−1 = x(−ξ) if g : v0 → −v0, v1 → v1;

(b)

V0 = Rv0 ⊕ Rv′
0, V1 = Rv1 ⊕ Rv′

1, D = R;

τ(v0, v0) = τ(v′
0, v

′
0) = ε = ±1, τ(v1, v1) = τ(v′

1, v
′
1) = 0,

τ(v0, v
′
0) = 0, τ(v1, v

′
1) = 1;

ξ ∈ R \ 0;

x = x(ξ) : v0 → ξ(v1 − εv′
1), v1 → ξ(v0 − v′

0),

v′
0 → ξ(v1 + εv′

1), v
′
1 → εξ(v0 + v′

0);

x(ξ) ≈ x(−ξ) has eigenvalues ξ(1 − i), ξ(1 + i),−ξ(1 − i),−ξ(1 + i);

gx(ξ)g−1 = x(−ξ) if g : v0 → −v0, v1 → v1, v
′
0 → −v′

0, v
′
1 → v′

1;

(c)
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V0 = (Ru0 ⊕ Rv0) ⊕ (Ru′
0 ⊕ Rv′

0),

V1 = (Ru1 ⊕ Rv1) ⊕ (Ru′
1 ⊕ Rv′

1), D = R,

the spaces in parenthesis are isotropic, and

τ(u0, u
′
0) = τ(v0, v

′
0) = τ(u1, u

′
1) = τ(v1, v

′
1) = 1;

ξ, η ∈ R, ξ2 = η2, ξη = 0;

x = x(ξ, η) :

u0 → ξu1 + ηv1, u1 → ξu0 + ηv0,

v0 → −ηu1 + ξv1, v1 → −ηu0 + ξv0,

u′
0 → −ξu′

1 + ηv′
1, u

′
1 → ξu′

0 − ηv′
0,

v′
0 → −ηu′

1 − ξv′
1, v

′
1 → ηu′

0 + ξv′
0;

x(ξ, η) ≈ x(−ξ, η) ≈ x(ξ,−η) ≈ x(−ξ,−η)

≈ x(η, ξ) ≈ x(−η, ξ) ≈ x(η,−ξ) ≈ x(−η,−ξ)

has eigenvalues ξ + iη, ξ − iη,−ξ + iη,−ξ − iη,

η + iξ,−η + iξ, η − iξ,−η − iξ;

gx(ξ, η)g−1 = x(−ξ, η) if g : u0 → −u0, v0 → v0, u
′
0 → −u′

0, v
′
0 → v′

0,

u1 → u1, v1 → −v1, u
′
1 → u′

1, v
′
1 → −v′

1;

gx(ξ, η)g−1 = x(η, ξ) if g : u0 → u′
0, v0 → v′

0, u
′
0 → u0, v

′
0 → v0,

u1 → v′
1, v1 → −u′

1, u
′
1 → −v1, v

′
1 → u1;

(d)

Theorem 5.3. Let (G, g) be of type II. The following is a complete list of all non-zero

semisimple indecomposable elements (x, V ), x ∈ g1, up to similarity. In each case we

indicate which elements of the list are similar, describe an element g ∈ G which provides

the similarity, and list the eigenvalues of x.

V0 = Dv0, V1 = Dv1;

ξ ∈ D \ 0;

x = x(ξ) : v0 → ξv1, v1 → ξv0;

if D = H then x(ξ) ≈ x(−ξ) has eigenvalues ξ,−ξ;

if D = H then x(ξ) ≈ x(−ξ) ≈ x(ι(ξ)) ≈ x(−ι(ξ))

has eigenvalues ξ,−ξ, ι(ξ),−ι(ξ);

gx(ξ)g−1 = x(−ξ) if g : v0 → −v0, v1 → v1;

gx(ξ)g−1 = x(ι(ξ)) if D = H and g : v0 → jv0, v1 → jv1;

(a)

V0 = Rv0, V1 = Rv1;

ξ ∈ R \ 0;

x = x(ξ) : v0 → ξv1, v1 → −ξv0;

x(ξ) ≈ x(−ξ) has eigenvalues ± iξ;

gx(ξ)g−1 = x(−ξ) if g : v0 → −v0, v1 → v1;

(a’)
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V0 = Ru0 ⊕ Rv0, V1 = Ru1 ⊕ Rv1, D = R;

ξ, η ∈ R \ 0;

x = x(ξ, η) : u0 → ξu1 + ηv1, u1 → ξu0 + ηv0,

v0 → −ηu1 + ξv1, v1 → −ηu0 + ξv0;

x(ξ, η) ≈ x(−ξ, η) ≈ x(ξ,−η) ≈ x(−ξ,−η)

has eigenvalues ξ + iη, ξ − iη,−ξ + iη,−ξ − iη;

gx(ξ, η)g−1 = x(−ξ, η) if g : u0 → −u0, v0 → v0, u1 → u1, v1 → −v1;

gx(ξ, η)g−1 = x(ξ,−η) if g : u0 → u0, v0 → −v0, u1 → u1, v1 → −v1.

(b)

Proof (of Theorem 4.1). Let x ∈ g1 and let x = xs+xn be the Jordan decomposition of

x, as an element End(V ). Suppose (G, g) is of type II. Notice that SxsS
−1 is semisimple

and SxnS−1 is nilpotent, and that these elements commute. Moreover,

SxsS
−1 + SxnS−1 = SxS−1 = −x = −xs − xn.

Thus the uniqueness of the Jordan decomposition in End(V ) implies that SxsS
−1 = −xs

and SxnS−1 = −xn. In other words, xs, xn ∈ g1.

Suppose (G, g) is of type I. Then, as shown above, xs, xn ∈ End(V )1. Consider the

map
End(V )1 � y → y� ∈ End(V )1,

τ(yu, v) = τ(u, y�v) (u, v ∈ V ).

Then y is semisimple if and only if y� is semisimple, and y is nilpotent if and only if

y� is nilpotent. In particular, x�
s is semisimple and x�

n is nilpotent. The Theorem 5.1

(for semisimple elements) and Theorem 5.2 imply that Sx�
s is semisimple. It is easy to

check that Sx�
n is nilpotent and that Sx�

s Sx�
n = Sx�

n Sx�
s. Since x ∈ g1, we have, by the

definition (2.8),

x = Sx� = Sx�
s + Sx�

n.

Thus the uniqueness of the Jordan decomposition in End(V ) implies

xs = Sx�
s and xn = Sx�

n.

Hence, xs, xn ∈ g1.

Let y ∈ g1. If y anticommutes with xs and xn then clearly y anticommutes with

x = xs + xn.

Conversely, suppose yx = −xy. Then, with S as in (2.2), the following computation

holds in End(V ):

x(Sy) = −Sxy = (Sy)x.

Thus x commutes with Sy. Therefore xs and xn commute with Sy. Hence, for z = xs or

xn,

zy = zS2y = −Sz(Sy) = −S(Sy)z = −yz.

In other words, xs and xn anti-commute with y. �
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Let

δ(k) = (−1)k(k−1)/2 =

{

1 if k ∈ 4Z or 4Z + 1,

−1 if k ∈ 4Z + 2 or 4Z + 3.
(5.1’)

Theorem 5.4. [3] Let (G, g) be of type I. The following is a complete list of all non-zero

nilpotent indecomposable elements (x, V ), x ∈ g1, up to similarity.

m ∈ 4Z;

V =
m∑

k=0

Dvk, veven ∈ V0, vodd ∈ V1;

vk = xkv0 = 0, 0 ≤ k ≤ m,xvm = 0;

τ(vk, vl) = 0 if l = m − k, τ(vk, vm−k) = δ(k)δ(
m

2
)sgn(τ0),

where sgn(τ0) = 1 if D = C and ι = 1;

(a)

m ∈ 4Z, D = R, ι = 1;

V =
m+1∑

k=1

Dvk, veven ∈ V0, vodd ∈ V1;

vk+1 = xkv1 = 0, 0 ≤ k ≤ m,xvm+1 = 0;

τ(vk, vl) = 0 if l = m + 2 − k, τ(vk, vm+2−k) = δ(k)τ(v1, vm+1),

τ(v1, vm+1) = i sgn(−iτ1)δ(1 +
m

2
) if D = C;

τ(v1, vm+1) = j if D = H;

(b)

m ∈ 4Z, D = H, ι = 1;

V =
m+1∑

k=1

(Dvk ⊕ Dv′
k), veven, v′

even ∈ V0, vodd, v
′
odd ∈ V1;

vk+1 = xkv1 = 0, v′
k+1 = xkv′

1 = 0, 0 ≤ k ≤ m,xvm+1 = 0, xv′
m+1 = 0;

τ(vk, vl) = τ(v′
k, v

′
l) = 0, 1 ≤ k, l ≤ m + 1,

τ(vk, v
′
l) = τ(v′

k, vl) = 0, l = m + 2 − k,

τ(vk, v
′
m+2−k) = −τ(v′

k, vm+2−k) = δ(k), 1 ≤ k ≤ m + 1;

(c)

m ∈ 2Z \ 4Z, D = R, ι = 1;

V =
m∑

k=0

Dvk, veven ∈ V0, vodd ∈ V1;

vk = xkv0 = 0, 0 ≤ k ≤ m,xvm = 0;

τ(vk, vl) = 0 if l = m − k, τ(vk, vm−k) = δ(k)isgn(−iτ1),

(here − iτ1 is hermitian);

(d)
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m ∈ 2Z \ 4Z;

V =
m+1∑

k=1

Dvk, veven ∈ V0, vodd ∈ V1;

vk+1 = xkv1 = 0, 0 ≤ k ≤ m,xvm+1 = 0;

τ(vk, vl) = 0 if l = m + 2 − k, τ(vk, vm+2−k) = δ(k)τ(v1, vm+1),

τ(v1, vm+1) = δ(1 +
m

2
)sgn(τ0);

(e)

m ∈ 2Z \ 4Z, D = H, ι = 1;

V =
m∑

k=0

(Dvk ⊕ Dv′
k), veven, v′

even ∈ V0, vodd, v
′
odd ∈ V1;

vk = xkv0 = 0, v′
k = xkv′

0 = 0, 0 ≤ k ≤ m,xvm = 0, xv′
m = 0;

τ(vk, vl) = τ(v′
k, v

′
l) = 0, 0 ≤ k, l ≤ m,

τ(vk, v
′
l) = τ(v′

k, vl) = 0, l = m − k,

τ(vk, v
′
m−k) = −τ(v′

k, vm−k) = δ(k), 0 ≤ k ≤ m;

(f)

m ∈ 2Z + 1;

V =
m∑

k=0

(Dvk ⊕ Dv′
k+1), veven, v′

even ∈ V0, vodd, v
′
odd ∈ V1;

vk = xkv0 = 0, v′
k+1 = xkv′

1 = 0, 0 ≤ k ≤ m,xvm = 0, xv′
m+1 = 0;

τ(vk, vl) = τ(v′
k+1, v

′
l+1) = 0, 0 ≤ k, l ≤ m,

τ(vk, v
′
l+1) = τ(v′

k+1, vl) = 0, l = m − k,

τ(vk, v
′
m+1−k) = δ(k)(−1)k, τ(v′

k+1, vm−k) = δ(k)δ(m), 0 ≤ k ≤ m;

(g)

The following theorem is well known, and goes back to Jordan. See [3] for details.

Theorem 5.5. Let (G, g) be of type II. The following is a complete list of all non-zero

nilpotent indecomposable elements (x, V ), x ∈ g1, up to similarity.

V =
m∑

k=0

Dvk, veven ∈ V0, vodd ∈ V1;

vk = xkv0 = 0, 0 ≤ k ≤ m,xvm = 0;

(a)

V =
m+1∑

k=1

Dvk, veven ∈ V0, vodd ∈ V1;

vk+1 = xkv1 = 0, 0 ≤ k ≤ m,xvm+1 = 0;

(b)

For a nilpotent element x ∈ g1 the height of x, or the height of (x, V ), is the integer

m ≥ 0 such that xm = 0 and xm+1 = 0. In particular x = 0 if and only if the height of x

is 0. The pair (x, V ) is called uniform if ker(xm) = im(x) (= x(V )). These notions are

adopted from [1], and have been used in [3].
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Let x ∈ g1 and let x = xs + xn be the Jordan decomposition of x. Let

V = V (1) ⊕ V (2) ⊕ ... (5.2)

be the decomposition of V into a direct (and orthogonal in the type I case) sum, such

that each (xn, V
(j)) is uniform (see [3]). Then each V (j) is preserved by xs. As one can see

from the proof of Theorems 5.12 and 6.1 in [3], there is a graded xs- invariant subspace

F (j) such that

V (j) = F (j) ⊕ xnF (j) ⊕ x2
nF

(j) ⊕ ...,

where, in the type I case, xk
nF (j) ⊥ xl

nF
(j), for k + l ≤ mj − 1, and mj is the height of

(xn, V
(j)).

Since the xn and xs commute, the action of xs on V (j) is determined by the action on

the F (j). This space is equipped with the form

τmj ,j(u, v) = τ(u, xmj
n v) (u, v ∈ F (j)), (5.3)

in the type I case. As an endomorphism of F (j), xs is of degree one (i.e. the restriction

of xs to F (j) is in End(F (j))1) and

τmj ,j(xsu, v) = τmj ,j(u, Sxsv)(−1)mj (u, v ∈ F (j)), (5.4)

If mj ∈ 4Z, then

τmj ,j = τmj ,j|F (j)
0

⊕ τmj ,j|F (j)
1

(5.5)

with τmj ,j|F (j)
0

hermitian and τmj ,j|F (j)
1

skew-hermitian.

If mj ∈ 2Z\4Z, then (5.5) holds with τmj ,j|F (j)
0

skew-hermitian and τmj ,j|F (j)
1

hermitian.

Thus for mj even we know how to decompose (xs, F
(j)) into indecomposables.

Recall the function δ, (5.1’). For mj ∈ 2Z + 1

τmj ,j(u, v) = −δ(mj)ι(τmj ,j(v, u)) (u, v ∈ F (j)),

τmj ,j|F (j)
0

= 0, and τmj ,j|F (j)
1

= 0.
(5.6)

Let us write m = mj, τm = τmj ,j and F = F (j) in the last case. We may rewrite (5.6)

and (5.4) as

τm(u, v) = −δ(m)ι(τm(v, u)),

F0, F1 are isotropic subspaces of F,

τm(xsu, v) = −τm(u, Sxsv) (u, v ∈ F ).

(5.7)

As an easy consequence of Theorem 5.5 we deduce the following fact.

Theorem 5.6. Suppose (xs, F ), described in (5.7), is indecomposable and non-zero. Then

ι = 1 and, up to similarity,

F = Dv0 ⊕ Dv1 (v0 ∈ F0, v1 ∈ F1),

xs : v0 → a1v1, v1 → a0v0,

where a0 = δ(m)ι(a0) and a1 = −δ(m)ι(a1) if D = R.
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6 A Cartan subspace, the Weyl group and an integration

formula

Definition 6.1. An element x ∈ g1 is regular if and only if the G-orbit through x is of

maximal possible dimension. A Cartan subspace h1 ⊆ g1 is the double anticommutant

h1 = (xg1)g1 of a regular semisimple element of x ∈ g1. The Weyl group W (G, h1) is the

quotient of the stabilizer of h1 in G by the subgroup which acts trivially on h1. (We shall

identify the Weyl group W (G, h1) with its image in GL(h1).)

Proposition 6.2. The following is a complete list of the Cartan subspaces h1 ⊆ g1 and

the Weyl groups W (G, h1), up to conjugation by an element of G, such that h1 contains

a non-zero regular semisimple indecomposable element:

Type I

V0 = Dv0 ⊕ Dv′
0, V1 = Dv1 ⊕ Dv′

1;

τ(v0, v0) = τ(v′
0, v

′
0) = τ(v1, v1) = τ(v′

1, v
′
1) = 0, τ(v0, v

′
0) = τ(v1, v

′
1) = 1;

x(a) : v0 → av1, v1 → av0, v′
0 → −ι(a)v′

1, v′
1 → ι(a)v′

0, a ∈ D;

if D = R then h1 = {x(a); a ∈ R}, |W (G, h1)| = 2,

the non-trivial element of W (G, h1) maps x(a) to x(−a);

if D = C and ι = 1 then h1 = {x(a); a ∈ C}, |W (G, h1)| = 4,

the non-trivial elements of W (G, h1) map x(a) to x(−a), x(ia), x(−ia);

if D = C and ι = 1 then h1 = {x(a); a ∈ C}, |W (G, h1)| = 2,

the non-trivial element of W (G, h1) maps x(a) to x(−a);

if D = H then h1 = {x(a); a ∈ C}, |W (G, h1)| = 4,

the non-trivial elements of W (G, h1) map x(a) to x(−a), x(ι(a)), x(−ι(a));

(a)

V0 = Dv0, V1 = Dv1, C ⊆ D, ι = 1;

τ(v0, v0) = ε = ±1, τ(v1, v1) = δi = ±i;

x(a) : v0 → av1, v1 → av0, a ∈ C;

h1 = {x(a); a = −εδiι(a) ∈ C}, |W (G, h1)| = 2;

the non-trivial element of W (G, h1) maps x(a) to x(−a);

(b)

V0 = Rv0 ⊕ Rv′
0, V1 = Rv1 ⊕ Rv′

1, D = R;

τ(v0, v0) = τ(v′
0, v

′
0) = ε = ±1, τ(v1, v1) = τ(v′

1, v
′
1) = 0,

τ(v0, v
′
0) = 0, τ(v1, v

′
1) = 1;

x = x(a) : v0 → a(v1 − εv′
1), v1 → a(v0 − v′

0),

v′
0 → a(v1 + εv′

1), v
′
1 → εa(v0 + v′

0), a ∈ R;

h1 = {x(a); a ∈ R}, |W (G, h1)| = 2;

the non-trivial element of W (G, h1) maps x(a) to x(−a);

(c)
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V0 = (Ru0 ⊕ Rv0) ⊕ (Ru′
0 ⊕ Rv′

0),

V1 = (Ru1 ⊕ Rv1) ⊕ (Ru′
1 ⊕ Rv′

1), D = R,

the spaces in parenthesis are isotropic, and

τ(u0, u
′
0) = τ(v0, v

′
0) = τ(u1, u

′
1) = τ(v1, v

′
1) = 1;

x = x(a, b) :

u0 → au1 + bv1, u1 → au0 + bv0,

v0 → −bu1 + av1, v1 → −bu0 + av0,

u′
0 → −au′

1 + bv′
1, u

′
1 → au′

0 − bv′
0,

v′
0 → −bu′

1 − av′
1, v

′
1 → bu′

0 + av′
0, a, b ∈ R;

h1 = {x(a, b); a, b ∈ R}, |W (G, h1)| = 8;

the non-trivial elements of W (G, h1) map x(a, b) to

x(−a, b), x(a,−b), x(−a,−b), x(b, a), x(−b, a), x(b,−a), x(−b,−a);

(d)

Type II

V0 = Dv0, V1 = Dv1;

x(a) : v0 → av1, v1 → av0, a ∈ D;

if D = R or C, then h1 = {x(a); a ∈ D}, |W (G, h1)| = 2;

the non-trivial element of W (G, h1) maps x(a) to x(−a);

if D = H, then h1 = {x(a); a ∈ C}, |W (G, h1)| = 4;

the non-trivial elements of W (G, h1) map x(a) to x(−a), x(ι(a)), x(−ι(a));

(e)

V0 = Rv0, V1 = Rv1;

x(a) : v0 → av1, v1 → −av0;

h1 = {x(a); a ∈ R}, |W (G, h1)| = 2;

the non-trivial element of W (G, h1) maps x(a) to x(−a);

(f)

V0 = Ru0 ⊕ Rv0, V1 = Ru1 ⊕ Rv1, D = R;

x = x(a, b) : u0 → au1 + bv1, u1 → au0 + bv0,

v0 → −bu1 + av1, v1 → −bu0 + av0;

h1 = {x(a, b); a, b ∈ R}, |W (G, h1)| = 4;

the non-trivial elements of W (G, h1) map x(a, b) to

x(−a, b), x(a,−b), x(−a,−b);

(g)

Proof. This Proposition is a straightforward consequence of Theorems 5.2, 5.3 and the

proof of Theorem 4.4, (see the section 13). �
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In general, a Cartan subspace h1 ⊆ g1 induces a direct sum decomposition

V = V 0⊕V 1 ⊕ V 2 ⊕ ... ⊕ V i1

⊕V i1+1 ⊕ V i1+2 ⊕ ... ⊕ V i2

...

⊕V ik−1+1 ⊕ V ik−1+2 ⊕ ... ⊕ V ik ,

(6.1)

orthogonal in the type I case, into graded subspaces preserved by h1, such that

(a) h1(V
0) = 0,

(b) for each 0 ≤ i ≤ ik there is x ∈ h1 such that (x, V i) is indecomposable,

(c) there is x ∈ h1 such that the elements (x, V j), (x, V k)

are indecomposable and similar if and only if there is 1 ≤ l ≤ k − 1,

with il < j ≤ il+1 and il < k ≤ il+1.

(6.2)

Then the Weyl group

W (G, h1) =

(Si1 � (W (G(V 1), h1(V
1)) × W (G(V 2), h1(V

2)) × ...

× W (G(V i1), h1(V
i1))))

×(Si2−i1 � (W (G(V i1+1), h1(V
i1+1)) × W (G(V i1+2), h1(V

i1+2)) × ...

× W (G(V i2), h1(V
i2))))

...

×(Sik−ik−1
� (W (G(V ik−1+1), h1(V

ik−1+1)) × W (G(V ik−1+2), h1(V
ik−1+2)) × ...

× W (G(V ik), h1(V
ik)))),

(6.3)

with the action on h1 compatible with the decomposition (6.3). (Here Sm stands for the

group of all permutations of m objects.)

Proposition 6.2, together with (6.1), imply that there are finitely many conjugacy

classes of Cartan subspaces in g1 and that any Cartan subspace consists of elements which

commute in End(V ). Also, it is easy to see from Definition 6.1 that each semisimple

element of g1 belongs to a Cartan subspace of g1. Also, the set or regular elements

coincides with the set where certain determinants don’t vanish, hence it is open and

dense. We record these facts in the following proposition.

Proposition 6.3. There are finitely many G-conjugacy classes of Cartan subspaces in

g1. Every semisimple element of g1 belongs to the G-orbit through an element of a Cartan

subspace. The set of regular semisimple elements is dense in g1. Any two elements of a

Cartan subspace h1 ⊆ g1 commute as endomorphisms of V .

The following lemma shall be verified at the end of section 13.

Lemma 6.4. For any two commuting regular semisimple elements x, y ∈ g1 we have

(a) gx2

1 = gy2

1 ; (b) gx
1 = gy

1; (c) xg1 = yg1; (d) gx2

0 = gy2

0 ; (e) gx
0 = gy

0.
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Let h1 ⊆ g1 be a Cartan subspace and let hreg
1 ⊆ h1 be the subset of regular elements.

Denote by h2
1 = {h1, h1} the linear span of the elements {x, y}, where x, y ∈ h1. Define

h1g1 =
⋂

y∈h1

yg1, gh1
1 =

⋂

y∈h1

gy
1, g

h2
1

i =
⋂

y∈h2
1

gy
i , (i = 0, 1). (6.4)

Lemma 6.5. For any x ∈ hreg
1 ,

(a) h1g1 = xg1, (b) gh1
1 = gx

1 = h1, (c) g
h2
1

i = gx2

i (i = 0, 1).

Proof. In the definition (6.4), it suffices to take the finite intersection over the y’s which

form a basis of the corresponding linear space. For the equations (a), (b) we may choose

a basis of h1 consisting of regular elements. Then the equalities follow from Lemma 6.4.

Since the elements of h1 commute, the space h2
1 is spanned by the squares y2, y ∈ h1.

Thus we may choose a basis y2
1, y2

2,..., of h2
1 such that each yi ∈ hreg

1 . Then the equality

(c) also follows from Lemma 6.4. �

Proposition 6.6. Let x ∈ hreg
1 . Set V 0 = ker(x) and V + = xV , as in Theorem 4.4(b).

Then

h1 = g1(V
+)h1 = g1(V

+)x; (a)
h1g1 = h1g1(V

+); (b)

g
h2
1

1 = g1(V
+)h2

1 = g1(V
+)x2

; (c)

g
h2
1

0 = g0(V
0) ⊕ h0, (d)

where h0 = g0(V
+)h2

1 is a Cartan subalgebra of g0(V
+),

and the sum is orthogonal;

gh1
0 = g0(V

0) ⊕ h2
1; (e)

the restriction of the form 〈 , 〉 to h0 is non-degenerate and (f)

h0 = Sh2
1 ⊕ h2

1 is a complete polarization.

Proof. Parts (a), (b), (c) are immediate from Theorem 4.4 and Lemma 6.5. Similarly

we have the orthogonal decomposition in (d). A straightforward computation based on

Theorem 4.4(a) shows that

dim g0(V
+)x2

= 2 dim g1(V
+)x.

By Theorem 4.4(a) and 4.4(c),

dim g1(V
+)x = min{rank g0(V

+
0 ), rank g0(V

+
1 )}.

Since

g0(V
+) = g0(V

+
0 ) ⊕ g0(V

+
1 ),

we see that the restriction of x2 to V + is a regular element of g0(V
+). Hence, h0 is a

Cartan subalgebra of g0(V
+) and (d) follows.
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For (e) we may assume that V 0 = 0 and that (x, V ) is indecomposable. Then the

equality follows from Proposition 6.2 via a case by case analysis. Similarly we check (f).

�

Lemma 6.7. For any x ∈ hreg
1 the following map is a linear bijection

(Sgh1
0 )⊥ � y → [y, x] ∈ (h1g1)

⊥. (a)

The map (a) intertwines the adjoint action of h2
1 on both spaces. The following are direct

sum decompositions into the trivial and the non-trivial h2
1-components:

(Sgh1
0 )⊥ = Sh2

1 ⊕ g0(V
0)⊥ ∩ h⊥

0 , (b)

(h1g1)
⊥ = h1g1 ⊕ (g

h2
1

1 )⊥. (c)

The map (a) restricts to bijections

Sh2
1 � y → [y, x] ∈ h1g1, (d)

g0(V
0)⊥ ∩ h⊥

0 � y → [y, x] ∈ (g
h2
1

1 )⊥. (e)

Proof. We see from Proposition 6.6(e) that

(Sgh1
0 )⊥ = g0(V

0)⊥ ∩ (Sh2
1)

⊥.

The h2
1-trivial component of this space is

g0(V
0)⊥ ∩ (Sh2

1)
⊥ ∩ h0 = Sh2

1.

This verifies (b).

We see from (b), and from Proposition 6.6(e), that

g0 = (Sgh1
0 )⊥ ⊕ gh1

0 .

Since h1g1 = xg1, Lemma 3.1 implies that the map (a) is well defined and surjective. Let

z ∈ h1 and let x, y be as in (a). Then

[z2, [y, x]] = [[z2, y], x] + [y, [z2, x]] = [[z2, y], x],

because [z2, x] = 0. Hence, the map (a) is h2
1-intertwining, and the proof of (a) is complete.

Part (c) is clear from Theorem 4.4. Parts (d) and (e) follow from the intertwining

property of the map (a). �

The derivative of the map

h1 � x → x2 ∈ h2
1 (6.5)
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at x ∈ h1, coincides with the following linear map

h1 � y → {y, x} ∈ h2
1, (6.6)

which, by Proposition 2.4, is adjoint to the map

Sh2
1 � y → [x, y] ∈ Sh1. (6.7)

(Notice that the range of the map (6.7) is contained in Sh1. Indeed, let x, z ∈ hreg
1 . Then

[Sz2, x] ∈ [g0, g1] ⊆ g1 = Sg1 and [Sz2, x] = S(z2x+xz2) = S2z2x. Clearly z2x commutes

with x. Thus [Sz2, x] ∈ Sgx
1 . Furthermore z2x|V 0 = 0. Therefore [Sz2, x] ∈ Sh1.)

Hence,

|det(h1 � y → {y, x} ∈ h2
1)| = |det(Sh2

1 � y → [y, x] ∈ Sh1)|. (6.8)

Define polynomials Dj(x), x ∈ g1, by

det(tI − ad(x2)|g1) =
R∑

j=r

tjDj(x) (x ∈ g1), (6.9)

where R = dim(g1), DR = 1, and r ≥ 0 is the smallest integer such that Dr is not

identically equal zero.

Lemma 6.8. For x ∈ h1 we have

|Dr(x)| = |det(ad(x2)|
(g

h2
1

1 )⊥
)|

= |det(g0(V
0)⊥ ∩ h⊥

0 � y → [y, x] ∈ (g
h2
1

1 )⊥)|2
= |det(ad(x2)|g0(V 0)⊥∩h⊥0

)|.

Proof. The first equality is clear from (6.9). The map

ad(x2)|
(g

h2
1

1 )⊥
: (g

h2
1

1 )⊥ → (g
h2
1

1 )⊥

coincides with (−1 times) the composition of the following two maps:

(g
h2
1

1 )⊥ � y → {y, x} ∈ g0(V
0)⊥ ∩ h⊥

0 , (6.10)

and

g0(V
0)⊥ ∩ h⊥

0 � y → [y, x] ∈ (g
h2
1

1 )⊥, (6.11)

which, by Proposition 2.4, are adjoint to each other. Hence the second equality follows.

Similarly the map

ad(x2) : g0(V
0)⊥ ∩ h⊥

0 → g0(V
0)⊥ ∩ h⊥

0

is (−1 times) the composition of the maps (6.10) and (6.11), and the third equality

follows. �
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Recall the function J(x), equal to the absolute value of the determinant of the map

(3.7):

J(x) = |det(g0/g
x
0 � y + gx

0 → [y, x] ∈ [g0, x])|, (x ∈ g1). (6.12)

Corollary 6.9. For x ∈ h1 we have

J(x) = |det(h1 � y → {y, x} ∈ h2
1)| · |Dr(x)|1/2.

Proof. Let x ∈ hreg
1 . By Proposition 6.6(e),

gx
0 = g0(V

0) ⊕ h2
1.

Therefore Proposition 6.6(e) and Proposition 6.6(f)) imply

(Sgx
0)

⊥ = (g0(V
0) ⊕ Sh2

1)
⊥ = g0(V

0)⊥ ∩ (Sh2
1)

⊥

= (g0(V
0)⊥ ∩ h⊥

0 ) ⊕ Sh2
1.

But we see from Proposition 6.6(d) and Proposition 6.6(f) that

g0 = g0(V
0) ⊕ (g0(V

0)⊥ ∩ h⊥
0 ) ⊕ Sh2

1 ⊕ h2
1

= (g0(V
0) ⊕ h2

1) ⊕ (g0(V
0)⊥ ∩ h⊥

0 ⊕ Sh2
1),

where the middle direct sum is orthogonal. Thus,

g0 = gx
0 ⊕ (gx

0)
⊥ = (Sh2

1 ⊕ g0(V
0)⊥ ∩ h⊥

0 ) ⊕ gx
0 . (6.13)

Furthermore, by (3.1), (4.4) and Proposition 6.6(b),

[g0, x] = (xg1)
⊥ = xg1 ⊕ g1(V

0) = xg1(V
+) ⊕ g1(V

0) = h1g1 ⊕ (g
h2
1

1 )⊥.

Hence, by Lemma 6.7, J(x) is the absolute value of the determinant of the map Lemma

6.7(d) times the absolute value of the determinant of the map Lemma 6.7(e):

J(x) = |det(Sh2
1 � y → {y, x} ∈ Sh1)| · |det(g0(V

0)⊥ ∩ h⊥
0 � y → [y, x] ∈ (g

h2
1

1 )⊥)|.
Hence our formula for J(x) follows from (6.8) and Lemma 6.8. �

Example 6.10. The dual pair O2n(C), Sp2n(C)

For i = 0, 1 choose a basis

vi1, vi2, ..., vin, v′
i1, v

′
i2, ..., v

′
in

of the vector space Vi such that

τ(vik, v
′
ik) = 1 (k = 1, 2, 3, ..., n)

and all the other pairings are zero. Let h1 be the Cartan subspace consisting of elements

x(a), a ∈ C
n, such that

x(a) :v0k → akv1k, v1k → akv0k,

v′
0k → −akv

′
1k, v′

1k → akv
′
0k, (k = 1, 2, 3, ..., n).
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Then

det(h1 � y → {y, x} ∈ h2
1) =

n∏

k=1

(2ak),

Dr(x(a)) =

(

∏

j �=k

(a2
j − a2

k)(a
2
j + a2

k) ·
n∏

k=1

(
√

2ak)

)2

, and r = 4n.

Example 6.11. The dual pair GLn(C), GLn(C).

For i = 0, 1 choose a basis

vi1, vi2, ..., vin

of the vector space Vi. Let h1 be the Cartan subspace consisting of elements x(a), a ∈ C
n,

such that

x(a) : v0k → akv1k, v1k → akv0k, (k = 1, 2, 3, ..., n).

Then

det(h1 � y → {y, x} ∈ h2
1) =

n∏

k=1

(2ak),

Dr(x(a)) =

(

∏

j �=k

(a2
j − a2

k)

)2

, and r = 2n.

Corollary 6.12. For a Cartan subspace h1 ⊆ g1 let h+
1 ⊆ hreg

1 be a (measurable) funda-

mental domain for the action of the Weyl group W (G, h1). Let Q : g1 � x → x2 ∈ g0. Let

greg,ss
1 ⊂ g1 denote the subset of regular semisimple elements. Then for f ∈ Cc(g

reg,ss
1 )

∫

g1

f(x) dx =
∑

h1

1

|W (G, h1)|
∫

hreg
1

J(x)

∫

G/Gh1

f(gx) d
.
g dx

=
∑

h1

∫

h+
1

J(x)

∫

G/Gh1

f(gx) d
.
g dx

=
∑

Qh+
1

∫

Qh+
1

|Dr(Q
−1(x))|1/2

∫

G/Gh1

f(gQ−1(x)) d
.
g dx,

where the summation is over a maximal family of mutually non-conjugate Cartan sub-

spaces h1 ⊆ g1.

Proof. The first equality follows from the fact that the absolute value of Jacobian of the

map

G/Gh1 × hreg
1 � (gGh1 , x) → gx ∈ greg,ss

1

at (gGh1 , x) is equal to J(x). The second equality is obvious and the third one follows

from Corollary 6.21. �
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7 A canonical complementary subspace to the tangent space of

an orbit

Here we adopt the view point of Harish-Chandra, [4, section 14], that the complementary

subspace in Theorem 4.7 should be the orthogonal with respect to a natural positive

definite form, (see (7.13) below).

Recall the symmetric positive definite form ( , ) = −〈 , θ 〉 on g defined in (3.5), and

the adjoint map:

End(g) � A → A† ∈ End(g), (A(x), y) = (x,A†(y)), x, y ∈ g. (7.1)

Lemma 7.1. For the adjoint representation ad : g → End(g), we have

ad(x)† =

{

−ad(θ(x)) if x ∈ g0,

ad(θ(x)) if x ∈ g1.

Proof. Let x, y, z ∈ g0. Then

(ad(x)y, z) = −〈[x, y], θz〉 = −〈y,−[x, θz]〉 = −〈y,−θ[θx, z]〉 = (y,−ad(θx)z).

Let x ∈ g0, and let y, z ∈ g1. Then the above computation applies without any change.

Hence the formula follows for x ∈ g0 (as is well known [4, Lemma 27]).

If x ∈ g1, and either y, z ∈ g0 or y, z ∈ g1, then all the pairings in question are zero.

Let x ∈ g1, y ∈ g1 and z ∈ g0. Then, by Proposition 2.4,

(ad(x)y, z) = −〈{x, y}, θz〉 = −〈y, [x, θz]〉 = −〈y, θ[θx, z]〉 = (y, ad(θx)z).

Let x ∈ g1, y ∈ g0 and z ∈ g1. Then, by Proposition 2.4,

(ad(x)y, z) = −〈[x, y], θz〉 = 〈θz, [x, y]〉 = 〈{x, θz}, y〉 = −〈y, {x, θz}〉
= −〈y, θ{θx, z}〉 = (y, ad(θx)z).

This verifies the second formula. �

Let x ∈ g0. Then the ( , )-orthogonal complement to [g0, x] in g0 is equal to θ(gx
0) =

g
θ(x)
0 . Thus

g0 = [g0, x] ⊕ θ(gx
0). (7.2)

In particular, if h0 ⊆ g0 is a Cartan subalgebra, then

g0 = [g0, x] ⊕ θ(h0) (x ∈ hreg
0 ), (7.3)

which provides a geometric interpretation for the notion of a θ-stable Cartan subalgebra.

If x ∈ g0 is nilpotent and such that {x, y = −θ(x), h = [x, y]} is a Cayley triple, [2],

then (7.2) may be rewritten as

g0 = [g0, x] ⊕ gy
0. (7.4)
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Moreover, if l = Rx ⊕ Ry ⊕ Rh, then by Lemma 7.1, ad(l) ⊆ End(g0) is a self adjoint

family of operators. Hence g0 decomposes into a direct, ( , )- orthogonal sum of irreducible

components, which have managable structure because the Lie algebra l is isomorphic to

sl(2, R). Furthermore,

g0 = [g0, x] ⊕ gx
0 (7.5)

is another ( , )-orthogonal decomposition, and the map

[g0, x] × gy
0 � (v, w) → [v, x] + w ∈ g0 (7.6)

is a linear bijection.

Consider an element x ∈ g1. Then θ(xg1) = θ(x)g1 is the ( , )-orthogonal complement

of [g0, x] in g1. Thus

g1 = [g0, x] ⊕ θ(xg1). (7.7)

In particular, if h1 ⊆ g1 is a Cartan subspace, then

g1 = [g0, x] ⊕ θ(h1g1) (x ∈ hreg
1 ). (7.8)

Moreover, if ( )⊥ denotes the orthogonal complement with respect to the form 〈 , 〉, then

θ((gx
0)

⊥) = (g
θ(x)
0 )⊥ is the ( , )-orthogonal complement of gx

0 , so that

g0 = θ((gx
0)

⊥) ⊕ gx
0 , (7.9)

and the following map is a linear bijection

θ((gx
0)

⊥) × θ(xg1) � (v, w) → [v, x] + w ∈ g1. (7.10)

As shown by Harish-Chandra, [4, sections 13 and 14], the Jacobson-Morozov theorem

and a theorem of Mostow imply that for a nilpotent orbit O ⊆ g′ there is an element

x ∈ O such that the Lie algebra generated by x and θ(x) is isomorphic to sl(2, R). This

may be deduced directly from the classification Theorems 5.4 and 5.5, and motivates the

following problem.

Problem 7.2. Let O ⊆ g∞ be a non-zero nilpotent orbit. For an element x ∈ O let s(x) ⊆
g be the Lie sub- superalgebra generated by x and θ(x). Let nO = min{dim s(x); x ∈ O}.
Describe all the s(x) with dim s(x) = nO.

Remark 7.3. With the notation of Problem 7.2, suppose (x, V ) is indecomposable. Then

one can show, using the classification Theorems 4.4 and 4.5, that for x = 0, the height of

x is even if and only if there is (a possibly different) x ∈ O such that

[{x, θ(x)}, x] = x.

Consequently s(x) is isomorphic to (o1, sp2(R)) as a dual pair, and (x2, −θ(x)2, [x2,−θ(x)2])

is a Cayley triple.
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Notice that the adjoint representation maps g into the ortho- symplectic Lie sub-

superalgebra osp(g) ⊆ End(g)0 ⊕ End(g)1, defined as in (2.8) with the τ replaced by

〈 , 〉. Let x ∈ g1 be nilpotent. Then ad(x) ∈ osp(g)1 is nilpotent. Hence the classifica-

tion Theorems 4.4 and 4.5, applied to osp(g) provide a decomposition of g into a direct

orthogonal sum of ad(x)-indecomposables.

Moreover

θ((gx
0)

⊥) = θ((g0 ∩ ker(ad(x))⊥) = θ((g0 ∩ ad(x)(g)) = ad(θ(x))(g1)

= {θ(x), g1}.
(7.11)

Therefore (7.11) may be rewritten as

{θ(x), g1} × θ(xg1) � (v, w) → [v, x] + w ∈ g1. (7.12)

The space W of Theorem 4.7 may be taken to be θ(xg1) and the local coordinates around

x are provided by the map

{θ(x), g1} × θ(xg1) � (v, w) → [v, x + u] + w ∈ g1 (u ∈ θ(xg1)). (7.13)

8 A proof of Theorem 5.1 for x semisimple and (G, g) of type

II, and a proof of Theorem 5.3

Let

U =

⎧

⎪⎨

⎪⎩

V C, the complexification of V, if D = R,

V, if D = C,

V, viewed as a vector space over C, if D = H.

Since x is semisimple we have a direct sum decomposition into eigenspaces:

U =
∑

λ

Uλ, xu = λu, u ∈ Uλ. (8.1)

Let L be a set of eigenvalues of x such that L ∩ (−L) = ∅ and L ∪ (−L) is the set of all

non-zero eigenvalues of x. Since SUλ = U−λ, (see (2.2) for S),

U = U0 ⊕
∑

λ∈L

(Uλ ⊕ U−λ) (8.2)

is a direct sum decomposition into Z/2Z-graded subspaces preserved by x. The space U0

is either zero or decomposes into a direct sum of one dimensional graded subspaces

U =
∑

k

U0,k. (8.3)

For each λ ∈ L let

Uλ =
∑

l

Uλ,l



T. Przebinda / Central European Journal of Mathematics 4(3) 2006 449–506 477

be a direct sum decomposition into one-dimensional subspaces. Then

Uλ ⊕ SUλ =
∑

l

(Uλ,l ⊕ SUλ,l) (8.4)

is a direct sum decomposition into graded x-invariant subspaces, which does not admit

any finer decomposition of this type. Thus each term Uλ,l ⊕ SUλ,l is indecomposable

under the action of x and S. This verifies Theorem 5.1 for (G, g) of type II and D = C.

Fix λ and l as in (8.4), and let uλ ∈ Uλ,l be a non-zero vector. Set v0 = uλ + Suλ and

v1 = uλ − Suλ. Then

Sv0 = v0, Sv1 = −v1, xv0 = λv1, xv1 = λv0. (8.5)

Thus Theorem 5.3, for D = C, follows.

Let D = R. Let U � u → u ∈ U be the complex conjugation with respect to the real

form V ⊆ U . Then for each eigenvalue λ of x we have

Uλ = Uλ. (8.6)

We may split the set of eigenvalues of x into a disjoint union

{0} ∪ LR ∪ (−LR) ∪ LC ∪ (−LC),

where the elements λ ∈ LR are such that λ2 ∈ R, and the elements λ ∈ LC are such that

λ2 ∈ C \ R, so that the four complex numbers λ, −λ, λ, −λ are distinct. Thus

U = U0 ⊕
∑

λ∈LR

(Uλ ⊕ U−λ) ⊕
∑

λ∈LC

(Uλ ⊕ U−λ ⊕ Uλ ⊕ U−λ). (8.7)

Each summand in (8.7) is invariant under x, S, and the complex conjugation. The

terms U0 and Uλ ⊕ U−λ, with λ ∈ R \ 0, may be treated as in the case D = C. The

indecomposable summands of Uλ ⊕ U−λ are described in part (a) of Theorem 5.3.

Suppose λ = iξ ∈ iR \ 0. The, with the notation (8.5),

x : v0 + v0 → ξi(v1 − v1) → −ξ(v0 + v0).

Hence, in this case, the indecomposable summands of Uλ⊕U−λ are described in part (a’)

of Theorem 5.3.

Consider λ ∈ LC. Let

Uλ =
∑

l

Uλ,l

be a direct sum decomposition into one dimensional subspaces. Then

Uλ ⊕ U−λ ⊕ Uλ ⊕ U−λ =
∑

l

(Uλ,l ⊕ U−λ,l ⊕ Uλ,l ⊕ U−λ,l) (8.8)

is a direct sum decomposition into (x, S, u → u invariant) subspaces of minimal possible

dimension (equal 4). This verifies Theorem 5.1 for for (G, g) of type II and D = R.
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Fix λ ∈ LC and l as in (8.8). Let uλ ∈ Uλ,l be a non-zero vector. Set uλ = uλ,

u−λ = Suλ, and u−λ = u−λ. Then

xuλ = λuλ, xu−λ = −λu−λ, xuλ = λuλ, xu−λ = −λu−λ. (8.9)

Let λ = ξ + iη, with ξ, η ∈ R. Then ξη = 0. We see from (8.9) that

x :uλ + u−λ + uλ + u−λ → λ(uλ − u−λ) + λ(uλ − u−λ),

uλ − u−λ + uλ − u−λ → λ(uλ + u−λ) + λ(uλ + u−λ),

uλ + u−λ − uλ − u−λ → λ(uλ − u−λ) − λ(uλ − u−λ),

uλ − u−λ − uλ + u−λ → λ(uλ + u−λ) − λ(uλ + u−λ).

(8.10)

Set
u0 = uλ + u−λ + uλ + u−λ, v0 = i(uλ + u−λ − uλ − u−λ),

u1 = uλ − u−λ + uλ − u−λ, v1 = i(uλ − u−λ − uλ + u−λ).

We see from (8.10) that

x :u0 → ξu1 + ηv1, u1 → ξu0 + ηv0,

v0 → −ηu1 + ξv1, v1 → −ηu0 + ξv0.
(8.11)

The formulas (8.11) are consistent with the formulas of part (b) of Theorem 5.3. This

verifies Theorem 5.3 for D = R.

Let D = H. Since jUλ = Uλ, each summand in the decomposition (8.7) is a vector

space over H. Let λ ∈ LR ∪ LC. Pick a non-zero vector uλ ∈ Uλ. Let

v0 = uλ + Suλ, v1 = uλ − Suλ.

Then

xv0 = λv1, xv1 = λv0, (8.12)

and

Hv0 + Hv1 ⊆ U (8.13)

is a graded x-invariant subspace over H. The non-zero part of the right hand side of (8.7)

may be grouped into a direct sum of spaces of the form (8.13). This verifies Theorems

5.1 and 5.3 for D = H.

9 A proof of Theorem 5.1 for x semisimple and (G, g) of type I,

and a proof of Theorem 5.2

We consider four cases: (D = C, ι = 1), (D = C, ι = 1), (D = H, ι = 1) and (D = R, ι =

1).

Case (D = C, ι = 1). Let

V =
∑

λ

V λ (9.1)
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be the decomposition of V into the eigenspaces for x (xv = λv for v ∈ V λ). For two

eigenvalues λ, μ and the corresponding eigenvectors vλ, vμ, we have

μ2τ(vμ, vλ) = τ(x2vμ, vλ) = τ(vμ,−x2vλ) = τ(vμ, vλ)(−λ2).

Thus

V λ ⊥ V μ if μ2 + λ2 = 0. (9.2)

Let us decompose the set of non-zero eigenvalues of x into a disjoint union

L ∪ (−L) ∪ iL ∪ (−iL).

Then, by (9.2),

V = V 0 ⊕
∑

λ∈L

(V λ ⊕ V −λ ⊕ V iλ ⊕ V −iλ) (9.3)

is a direct sum orthogonal decomposition into graded subspaces preserved by x.

For λ ∈ L, pick a non-zero vector vλ ∈ V λ, and a non-zero vector viλ ∈ V iλ. Let

v0 = vλ + Svλ, v1 = vλ − Svλ,

v′
0 = i(viλ + Sviλ), v′

1 = viλ − Sviλ.

Then

x : v0 → λv1, v1 → λv0, v′
0 → −λv′

1, v′
1 → λv′

0. (9.4)

Hence,

λτ(v1, v
′
1) = τ(xv0, v

′
1) = τ(v0, Sxv′

1) = τ(v0, Sλv′
0) = τ(v0, v

′
0)λ.

Thus

τ(v1, v
′
1) = τ(v0, v

′
0). (9.5)

We may multiply v0 and v1 by the same complex number to ensure

τ(v1, v
′
1) = τ(v0, v

′
0) = 1. (9.6)

Notice that

τ(v0, v0)λ = τ(v0, xv1) = τ(−Sxv0, v1) = τ(−Sλv1, v1) = λτ(v1, v1)

and

λτ(v0, v0) = τ(xv1, v0) = τ(v1, Sxv0) = τ(v1, Sλv1) = τ(v1, v1)(−λ).

Hence

τ(v0, v0) = τ(v1, v1) = 0. (9.7)

Similarly

τ(v′
0, v

′
0)λ = τ(v′

0, xv′
1) = τ(−Sxv′

0, v
′
1) = τ(Sλv′

1, v
′
1) = −λτ(v′

1, v
′
1)

and

λτ(v′
0, v

′
0) = τ(xv′

1, v
′
0) = τ(v′

1, Sxv′
0) = τ(v′

1,−Sλv′
1) = τ(v′

1, v
′
1)λ.
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Hence

τ(v′
0, v

′
0) = τ(v′

1, v
′
1) = 0. (9.8)

The subspace

Cv0 ⊕ Cv′
0 ⊕ Cv1 ⊕ Cv′

1 ⊆ V λ ⊕ V −λ ⊕ V iλ ⊕ V −iλ (9.9)

is graded and x-invariant and the action of x on this subspace is consistent with the

formulas of part (a) of Theorem 5.2. Moreover it is clear that we may decompose the

right hand side of (9.9) into direct sum of such subspaces. This verifies Theorems 5.1 and

5.2.

Case (C, ι = 1). Here, instead of (9.2) we have

V λ ⊥ V μ if μ2 + λ
2 = 0, (9.10)

where λ = ι(λ). We decompose the set of non-zero eigenvalues of x into a disjoint union

LiR ∪ (−LiR) ∪ LC ∪ (−LC) ∪ iLC ∪ (−iLC),

where λ2 ∈ iR \ 0 for λ ∈ LiR, and λ2 ∈ C \ iR for λ ∈ LC. Then by (9.10),

V = V 0 ⊕
∑

λ∈LiR

(V λ ⊕ V −λ) ⊕
∑

λ∈LC

(V λ ⊕ V −λ ⊕ V iλ ⊕ V −iλ) (9.11)

is a direct sum orthogonal decomposition into graded x-invariant subspaces.

For λ ∈ LiR, pick a non-zero vector vλ ∈ V λ. Let

v0 = vλ + Svλ, v1 = vλ − Svλ.

Then

x : v0 → λv1, v1 → λv0. (9.12)

Moreover,

λτ(v0, v0) = τ(xv1, v0) = τ(v1, Sxv0) = τ(v1, Sλv1) = τ(v1, v1)(−λ).

Thus

τ(v1, v1) = −λ

λ
τ(v0, v0), (9.13)

where

− λ

λ
= − λ2

|λ|2 = −i sgn(im(λ2)). (9.14)

Since τ0 is hermitian, τ(v0, v0) ∈ R \ 0. Thus we may multiply v0 and v1 by the same

positive real number so that (by (9.13) and (9.14))

τ(v0, v0) = ε = ±1, τ(v1, v1) = δi = ±i, with − εδ = sgn(im(λ2)). (9.15)

Clearly

Cv0 ⊕ Cv1 ⊆ V λ ⊕ V −λ (9.16)
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is a graded, x-invariant subspace described in part (b) of Theorem 5.2. This subspace is

indecomposable and the right hand side of (9.16) decomposes into an orthogonal direct

sum of such subspaces.

Let λ ∈ LC and let vλ ∈ V λ be a non-zero vector. Set

v0 = vλ + Svλ, v1 = vλ − Svλ,

v′
0 = i(viλ + Sviλ), v′

1 = viλ − Sviλ.

Then

x : v0 → λv1, v1 → λv0, v′
0 → −λv′

1, v′
1 → λv′

0. (9.17)

Furthermore

λτ(v1, v
′
1) = τ(xv0, v

′
1) = τ(v0, Sxv′

1) = τ(v0, v
′
0)λ

so that

τ(v1, v
′
1) = τ(v0, v

′
0).

As before we may scale the vectors v0 and v1 by the same number so that

τ(v1, v
′
1) = τ(v0, v

′
0) = 1. (9.18)

Moreover,

λ2τ(v0, v0) = τ(x2v0, v0) = τ(v0,−x2v0) = τ(v0, v0)(−λ
2
)

and

λ2τ(v1, v1) = τ(x2v1, v1) = τ(v1,−x2v1) = τ(v1, v1)(−λ
2
),

so that

(λ2 + λ
2
)τ(v0, v0) = (λ2 + λ

2
)τ(v1, v1) = 0,

which implies

τ(v0, v0) = τ(v1, v1) = 0. (9.19)

Similarly,

τ(v′
0, v

′
0) = τ(v′

1, v
′
1) = 0. (9.20)

Clearly,

Cv0 ⊕ Cv′
0 ⊕ Cv1 ⊕ Cv′

1 ⊆ V λ ⊕ V −λ ⊕ V iλ ⊕ V −iλ (9.21)

is a graded, x-invariant subspace, as in part (a) of Theorem 5.2. This subspace is inde-

composable and the right hand side of (9.21) decomposes into an orthogonal direct sum

of such subspaces.

Case (D = H, ι = 1). Here we view V as a vector space over C ⊆ H. Then the

decomposition (9.1) holds and

jV λ = V λ, (9.22)

where λ = ι(λ). Furthermore,

V λ ⊥ V μ if μ2 + λ2 = 0 and μ2 + λ
2 = 0. (9.23)
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Indeed, let vμ ∈ V μ, vλ ∈ V λ and let τ(vμ, vλ) = α + jβ, with α, β ∈ C. Then

μ2(α + jβ) = μ2τ(vμ, vλ) = τ(x2vμ, vλ) = τ(vμ,−x2vλ) = τ(vμ,−λ2vλ)

= τ(vμ, vλ)(−λ
2
) = (α + jβ)(−λ

2
).

Hence,

(μ2 + λ
2
)α = 0 and (μ2 + λ2)jβ = 0,

and (9.23) follows.

We decompose the set of non-zero eigenvalues of x into a disjoint union

LiR ∪ (−LiR) ∪ LR ∪ (−LR) ∪ LC ∪ (−LC), (9.24)

where λ2 ∈ iR \ 0 for λ ∈ LiR, λ2 ∈ R \ 0 for λ ∈ LR, and λ2 ∈ C \ (iR ∪ R) for λ ∈ LC.

Then by (9.22) and (9.23),

V = V 0 ⊕
∑

λ∈LiR

(V λ ⊕ V −λ ⊕ V λ ⊕ V −λ)

⊕
∑

λ∈LR

(V λ ⊕ V −λ ⊕ V iλ ⊕ V −iλ)

⊕
∑

λ∈LC

(V λ ⊕ V −λ ⊕ V iλ ⊕ V −iλ ⊕ V λ ⊕ V −λ ⊕ V −iλ ⊕ V iλ)

(9.25)

is a direct sum orthogonal decomposition into graded x-invariant subspaces over H.

Let λ ∈ LiR. Then (9.12) holds, and since τ(v0, v0) ∈ R, (9.13) holds too. Therefore

(9.15) holds and, instead of (9.16), we see that

Hv0 ⊕ Hv1 ⊆ V λ ⊕ V −λ ⊕ V λ ⊕ V −λ (9.26)

is a graded x-invariant subspace, as in part (c) of Theorem 5.2. This subspace is inde-

composable and the right hand side of (9.26) decomposes into an orthogonal direct sum

of such subspaces.

For λ ∈ LR ∪LC the argument (9.17)-(9.21) carries over. This completes the proof of

both Theorems 5.1 and 5.2 in the case D = H.

Case (D = R, ι = 1). Let

V C =
∑

λ

V C,λ (9.27)

be the decomposition of V C, the complexification of V , into the eigenspaces for x. Let

V C � v → v ∈ V C be the complex conjugation with respect to the real form V ⊆ V C.

The form τ extends uniquely to a complex linear form on V C. As before we check that

V C,μ ⊥ V C,λ if μ2 + λ2 = 0. (9.28)

Let LiR, LR, LC be as in (9.24). Then

V C = V C,0 ⊕
∑

λ∈LiR

(V C,λ ⊕ V C,−λ ⊕ V C,λ ⊕ V C,−λ)

⊕
∑

λ∈LR

(V C,λ ⊕ V C,−λ ⊕ V C,iλ ⊕ V C,−iλ)

⊕
∑

λ∈LC

(V C,λ ⊕ V C,−λ ⊕ V C,iλ ⊕ V C,−iλ ⊕ V C,λ ⊕ V C,−λ ⊕ V C,−iλ ⊕ V C,iλ)

(9.29)
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is an orthogonal direct sum decomposition into graded x-invariant subspaces invariant

under the complex conjugation, V C � u → u ∈ V C with respect to the real form V .

Let λ ∈ LiR and let vλ ∈ V C,λ be a non-zero vector. Let

u = vλ + Svλ and v = vλ − Svλ.

Then

x : u → λv, v → λu, u → λv, v → λu. (9.30)

Hence
λτ(u, u) = τ(xv, u) = τ(v, Sxu) = τ(v,−λv) = τ(v, v)(−λ),

λτ(v, v) = τ(xu, v) = τ(u, Sxv) = τ(u, λu) = τ(u, u)λ.

Therefore

τ(u, u) = τ(v, v) = τ(u, u) = τ(v, v) = 0. (9.31)

Furthermore

λτ(v, v) = τ(xu, v) = τ(u, Sxv) = τ(u, u)λ,

so that

τ(v, v) = τ(u, u)(−i)sgn(im(λ2)). (9.32)

Multiplying u and v by the same non-zero real number does not change (9.30), (9.31),

(9.32). Thus we may assume

τ(u, u) = ε/2, (9.33)

where ε = ±1. Set

v0 = u + u, v′
0 = i(u − u), v1 = v + v, v′

1 = i(v − v). (9.34)

Then, by (9.31) and (9.33),

τ(v0, v0) = τ(u, u) + τ(u, u) = ε,

τ(v′
0, v

′
0) = −τ(u,−u) − τ(−u, u) = ε,

τ(v0, v
′
0) = τ(u,−iu) + τ(u, iu) = 0,

τ(v1, v1) = τ(v, v) + τ(v, v) = 0,

τ(v′
1, v

′
1) = τ(iv,−v) + τ(−v, iv) = 0,

τ(v1, v
′
1) = τ(v,−iv) + τ(v, iv) = −2iτ(v, v)

= −2τ(u, u)sgn(im(λ2)) = −τ(v0, v0)sgn(im(λ2)).

(9.35)

We see from (9.30) and (9.34) that, with λ = ξ + iη, ξ, η ∈ R,

x :v0 → ξv1 + ηv′
1, v1 → ξv0 + ηv′

0,

v′
0 → −ηv1 + ξv′

1, v′
1 → −ηv0 + ξv′

0.
(9.36)

Notice that

im(λ2) = 2ξη. (9.37)
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Thus the last formula in (9.35) may be rewritten as

τ(v1, v
′
1) = εδ, −δ = sgn(ξη). (9.38)

Thus λ = ξ(1 − iδ) and if we replace v′
1 by εδv′

1 then (9.36) coincides with

x :v0 → ξ(v1 − εv′
1), v1 → ξ(v0 − δv′

0),

v′
0 → δξ(v1 + εv′

1), v′
1 → εξ(v0 + δv′

0).
(9.39)

Let

g : v0 → v0, v′
0 → δv′

0, v1 → v1, v′
1 → v′

1.

Then g ∈ G and gxg−1 acts according to the formula (c) of Theorem 5.2.

The subspace

Rv0 ⊕ Rv′
0 ⊕ Rv1 ⊕ Rv′

1 ⊆ V (9.40)

is graded, x-invariant and indecomposable.

Let λ ∈ LR. Then either λ ∈ R \ 0 or λ ∈ iR \ 0. Suppose λ ∈ R \ 0. Then the

eigenspace V C,λ is closed under the complex conjugation. Hence we may chose a non-zero

vector vλ ∈ V ∩V C,λ. Let viλ ∈ V ∩V C,iλ be a non-zero vector such that viλ = Sviλ. Set

v0 = vλ + Svλ, v1 = vλ − Svλ, v′
0 = viλ + Sviλ, v′

1 = −i(viλ − Sviλ). (9.41)

Then

v0 = v0, v1 = v1, v′
0 = v′

0, v′
1 = v′

1, (9.42)

and

x : v0 → λv1, v1 → λv0, v′
0 → −λv′

1, v′
1 → λv′

0. (9.43)

Furthermore,

λτ(v1, v
′
1) = τ(xv0, v

′
1) = τ(v0, Sxv′

1) = τ(v0, v
′
0)λ,

so that

τ(v1, v
′
1) = τ(v0, v

′
0). (9.44)

Similarly we check that the vectors v0, v′
0, v1, v′

1 are isotropic. Multiplying v0 and v1 by

the same number we may assume that

τ(v1, v
′
1) = τ(v0, v

′
0) = 1. (9.45)

The subspace

Rv0 ⊕ Rv′
0 ⊕ Rv1 ⊕ Rv′

1 ⊆ V (9.46)

is graded, x-invariant and indecomposable. The formulas (9.43) are compatible with the

formulas of part (a) of Theorem 5.2.

Finally, let λ ∈ LC. Choose non-zero vectors vλ ∈ V C,λ, viλ ∈ V C,iλ and let

u = vλ + Svλ, v = vλ − Svλ, u′ = viλ + Sviλ, v′ = viλ − Sviλ. (9.47)
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Then
x :u → λv, v → λu, u → λv, v → λu,

u′ → iλv′, v′ → iλu′, u′ → iλ v′, v′ → iλ u′.
(9.48)

We see from (9.28) and (9.24) that

(

V C,λ + V C,−λ
) ⊥

(

V C,−iλ + V C,iλ
)

, and
(

V C,λ + V C,−λ
) ⊥

(

V C,λ + V C,−λ
)

.
(9.49)

Thus by (9.29), the restriction of the form τ to

V C,λ + V C,−λ + V C,iλ + V C,−iλ

is non-degenerate. Hence we may choose the vectors vλ, viλ so that

τ(u, u′) = 0. (9.50)

The following calculation

λτ(v, v′) = τ(xu, v′) = τ(u, xv′) = τ(u, iλu′) = τ(u, u′)iλ

shows that

τ(v, v′) = τ(u, u′).

As before we may assume that

τ(v, v′) = τ(u, u′) =
1

2
. (9.51)

Since τ is the complexification of a real form the usual calculation using (9.24), (9.28)

and (9.51) implies

τ(u, u′) = τ(u, u′) =
1

2
,

τ(u, u) = τ(u, u) = τ(u, u′) = τ(u′, u′) = 0,

τ(u, u) = τ(u′, u′) = 0,

τ(v,−iv′) = τ(v, iv′) =
1

2
,

τ(v, v) = τ(v, v) = τ(v, v′) = τ(v, v′)

= τ(v′, v′) = τ(v′, v′) = 0.

(9.52)

Set
u0 = u + u, v0 = i(u − u), u′

0 = u′ + u′, v′
0 = −i(u′ − u′),

u1 = v + v, v1 = i(v − v), u′
1 = −i(v′ − v′), v′

1 = −v′ − v′.
(9.53)

Let λ = ξ + iη, ξ, η ∈ R, Then the formulas of part (d) of Theorem 5.2 hold. Furthermore

the subspace

Ru0 ⊕ Ru′
0 ⊕ Rv0 ⊕ Rv′

0 ⊕ Ru1 ⊕ Ru′
1 ⊕ Rv1 ⊕ Rv′

1

⊆ V C,λ ⊕ V C,−λ ⊕ V C,iλ ⊕ V C,−iλ ⊕ V C,λ ⊕ V C,−λ ⊕ V C,−iλ ⊕ V C,iλ

is graded, x-invariant and indecomposable, and the space on the right hand side of the

inclusion decomposes into a direct sum of such subspaces. This completes our proof.
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10 A proof of Theorem 4.2

We may assume that (xn, V ) is uniform and that

V = F ⊕ xnF ⊕ x2
nF ⊕ ...xm

n F,

where the subspace F is graded and xs-invariant. For each set of positive numbers a0,

a1, ..., am (such that akam−k = 1, 0 ≤ k ≤ m, in the type I case) the formula

g(u0 + xnu1 + ... + xm
n um)

= a0u0 + a1xnu1 + ... + amxm
n um (u0, u1, ..., um ∈ F )

(10.1)

defines an element g ∈ Gxs . Furthermore,

gxng
−1 : xk

nui → ak+1

ak

xk+1
k ui (ui ∈ F, 0 ≤ i, k ≤ m) (10.2)

An elementary argument shows that there is a sequence a
(l)
k , l = 1, 2, 3, ... of positive

numbers such that for all 0 ≤ k ≤ m,

→
l→∞

lim
a

(l)
k+1

a
(l)
k

= 0. (10.3)

Let g(l) ∈ Gxs be as in (10.1), for the sequence a
(l)
k . Then, by (10.2) and (10.3),

g(l)xg(l)−1 = xs + g(l)xn(g(l))−1 → xs as l → ∞.

11 A proof of Theorem 4.8

Let x1 ∈ g1 be semisimple and let

V = V (0) ⊕ V (1) ⊕ V (2) ⊕ ...

be such that each x1|V (0) = 0 and for j ≥ 1, (x1, V
(j)) is indecomposable, with x1|V (j) = 0.

We assume that the sum is orthogonal in the type I case. Then, by Theorems 5.2 and

5.3, (x2
1, V

(j)
0 ) and (x2

1, V
(j)
1 ), j ≥ 1, are indecomposable.

Let x2 ∈ g1 be another semisimple elements such that Gx2
1 = Gx2

2. Then, by the

above argument, we may assume that x2|V (0) = 0 and that for j ≥ 1 (x2, V
(j)) is inde-

composable with x2|V (j) = 0. Hence we may assume that (x1, V
(j)) and (x2, V

(j)), j ≥ 1,

are indecomposable. But then the Theorem 4.8 follows from Theorems 5.2 and 5.3 by

inspection.

12 A proof of Theorem 4.3

Suppose X ∈ G1 is not semisimple. Then in the Jordan decomposition X = XS + XN ,

XN = 0. By Theorem 4.2, XS ∈ Cl(Gx). But XS /∈ Gx. Thus the orbit Gx is not closed.

Suppose X ∈ G1 is semisimple. Since the Gl(V )-orbit through X in End(V ) is closed,

we see that Cl(Gx) is a union of semisimple orbits. Since Gx2 ⊆ G0 is closed, Theorem

4.8 implies that Cl(Gx) is a single orbit, hence is equal to Gx.
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13 A proof of Theorem 4.4

Let x ∈ g1 be semisimple. We’ll say that V is isotypic for x, or that (x, V ) is isotypic, if

(x, V ) decomposes into mutually similar indecomposable pieces. Two isotypic elements

(x, V ) and (x′, V ′) are of different types if the indecomposable pieces of (x, V ) are not

similar to the indecomposable pieces of (x′, V ′).

Lemma 13.1. Let (x, V ) and (x′, V ′) be two semisimple isotypic elements of different

types. Then the only y ∈ Hom(V ′, V ) such that xy + yx′ = 0 is y = 0.

Proof. We may assume that the elements (x, V ), (x′, V ′) are indecomposable. We need

to check that the map

Hom(V ′, V ) � y → xy + yx′ ∈ Hom(V ′, V )

is injective. The eigenvalues of this map are sums of the eigenvalues of x and x′. By

Theorems 5.2 and 5.3 these sums are not zero. �

Lemma 13.2. The anticommutant of g1 in g1 is zero: g1g1 = 0.

Proof. Suppose the Lie superalgebra g is of type II. Then g1 = Sg1. Let x ∈ g1g1 and let

y ∈ g1. Then Sy ∈ g1 and therefore {Sy, x} = 0. In particular, 0 = tr{Sy, x} = 〈y, x〉.
Thus x is orthogonal to g1, and since the form 〈 , 〉 is non-degenerate, we see that x = 0.

Suppose the Lie superalgebra g is of type I. In this case g1 ∩Sg1 = 0, so we are forced

to use a different argument. We may assume that g is complex (and of type I). Then

dim V0 ≥ 2 or dim V1 ≥ 2. Consider the case dim V0 ≥ 2. The second one is analogous.

Let x ∈ g1g1, and let y ∈ g1. Then, in terms of (2.12), we have

(xy + yx)(v0 + v1) = (w∗
xwy + w∗

ywx)v0 + (wxw
∗
y + wyw

∗
x)v1.

Thus the condition xy+yx = 0 translates to w∗
xwy +w∗

ywx = 0. Hence, for any v0, v
′
0 ∈ V0,

τ0(v0, w
∗
xwyv

′
0) + τ0(v0, w

∗
ywxv

′
0) = 0,

or equivalently,

τ1(wxv0, wyv
′
0) + τ1(wyv0, wxv

′
0) = 0.

Now fix v0 ∈ V0 \ 0 and let v′
0 ∈ V0 \ 0 be such that the vectors v0, v

′
0 are linearly

independent. Then

{w(v′
0); w(v0) = 0, w ∈ Hom(V0, V1)} = V1.

Hence, wx(v0) is orthogonal to V1 with respect to the form τ1. Since this form is non-

degenerate, wx = 0, and therefore x = 0. �

Let

V = V 0 ⊕ V 1 ⊕ V 2 ⊕ ...
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be the isotypic decomposition of V , with respect to x, with V 0 = ker(x). Then

xV = V 1 ⊕ V 2 ⊕ ...

and the first part of (b) follows. Let (G(V i), g(V i)) be the restriction of (G, g) to V i.

Then
Gx2

= G(V 0)x2 × G(V 1)x2 × G(V 2)x2 × ...,

gx2

= g(V 0)x2 ⊕ g(V 1)x2 ⊕ g(V 2)x2 ⊕ ...,

where the summands are orthogonal with respect to the symplectic form 〈 , 〉 on g1.

Moreover, G(V 0)x2
= G(V 0) and g(V 0)x2

= g(V 0). Hence,

Gx2

= G(V 0) × G(V 1)x2 × G(V 2)x2 × ...,

gx2

= g(V 0) ⊕ g(V 1)x2 ⊕ g(V 2)x2 ⊕ ... .

This verifies the second part of (b). We shall see in section 13 () that there is y ∈ xg1 such

that for all i = j greater than or equal to 1, the restrictions (y, V i), (y, V j) are isotropic

of different types. Hence the lemmas 13.1 and 13.2 imply

(xg1)g1 = (xg1(V 1))g1(V
1) ⊕ (xg1(V 2))g1(V

2) ⊕ ... .

Hence the proof of the last formula in (b) is reduced to the case when (x, V ) is isotypic

and non-zero. Also, the above formula reduces the proof of (c), which we leave to the

reader, to the case when (x, V ) is isotypic and non-zero.

From now on, we assume that (x, V ) is isotypic and x = 0. We proceed via a case by

case analysis according to Theorems 5.2 and 5.3.

Case 5.2.a. Here D is arbitrary and the vector spaces Vi (i = 0, 1) have basis

vi,1, vi,2, vi,3, ..., vi,n, such that

τ(v0,k, v
′
0,k) = τ(v1,k, v

′
1,k) = 1 (k = 1, 2, 3, ..., n)

(13.1)

and all the other pairings are zero. Further,

x = x(ξ) : v0,k → ξv1,k, v1,k → ξv0,k, v′
0,k → −ι(ξ)v′

1,k, v′
1,k → ι(ξ)v′

0,k. (13.2)

Thus

x2 : v0,k → ξ2v0,k, v1,k → ξ2v1,k, v′
0,k → −ι(ξ)2v′

0,k, v′
1,k → −ι(ξ)2v′

1,k. (13.3)

Since ξ2 = −ι(ξ)2, the group Gx2
preserves each of the isotropic subspaces

n∑

k=1

Dvi,k ⊆ Vi,

n∑

k=1

Dv′
i,k ⊆ Vi (i = 0, 1). (13.4)

By Witt’s Theorem the restriction

Gx2 |∑n
k=1 Dvi,k

= GL(
n∑

k=1

Dvi,k)
x2

(i = 0, 1). (13.5)
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Hence,

Gx2

= Gx2|V0 × Gx2 |V1 =

{

GLn(D) × GLn(D) if D = H or D = H and ξ2 ∈ R,

GLn(C) × GLn(C) if D = H and ξ2 /∈ R.

(13.6)

Suppose w ∈ Hom(V0, V1) commutes with x2. Then by (13.3), there are elements

wkl, w
′
kl, w

∗
kl, w

∗
kl
′ ∈ D commuting with ξ2 and such that

w(v0,k) =
n∑

l=1

wklv1,l, w(v′
0,k) =

n∑

l=1

w′
klv

′
1,l,

w∗(v1,k) =
n∑

l=1

w∗
klv0,l, w∗(v′

1,k) =
n∑

l=1

w∗
kl
′v′

0,l.

(13.7)

By (2.10) and (13.1) we have

ι(w∗
pk

′) = τ0(v0,k,
n∑

l=1

w∗
pl
′v′

0,l) = τ0(v0,k, w
∗(v′

1,p))

= τ1(w(v0,k), v
′
1,p) = τ1(

n∑

l=1

wklv1,l, v
′
1,p) = wkp,

and

ι(w∗
pk) = τ0(v

′
0,k, v0,k)ι(w

∗
pk) = τ0(v

′
0,k,

n∑

l=1

w∗
plv0,l) = τ0(v

′
0,k, w

∗(v1,p))

= τ1(w(v′
0,k), v1,p) = wkp

′τ1(v
′
1,p, v1,p) = −wkp

′.

Hence,

w∗
pk = −ι(wkp

′), w∗
pk

′ = ι(wkp). (13.8)

For y, z ∈ gx2

1 let w = y|V0 and let u = z|V0 . Then w, u ∈ Hom(V0, V1) commute with x2

and, by (2.13), (13.7) and (13.8),

1

4
〈y, z〉 = trD/R(w∗u)

=
n∑

k,l=1

trD/R(uklw
∗
lk + u′

klw
∗
lk
′) =

n∑

k,l=1

trD/R(u′
klι(wkl) − uklι(wkl

′)).
(13.9)

The formula (2.12), (13.2), (13.7) and (13.8) imply

yx : v0,k → −
n∑

l=1

ξι(wlk
′)v0,l, v′

0,k → −
n∑

l=1

ι(ξ)ι(wlk)v
′
0,l,

xy : v0,k →
n∑

l=1

wklξv0,l, v′
0,k →

n∑

l=1

wkl
′ι(ξ)v′

0,l.

(13.10)

Hence,
y ∈ gx

1 if and only if wkl
′ = −ι(ξ)ι(wlk)ι(ξ)

−1,

y ∈ xg1 if and only if wkl
′ = ι(ξ)ι(wlk)ι(ξ)

−1.
(13.11)
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Suppose y, z ∈ gx
1 . Then by (13.9) and (13.11),

1

4
〈y, z〉 =

n∑

k,l=1

trD/R(−ι(ξ)ι(ulk)ι(ξ)
−1ι(wkl) + uklξ

−1wlkξ)

= −
n∑

k,l=1

trD/R(wklξ
−1ulkξ) +

n∑

k,l=1

trD/R(ulkξ
−1wklξ)

= −
n∑

k,l=1

trD/R(wklξulkξ
−1) +

n∑

k,l=1

trD/R(ulkξ
−1wklξ) = 0,

(13.12)

where the equation ξ−1ulkξ = ξulkξ
−1 follows from the fact that ulk commutes with ξ2.

The computation (13.12) shows that gx
1 is an isotropic subspace of g1.

Suppose y ∈ gx
1 and z ∈ xg1. Then wkl

′ = ι(ξ−1wlkξ) and, as in (13.12), we show that

1

4
〈y, z〉 = −2

n∑

k,l=1

trD/R(ulkξwklξ
−1), (13.13)

which implies that the symplectic form 〈 , 〉 provides a non-degenerate pairing between

gx
1 and xg1. The supergroup (Gx2

, gx2
) is irreducible, of type II, and the ranks of Gx2|V0

and Gx2|V1 are equal.

Furthermore a straightforward computation shows that

(x(ξ)g1)g1 = g
(g

x(ξ)
1 )

1 = {x(ζ); ζ2 ∈ D
(Dξ2 )}. (13.13.1)

Case 5.2.b Here D ⊇ C and the vector spaces Vi (i = 0, 1) have basis

vi,1, vi,2, vi,3, ..., vi,n, such that

τ(v0,k, v0,k) = ε = ±1, τ(v1,k, v1,k) = δi = ±i (k = 1, 2, 3, ..., n)
(13.14)

and all the other pairings are zero. Furthermore,

x = x(ξ) : v0,k → ξv1,k, v1,k → ξv0,k. (13.15)

Thus

x2 : v0,k → ξ2v0,k, v1,k → ξ2v1,k. (13.16)

Since ξ2 ∈ iR \ 0,

Gx2

= Gx2 |V0 × Gx2|V1 = Un(C) × Un(C). (13.17)

Suppose w ∈ Hom(V0, V1) commutes with x2. Then, by (13.16), there are wkl, w
∗
kl ∈ D

commuting with ξ2 and such that

w(v0,k) =
n∑

l=1

wklv1,l, w∗(v1,k) =
n∑

l=1

w∗
klv0,l. (13.18)
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By (2.10) and (13.14) we have

ι(w∗
pk) = τ0(v0,k,

n∑

l=1

w∗
plv0,l)ε = τ0(v0,k, w

∗(v1,p))ε

= τ1(w(v0,k), v1,p)ε = wkpτ1(v1,p, v1,p)ε = wkpεδi.

Thus,

w∗
pk = −εδiι(wkp). (13.19)

For y, z ∈ gx2

1 let w = y|V0 and let u = z|V0 . Then w, u ∈ Hom(V0, V1) commute with

x2 and, by (2.13),

1

4
〈y, z〉 = trD/R(w∗u)

=
n∑

k,l=1

trD/R(uklw
∗
lk) =

n∑

k,l=1

trD/R(−εδiι(wkl)ukl).
(13.20)

The formulas (2.12) and (13.15) imply

yx : v0,k →
n∑

l=1

ξw∗
lkv0,l,

xy : v0,k →
n∑

l=1

wklξv0,l.

(13.20’)

Furthermore, since ξ2 ∈ R \ 0, the centralizer of ξ2 in D coincides with the the centralizer

of ξ in D. In particular, wklξ = ξwkl. By combining this with (13.19) and (13.20’) we see

that
y ∈ gx

1 if and only if wkl = −εδiι(wlk),

y ∈ xg1 if and only if wkl = εδiι(wlk).
(13.21)

Suppose y, z ∈ xg1. Then (13.20) and (13.21) imply

1

4
〈y, z〉 =

n∑

k,l=1

trD/R(−ξ−1wlkξukl)

=
n∑

k,l=1

trD/R(−εδiι(ulk)wkl) =
1

4
〈z, y〉.

(13.22)

Thus 〈y, z〉 = 0. Hence xg1 is an isotropic subspace of g1. Similarly we check that gx
1

is an isotropic subspace of g1, and that the symplectic form provides a non-degenerate

pairing between xg1 and gx
1 . The dual pair corresponding to the supergroup (Gx2

, gx2
) is

isomorphic to (Un, Un).

Furthermore a straightforward computation shows that

(x(ξ)g1)g1 = g
(g

x(ξ)
1 )

1 = {x(ζ); ζ2 ∈ iR, sgn(im(ζ2)) = sgn(im(ξ2))}. (13.22.1)
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Case 5.2.c. Here D = R and the vector spaces Vi (i = 0, 1) have basis

vi,1, vi,2, vi,3, ..., vi,n, v′
i,1, v

′
i,2, v

′
i,3, ..., v

′
i,n,

such that with ε = ±1

τ(v0,k, v0,k) = τ(v′
0,k, v

′
0,k) = ε, τ(v1,k, v

′
1,k) = 1 (k = 1, 2, 3, ..., n)

(13.23)

and all the other pairings are zero. Further, with ξ ∈ R \ 0,

x = x(ξ, ε) :v0,k → ξ(v1,k − εv′
1,k), v1,k → ξ(v0,k − v′

0,k),

v′
0,k → ξ(v1,k + εv′

1,k), v′
1,k → εξ(v0,k + v′

0,k).
(13.24)

Therefore,
x2 :v0,k → −2ξ2v′

0,k, v1,k → −2εξ2v′
1,k,

v′
0,k → 2ξ2v0,k, v′

1,k → 2εξ2v1,k.
(13.25)

Since ξ = 0, (13.25) implies

Gx2

= Gx2 |V0 × Gx2|V1 = Un × Un. (13.26)

Suppose w ∈ Hom(V0, V1) commutes with x2. Then, by (13.25), there are elements

wkl, w
′
kl, w

∗
kl, w

∗
kl
′ ∈ R such that

w(v0,k) =
n∑

l=1

(wklv1,l − w′
klv

′
1,l),

w(v′
0,k) =

n∑

l=1

ε(w′
klv1,l + wklv

′
1,l),

w∗(v1,k) =
n∑

l=1

(w∗
klv0,l − w∗

kl
′v′

0,l),

w∗(v′
1,k) =

n∑

l=1

ε(w∗
kl
′v0,l + w∗

klv
′
0,l).

(13.27)

From (13.23) and (13.27) we see that

w∗
pk

′ = ετ0(v0,k, w
∗
pk

′v0,k) = ετ0(v0,k, εw
∗(v′

1,p))

= τ1(w(v0,k), v
′
1,p) = τ1(wk,pv1,p, v

′
1,p) = wkp,

and
w∗

pk = ετ0(v0,k, w
∗
pkv0,k) = ετ0(v0,k, w

∗(v1,p))

= ετ1(w(v0,k), v1,p) = ετ1(−wkp
′v′

1,p, v1,p) = εwkp
′.

Thus,

w∗
pk = εwkp

′, w∗
pk

′ = wkp. (13.28)

For y, z ∈ gx2

1 let w = y|V0 and let u = z|V0 . Then w, u ∈ Hom(V0, V1) commute with x2

and, by (2.13), (13.27) and (13.28),

1

4
〈y, z〉 = tr(w∗u)

= 2
n∑

k,l=1

(uklw
∗
lk − εu′

klw
∗
lk
′) = 2ε

n∑

k,l=1

(uklwkl
′ − ukl

′wkl).
(13.29)
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We calculate using (13.24), (13.27) and (13.28):

1

ξ
yx :v0,k →

n∑

l=1

(εwlk
′ − wlk)v0,l −

n∑

l=1

(wlk + εwlk
′)v′

0,l,

v′
0,k →

n∑

l=1

(εwlk
′ + wlk)v0,l −

n∑

l=1

(wlk − εwlk
′)v′

0,l,

1

ξ
xy :v0,k →

n∑

l=1

(wkl − εwkl
′)v0,l −

n∑

l=1

(wkl + εwkl
′)v′

0,l,

v′
0,k →

n∑

l=1

(εwkl
′ + wkl)v0,l −

n∑

l=1

(εwkl
′ − wkl)v

′
0,l

(13.30)

Hence,
y ∈ gx

1 if and only if wkl
′ = εwlk,

y ∈ xg1 if and only if wkl
′ = −εwlk.

(13.31)

It is clear from (13.29) and (13.31) that the spaces xg1, gx
1 are isotropic, and that the sym-

plectic form provides a non-degenerate pairing between them. The supergroup (Gx2
, gx2

)

is irreducible, of type I, and the corresponding dual pair is isomorphic to (Un, Un).

Furthermore a straightforward computation shows that

(x(ξ,ε)g1)g1 = g
(g

x(ξ,ε)
1 )

1 = {x(ζ, ε); ζ ∈ R}. (13.31.1)

Case 5.2.d. Here D = R and the vector spaces Vi (i = 0, 1) have basis

ui,1, ui,2, ui,3, ..., ui,n, u′
i,1, u

′
i,2, u

′
i,3, ..., u

′
i,n,

vi,1, vi,2, vi,3, ..., vi,n, v′
i,1, v

′
i,2, v

′
i,3, ..., v

′
i,n,

such that

τ(ui,k, u
′
i,k) = τ(vi,k, v

′
i,k) = 1, (i = 0, 1; k = 1, 2, 3, ..., n)

(13.32)

and all the other pairings are zero. Moreover,

x = x(ξ, η) :u0,k → ξu1,k + ηv1,k, u1,k → ξu0,k + ηv0,k,

v0,k → −ηu1,k + ξv1,k, v1,k → −ηu0,k + ξv0,k,

u′
0,k → −ξu′

1,k + ηv′
1,k, u′

1,k → ξu′
0,k − ηv′

0,k,

v′
0,k → −ηu′

1,k − ξv′
1,k, v′

1,k → ηu′
0,k + ξv′

0,k,

(13.33)

Therefore, with α = ξ2 − η2 and β = 2ξη,

x2 :u0,k → αu0,k + βv0,k, u1,k → αu1,k + βv1,k,

v0,k → −βu0,k + αv0,k, v1,k → −βu1,k + αv1,k,

u′
0,k → −αu′

0,k + βv′
0,k, u′

1,k → −αu′
1,k + βv′

1,k,

v′
0,k → −βu′

0,k − αv′
0,k, v′

1,k → −βu′
1,k − αv′

1,k.

(13.34)

Since α, β = 0, (13.34) and (13.32) imply

Gx2

= Gx2|V0 × Gx2|V1 = GLn(C) × GLn(C). (13.35)
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Suppose w ∈ Hom(V0, V1) commutes with x2. Then, by (13.34), w maps the span of

the u0,k, v0,k to the span of the u1,k, v1,k and the span of the u′
0,k, v′

0,k to the span of the

u′
1,k, v′

1,k. More precisely, there are numbers wkl, w̃kl, w
′
kl, w̃

′
kl, w∗

kl, w̃
∗
kl, w

∗
kl
′, w̃∗

kl
′ ∈ R such

that

w(u0,k) =
n∑

l=1

(wklu1,l + w̃klv1,l),

w(v0,k) =
n∑

l=1

(−w̃klu1,l + wklv1,l),

w(u′
0,k) =

n∑

l=1

(w′
klu

′
1,l + w̃′

klv
′
1,l),

w(v′
0,k) =

n∑

l=1

(−w̃′
klu

′
1,l + w′

klv
′
1,l).

(13.36)

and

w∗(u1,k) =
n∑

l=1

(w∗
klu0,l + w̃∗

klv0,l),

w∗(v1,k) =
n∑

l=1

(−w̃∗
klu0,l + w∗

klv0,l),

w∗(u′
1,k) =

n∑

l=1

(w∗
kl
′u′

0,l + w̃∗
kl
′v′

0,l),

w∗(v′
1,k) =

n∑

l=1

(−w̃∗
kl
′u′

0,l + w∗
kl
′v′

0,l).

(13.37)

Using (13.32), (13.36) and (13.37) we show that

w∗
kl = −w′

lk, w∗
kl
′ = wlk, w̃∗

kl = w̃′
lk, w̃∗

kl
′ = −w̃lk. (13.38)

For y, z ∈ gx2

1 let w = y|V0 and let u = z|V0 . Then

1

4
〈y, z〉 = tr(w∗u)

= 2
n∑

k,l=1

(uklw
∗
lk − ũklw̃

∗
lk + u′

klw
∗
lk
′ − ũ′

klw̃
∗
lk
′)

= 2
n∑

k,l=1

(wklu
′
kl + w̃klũ

′
kl − w′

klukl − w̃′
klũkl)

(13.39)
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Furthermore,

yx :u0,k →
n∑

l=1

((−ξw′
lk − ηw̃′

lk)u0,l + (ξw̃′
lk − ηw′

lk)v0,l),

v0,k →
n∑

l=1

((ηw′
lk − ξw̃′

lk)u0,l + (−ηw̃′
lk − ξw′

lk)v0,l),

u′
0,k →

n∑

l=1

((−ξwlk + ηw̃lk)u
′
0,l + (ξw̃lk + ηwlk)v

′
0,l),

v′
0,k →

n∑

l=1

((−ηwlk − ξw̃lk)u
′
0,l + (ηw̃lk − ξwlk)v

′
0,l),

(13.40)

and

xy :u0,k →
n∑

l=1

((ξwkl − ηw̃kl)u0,l + (ηwkl + ξw̃kl)v0,l),

v0,k →
n∑

l=1

((−ξw̃kl − ηwkl)u0,l + (−ηw̃kl + ξwkl)v0,l),

u′
0,k →

n∑

l=1

((ξw′
kl + ηw̃′

kl)u
′
0,l + (−ηw′

kl + ξw̃′
kl)v

′
0,l),

v′
0,k →

n∑

l=1

((−ξw̃′
kl + ηw′

kl)u
′
0,l + (ηw̃′

kl + ξw′
kl)v

′
0,l).

(13.41)

Hence,
y ∈ gx

1 if and only if ξwkl − ηw̃kl + ξw′
lk + ηw̃′

lk = 0,

ηwkl + ξw̃kl + ηw′
lk − ξw̃′

lk = 0;

y ∈ xg1 if and only if ξwkl − ηw̃kl − ξw′
lk − ηw̃′

lk = 0,

ηwkl + ξw̃kl − ηw′
lk + ξw̃′

lk = 0.

Thus
y ∈ gx

1 if and only if w′
kl = −wlk, w̃′

kl = w̃lk;

y ∈ xg1 if and only if w′
kl = wlk, w̃′

kl = −w̃lk.
(13.42)

It is easy to see from (13.39) and (13.42) that the spaces xg1, gx
1 are isotropic, and that

the symplectic form provides a non-degenerate pairing between them. The supergroup

(Gx2
, gx2

) is irreducible, of type II, and as a dual pair is isomorphic to (GLn(C), GLn(C)).

Furthermore a straightforward computation shows that

(x(ξ,η)g1)g1 = g
(g

x(ξ,η)
1 )

1 = {x(ζ, γ); ζ, γ ∈ R}. (13.42.1)

Case 5.3.a The spaces V0, V1 have basis

vi,1, vi,2, vi,3, ..., vi,n (i = 0, 1)

such that

x(ξ) : v0,k → ξv1,k, v1,k → ξv0,k. (13.43)
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Hence,

x2 : v0,k → ξ2v0,k, v1,k → ξ2v1,k. (13.44)

Therefore

Gx2

= Gx2|V0 × Gx2|V1 =

{

GLn(D) × GLn(D) if ξ2 ∈ R,

GLn(C) × GLn(C) if ξ2 /∈ R.
(13.45)

Suppose A ∈ Hom(V0, V1) and B ∈ Hom(V1, V0) commute with x2. Then there are

elements ak,l, bk,l ∈ D commuting with ξ2 such that

A : v0,k →
n∑

l=1

ak,lv1,l, B : v1,k →
n∑

l=1

bk,lv0,l.

Furthermore the formula

y(v0 + v1) = Bv1 + Av0 (v0 ∈ V0, v1 ∈ V1)

defines an element y ∈ gx2

1 and all elements of gx2

1 may be described as above. Suppose y′ ∈
gx2

1 . Let A′, B′ be the corresponding elements of Hom(V0, V1), Hom(V1, V0) respectively.

Then, by (2.6),

1

2
〈y, y′〉 = trD/R(BA′ − B′A) =

n∑

k,l=1

trD/R(bk,la
′
l,k − b′k,lal,k). (13.46)

We see from (13.43) that

y ∈ gx
1 if and only if bk,l = ξak,lξ

−1,

y ∈ xg1 if and only if bk,l = −ξak,lξ
−1.

(13.47)

It is clear from (13.46) and (13.47) that xg1 and gx
1 are isotropic subspaces of g1 and

that the symplectic form 〈 , 〉 provides a non-degenerate pairing between them. The

Lie supergroup (Gx2
, gx2

) is of type II, is irreducible and the corresponding dual pair is

isomorphic to (GLn(C), GLn(C)) or (GLn(D), GLn(D)), as indicated in (13.45).

Furthermore a straightforward computation shows that

(x(ξ)g1)g1 = g
(g

x(ξ)
1 )

1 = {x(ζ); ζ2 ∈ D
(Dξ2 )}. (13.47.1)

Case 5.3.a’ Here the spaces V0, V1 have basis

vi,1, vi,2, vi,3, ..., vi,n (i = 0, 1),

x = x(ξ) : v0,k → ξv1,k, v1,k → −ξv0,k, (ξ ∈ R \ 0),

(x(ξ)g1)g1 = g
(g

x(ξ)
1 )

1 = {x(ζ); ζ ∈ R}. (13.47.2)

and the proof is as in the previous case.
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Case 5.3.b Here the spaces V0, V1 have basis

ui,1, ui,2, ui,3, ..., ui,n; vi,1, vi,2, vi,3, ..., vi,n (i = 0, 1)

such that
x = x(ξ, η) :u0,k → ξu1,k + ηv1,k, u1,k → ξu0,k + ηv0,k,

v0,k → −ηu1,k + ξv1,k, v1,k → −ηu0,k + ξv0,k

(13.48)

Therefore, with α = ξ2 − η2 and β = 2ξη,

x2 :u0,k → αu0,k + βv0,k, u1,k → αu1,k + βv1,k,

v0,k → −βu0,k + αv0,k, v1,k → −βu1,k + αv1,k

(13.49)

Hence,

Gx2

= Gx2|V0 × Gx2|V1 = GLn(C) × GLn(C). (13.50)

Suppose y ∈ gx2

1 . Then there are numbers ak,l, ãk,l, bk,l, b̃k,l in R such that

y :u0,k →
n∑

l=1

(ak,lu1,l + ãk,lv1,l), u1,k →
n∑

l=1

(bk,lu0,l + b̃k,lv0,l),

v0,k →
n∑

l=1

(−ãk,lu1,l + ak,lv1,l), v1,k →
n∑

l=1

(−b̃k,lu0,l + bk,lv0,l).

(13.51)

If y′ ∈ gx2

1 , then (with the notation (13.51)),

1

2
〈y, y′〉 =

n∑

k,l=1

(a′
k,lbl,k − ã′

k,lb̃l,k − ak,lb
′
l,k + ãk,lb̃

′
l,k). (13.52)

Furthermore

yx :u0,k →
n∑

l=1

((ξbk,l − ηb̃k,l)u0,l + (ξb̃k,l + ηbk,l)v0,l),

v0,k →
n∑

l=1

((−ηbk,l − ξb̃k,l)u0,l + (−ηb̃k,l + ξbk,l)v0,l)

and

xy :u0,k →
n∑

l=1

((ξak,l − ηãk,l)u0,l + (ξãk,l + ηak,l)v0,l),

v0,k →
n∑

l=1

((−ξãk,l − ηak,l)u0,l + (ξak,l − ηãk,l)v0,l)

Therefore,
y ∈ gx

1 if ak,l = bk,l, ãk,l = b̃k,l;

y ∈ xg1 if ak,l = −bk,l, ãk,l = −b̃k,l.
(13.53)

It is clear from (13.52) and (13.53) that xg1 and gx
1 are isotropic subspaces of g1 and

that the form 〈 , 〉 provides a non-degenerate pairing between them. The Lie supergroup
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(Gx2
, gx2

) is irreducible, of type II and the corresponding dual pair is isomorphic to

(GLn(C), GLn(C)).

Furthermore a straightforward computation shows that

(x(ξ,η)g1)g1 = g
(g

x(ξ,η)
1 )

1 = {x(ζ, γ); ζ, γ ∈ R}. (13.53.1)

This completes the proof of Theorem 4.4.

Proof (of Lemma 6.4). Since the elements x and y commute, they preserve the same

isotypic decomposition of V . For a fixed isotypic component, all the sets which occur in

Lemma 6.4 (a), (b) and (c) are described in (13.11), (13.21), (13.31), (13.42), (13.47) and

(13.53). One checks the equalities (a), (b), (c) via a case by case analysis. Similarly one

verifies (d) and (e). �

14 A proof of Theorem 4.5

Consider the map

G × gx
1 � (g, y) → gy ∈ g1. (14.1)

The derivative of (14.1) at (g, y) coincides with the following linear map

g0 × gx
1 � (A,B) → [A, gy] + gB ∈ g1. (14.2)

The range of the map (14.2) is equal to

[g0, gy] + g(gx
1) = g([g0, y] + gx

1). (14.3)

We see from Lemma 3.1 and Theorem 4.4 that

[g0, x] + gx
1 = (xg1)

⊥ + gx
1 = g1. (14.4)

Hence, the set

U = {y ∈ gx
1 ; [g0, y] + gx

1 = g1} (14.5)

is non-empty. The set U is open and Gx-invariant. Furthermore, (14.3) shows that the

map (14.1) restricted to G × U is a submersion. The set U satisfies the conditions (1.0),

(1.1), (1.2) and (1.5).

Suppose we have a non-empty open subset Ũx ⊆ gx
1 such that

(1.4) holds for the supergroup (Gx2

, gx2

) :

if g ∈ Gx2

and y, y′ ∈ Ũx are such that gy = y′, then g ∈ Gx.
(14.6)

Since x2 is semisimple, there is an admissible slice Ux2 through x2 in gx2

0 , with respect

to the group G. We may assume that Ũx is contained in the preimage of Ux2 under the

map

gx
1 � y → y2 ∈ gx2

0 . (14.7)
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Then for y, y′ ∈ Ũx and g ∈ G such that gy = y′ we have gy2 = y′2. Hence g ∈ Gx2
.

But this together with (14.6) implies the g ∈ Gx. Thus Ũx satisfies (1.3). Hence, if we

set Ux = Ũx ∩ U , where U is the set defined in (14.5), then Ux satisfies all the conditions

(1.0)-(1.5).

Next we shall verify the statement (14.6). The Theorem 4.4 implies that we may

assume that either x = 0 or x = 0 and that the supergroup (Gx2
, gx2

) corresponds either

to the dual pair (Un, Un) or to (GLn(D), GLn(D)).

Since any G-invariant open neighborhood of 0 in g1 is an admissible slice through 0,

we may assume that x = 0.

We proceed via a case by case analysis performing the computations in terms of

matrices. It will be clear from what follows that the sets constructed may be made

arbitrarily small and thus form the desired basis for the neighborhoods of x in gx
1 .

Case (Un, Un).

Set W = Mn(C), V0 = V1 = C
n and

τ0(u0, v0) = vT
0 u0, τ1(u1, v1) = vT

1 iu1 (u0, v0 ∈ V0, u1, v1 ∈ V1).

The space W is identified with Hom(V0, V1) by w(v) = wv, w ∈ W , v ∈ V0. Then

w∗ = −iwT (w ∈ W ).

The restriction of x to Hom(V0, V1) coincides with ξI ∈ W , where ξ ∈ iR\0, im(ξ2) < 0.

Thus ξ = re−
π
4

i, where r ∈ R \ 0. A straightforward calculation using the formula (2.12)

shows that under the identification

g1 = g1|V0 = Hom(V0, V1) = W

we have

xg1 = {ξA; A = −A
T ∈ W} and gx

1 = {ξH; H = H
T ∈ W}. (14.8)

For 0 < ε ≤ 1
2

let Ũx,ε be the set of all points w ∈ gx
1 such that

λ1 + λ2 = 0 and |λ − ξ| < ε|ξ| for all eigenvalues λ, λ1, λ2 of w. (14.9)

Let ‖ ‖ be the operator norm on W , viewed as the space of operators on the Hilbert space

(V0, τ0). Suppose g, h ∈ Un and ξH ∈ Ũx,ε are such that ξgHh−1 ∈ Ũx,ε. Then, by (14.9),

‖ H − I ‖< ε and ‖ gHh−1 − I ‖< ε.

Hence ‖ H − g−1h ‖< ε, and by the triangle inequality

‖ g−1h − I ‖< 2ε.

Since 2ε ≤ 1, we have A = log(g−1h) ∈ un. Thus

g−1h = exp(A).
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Since ξgHh−1 ∈ Ũx,ε, we have

gHh−1
T

= gHh−1.

Thus hHg−1 = gHh−1, or equivalently Hg−1h = h−1gH. Therefore

H exp(A) = exp(−A)H.

Since, by (14.9), H is invertible and since log is injective, this last condition may be

expressed as HAH−1 = −A, or equivalently as

HA + AH = 0. (14.10)

Conjugating both sides of (14.10) by an appropriate element of Un we may assume that

H is diagonal. Then (14.9) shows that A = 0. Hence g−1h = I, i.e. g = h. Since the

diagonal subgroup {(g, g) ∈ Un ×Un} coincides with Gx, we see that the set Ũx,ε satisfies

(1.3). This also shows that the derivative of the map H → H2 at H is an injective linear

map. Furthermore, since H is close to the identity, it is positive definite. Thus H is the

unique positive definite square root of H2. Hence the map H → H2 is injective.

Case (GLn(D), GLn(D)).

For α > 0 let

Mn(C)[α] = {A ∈ Mn(C); |Im(a)| < α for all eigenvalues a of A},

and let

GLn(C)[α] = exp(Mn(C)[α]).

Then, as is well known [11][part. II, p. 17],

exp : Mn(C)[π] → GLn(C)[π] (14.11)

is a bijective analytic diffeomorphism. Moreover, the closure,

Cl(GLn(C)[α]) ⊆ GLn(C)[β] (0 < α < β ≤ π). (14.12)

Let ′Mn(C) ⊆ Mn(C) be the set of all matrices A such that the map

Mn(C) � B → AB + BA ∈ Mn(C) (14.13)

is surjective. Clearly ′Mn(C) is a Zariski open, Ad(GLn(C))-invariant neighborhood of

the identity I ∈ ′Mn(C).

Lemma 14.1. For any 0 < α < β < π there is an open Ad(GLn(C))-invariant neigh-

borhood of the identity

Vα,β = V −1
α,β ⊆ GLn(C)[α] ∩ ′Mn(C)a

such that

GLn(C)[α] Vα,β ⊆ GLn(C)[β].b
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Proof. The set of eigenvalues of a matrix A ∈ Mn(C) may be viewed as an orbit in C
n

under the action of the permutation group. The family of all such orbits has a natural

topology. In these terms the set of eigenvalues of a matrix A ∈ Mn(C), is a continuous

function.

Let S1 ⊆ Mn(C) denote the unit sphere with respect to the operator norm ‖ ‖. Since

by Jordan’s Theorem

GLn(C)[α] = {A ∈ Mn(C); a = 0, |Arg(a)| < α for all eigenvalues a of A} (14.14)

the previous paragraph shows that there is an open neighborhood V (α,β) ⊆ GLn(C) of

the identity I, such that

(S1 ∩ GLn(C)[α]) V (α,β) ⊆ GLn(C)[β]. (14.15)

Notice that the set (14.14) is closed under the dilations A → tA, t > 0. Hence, (14.15)

implies

GLn(C)[α]V (α,β) ⊆ GLn(C)[β]. (14.16)

Let

V α,β = Ad(GLn(C))V (α,β).

As the union of open sets, V α,β is open. Clearly, V α,β is Ad(GLn(C))-invariant and

contains the identity. The inclusion (14.16) together with the Ad(GLn(C))-invariance of

the sets GLn(C)[γ], γ = α, β, implies (b). Hence the Lemma holds for Vα,β = V α,β ∩
(

V α,β
)−1

. �

Corollary 14.2. Let Vα,β be as in the Lemma 14.1. Suppose A ∈ Vα,β and g, h ∈ GLn(C)

are such that hAg−1 = gAh−1 ∈ Vα,β. Then g = h. In particular, if A,B ∈ Vα,β and

A2 = B2, then A = B. Furthermore, the derivative of the map A → A2 at A ∈ Vα,β is

injective.

Proof. Set u = g−1h. Then uA ∈ Vα,β. Since A−1 ∈ Vα,β, Lemma 14.1 implies

u = (uA)A−1 ∈ Vα,βVα,β ⊆ GLn(C)[α] Vα,β ⊆ GLn(C)[β]

⊆ GLn(C)[π].

Hence there is a unique B ∈ Mn(C)[π] such that

u = exp(B).

Furthermore,

uA = g−1hA = Ah−1g = Au−1.

Hence

exp(B)A = Aexp(−B),

or equivalently

exp(A−1BA) = exp(−B). (14.17)
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Since A−1BA and −B belong to Mn(C)[π], (14.17) implies A−1BA = −B, or equivalently

AB + BA = 0. (14.18)

Since A ∈ ′Mn(C), (14.18) implies B = 0, which means that u = 1. Thus g = h. Let

A,B ∈ Vα,β. Then A2 = B2 is equivalent to AAB−1 = BAA−1, which implies A = B.

The injectivity of the derivative follows from the fact that A ⊆ ′Mn(C). �

Let D = R, C or H and let ξ ∈ D \ 0 be such that ξ2 is in the center of D. Set

x =

⎛

⎜
⎝

0 ξI

ξI 0

⎞

⎟
⎠ . (14.19)

Under the usual identifications we have

g1 = End(Dn ⊕ D
n)1 = {

⎛

⎜
⎝

0 A

B 0

⎞

⎟
⎠ ; A,B ∈ Mn(D)},

G = GL(Dn ⊕ D
n)0 = {

⎛

⎜
⎝

g 0

0 h

⎞

⎟
⎠ ; g, h ∈ GL(Dn)}.

(14.20)

A straightforward calculation shows that

gx
1 = {

⎛

⎜
⎝

0 ξBξ−1

B 0

⎞

⎟
⎠ ; B ∈ Mn(D)},

Gx = {

⎛

⎜
⎝

g 0

0 ξgξ−1

⎞

⎟
⎠ ; g ∈ GL(Dn)}.

(14.21)

Let Vα,β be the set constructed in Lemma 14.1 for the group GLn(D) if D = C, and for

the complexification of GLn(D) if D = C. Set

Vα,β(D) = Vα,β ∩ GLn(D). (14.22)

Then Vα,β(D) is an open Ad(GLn(D))-invariant neighborhood of the identity I ∈ GLn(D).

Let

Uα,β,ξ(D) ={

⎛

⎜
⎝

0 ξBξ−1

B 0

⎞

⎟
⎠ ; B ∈ ξVα,β(D)}

={

⎛

⎜
⎝

0 Aξ

ξA 0

⎞

⎟
⎠ ; A ∈ Vα,β(D)}.

(14.23)
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The set (14.23) is an open Gx-invariant neighborhood of x in gx
1 .

Lemma 14.3. Suppose y, z ∈ Uα,β,ξ(D) and s ∈ G are such that sys−1 = z. Then s ∈ Gx.

Proof. Let

s =

⎛

⎜
⎝

g 0

0 h

⎞

⎟
⎠ and y =

⎛

⎜
⎝

0 Aξ

ξA 0

⎞

⎟
⎠ .

Then

sys−1 =

⎛

⎜
⎝

0 gAξh−1

hξAg−1 0

⎞

⎟
⎠

Since sys−1 ∈ Uα,β,ξ(D), we have

gAξh−1 = ξ(hξAg−1)ξ−1 = ξhξ−1Ag−1ξ.

Thus

(ξhξ−1)Ag−1 = gA(ξh−1ξ−1). (14.24)

Furthermore

hξAg−1 ∈ ξUα,β,ξ(D).

Thus

(ξhξ−1)Ag−1 = ξ−1hξAg−1 ∈ Uα,β,ξ(D). (14.25)

By combining (14.24), (14.25) and Corollary 14.2 we see that ξhξ−1 = g, so that h =

ξ−1gξ = ξgξ−1. �

The Lemma 14.3 shows that the set (14.23) satisfies the condition (1.3). The rest is

also clear from Corollary 14.2.

15 A proof of Theorem 4.7

The ideas presented below originate in [4, sec. 12]. Recall the following Lemma.

Lemma 15.1. [12, 8.A.4.5] Let N be a complete metric space and let G be a σ-compact

topological group acting on N . Suppose N is the union of a finite number of G-orbits.

The we can label the orbits O1, O2, ..., Ok, so that for each 1 ≤ j ≤ k, the set

Nj =
k⋃

l=j

Ol is closed in N.

We apply the above Lemma to our ordinary classical Lie supergroup (G, g), with

N ⊆ g1 equal to the set of nilpotent elements. As is well known, [3], N is the union of a

finite number of G-orbits.
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In particular, for each 1 ≤ j ≤ k there is an open G-invariant set Wj ⊆ g1 such that

Wj ∩ Nj = Oj. (15.1)

Fix 1 ≤ j ≤ k and an element x ∈ Oj. Let U ⊆ g1 be a subspace complementary to

the tangent space to the orbit through x. Thus

g1 = [g0, x] ⊕ U. (15.2)

For each z ∈ U we have a linear map

Tz : g0 ⊕ U � (y, z′) → [y, x + z] + z′ ∈ g1. (15.3)

Notice that, by (15.2), T0 is surjective. Further, the map

U � z → Tz ∈ Hom(g0 ⊕ U, g1)

is affine and hence continuous. Therefore the set of all z ∈ U such that

rank(Tz) ≥ rank(T0) (= dim g1) (15.4)

is an open neighborhood of 0 in U . Let us denote this neighborhood by U1. Let

Φ : G × U1 � (g, z) → g(x + z)g−1 ∈ g1. (15.5)

The derivative of Φ at (g, z) coincides with the following linear map

g0 ⊕ U � (y, z′) → g([y, x + z] + z′)g−1 ∈ g1. (15.6)

By (15.4), the map (15.6) is surjective. Thus Φ is a submersion.

Recall the set Wj, (15.1). Let

U2 = {z ∈ U1; x + z ∈ Wj}. (15.7)

Then

Φ(G × U2) ⊆ Wj. (15.8)

Let W ⊆ g0 be a subspace complementary to the kernel of the map

ad(x) : g0 � y → [y, x] ∈ g1 (15.9)

so that the map

W � y → [y, x] ∈ [g0, x] (15.10)

is a linear bijection. By (15.6), the derivative of the map

W × U2 � (y, z) → Φ(exp(y), z) = exp(y)(x + z) exp(−y) ∈ g1 (15.11)

at (0, 0) coincides with the following linear map

W ⊕ U � (y, z′) → [y, x] + z′ ∈ g1, (15.12)
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which, by (15.2) and (15.10), is a linear bijection. Hence, there is an open neighborhood

W1 of 0 in W and an open neighborhood U3 of 0 in U2, such that the map

W1 × U3 � (y, z) → exp(y)(x + z) exp(−y) ∈ g1 (15.13)

is an diffeomorphism onto an open neighborhood of x in g1.

Let W2 ⊆ W1 be an open neighborhood of 0 such that

exp(ad(W2))x ⊆ Nj

is an open neighborhood of x in Nj. This is compatible with (15.8). Choose an open

neighborhood W0 ⊆ W2 of 0 and an open neighborhood U0 ⊆ U3 of 0 such that

Φ(exp(W0), U0) ∩ Nj ⊆ exp(ad(W2))x ∩ Nj. (15.14)

Suppose z ∈ U0 is such that

x + z ∈ Oj. (15.15)

Since x + z = Φ(exp(0), z), (15.14) implies that there is y ∈ W2 such that

x + z = exp(y) x exp(−y). (15.16)

Thus

Φ(exp(0), z) = Φ(exp(y), 0). (15.17)

But then (15.13) implies that y = 0 and z = 0. Thus

(x + U0) ∩ Oj = {x}. (15.18)

References

[1] N. Burgoyne and R. Cushman: “Conjugacy Classes in Linear Groups”, J. Algebra,

Vol. 44, (1975), pp. 339–362.

[2] D. Collingwood and W. McGovern: Nilpotent orbits in complex semisimple Lie al-

gebras, Reinhold, Van Nostrand, New York, 1993.
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