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ON THE MOMENT MAP OF A MULTIPLICITY FREE ACTION

BY

ANDRZEJ DASZK IEWICZ (TORUŃ) AND

TOMASZ PRZEB INDA (NORMAN, OKLAHOMA)

The purpose of this note is to show that the Orbit Conjecture of C. Ben-
son, J. Jenkins, R. L. Lipsman and G. Ratcliff [BJLR1] is true. Another
proof of that fact has been given by those authors in [BJLR2]. Their proof
is based on their earlier results, announced together with the conjecture in
[BJLR1]. We follow another path: using a geometric quantization result
of Guillemin–Sternberg [G-S] we reduce the conjecture to a similar state-
ment for a projective space, which is a special case of a characterization of
projective smooth spherical varieties due to Brion [B2].

Let V be a finite-dimensional complex representation space for a con-
nected reductive complex group G. Choose a maximal compact subgroup
K ⊆ G and a K-invariant positive definite hermitian form ( · , · ) on V . Let

(1) 〈u, v〉 = Im (u, v) (u, v ∈ V )

be the associated symplectic form. Recall the unnormalized moment map

(2) τk : V → k∗, τk(v)(X) = 〈X(v), v〉 (v ∈ V ),

and the normalized moment map

(3) µk : P(V ) → k∗, µk( ṽ )(X) =
〈X(v), v〉

(v, v)
(v ∈ V ),

where P(V ) is the projective space of lines in V and ṽ is the line passing
through v. It is easy to see that these maps are K-equivariant.

Let C[V ] be the space of polynomial functions on V . Clearly the group
K acts on C[V ]. Recall from [BJLR1] that the action of K on V is called
multiplicity-free if the action of K on C[V ] has no multiplicities, i.e. the
multiplicities of the irreducible representations of K in C[V ] are at most
one.

Here is the Orbit Conjecture (see [BJLR1]), stated as a theorem.
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Theorem. The map τk is one-to-one on K-orbits (i.e. distinct orbits
are mapped onto distinct orbits) if and only if the action of K on V is
multiplicity-free.

Before we give the proof of the theorem, we will recall a result of Brion
on moment maps of smooth projective G-varieties.

An algebraic variety X with an action of a complex reductive group G
is called spherical if some (or equivalently each) Borel subgroup B of G has
a dense orbit in X. It is well known (see [Se]) that an affine G-variety X is
spherical if and only if it is multiplicity-free, i.e. its ring C[X] of polynomial
functions has no multiplicities as a G-module. For a good introduction to
the theory of spherical varieties the reader may consult [B1].

Assume that the variety X is contained in the projective space P(V ) for
some complex representation space V of G, and that the action of G on X is
induced by that on V . Let µX : X → k∗ be the normalized moment map of
X, i.e. the composite X ↪→ P(V ) → k∗ of the normalized moment map (3)
and inclusion. Assume that X is smooth and projective (closed in P(V )).
Then the theorem of Brion (see [B2, 5.1], [B1, Theorem 3.2]) says that

(4) X is spherical if and only if µX is one-to-one on K-orbits.

P r o o f o f t h e t h e o r e m. We notice first that

(5) if τk is one-to-one on K-orbits, then so is the normalized moment
map µk.

Indeed, we can view this normalized map as the restriction of τk to the unit
sphere S in V composed with the canonical map S → P(V ).

Let U be the full isometry group of the hermitian form ( · , · ). We have
K ⊆ U . Let Z denote the center of U . Let Pd(V ) ⊆ C[V ] be the subspace
of homogeneous polynomials of degree d. Then the spaces Pd(V ) are the
eigenspaces for the action of Z on C[V ], corresponding to distinct eigenvalues
(weights). Notice that

(6) if Z ⊆ K and if the map µk is one-to-one on K-orbits, then so is the
unnormalized map τk.

Indeed, the restriction of τk to any sphere in V is one-to-one on K-orbits
and the composition of τk with the restriction map k∗ → z∗ distinguishes the
spheres.

Clearly

(7) if Z ⊆ K, then P(V ) is spherical if and only if V is spherical.

This is obvious because under the assumption (7), C×· identity is contained
in every Borel subgroup of G.

By combining (4), for X = P(V ), with (5)–(7) we see that the theorem
holds if Z ⊆ K.
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Assume from now on that Z is not contained in K.
Suppose τk is one-to-one on K-orbits. Then by (4) and (5), P(V ) is

G-spherical. Hence V is (C× · G)-spherical. Hence the group Z · K acts
on C[V ] without multiplicities. Therefore K acts on each Pd(V ) without
multiplicities.

Recall that each Pd(V ) is irreducible for the action of U . Let Od ⊆ u∗

denote the corresponding orbit, as in [G-S, Theorem 3.7]. This is the coad-
joint orbit passing through a highest weight of this representation, divided
by 2πi. Then it is easy to see that Od ⊆ τu(V ), where τu : V → u∗ is defined
as in (3). This map is one-to-one on U -orbits. In fact, Vd = τ−1

u (Od) is a
sphere of radius d · const, where the const does not depend on d.

Let q : u∗ → k∗ be the restriction map. Then τk = q ◦ τu. Suppose π ∈ K̂
occurs in C[V ] at least twice. Then it occurs in Pd(V ) and in Pd′(V ) for
some d 6= d′. Let Oπ ⊆ k∗ be the corresponding orbit (as in [G-S]). Then by
[G-S, Theorem 6.3],

(9) Oπ ⊆ q(Od) = τk(Vd) and Oπ ⊆ q(Od′) = τk(Vd′).

But Vd and Vd′ are spheres of distinct radii. Hence (9) contradicts the
assumption that τk was one-to-one on K-orbits.

Conversely, suppose K acts on C[V ] without multiplicities. Then P(V )
is spherical. Hence µk is one-to-one on K-orbits. Therefore the map V/(Z ·
K) → k∗/K induced by τk is one-to-one. Thus it will suffice to show that
each (Z ·K)-orbit in V is a K-orbit.

It is well known (see [O-V, p. 138]) that functions in the algebra C[VR]K

separate K-orbits. As a U -module, C[VR] = C[V ] ⊗ C[V ]c, where the su-
perscript c indicates the contragredient. Let C[V ] =

∑
π be the decom-

position into irreducible K-modules. Then, by Schur’s lemma, C[VR]K =∑
(π ⊗ πc)K . Hence C[VR]K consists of Z-invariant functions, and we are

done.
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