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1. INTRODUCTION

Ž ² :. Ž .Let W, , be a complex symplectic vector space and let Sp W be
Ž .the symplectic group. Let G, G9 : Sp W be a complex reductive dual pair

Ž w x. Ž .see Howe H1 , i.e., G and G9 are centralizers of each other in Sp W
and both act completely reductively on W. Let g and g9 be the Lie

Ž .algebras of G and G9. We have the unnormalized moment maps

t : W ª g*, t 9: W ª g9* 1Ž .

defined by the formula

² :t w x s x w , w , w g W , x g g : End W ,Ž . Ž . Ž . Ž .

and similarly for t 9.
Our main theorem describes the behaviour of closures of nilpotent

orbits under the action of moment maps. It is easy to see that for a
y1Ž Ž ..nilpotent coadjoint orbit OO : g* the set t 9 t OO is a union of nilpotent

coadjoint orbits of g9. It turns out that it is a closure of a single orbit:
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THEOREM 1.1. Let OO : g* be a nilpotent coadjoint orbit. There exists a
y1Ž . Ž Ž ..unique nilpotent coadjoint orbit OO9 : g9* such that t 9 t OO s OO9.

w xThis theorem was announced in P2, Theorem 0.4 . It has a potential of
sheding some light on Howe’s correspondence, as we shall explain below.

Ž ² :. Ž ² :.Let W , , be a symplectic space over R, such that W, ,0
Ž ² :. X Ž .coincides with the complexification of W , , . Let G , G : Sp W0 0 0 0

˜ X̃w xbe an irreducible dual pair, as defined in H1 . Let G , G be the0 0&
X Ž .preimages of G , G in the metaplectic group Sp W . Fix an oscillator0 0 0&
Ž .representation of Sp W , and let P, P9 be irreducible admissible repre-0

˜ X̃ w xsentations of G , G respectively, in Howe’s correspondence, H3 . Let I0 0 P

Ž .denote the annihilator of the Harish]Chandra module of P in UU g , the
Ž .universal enveloping algebra of the complexified Lie algebra g of the

˜ Ž .group G . The enveloping algebra UU g carries a natural filtration, and0
Ž .the corresponding graded algebra gr UU g is isomorphic to the algebra of

polynomial functions on g*. The set of common zeros of gr I in g* isP

Ž w x.called the associated variety of the ideal I see B, M . We shall denoteP

Ž . Ž . Ž .it by VV P . Similarly we have I : UU g9 and VV P9 : g9*. The follow-P9

w xing inclusion was shown in P1, Theorem 7.1 :

VV P9 : t 9 ty1 VV P . 2Ž . Ž . Ž .Ž .Ž .

X Ž . � 4 Ž . � 4If G / G are compact, then VV P s 0 , VV P9 s 0 and the inclusion0 0
Ž . X2 is proper. On the other hand, if the pair G , G is in the stable range0 0

Ž .with G the smaller member and P is unitary, then equality holds in 20
Ž w x.see P2, Theorem 7.9 . Furthermore, we know from a theorem of Borho,

Ž .Brylinski, and Jantzen that VV P9 is the closure of a single nilpotent orbit.
Thus Theorem 1.1 justifies the problem of trying to understand those

Ž .representations in Howe’s correspondence for which the two sides of 2
are equal. In fact, Howe constructs the representation P9 as the unique
quotient of a certain finitely generated, admissible quasisimple representa-

X X̃ Ž w x.tion P of G see H3, Theorem 1A . It seems plausible that under some1 0
Ž . Ž . Ž X .mild conditions equality holds in 2 if VV P9 is replaced by VV P . The1

case of both G , GX compact shows that this cannot be true in general.0 0
However, in cases when it is true, it would be interesting to understand the

X Ž y1Ž Ž ...irreducible subquotients of P having t 9 t VV P as the associated1
variety.

Another possible application is to the study of the singularities of the
closures of nilpotent orbits. In fact, some special cases of Theorem 1.1

w xwere used by Kraft and Procesi K-P1, K-P2 in the study of the normality
of the closures of nilpotent orbits in classical Lie algebras.
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It is easy to see that it is sufficient to prove Theorem 1.1 in the case of
Ž w x.an irreducible dual pair see H1 . From now on we assume that the pair

Ž .G, G9 is irreducible. We will now recall the classification of irreducible
Ž w x.complex reductive dual pairs, due to Howe see H1, H2 . There are two

types of such pairs.

Pairs of Type I

Let U be a complex vector space endowed with a nondegenerate
Ž . Ž .symmetric bilinear form , . Let O U be its isometry group. Let V be a

complex vector space endowed with a nondegenerate skew-symmetric
Ž . Ž .bilinear form , 9 and let Sp V be its isometry group. Let W s

Ž .Hom U, V . Define a symplectic form on W byC

² :w , w9 s tr w ? w9* ,Ž .

Ž . Ž .where the map Hom U, V 2 w ¬ w* g Hom V, U is defined by

w u , ¨ 9 s u , w* ¨ .Ž . Ž .Ž . Ž .
Ž . Ž .The groups O U , Sp V act on W via premultiplication by the inverse and

by postmultiplication, respectively. These actions embed both groups into
Ž .the symplectic group Sp W , and these subgroups form an irreducible dual

Ž .pair in Sp W , called a dual pair of type I.
Using any invariant nondegenerate symmetric bilinear forms on the

Ž . Ž .orthogonal and symplectic Lie algebras o U and sp V , we can identify
them with their duals. These identifications intertwine the adjoint and
coadjoint actions of the corresponding groups. It is easy to check that one

Ž .can choose these identifications so that the moment maps 1 can be
written as

t s p : W ª o U , p w s w* ? w , 3Ž . Ž . Ž .
t 9 s r : W ª sp V , r w s w ? w*. 4Ž . Ž . Ž .

Pairs of Type II

Ž .Let U and V be two complex vector spaces and let W s Hom U, V [
Ž .Hom V, U . Define a symplectic form on W by the formula

² X X : X Xw , w , w , w s tr w w y w wŽ . Ž . Ž .1 2 1 2 1 2 1 2

X Ž . X Ž .for w , w g Hom U, V , w , w g Hom V, U . There is an obvious action1 1 2 2
Ž . Ž .of the groups GL U , GL V on W embedding both groups into the
Ž .symplectic group Sp W , and these subgroups form an irreducible dual

Ž .pair in Sp W called a dual pair of type II.
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Ž . Ž .As in the case of pairs of type I, we can identify gl U with gl U * and
Ž . Ž . Ž .gl V with gl V *. Under these identifications the moment maps 1 up

to scalar factors can be written as

p : W ª gl U , p w , w s w ? w , 5Ž . Ž . Ž .1 2 2 1

r : W ª gl V , r w , w s w ? w . 6Ž . Ž . Ž .1 2 1 2

Ž . Ž wRemark. Since by for example Malcev’s theorem see C-M, Theorem
x.3.4.12 nilpotent orbits are invariant under multiplication by nonzero

scalars, Theorem 1.1 does not depend on a specific choice of scalars in the
identifications of Lie algebras with their duals.

The proof of Theorem 1.1 will be done separately for each type of
irreducible dual pairs. It is based on the classical results on the classifica-
tion of nilpotent orbits in classical Lie algebras and on the classification of

Ž w‘‘nilpotent’’ G ? G9-orbits in W which, although known see C, K-P1,
x.K-P2 , is probably less classical. The following two sections contain all the

results we need. The proof of Theorem 1.1 for pairs of type II is given in
Section 4; pairs of type I are discussed in Section 5.

2. NILPOTENT ORBITS IN CLASSICAL LIE ALGEBRAS

w xThe basic reference for this section is C-M . We begin with some
combinatorial notions.

ŽLet m be a fixed nonnegative integer. A partition of m is a finite or
. Žinfinite weakly decreasing sequence of nonnegative integers l s l G1

.??? G l G 0 G ??? such that l q l q ??? s m. The numbers l aren 1 2 i
called the parts of the partition l. We will identify partitions that differ

Ž .only in the number of parts equal to 0. The length l l of a partition l is
defined as the largest i with l / 0.i

A partition l is orthogonal if each even part of l occurs an even
number of times. A partition is symplectic if each odd part occurs an even
number of times.

Ž . Ž .EXAMPLE. 7, 7, 4, 3, 3, 3, 3, 2, 2 is symplectic; 7, 4, 4, 3, 3, 3, 3, 2, 2 is or-
thogonal.

In the sequel we will use the following obvious lemma:

Ž . Ž .LEMMA 2.1. If m is an orthogonal partition of n, then n ' l m mod 2 .

DEFINITION 2.2. Let l, m be two partitions. We say that l dominates
m, and write l G m if for each i G 1 we have l q ??? ql G m q ??? qm .1 i 1 i
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Ž . Ž .EXAMPLE 3, 1 G 2, 2 . Let V be a complex vector space of dimension
Ž .m. To any endomorphism x g End V we can associate a partition l s

Ž .l , l , . . . of m, where l , l , . . . are the sizes of blocks in the Jordan1 2 1 2
normal form of x.

Ž . Ž . Ž .THEOREM 2.3. Let G be one of the groups GL V , O V , and Sp V and
Ž .let g : End V be the Lie algebra of G. Two nilpotent elements of g are

conjugate under the adjoint action of the group G if and only if they define the
Ž .same partition. By g resp. gl , o , and sp we denote the conjugacy classl l l l

Ž Ž . Ž . Ž ..of nilpotent elements of g resp. gl V , o V , and sp V corresponding to
a partition l. The nilpotent orbit sp is nonempty if and only if the partitionl

l is symplectic. Similarly, the class o is nonempty if and only if l isl

orthogonal. Moreo¨er, if g , g are nonempty, thenl m

g : g if and only if m F l.m l

3. NILPOTENT ORBITS IN W

wIn this section we will recall from the papers of Kraft and Procesi K-P1,
x w xK-P2 and Capparelli C all the information on the orbits of G ? G9 in the

space W that we will use in the proof of Theorem 1.1. In fact, we need only
to consider the set of nilpotent orbits in W.

Ž .DEFINITION 3.1. Let W be a symplectic space and let G, G9 be an
Ž . Ž .irreducible dual pair in Sp W . An element w g W is nilpotent if t w g g

Ž Ž . .is nilpotent or equivalently t 9 w g g9 is nilpotent .

Let NN denote the set of nilpotent elements of W. We will describe theW
orbits of G ? G9 in NN . We begin with pairs of type II.W

3.1. Nilpotent Orbits in W for Pairs of Type II

Ž . Ž . Ž . Ž .In this case W s Hom U, V [ Hom V, U , G s GL U , G9 s GL V .
Ž .An element w , w g W is nilpotent if and only if w w is a nilpotent1 2 1 2

Žendomorphism of V equivalently w w is nilpotent as an endomorphism2 1
.of U . Let a and b be two distinct symbols.

DEFINITION 3.2. An ab-string is a finite ordered sequence of the form
aba . . . or bab . . . , i.e., a finite sequence alternating between a and b. An
ab-diagram is a finite sequence of ab-strings. We will identify two ab-
diagrams that differ only in the ordering of strings. For an ab-diagram d

Ž .by t d we denote the partition counting the a’s in the strings of d , i.e., if
Ž . Ž .d s d , d , . . . and if a denotes the number of a’s in d , then t d is the1 2 i i

Ž .partition obtained by ordering the sequence a , a , . . . . Similarly, t 9 d1 2
denotes the partition counting b’s in the strings of d .
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THEOREM 3.3. There is a one-to-one correspondence between the set of
G ? G9-orbits in NN and the set of all ab-diagrams containing dim U a’s andW
dim V b’s. The orbit corresponding to an ab-diagram d will be denoted OO .d

The action of the moment maps on the orbit OO in NN is described by thed W
formulas

t OO s gl , t 9 OO s gl .Ž . Ž .d t Žd . d t 9Žd .

We will not go into details about the precise description of the elements
of the orbit OO , as we do not need any such information. The interestedd

w x w xreader can find more details in K-P1, Sect. 4 and K-P2, Sect. 6 .

LEMMA 3.4. If n and l are two partitions for which there exists an
Ž . Ž .ab-diagram d such that t d s n , t 9 d s l, then l y 1 F n F l q 1 fori i i

each i.

Ž . Ž .Proof. By definition, t d and t 9 d are the partitions obtained by
Ž . Ž .reordering the sequences a , a , . . . and b , b , . . . , where a is the1 2 1 2 i

number of a’s in the string d , and b is the number of b’s in the string d .i i i
If d is longer than d , then a G a and b G b . Hence we mayi iq1 i iq1 i iq1
assume that all the strings d are of the same length. But in this case thei
lemma is obvious.

3.2. Nilpotent Orbits in W for Pairs of Type I

Ž . Ž . Ž .In this case W s Hom U, V and G s O U , G9 s Sp V . The moment
maps are denoted by p and r.

DEFINITION 3.5. An ab-diagram d is orthosymplectic if it consists of the
following types of strings or pairs of strings:

abab . . . ba with an odd number of a’s,

baba . . . ab with an odd number of a’s,

aba . . . ba
aba . . . ba with an even number of a’s in each string,

bab . . . ab
bab . . . ab with an even number of a’s in each string,

ab . . . ab
ab . . . ab.

For an orthosymplectic ab-diagram d arising in the context of a dual
Ž . Ž .pair of type I, we will write p d and r d for the partitions counting a’s

and b’s in the strings of d . Note that for an orthosymplectic ab-diagram d
Ž . Ž .the partition p d is orthogonal and the partition r d is symplectic.
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THEOREM 3.6. There is a one-to-one correspondence between the set of
G ? G9-orbits in NN and the set of all orthosymplectic ab-diagrams containingW
dim U a’s and dim V b’s. The orbit corresponding to an ab-diagram d will be
denoted OO . The action of the moment maps on the orbit OO in NN isd d W
described by the formulas

p OO s o , r OO s sp .Ž . Ž .d p Žd . d r Žd .

Remark. Lemma 3.4 is valid in the orthosymplectic context as well.

3.3. Moment Maps

w xLet us recall from K-P1, K-P2, Sect. 1 one more fact that we will need
in the sequel. The first fundamental theorem of the classical invariant

Ž w x w x.theory see W or G-W says that the moment maps t : W ª g defined in
Section 1 are quotient maps for the action of the corresponding group G9.
In particular, we have the following lemma:

Ž .LEMMA 3.7. The image t X : g of a closed, G9-in¨ariant subset X of W
is closed in g.

4. PAIRS OF TYPE II

In this section we prove Theorem 1.1 for an irreducible dual pair of type
Ž . Ž . Ž . Ž .II. In this case W s Hom U, V [ Hom V, U , G s GL U , G9 s GL V ,

dim U s n, dim V s m. We begin with a sketch of the main idea. Let l be
a partition of n. We define a partition l9 of m by setting lX s l q 1,1 1
lX s l q 1, . . . , until we reach lX q lX q ??? s m. More precisely,2 2 1 2

DEFINITION 4.1. Let l be a partition of n. Let r s m. For i G 2 let1
Ž . Ž . Ž .r s r l s m y l q 1 q l q 1 q ??? ql q 1 . Let i s i l be thei i 1 2 iy1 0 0

smallest i G 1 such that r F l . Define a partition l9 of m byi i

lX s l q 1 for i - i ,i i 0

lX s r ,i i0 0

lX s 0 for j ) i .j 0

Ž .Remark. It is clear that there exists an ab-diagram d such that t d F
Ž . Ž .l, t 9 d s l9. Indeed, since r F l , we may find d so that t d si i0 0

Ž .l , l , . . . , l , r , 1, . . . , 1 , 1’s occur if r - l q l q ??? . Lemma1 2 i y1 i i i i q10 0 0 0 0

4.3 implies that l9 is the ‘‘largest’’ partition with these properties.

THEOREM 4.2. Let l be a partition of n. Then
y1t 9 t gl s gl . 7Ž .Ž .Ž .l l9
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Proof. It follows from the remark following Definition 4.1 that

y1gl : t 9 t gl .Ž .Ž .l9 l

y1 y1Ž . Ž Ž ..As t gl is G-invariant, by Lemma 3.7 the set t 9 t gl is closed andl l

Ž .it follows that the relation = holds in 7 . It remains to prove the
following claim:

Claim. Let m be a partition of n such that m F l, and let d be an
Ž . Ž .ab-diagram such that t d s m. Then t 9 d F l9.

The claim follows immediately from the following two lemmas:

Ž . Ž .LEMMA 4.3. Let m s t d . Then t 9 d F m9, where m9 is defined in
terms of m according to Definition 4.1.

LEMMA 4.4. If m F l are two partitions of n, then m9 F l9.

Ž . Ž .Proof of Lemma 4.3. Let t 9 d s n and i s i m . For i - i we have0 0 0
X Ž . X Xm s m q 1 G n Lemma 3.4 , so n q ??? qn F m q ??? qm for alli i i 1 i 1 i

i - i . Also, n q ??? qn F m s m9 q ??? qmX , so n F m9.0 1 i 1 i0 0

Proof of Lemma 4.4. Let m F l be two partitions of n. In order to
prove that m9 F l9 it suffices to consider the special case, when m and l

Žare adjacent in the order F using the terminology of Kraft and Procesi,
.when m - l is a ‘‘minimal degeneration’’ .

Ž wThere are two possible types of pairs of adjacent partitions see K-P1, p.
x.229 :

A l s l , . . . , l , l , l9, l , . . . ,Ž . Ž .1 ky1 kq2

m s l , . . . , l , l y 1, l9 q 1, l , . . . ,Ž .1 ky1 kq2

l G l9 q 2 ;Ž .

B l s l , . . . , l , l , l y 1, . . . , l y 1 , l y 2, l , . . . ,Ž . ž /1 ky1 jq1^ ` _
j y k y 1

m s l , . . . , l , l y 1, . . . , l y 1 , l , . . . .ž /1 ky1 jq1^ ` _
j y k q 1

Ž .Let m - l be one of the adjacent pairs listed above and let i s i l .0 0
Ž . Ž .Let k be as in A or B above. We will consider several cases depending

on the relative position of k and i .0

i - k0

Ž . Ž . Ž . Ž .In this case, as m , . . . , m s l , . . . , l , we have i l s i m1 ky1 1 ky1 0 0
and mX s l9.
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i G k0

In this case lX s l q 1 s m q 1 s mX for all i - k. It follows that wei i i i
can assume k s 1.

Ž . Ž . ŽLet r s r l . If r s 0, then l9 s l q 1, . . . , l q 1 G m qi 1 i y1 10 0
.1, . . . , m q 1, . . . G m9.i y10

In the following we assume r ) 0. Let t denote the greatest index with
Ž Ž . Ž ..the property m / l i.e., t s k q 1 s 2 in case A and t s j in case B .t t

Ž . Ž . X X X XIf i ) t, then i l s i m , l s l q 1, m s m q 1 for i - i , l s m0 0 0 i i i i 0 i i
Žfor i G i and we have m9 - l9 it is an adjacent pair of the same type as0

.m - l . It remains to consider the case 1 F i F t. Here is the detailed0
case-by-case analysis:

AŽ .
i s 1, l9 s r , m9 s r , m9 s l9,Ž . Ž .0

i s 2, l9 s l q 1, r , m9 s l , r q 1 , m9 - l9;Ž . Ž .0

BŽ .
i s 1, l9 s r , m9 s r , m9 s l9,Ž . Ž .0

2 F i F j, l9 s l q 1, l , . . . , l , r , m9 s l , . . . , l , r q 1 , l9 - l9.Ž . Ž .0

This ends the proof of Lemma 4.4 and Theorem 4.2.

5. PAIRS OF TYPE I

In this section we prove Theorem 1.1 for pairs of type I. We use the
Ž .following notation: W s Hom U, V , dim U s n, dim V s m.

Ž . Ž .5.1. The Case G s Sp V , G9 s O U

The main idea of the construction is completely analogous to the case of
a dual pair of type II. Given a symplectic partition l, we construct an
orthogonal partition lo putting lo s l q 1 as long as possible, but thei i
final part of the construction is more delicate, as we want to get an
orthogonal partition of n.

DEFINITION 5.1. Let l be a symplectic partition of m. Define an
orthogonal partition lo of n in the following way. Let r s n. For i G 21

Ž . Ž . Ž .define r s r l s n y l q 1 q l q 1 q ??? ql q 1 . Let i s i li i 1 2 iy1 0 0
Ž .be the smallest i G 1 such that l , . . . , l is a symplectic partition and1 iy1

either r F l or l is odd and r F 2l q 1. For 1 F i - i define lo s li i i i i 0 i i
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q 1. Moreover:

Ž . o oa if r s 0, define l s 0 and l s 0 for j ) i ,i i j 00 0

Ž .b if 0 - r F l , then:i i0 0

Ž . o ob1 if r is odd, define l s r and l s 0 for j ) i ,i i i j 00 0 0

Ž . o o ob2 if r is even, define l s r y 1, l s 1, and l s 0 fori i i i q1 j0 0 0 0

j ) i q 1,0

Ž . Ž .c if l - r F 2l q 1 so l s l is odd , then:i i i i i q10 0 0 0 0

Ž . o o oc1 if r is even, define l s l , l s r y l , and l s 0 fori i i i q1 i i j0 0 0 0 0 0

j G i q 2,0

Ž . o o oc2 If r is odd, define l s l , l s r y l y 1, l s 1,i i i i q1 i i i q20 0 0 0 0 0 0

and lo s 0 j G i q 3.j 0

Remark. It follows from the definition that lo is an orthogonal parti-
tion and that there exists an orthosymplectic ab-diagram d such that
Ž . Ž . o Ž . or d F l, p d s l . We will prove below Lemma 5.3 that l is the

‘‘largest’’ partition with these properties.

THEOREM 5.2. Let l be a symplectic partition of m s dim V. Then

y1
op r sp s o . 8Ž .Ž .Ž .l l

Proof. From the remark following Definition 5.1 it follows that

y1
oo : p r sp .Ž .Ž .l l

y1 y1Ž . Ž . Ž Ž ..As r sp is Sp V -invariant, by Lemma 3.7 the set p r sp isl l

Ž .closed and it follows that the relation = holds in 8 . It remains to prove
the following claim:

Claim. Let m be a symplectic partition of m such that m F l, and let d
Ž . Ž . obe an orthosymplectic ab-diagram such that r d s m. Then p d F l .

The claim follows immediately from the following two lemmas:

Ž . oLEMMA 5.3. In the situation of the claim, p d F m .

LEMMA 5.4. If m F l are two symplectic partitions of m, then mo F lo.

Ž . Ž .Proof of Lemma 5.3. Let p d s m9, i s i m . For i - i we have0 0 0
o X Ž . X X o om s m q 1 G m Lemma 3.4 , so m q ??? qm F m q ??? qm for alli i i 1 i 1 i

Ž o. Ž Ž . Ž . .i - i . If the length l m F i cases a and b1 of Definition 5.1 , then0 0
also mX q ??? qmX F mo q ??? qmo s n, so m9 F mo.1 i 1 i0 0

Ž . Ž o o .Consider now case b2 of Definition 5.1 so m s r y 1, m s 1 . Ini i i q10 0 0o Ž .this case the only possibility for m9 g m is the length l m9 s i , but by0
Ž Ž ..Lemma 2.1 this cannot happen otherwise i ' i q 1 mod 2 .0 0
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Ž . o oIn case c we have m s m . As before m s m q 1 for i - i . Ifi i i i 00 0

m9 g mo, then there are two possibilities: either

a mX q ??? qmX ) mo q ??? qmoŽ . 1 i 1 i0 0

or
b mX q ??? qmX F mo q ??? qmoŽ . 1 i 1 i0 0

and
mX q ??? qmX ) mo q ??? qmo .1 i q1 1 i q10 0

X o X o Ž . XAs m F m q 1 s m q 1 and m F m for i - i , a implies m si i i i i 0 i0 0 0 0o X o Ž o o .m q 1 and m s m for i - i . The partition m , . . . , m is orthogo-i i i 0 1 i y10 0
Ž X X .nal, so m , . . . , m is orthogonal. This, together with the facts that m91 i y10

is orthogonal and that m9 s m q 1 is even, implies that mX s mX si i i i q10 0 0 0X X Ž X X .m q 1, but this is not possible as m q m F n y m q ??? qm si i i q1 1 i y10 0 0 0

r - 2m q 1.i i0 0
Ž . oIt remains to consider case b which can happen only if m is as in

Ž . o o oc2 , i.e., r is odd, m s m , m s r y m y 1, m s 1. It followsi i i i q1 i i i q20 0 0 0 0 0 0
Ž . Ž .that the second inequality of b is possible only if the length l m9 s

Ži q 1, but by Lemma 2.1 this cannot happen otherwise i q 1 ' i q0 0 0
Ž ..2 mod 2 .

Proof of Lemma 5.4. Assume that m F l are two symplectic partitions.
To prove that mo F lo, it suffices to consider the special case when m and

Žl are adjacent in the order F using the terminology of Kraft and
.Procesi, when m - l is a ‘‘minimal degeneration’’ .

The list of all possible adjacent pairs of symplectic partitions is as
follows:

A l s l , . . . , l , l , l y 2, l , . . . ,Ž . Ž .1 ky1 kq2

m s l , . . . , l , l y 1, l y 1, l , . . . ,Ž .1 ky1 kq2

l is even ;Ž .
B l s l , . . . , l , l , l9, l , . . . ,Ž . Ž .1 ky1 kq2

m s l , . . . , l , l y 2, l9 q 2, l , . . . ,Ž .1 ky1 kq2

both l , l9 are even, l G l9 q 4 ;Ž .
C l s l , . . . , l , l , l9, l9, l , . . . ,Ž . Ž .1 ky1 kq3

m s l , . . . , l , l y 2, l9 q 1, l9 q 1, l , . . . ,Ž .1 ky1 kq3

l is even, l G l9 q 3 ;Ž .
D l s l , . . . , l , l , l , l9, l , . . . ,Ž . Ž .1 ky1 kq3

m s l , . . . , l , l y 1, l y 1, l9 q 2, l , . . . ,Ž .1 ky1 kq3

l9 is even, l G l9 q 3 ;Ž .
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E l s l , . . . , l , l , l , l9, l9, l , . . . ,Ž . Ž .1 ky1 kq3

m s l , . . . , l , l y 1, l y 1, l9 q 1, l9 q 1, l , . . . ,Ž .1 ky1 kq3

l G l9 q 2 ;Ž .

F l s l , . . . , l , l , l , l y 1, . . . , l y 1 , l y 2,Ž . ž 1 ky1 ^ ` _
j y k y 2

l y 2, l , . . . ,/jq2

m s l , . . . , l , l y 1, . . . , l y 1 , l , . . . ,ž /1 ky1 jq2^ ` _
j y k q 2

l is odd; even l , although possible, does not give aŽ
minimal degeneration ;.

G l s l , . . . , l , l , l y 1, . . . , l y 1 , l y 2, l , . . . ,Ž . ž /1 ky1 jq1^ ` _
j y k y 1

m s l , . . . , l , l y 1, . . . , l y 1 , l , . . . ,ž /1 ky1 jq1^ ` _
j y k q 1

l is even, j y k y 1 is even, and j ) k q 1 .Ž .

The above list differs slightly from the one given by Kraft and Procesi, as
Ž . Ž . Ž .our case F contains their two cases f and h .

Let m - l be one of the minimal degenerations listed above, and let
Ž .i s i l . Let k be as in the classification of minimal degenerations, so it0 0

is the smallest index with the property l / m . We will consider severalk k
cases depending on the relative position of k and i .0

i - k0

Ž . Ž . Ž . Ž .In this case, as m , . . . , m s l , . . . , l , we have i l s i m1 ky1 1 ky1 0 0
and mo s lo.

i G k0

Notice that in all cases of minimal degenerations the partition
Ž . Ž . Ž .l , . . . , l is symplectic, so both l , l , . . . and m , m , . . . are1 ky1 k kq1 k kq1
symplectic as well. Also, lo s l q 1 s m q 1 s mo for all i - k. Iti i i i
follows that from now on we can assume that k s 1.

Ž . o Ž .Let r s r l . If r s 0, then l s l q 1, . . . , l q 1 , and, as m - l,i 1 i y10 0o o Ž o .obviously m F l as m F m q 1 for all i .i i



DASZKIEWICZ, KRASKIEWICZ, AND PRZEBINDA´530

In the following we always assume r ) 0.
o Ž .If r is odd and r F l , then l s l q 1, . . . , l q 1, r , and obvi-i 1 i y10 0

ously mo F lo.
ŽLet t denote the greatest index with the property m / l i.e., t s k qt t

Ž . Ž . Ž . Ž .1 s 2 in cases A and B , t s k q 2 s 3 in cases C and D , t s 4 in
Ž . Ž . Ž ..case E , t s j in case G , and t s j q 1 in case F . If i ) t, then0

Ž . Ž . o o o oi l s i m , l s l q 1, m s m q 1 for i - i , l s m for i G i and0 0 i i i i 0 i i 0
we have mo - lo.

Ž .) It follows from the above that it remains to consider the case
Ž .1 F i F t, and either r s r l ) 0 even, or r odd and l - r F 2l q 10 i i i0 0 0

Ž .in the last case l s l is odd .i i q10 0

i s 1, r e¨en0

o Ž . Ž . o Ž . ŽIn this case either l s r y 1, 1 if r F l or l s l , r y l ifi i i0 0 0
.l - r .i0 o o o Ž .In the first case the only possibility for m g l is m s r , but this is

Ž .not possible, as r is even and r is not orthogonal.
In the second case the only possibility for mo g lo is mo ) l , but1 1

mo F m q 1 - l q 1, so mo F l .1 1 1 1 1
We see that in both cases mo F lo.

i s 1, r odd0

o Ž .In this case l - r F 2l q 1, so l s l , r y l y 1, 1 . As m F l ,i i 1 1 1 10 0o o o Ž o o. o othe only possibility for m g l is m s m , m . But m q m s r, and as1 2 1 2
r is odd, mo cannot be orthogonal.

i s 20

Ž .Let r s r l .2

Ž . Ž .A Assume that the degeneration m - l is of type A . As l s l y 22
o Žis even, the only remaining case is that of even r. In that case l s l q

. o o o Ž o.1, r y 1, 1 . As m F l s l, the only possibility for m g l is l m s 2,1 1
but then mo q mo s l q r q 1 is odd, so mo cannot be orthogonal.1 2

Ž . Ž .B In the case of degeneration of type B , as l s l9 is even, the only2
o Ž .case to consider is that of even r. In this case l s l q 1, r y 1, 1 and as

mo F m q 1 s l y 1, we conclude that mo F lo.1 1

Ž . Ž .C The same argument as above works in case C if l s l9 is even,2
so it remains to consider the case of odd l9. We have three possibilities:

o Ž .1. r F l and r is even. In this case l s l q 1, r y 1, 1 and the2
Ž .same argument as in case B works here.
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o Ž2. l - r F 2l q 1 and r is even. In this case l s l q 1, l9, r y2 2
. o o o ol9 . As m F l y 1 and m F m q 1 s l9 q 2, we have m - l .1 2 2

o Ž3. l - r F 2l q 1 and r is odd. In this case l s l q 1, l9, r y l92 2
. o Ž o o . Ž oy 1, 1 . As m s l y 1, m , m , . . . m s l y 1 since m s l y 2 is even2 3 1 1
Ž . . o o Ž o.and r m G m q 1 , the only possibility for m g l is l m F 3. But1 1
o o Ž . othen m q m s r q 2, and as r q 2 is odd m must be even and at the2 3 2

same time equal to l y 1. This is not possible, since l is even. Hence
mo - lo in this case.

Ž . Ž . Ž . Ž . Ž Ž .D , E In cases D and E , l must be even if l is odd, i l cannot0
.be equal to 2 , so the only remaining case is that of even r. But then

o Ž . Ž . Ž . o ol s l q 1, r y 1, 1 and as in case A with i s 2 we get m F l .0

Ž . Ž .F This case cannot occur, as l s l is odd, so i l / 2.1 2 0

Ž .G In this case l s l s l y 1 is odd, so we have the following2 3
possibilities:

o Ž .1. r F l and r is even. In this case l s l q 1, r y 1, 1 and as2
o Ž .m F l, we can reason as in case A .1

o Ž2. l - r F 2l q 1 and r is even. In this case l s l q 1, l y 1,2 2
. o o o or y l q 1 and as m F l and m F l, we have m - l .1 2

o Ž3. l - r F 2l q 1 and r is odd. In this case l s l q 1, l y 1,2 2
. Ž .r y l, 1 and the same reasoning as in case 3 of case C gives the result.

Ž .This ends the case i l s 2.0

( )i l G 30

Ž . Ž . Ž . Ž . Ž .Here the cases to consider are C , D , E , F and G .

i s 30

Ž . Ž . Ž . Ž . Ž .C , D Let r s r l . In case C i l s 3 can occur only if l s l93 0 3
Ž .is even. By definition, the same is true in case D , so we consider both

Ž .cases together. By ) the only remaining case is that of even r. Hence
o Ž . o o o o o ol s l q 1, l q 1, r y 1, 1 , and as m - l and m q m F l q l ,1 2 1 1 1 2 1 2

o o Ž o.the only possibility for m g l is l m s 3.
Ž . o Ž o. o o oIn case C we have m s l y 1, l9 q 2, m , and as m q m q m s3 1 2 3

lo q lo q lo q lo s l q 1 q l9 q 1 q r, we have mo s r q 1, so the only1 2 3 4 3
even part of mo is equal to l9 q 2, but this is not possible as mo is
orthogonal.

Ž . o Ž o. o o oIn case D we have m s l, l, m , and as m q m q m s l q 1 q l q3 1 2 3
1 q r we get mo s r q 2 and this is not possible as r is even.3
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i s 30

Ž .E We have to consider the cases of l9 even or odd separately. Let, as
Ž .before, r s r l .3

l9 e¨en

Ž .By ) the only case to consider is that of even r. In this case
o Ž . o o ol s l q 1, l q 1, r y 1, 1 and the only possibility for m g l is m s

Ž .l, l, r q 2 , but this is not possible as r q 2 is even.

l9 odd

We have three subcases:

o Ž .1. r F l s l9 and r is even. Here l s l q 1, l q 1, r y 1, 1 and3
we continue as in the case of even l9.

o Ž2. l - r F 2l q 1 and r is even. In this case l s l q 1, l q3 3
. o o o o o1, l9, r y l9 . Since m s l, m s l, and m F l9 q 2, we have m - l .1 2 3

o Ž3. l - r F 2l q 1 and r is odd. Here l s l q 1, l q 1, l9, r y3 3
. o o ol9 y 1, 1 . Now, as m s l, m s l, and m F l9 q 2, it could happen that1 2 3

o o o Ž o o. o om g l only if m s l, l, m , m , but in that case m q m s r q 2 and3 4 3 4
this is not possible as r q 2 is odd and mo is orthogonal.

i G 30

Ž . Ž . Ž .We are left with cases F and G with i l G 3.0

Ž . Ž .F 3 F i l - j: As l s l y 1 is even, the only interesting case is0 i0 o Ž .that of even r. In that case l s l q 1, l q 1, l, . . . , l, r y 1, 1 , and as
m s l for 1 F p F i y 1, we could have mo g lo only if mo sp 0
Ž .l, l, . . . , l, r q 2 , but this is not possible since r q 2 is even.

Ž . Ž .F i l s j: As l s l y 2 is odd, we have three cases to consider.0 j

Ž . o Ž1. r s r l F l and r is even. Here l s l q 1, l q 1, l, . . . , l, r yj j
. o o o Ž .1, 1 and, as before, m g l could happen only if m s l, l, . . . , l, r q 2 ,

but this is not possible since r q 2 is even.
o Ž2. l - r F 2l q 1 and r is even. Here l s l q 1, l q 1, l, . . . , l,j j

. o o ol y 2, r y l q 2 and we have m F l as m F l for all p.p
o Ž3. l - r F 2l q 1 and r is odd. Here l s l q 1, l q 1, l, . . . , l,j j

. o o o ol y 2, r y l q 1, 1 , and as m s ??? s m s l, we could get m g l1 jy1
o Ž o o . o oonly if m s l, . . . , l, m , m , but then m q m s r q 2 and only onej jq1 j jq1

part of mo would be even, which would contradict the orthogonality of mo.
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Ž . Ž .F i l s j q 1: This case cannot occur as l s l are odd.0 j jq1

Ž . Ž . Ž .G 3 F i l - j: The same argument as for G , i s 2, works in this0 0
case.

Ž . Ž .G i s j: The only case to consider is that of even r s r l . Then0 j
o Ž . o o ol s l q 1, l, . . . , l, r y 1, 1 . We could get m g l only if m s

Ž . ol, l, . . . , l, r q 1 but this cannot happen as m would have an odd number
of even l’s, which would contradict the orthogonality of mo.

This was the last case to consider and Lemma 5.4 is proved. This also
ends the proof of Theorem 5.2.

Ž . Ž .5.2. The Case G s O U , G9 s Sp V

The main idea of the construction is completely analogous to the
previously considered cases. The technical problems are fortunately a little
bit simpler than in the proof of Theorem 5.2.

DEFINITION 5.5. Let l be an orthogonal partition of n. Define a
symplectic partition ls of m in the following way. Let r s m. For i G 21

Ž . Ž . Ž .let r s r l s m y l q 1 q l q 1 q ??? ql q 1 . Let i s i l bei i 1 2 iy1 0 0
Ž .the smallest i G 1 such that l , . . . , l is an orthogonal partition and1 iy1

either r F l or l is even and l - r F 2l q 1. For 1 F i - i definei i i i i i 0
ls s l q 1. Moreover:i i

Ž . sa if r s 0, then define l s 0 for j G i ,i j 00

Ž . s sb if 0 - r F l , then define l s r and l s 0 for j ) i ,i i i i j 00 0 0 0

Ž . Ž . sc if l - r F 2l q 1 so l s l is even , then define l si i i i i q1 i0 0 0 0 0 0

l , ls s r y l , and ls s 0 for j G i q 2.i i q1 i i j 00 0 0 0

Remark. Immediately from the definition it follows that ls is a sym-
Ž .plectic partition note that by Lemma 2.1 the number r is even! and thati0

Ž . sthere exists an orthosymplectic ab-diagram d such that r d s l ,
Ž . sp d F l. We will show later that l is the largest partition with these

properties.

THEOREM 5.6. Let l be an orthogonal partition of n s dim U. Then

y1
sr p o s sp . 9Ž .Ž .Ž .l l

Proof. From the remark following Definition 5.5 it follows that

y1
ssp : r p o .Ž .Ž .l l

y1 y1Ž . Ž . Ž Ž ..As p o is O U -invariant, by Lemma 3.7 the set r p o is closedl l

Ž .and it follows that the relation = holds in 9 . It remains to prove the
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following claim:

Claim. Let m be an orthogonal partition of n such that m F l, and let
Ž . Ž . sd be an orthosymplectic ab-diagram such that p d s m. Then r d F l .

The claim follows immediately from the following two lemmas:

Ž . sLEMMA 5.7. In the situation of the claim, r d F m .

LEMMA 5.8. If m F l are two orthogonal partitions of n, then ms F ls.

Ž . Ž . X sProof of Lemma 5.7. Let r d s m9. As by 3.4 m F m q 1 s m forj j j
X X s s Ž s.all j - i , we have m q ??? qm F m q ??? qm for all i - i . If l m s0 1 i 1 i 0

i , also mX q ??? qmX F m s ms q ??? qms , so the only case that remains0 1 i 1 i0 0
Ž . s Ž s.is case c of the definition of m , when l m s i q 1. But in that case0

the only possibility for m9 g ms is mX q ??? qmX ) ms q ??? qms . This can1 i 1 i0 0

happen only if mX s m q 1 for all i F i , but then for m9 to be symplectic,i i 0
X X Ž . X Xm has to be equal to m as m is even and then m q ??? qm ) mi i q1 i 1 i q10 0 0 0

gives a contradiction.

Proof of Lemma 5.8. As before, it suffices to consider pairs of adjacent
orthogonal partitions. The list of all possible adjacent pairs of symplectic
partitions is as follows:

A l s l , . . . , l , l , l y 2, l , . . . ,Ž . Ž .1 ky1 kq2

m s l , . . . , l , l y 1, l y 1, l , . . . ,Ž .1 ky1 kq2

l is odd ;Ž .
B l s l , . . . , l , l , l9, l , . . . ,Ž . Ž .1 ky1 kq2

m s l , . . . , l , l y 2, l9 q 2, l , . . . ,Ž .1 ky1 kq2

both l , l9 are odd, l G l9 q 4 ;Ž .
C l s l , . . . , l , l , l9, l9, l , . . . ,Ž . Ž .1 ky1 kq3

m s l , . . . , l , l y 2, l9 q 1, l9 q 1, l , . . . ,Ž .1 ky1 kq3

l is odd, l G l9 q 3 ;Ž .
D l s l , . . . , l , l , l , l9, l , . . . ,Ž . Ž .1 ky1 kq3

m s l , . . . , l , l y 1, l y 1, l9 q 2, l , . . . ,Ž .1 ky1 kq3

l9 is odd, l G l9 q 3 ;Ž .
E l s l , . . . , l , l , l , l9, l9, l , . . . ,Ž . Ž .1 ky1 kq4

m s l , . . . , l , l y 1, l y 1, l9 q 1, l9 q 1, l , . . . ,Ž .1 ky1 kq4

l G l9 q 2 ;Ž .



NILPOTENT ORBITS AND DUAL PAIRS 535

F l s l , . . . , l , l , l , l y 1, . . . , l y 1 , l y 2,Ž . ž 1 ky1 ^ ` _
j y k y 2

l y 2, l , . . . ,/jq2

m s l , . . . , l , l y 1, . . . , l y 1 , l , . . . ,ž /1 ky1 jq2^ ` _
j y k q 2

l is even; odd l , although possible, does not give aŽ
minimal degeneration ;.

G l s l , . . . , l , l , l y 1, . . . , l y 1 , l y 2, l , . . . ,Ž . ž /1 ky1 jq1^ ` _
j y k y 1

m s l , . . . , l , l y 1, . . . , l y 1 , l , . . . ,ž /1 ky1 jq1^ ` _
j y k q 1

l is odd, j y k y 1 is even, and j ) k q 1 .Ž .
Ž .Let m - l be one of the adjacent pairs listed above and let i s i l .0 0

i - k0

Ž . Ž . Ž . Ž .In this case, as m , . . . , m s l , . . . , l , we have i l s i m1 ky1 1 ky1 0 0
and ms s ls.

i G k0

Notice that in all cases of minimal degenerations the partition
Ž . Ž . Ž .l , . . . , l is orthogonal, so both l , l , . . . and m , m , . . . are1 ky1 k kq1 k kq1
orthogonal as well. Also, ls s l q 1 s m q 1 s ms for all i - k. Iti i i i
follows that from now on we can assume that k s 1.

Ž . Ž s Ž .. s ŽLet r s r l . If r s 0 so l is as in Definition 5.5 a , then l s l qi 10
. s s Ž s1, . . . , l q 1 and as m - l, obviously m F l as m F m q 1 for alli y1 i i0

.i . In the following we always assume r ) 0.
s Ž . s Ž .If l is as in Definition 5.5 b , l s l q 1, . . . , l q 1, r , then from1 i y10

ms F m q 1 and m F l we immediately get ms F ls, so the only case thati i
s Ž .remains is l as in Definition 5.5 c , i.e.,

ls s l q 1, . . . , l q 1, l , r y l ,Ž .1 i y1 i i0 0 0

with both r and l even.i0

The same argument as above shows that ms q ??? qms F l2 q ??? qls
1 i 1 i

for all i / i , so it remains to show that0

ms q ??? qms F ls q ??? qls . 10Ž .1 i 1 i0 0

We will show it by a case-by-case analysis to those in previous proofs.
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Let t be the greatest number such that m / l , i.e., t s k q 1 s 2 int t
Ž . Ž . Ž . Ž . Ž .cases A and B , t s k q 2 s 3 in cases C and D , t s 4 in case E ,

Ž . Ž .t s j in case G and t s j q 1 in case F .
Ž .As in previous proofs, if i ) t, then the inequality 10 is immediate, so0

it remains to consider cases 1 F i F t.0

i s 10

s Ž . sIn this case l s l , r y l , so it is enough to prove that m F l . But1 1 1 1
this is clear, as in all cases m - l .1 1

i s 20

Ž . Ž .A This case cannot occur as l s l y 2 should be even for c , but iti0
Ž .should be odd for A .

Ž . Ž .B This case cannot occur as l s l9 should be even for c but oddi0
Ž .for B .

Ž .C

l s l , l9, l9, . . . ,Ž .
m s l y 2, l9 q 1, l9 q 1, . . . ,Ž .

Ž .l is odd, l9 s l is even, r ) l9 implies r G l9 q 2 both are even , soi0

ls s l q 1, l9, r y l9 ,Ž .
ms s l y 1, l9 q 2, r y l9 y 2Ž .

Ž .and 10 holds in this case.

Ž . Ž . Ž .D , E , F These cases cannot occur as, on the one hand, in all these
Ž .cases l ) l , on the other hand, c requires l s l .i i q1 i i q10 0 0 0

Ž .G

l s l , l y 1, l y 1, . . . ,Ž .
m s l y 1, l y 1, l y 1, . . . ,Ž .

so

ls s l q 1, l y 1, r y l q 1 , ms s l , l , r y l q 1Ž . Ž .
Ž .and 10 holds in this case.

i s 30

Ž . Ž . Ž . Ž . Ž . ŽHere the only cases to consider are C , D , E , F , and G otherwise
.i ) t .0
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Ž . Ž . Ž .C This case cannot occur as C requires l s l, l9, l9, . . . with l odd
Ž Ž .. Ž .and l9 even see the paragraph preceding 10 , while Definition 5.5 c

Ž .requires the partition l , l to be orthogonal.1 2

Ž . Ž . Ž .D This case cannot occur as D requires l s l, l, l9, . . . with l9
Ž .odd, and Definition 5.5 c requires l s l9 to be even.i0

Ž .E
l s l , l , l9, l9, . . . ,Ž .
m s l y 1, l y 1, l9 q 1, l9 q 1, . . . , l G l9 q 2,Ž .

so

ls s l q 1, l q 1, l9, r y l9 ,Ž .
ms s l , l , l9 q 2, r y l9 y 2Ž .

Ž .and 10 holds in this case.

Ž . Ž . Ž .F This case cannot occur as F requires l s l, l, l y 1, . . . with
Ž .even l, while for Definition 5.5 c l q 1 should be even.

Ž . Ž . Ž .G This case cannot occur as G requires l s l, l y 1, . . . , while for
Ž . Ž .Definition 5.5 c the partition l, l y 1 should be orthogonal.

This ends the study of the case i s 3. The only cases that remain are0
Ž . Ž . Ž .i s 4 for a pair of type E and i G 4 for pairs of types F and G .0 0

i s 40

Ž . Ž . Ž .E This case cannot occur as E requires l s l, l, l9, l9, . . . with
Ž . Ž .l ) l9, and now by Definition 5.5 c the partition l, l, l9 should be orthog-

onal, so l9 must be odd, and at the same time l s l9 should be even.i0

4 F i - j0

Ž . Ž .F This case cannot occur as F requires even l, while for Definition
Ž .5.5 c l s l y 1 should be even.i0

Ž .G

l s l , l y 1, . . . , l s l y 1, l y 1, . . . , l y 1, l s l y 2, . . . ,Ž .i j0

m s l y 1, . . . , l y 1, m s l y 1, . . . ,Ž .j

so

ls s l q 1, l , . . . , l , ls s l y 1, r y l q 1 ,Ž .i0

ms s l , l , . . . , l , ms s l , r y l q 1Ž .i0

Ž .and 10 holds in this case.
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i s j0

Ž .F

l s l , l , l y 1, . . . , l y 1, l s l y 2, l y 2, . . . ,Ž .i0

m s l y 1, l y 1, . . . , m s l y 1, . . . ,Ž .i0

so

ls s l q 1, l q 1, l , . . . , l , ls s l y 2, r y l q 2 ,Ž .i0

ms s l , l , . . . , ms s l , r y l q 2Ž .i0

Ž .and 10 holds in this case.

Ž . Ž .G This case cannot occur as G requires l to be odd, while for
Ž .Definition 5.5 c l s l y 2 should be even.i0

i s j q 10

Ž . Ž .F This case cannot occur as F requires even l, while for Definition
Ž . Ž .5.5 c the partition l, l, l y 1, . . . , l y 1, l y 2 should be orthogonal, so

l y 2 should be odd.

This was the last case to consider and this ends the proof of Lemma 5.8
and Theorem 5.6.
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