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REPRESENTATION (EXTENDED)

ANNE-MARIE AUBERT AND TOMASZ PRZEBINDA

Abstract. We describe a new approach to the Weil representation attached to a sym-
plectic group over a finite or a local field. We dissect the representation into small pieces,
study how they work, and put them back together. This way, we obtain a reversed con-
struction of that of T. Thomas, skipping most of the literature on which the latter is
based.
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1. Introduction

The Weil representation is a magnificent structure which keeps appearing in a variety
of places throughout Mathematics and Physics. This is evident from a simple google
or mathscinet search for “oscillator representation”, “Weil representation”, “Howe corre-
spondence” or “local theta correspondence”. The last two terms refer to a correspondence
of irreducible representation for certain pairs of groups, conjectured to exist in [17], proven
to exist over the reals in [21], over p-adic fields (p odd) in [48] and essentially proven not
to exist over finite fields in [1]. A concise description of the Weil representation may be
found in [45]. Anyone interested in a short and complete presentation should read that
paper and stop right there. That work is really hard to improve upon. In this article we
take the opposite approach. We dissect the Weil representation into small pieces, study
how they work, and put them back together, in effect checking that the formulas of [45,
Theorem C] are correct, thus reversing Thomas’ proofs and skipping most of the literature
on which it is based. Hence the title of this article. The methods we use are elementary,
i.e. contained in a graduate curriculum of an average university in the USA. In contrast,
a reader well versed in Algebraic Geometry will certainly enjoy [6], [7] or [8]. In the real
case one should also mentions some classics, such as [26] or [4].
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The Weil representation concerns a symplectic group defined over a field or over the
adeles (or, more recently, over a ring [2], [9], [23], or a finite abelian group [37]). The field
could be finite or local. We always assume that the characteristic is not 2, skip the case
of the complex numbers as not interesting, and the adeles, the rings and the finite abelian
groups as very interesting but requiring more energy, which we have just exhausted. Here
is a brief description of what we do.

Let F be a finite field of odd characteristic and let W be a finite dimensional vector
space over F equipped with a non-degenerate symplectic form 〈 , 〉. The symplectic form
induces a twisted convolution \ on the space L2(W), making it into an associative algebra
with identity over C. One may think of it as of “the essential part” of the group algebra of
the Heisenberg group attached to (W, 〈 , 〉). For any subspace X ⊆W, define a measure
µX on W by ∫

X

ψ(x) dµX(x) := |X|−1/2
∑
x∈X

ψ(x),

where |X| is the cardinality of X and ψ : X→ C is a function. Fix a non-trivial character χ
of the additive group F. Then the twisted convolution (with respect to χ) of two functions
φ, ψ : W→ C is defined as

φ\ψ(w) :=

∫
W

φ(u)ψ(w − u)χ(
1

2
〈u,w〉) dµW(u) (w ∈W). (1)

The algebra H.S.(L2(X)) of the Hilbert-Schmidt operators on L2(X) may be identified
with L2(X×X) by assigning the integral kernel K ∈ L2(X×X) to each operator Op(K) ∈
H.S.(L2(X)) by setting

Op(K)v(x) :=

∫
X

K(x, x′)v(x′) dµX(x′).

Suppose that X is a part of a complete polarization W = X⊕Y. Let K : L2(W)→ L2(X×X)
be the corresponding the Weyl transform:

K(φ)(x, x′) =

∫
Y

φ(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y) .

Then we have the following sequence of algebra isomorphisms:

L2(W)
K→ L2(X× X)

Op→ H.S.(L2(X)). (2)

Let Sp(W) denote the symplectic group, that is the isometry group of the form 〈 , 〉. The
main result of [45, Theorem C] gives an explicit formula for a map T : Sp(W) → L2(W)
such that the resulting composition

ω : Sp(W)
T→ L2(W)

K→ L2(X× X)
Op→ H.S.(L2(X)), (3)

is an injective group homomorphism of the symplectic group into the group U(L2(X)) of
the unitary operators on L2(X),

ω : Sp(W)→ U(L2(X)), (4)
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which has the following “conjugation property”(
ω(g) Op ◦ K(φ)ω(g−1)

)
(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)). (5)

A less explicit formula for T (g) occurred already in [16, Theorem 2.9]. The missing
ingredient was the description of the trace tr(ω(g)), which was done in [44] and led to [45,
Theorem C]. A proof of the existence of ω satisfying (4) and (5) is also available in [5,
Theorem 2.4]. In chapter 3 we check, via a straightforward but non-trivial computation,
that the ω given in [45, Theorem C] is indeed a group homomorphism.

Our approach is the following. For any g ∈ Sp(W), the left and right radicals of the
bilinear form (w,w′) 7→ 〈(g−1)w,w′〉 coinciding with Ker(g−1), we get a non-degenerate
bilinear form Bg on the quotient W/Ker(g − 1). Let dis(Bg) denote its discriminant. We
set

Θ(g) := |Ker(g − 1)|1/2 γ(1)dim (g−1)W dis(Bg), (6)

where

γ(1) =

∫
F
χ(xtx)dµF(x).

Then we define T (g) by
T (g) := Θ(g)χc(g) I(g−1)W ,

where for u ∈ (g − 1)W

χc(g)(u) = χ(
1

4
〈c(g)u, u〉), (7)

c(g) : (g − 1)W → W/Ker(g − 1) denoting the Cayley transform, and I(g−1)W is the
indicator function of (g − 1)W .

Our first main result (Theorem 31) asserts that

T (g1)\T (g2) = T (g1g2), for any g1, g2 ∈ Sp(W). (8)

Let ω := Op ◦ K ◦ T . Our second main result (Theorem 33) asserts that ω is an injective
group homomorphism from Sp(W) to U(L2(X)), that the function Θ coincides with the
character of the resulting representation, and that Eqn. (5) holds true.

In the case F = R, the reals, one has to deal with the “smog overspreading the infinite
field” [16, page 2]. In particular the first two Hilbert spaces which occur in (2) have to
be replaced by the spaces of tempered distributions. Hence, the algebra structure breaks
down, but enough of it survives to make sense out of the formulas like

T (g̃1)\T (g̃2) = T (g̃1g̃2), (9)

where g̃1, g̃2 ∈ S̃p(W), a double cover of Sp(W) (see below). The resulting representation

ω of S̃p(W) appeared first in [43], as a natural development in Quantum Mechanics, [47].

Explicit formulas for ω(g̃), g̃ ∈ S̃p(W), may be found in [39, Theorem 5.3] and for T (g̃)
in [28]. Furthermore, if one thinks of ω(g̃) as of a pseudo-differential operator, then its
Weyl symbol, see [15], is T (g̃).

Our approach consists of defining first, for g ∈ Sp(W),

Θ2(g) := γ(1)2 dim (g−1)W (det(g − 1: W/Ker(g − 1)→ (g − 1)W))−1 , (10)
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setting next

S̃p(W) := {(g, ξ); g ∈ Sp(W), ξ ∈ C×, ξ2 = Θ2(g)},
and finally

Θ(g̃) := ξ, for g̃ = (g, ξ) ∈ S̃p(W).

Let χ(r) = exp(2πir) for r ∈ R. Define χc(g) as in (7). Then we set

T (g̃) := Θ(g̃)χc(g) µ(g−1)W ,

where µ(g−1)W is an appropriately normalized Haar measure on (g− 1)W , and prove that
the formula (9) is satisfied.

Similar difficulties as for the reals occur when F is a p-adic field, with some new ones,
see chapter 6 for details. The representation ω was constructed in [51] and the explicit

formulas for ω(g̃), g̃ ∈ S̃p(W), may be found in [36]. Our construction in the p-adic case
occurs to be a mixed version of the finite and the reals cases, as shows the definition of
Θ(g̃)2 (see Definition 122).

Checking the equality (8) (or (9)) requires some effort. First we compute the twisted
convolution of the unnormalized Gaussians χc(g) I(g−1)W (or χc(g) µ(g−1)W ) and obtain a
cocycle C(g1, g2). This is straightforward, but not easy in the sense that one has to keep
track of various determinants, which are explained in section 2. Then we “guess” the
normalization factor Θ(g) (or Θ(g̃)) and verify (8) (or (9)). This second step is more
difficult. “Guessing” the normalizing factor, which happens to be the distribution char-
acter of the Weil representation, was done for us by Teruji Thomas in the finite case and
others in the remaining two cases. We show that the normalized Gaussians form a group
by a direct computation involving the cocycle. The point is that this computation is the
same in all three cases (finite, real and p-adic) and avoids the holomorphic continuation
to the oscillator semigroup studied in [20], [29] or [34]. In a sense, we replace analytic
difficulties by some convoluted linear algebra of section 2. Our methods are equivalent,
but not equal, to those used in [26, sec. 1.4-1.7] where the authors describe the cocy-
cle C(g1, g2)/|C(g1, g2)| and give a formula for the Weil representation acting in some
Schrödinger model. Proving that C(g1, g2)/|C(g1, g2)| is a cocycle relies on Kashiwara’s
description of Maslov index associated to three maximal isotropic subspaces of W. We
deduce this fact from the associativity of the twisted convolution of the Gaussians. Thus
our “convoluted linear algebra” replaces the beautiful theory of Maslov index. (Another
justification for the title of our article.)

Weil’s construction covers the cases of all locally compact non-discrete fields (including
the reals) and adeles and gives applications to the theory of automorphic forms. Hence
the name “Weil representation”, taking away some of the credit from David Shale - a
student of Erza Segal. Possibly in an attempt to find a middle ground Roger Howe pro-
posed the name “the oscillator representation”, [16, page 1]. The names “Segal-Shale-Weil
representation”, [24], “metaplectic representation”, [35], and “spin representation of the
symplectic group”, [25] have also been used. Since, as the reader will see, understanding
the Fourier transform of a Gaussian is the only prerequisite to follow our reverse engi-
neering process, a name like “Gauss-Fourier-Segal-Shale-Weil representation” is another
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option. (In fact many researchers have been (and most likely will be) fascinated by the
Gaussians and wrote volumes about them, see for example [30].) We chose to use the
name “Weil representation”, because it is the shortest one.

We would like to thank Angela Pasquale and Allan Merino for their careful reading of
this article, some corrections and suggestions. Also, we express our gratitude to the two
referees for their time and guidance through some related literature.



THE WEIL REPRESENTATION 7

2. Linear algebra preliminaries

The first aim of this section is to collect various results, valid for arbitrary commutative
fields of characteristic not equal to 2, that we will use in each of the three next sections.
It is the object of the subsections 2.1 to 2.4. The two other subsections are devoted
to determinants over the reals, and over a p-adic field, respectively; the main result
is Lemma 11 (resp. Lemma 23), which will be used in the proof of Lemma 50 (resp.
Lemma 123).

2.1. General results on quadratic forms. Let F be a commutative field of character-
istic not equal to 2. Let U be a finite dimensional vector space over F. Suppose q is a
non-degenerate symmetric bilinear form on U. Then the formula

Φ(u)(v) = q(u, v) (u, v ∈ U) (11)

defines a linear isomorphism Φ: U → U∗, where U∗ is the vector space dual to U. The
form q∗ dual to q is given by

q∗(u∗, v∗) = v∗(Φ−1(u∗)) (u∗, v∗ ∈ U∗).

Let Q be the matrix obtained from any basis u1, u2, . . ., un of U by

Qi,j = q(ui, uj) (1 ≤ i, j ≤ n). (12)

Lemma 1. If Q is the matrix corresponding to q and a basis u1, u2, . . ., un of U, as above,
then Q−1 corresponds to q∗ and the dual basis u∗1, u∗2, . . ., u∗n of U∗.

Proof. Suppose Φ(u) = u∗. Then for any v ∈ U,

u∗(v) = q(u, v) =
n∑

i,j=1

u∗i (u)q(ui, uj)u
∗
j(v).

Thus

u∗ =
n∑
j=1

(
n∑
i=1

u∗i (u)q(ui, uj)

)
u∗j .

Therefore

u∗(uj) =
n∑
i=1

u∗i (u)q(ui, uj) (1 ≤ j ≤ n).

In matrix form the above equations may be written as

(u∗(u1), u∗(u2), . . . , u∗(un)) = (u∗1(u), u∗2(u), . . . , u∗n(u))Q.

Hence,

(u∗(u1), u∗(u2), . . . , u∗(un))Q−1 = (u∗1(u), u∗2(u), . . . , u∗n(u)).

Thus

u =
n∑
j=1

u∗j(u)uj =
n∑
j=1

n∑
i=1

u∗(ui)(Q
−1)i,juj.
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Therefore,

q∗(u∗, u∗) =
n∑
j=1

n∑
i=1

u∗(ui)(Q
−1)i,ju

∗(ui).

In other words,
q∗(u∗i , u

∗
j) = (Q−1)i,j.

�

2.2. Symplectic spaces. Let W be a finite dimensional vector space over F with a non-
degenerate symplectic form 〈 , 〉 and let U ⊆W be a subspace. We shall identify W with
the dual W∗ by

w∗(w) = 〈w,w∗〉 (w,w∗ ∈W). (13)

Then
U∗ = W/U⊥ and (U/V)∗ = V⊥/U⊥, (14)

where the orthogonal complements are taken in W, with respect to the symplectic form
〈 , 〉.

Lemma 2. Let V1,V2 ⊆W be two subspaces and let w ∈W be such that V1∩(V2 +w) 6= ∅.
Then for any v ∈ V1 ∩ (V2 + w),

V1 ∩ (V2 + w) = V1 ∩ V2 + v.

Proof. There are vectors v1 ∈ V1 and v2 ∈ V2 such that

v = v1 = v2 + w.

Then
V1 ∩ (V2 + w)− v = V1 ∩ (V2 + w)− v1 ⊆ V1 − v1 = V1

and

V1 ∩ (V2 + w)− v = V1 ∩ (V2 + w)− (v2 + w) ⊆ (V2 + w)− (v2 + w) = V2.

Hence,
V1 ∩ (V2 + w)− v ⊆ V1 ∩ V2.

Conversely, let V1 3 v′1 = v′2 ∈ V2. Then

v′1 + v = v′1 + v1 ∈ V1 and v′2 + v = v′2 + v2 + w ∈ V2 + w.

Therefore
V1 ∩ V2 + v ⊆ V1 ∩ (V2 + w).

�

Let Sp(W ) denote the isometry group of 〈 , 〉:
Sp(W) = {g ∈ GL(W) : 〈gw, gw′〉 = 〈w,w′〉 ∀w,w′ ∈W} .

Let dim(W) = 2n. Then there is a group isomorphism

Sp(W) ' Sp2n(F) := {A ∈ GL2n(F) : AtJ ′A = J ′}, (15)
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where At means the transpose of A, and

J ′ =

(
0 In
− In 0

)
.

The Lie algebra of Sp2n(F) is equal to

sp2n(F) = {X ∈ gl2n(F) : X tJ ′ + J ′X = 0}.

Matrices which belong to Sp2n(F) are called symplectic matrices. It clearly follows from
(15) that the square of the determinant of any symplectic matrix is 1. In fact, the
determinant itself is always 1. Indeed, the determinant of any antisymmetric matrix can
be expressed as the square of a polynomial in the entries of the matrix. This polynomial
Pf is called the Pfaffian. The following identity holds true: Pf(AtJ ′A) = det(A) Pf(J ′).
Since AtJ ′A = J ′, we get det(A) = 1.

2.3. The Cayley transform. For g ∈ Sp(W), we set

g± := g ± 1, (16)

and define the Cayley transform by

c(g) : g−W 3 g−w → g+w + Ker(g−) ∈W/Ker(g−). (17)

Then the bilinear form

〈c(g)u′, u′′〉 = 〈g+w′, g−w′′〉 (u′ = g−w′, u′′ = g−w′′, w′, w′′ ∈W) (18)

on the space g−W is well defined and symmetric.

Lemma 3. For any g ∈ Sp(W) the map

g+ : Ker(g−)→ Ker(g−)

is bijective.
Also, for any u = g−w, with w ∈ W, the preimage of c(g)u ∈ W/Ker(g−) under the

quotient map W→W/Ker(g−) is equal to g+w + Ker(g−).

Proof. Since g+ commutes with g−, g+ preserves Ker(g−). Suppose w ∈ Ker(g−) and
g+w = 0. Then

g−w = 0 and g+w = 0,

which implies w = 0. The second statement is obvious. �

Notation 4. For g1, g2 ∈ Sp(W), let

U1 := g−1 W, U2 := g−2 W and U12 := (g1g2)−W,

K1 := Ker g−1 , K2 := Ker g−2 and K12 := Ker(g1g2)−.
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Lemma 5. Let g1, g2 ∈ Sp(W) and let w, v ∈W be such that

v ∈ U1 ∩ (U2 + w).

Then for any u′ ∈ U1 ∩ U2

〈c(g1)(u′ + v), u′ + v〉+ 〈c(g2)(w − u′ − v), w − u′ − v〉+ 2〈u′ + v, w〉
= 〈(c(g1) + c(g2))u′, u′〉 − 2〈u′, c(g1)v − c(g2)(w − v)− w〉
+ 〈c(g1)v, v〉+ 〈c(g2)(w − v), w − v〉+ 2〈v, w〉.

Proof. Notice that all the terms in the above expression make sense. Also,

〈c(g1)(u′ + v), u′ + v〉 = 〈c(g1)u′, u′〉+ 2〈c(g1)u′, v〉+ 〈c(g1)v, v〉
and

〈c(g2)(w− u′− v), w− u′− v〉 = 〈c(g2)(w− v), w− v〉 − 2〈c(g2)(w− v), u′〉+ 〈c(g2)u′, u′〉.
Hence

〈c(g1)(u′ + v), u′ + v〉+ 〈c(g2)(w − u′ − v), w − u′ − v〉
= 〈(c(g1) + c(g2))u′, u′〉+ 〈c(g1)v, v〉+ 〈c(g2)(w − v), w − v〉
+ 2〈c(g1)u′, v〉 − 2〈c(g2)(w − v), u′〉.

Furthermore

〈c(g1)u′, v〉 − 〈c(g2)(w − v), u′〉
= −〈u′, c(g1)v〉+ 〈u′, c(g2)(w − v)〉 = −〈u′, c(g1)v − c(g2)(w − v)〉

and the desired equality follows. �

Notation 6. For two elements g1, g2 ∈ Sp(W), let U := U1 ∩ U2, and let qg1,g2 denote the
following symmetric form on U:

qg1,g2(u
′, u′′) =

1

2
(〈c(g1)u′, u′′〉+ 〈c(g2)u′, u′′〉) (u′, u′′ ∈ U). (19)

Let V ⊆ U be the radical of qg1,g2 and let q̃g1,g2 be the corresponding non-degenerate form
on the quotient U/V.

Lemma 7. Let g1, g2, U and V be as in Notation 6. Then

(a) dim(K1 ∩K2) + dim V = dim K12;
(b) dim W − dim U− dim V = dim K1 + dim K2 − dim K12;
(c) dim U1 + dim U2 − dim U12 = dim U + dim V;
(d) V = g−2 K12 = (g−1

1 − 1)K12.

Proof. It is easy to check that the kernel of the following map

W ⊕W 3 (w1, w2)→ (a, b, c) ∈W ⊕W ⊕W

where

a = g−1 w1 − g−2 w2, b = g−1 w1 + g−2 w2 and c = g+
1 w1 + g+

2 w2,
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is equal to

{(w,−w); w ∈ K1 ∩K2} (20)

and that the set of the pairs (w1, w2) such that a = 0 and c = 0 is equal to

{(−g2w2, w2); w2 ∈ K12}. (21)

Let u ∈ U. Then there are w1, w2 ∈ W such that u = g−1 w1 = g−2 w2. In particular the
element “a” is zero. The condition that u ∈ V means that

g+
1 w1 + g+

2 w2 ∈ U⊥. (22)

Since U⊥ = K1 +K2, there are elements x1 ∈ K1 and x2 ∈ K2 such that

g+
1 w1 + g+

2 w2 = x1 + x2.

Lemma 3 shows that there are unique elements y1 ∈ K1 and y2 ∈ K2 such that g+
1 y1 = −x1

and g+
2 y1 = −x2. Let w′1 = w1 + y1 and w′2 = w2 + y2. Then

g+
1 w
′
1 + g+

2 w
′
2 = 0 and u = g−1 w

′
1 = g−2 w

′
2.

Therefore V is equal to the projection on the “b component” of the set (21).
Hence, dim V is equal to the dimension of the set (21) minus the dimension of the

kernel (20):

dim V = dim K12 − dim(K1 ∩K2).

This verifies (a).
Since

dim U⊥ = dim(K1 +K2) = dim K1 + dim K2 − dim(K1 ∩K2)

and since dim U⊥ = dim W − dim U, (b) follows from (a).
We have

dim U1 + dim U2 − dim U12 = (dim W − dim K1) + (dim W − dim K2)− (dim W − dim K12)

= dim W + dim K12 − dim K1 − dim K2 = dim U + dim V,

because of (b). It proves (c).
As we already noticed,

V = {g−1 (−g2w2) + g−2 w2; w2 ∈ K12} = {g−1 (−g−1
1 w2) + g−2 w2; w2 ∈ K12}

= {(g−1
1 − 1)w2 + g−2 w2; w2 ∈ K12} = {2g−2 w2; w2 ∈ K12}

= {g−2 w2; w2 ∈ K12} = {(g−1
1 − 1)w2; w2 ∈ K12}.

This verifies (d). �

Lemma 8. Let g ∈ Sp(W). Then there is a direct sum decomposition

W = X⊕W0 ⊕ Y ⊕W1

such that the subspaces X and Y are isotropic,

(X + Y)⊥ = W0 + W1, X⊕W0 ⊕ Y = W⊥
1 ,

X⊕W0 = Im(g−), X⊕W1 = Ker(g−), and X = Ker(g−) ∩Ker(g−)⊥,
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where Im(g−) = g−W. Furthermore, there are unique elements

g0 ∈ Sp(W0), T ∈ Hom(W0,X), S ∈ Hom(Y,X)

such that for x ∈ X, w0 ∈W0, y ∈ Y and w1 ∈W1

g(x+ w0 + y + w1) = (x+ Tw0 + Sy) + (g0w0 − g0T
∗y) + y + w1,

where T ∗ ∈ Hom(Y,W0) is the conjugate of T with respect to the pairing 〈 , 〉, and the
map

W0 ⊕ Y 3 w0 + y → (Tw0 + Sy) + ((g0 − 1)w0 − g0T
∗y) ∈ X⊕W0

is invertible.
In particular if g1 ∈ End(W) is defined by

g1(x+ w0 + y + w1) = −x− g−1
0 w0 − y − w1,

then g1 ∈ Sp(W) and Ker(g1g − 1) = Ker(gg1 − 1) = 0.

Proof. Clearly X = Ker(g−) ∩ Ker(g−)⊥ is an isotropic subspace. Let Y ⊆W be another
isotropic subspace such that the restriction of the symplectic form to the sum X ⊕ Y is
non-degenerate. Define W′ = (X + Y)⊥. Then we have W = X⊕W′ ⊕ Y.

Also,
X⊕W′ = X⊥ = Ker(g−) + Ker(g−)⊥ ⊇ Ker(g−).

Set W1 = Ker(g−) ∩W′. Then the above inclusion implies that Ker(g−) = X⊕W1. Let
W0 = W⊥

1 ∩W′. Then

W′ = W0 ⊕W1 and Im(g−) = Ker(g−)⊥ = X⊕W0.

Since g acts as the identity on W1, g preserves W⊥
1 . Then g|W⊥1 acts as the identity on

X. Also, the stabilizer of X in Sp(W) is a parabolic subgroup. Hence the formula for g
follows from the well known structure of these subgroups.

Clearly the element g1 belongs to Sp(W). Let w = x+ w0 + y + w1 as in the lemma.
Suppose g1gw = w. Then

x = −x− Tw0 − Sy, w0 = −w0 + g−1
0 T ∗y, y = −y and w1 = −w1.

Since the characteristic of the field F is not 2, we see that w = 0.
Suppose gg1w = w. Then

x = −x− Tg−1
0 w0 − Sy, w0 = −w0 + T ∗y, y = −y and w1 = −w1.

Again, since the characteristic of the field F is not 2, we see that w = 0. �

2.4. More lemmas. Assume from now on till the end of this subsection that K1 =
Ker g−1 = {0}.

In this case U = g−2 W. Then

K2 ∩K12 = K1 ∩K2 = {0}.
Hence there is a subspace W2 ⊆W such that

W = K12 ⊕W2 ⊕K2. (23)
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Pick a subspace U′ ⊆W such that

W = U⊕ U′.

Then U = K⊥2 and dim U′ = dim K2. Fix a basis wb+1, wb+2, . . . of K2 and let w′b+1, w′b+2,
. . . be the dual basis of U′ in the sense that

〈wi, w′j〉 = δi,j (b < i, j).

Define an element h ∈ GL(W) by

h|K12⊕W2 = (g−1
1 − 1)−1g−2 , hwi = (g−1

1 − 1)−1w′i, b < i. (24)

Let us extend the basis wi of K2 to a basis of W so that wi ∈ K12 if i ≤ a and wi ∈ W2

if a < i ≤ b. Then

hwi = wi (i ≤ a). (25)

Lemma 9. The following equalities hold:

det(〈(g1g2)−wi, hwj〉a<i,j) (26)

= det(〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉a<i,j≤b)

= det(〈(g1g2)−wi, wj〉a<i,j) det(h).

Moreover, we have

det(〈wi, (g−1
1 − 1)hwj〉i,j) = (−1)dim U det(〈g−2 wi, wj〉i,j≤b). (27)

Proof. Notice that both c(g1) and c(g2) are well defined on the space U and

g−1
1

2
(c(g1) + c(g2))g−2 =

1

2
(g+

1 g
−
2 + g−1 g

+
2 ) + g−1 K2 = (g1g2)− + g−1 K2. (28)

Suppose a < i, j ≤ b. Then (28) shows that

〈(g1g2)−wi, hwj〉 = 〈(g1g2)−wi, (g
−1
1 − 1)−1g−2 wj〉 (29)

= 〈(g−1 )−1(g1g2)−wi, g
−
2 wj〉

= 〈(g−1 )−1g−1
1

2
(c(g1) + c(g2))g−2 wi, g

−
2 wj〉

= 〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉.

Suppose j ≤ b < i. Then (g1g2)−wi = g−1 wi. Hence,

〈(g1g2)−wi, hwj〉 = 〈g−1 wi, (g−1
1 − 1)−1g−2 wj〉 (30)

= 〈wi, g−2 wj〉
= 〈(g−1

2 − 1)wi, wj〉
= 〈−g−1

2 g−2 wi, wj〉
= 〈0, wj〉
= 0.
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If b < i, j, then

〈(g1g2)−wi, hwj〉 = 〈g−1 wi, hwj〉. (31)

Notice that

det(〈g−1 wi, hwj〉b<i,j) = det(〈wi, (g−1
1 − 1)hwj〉b<i,j) = det(〈wi, w′j〉b<i,j) = 1. (32)

The first equality in (26) follows from relations (29), (30), (31) and (32).

Since h preserves the subspace K12, it makes sense to define h̃ ∈ GL(W/K12) by

h̃(w +K12) = hw (w ∈W).

Then

det(〈(g1g2)−wi, hwj〉a<i,j) = det(〈(g1g2)−wi, wj〉a<i,j) det(h̃).

But (25) implies det(h̃) = det(h). Hence the second equality in (26) follows.
Also, if j ≤ b < i, then

〈wi, (g−1
1 − 1)hwj〉 = 〈wi, g−2 wj〉 = 0

because K2 ⊥ U. Hence,

det(〈wi, (g−1
1 − 1)hwj〉i,j) = det(〈wi, (g−1

1 − 1)hwj〉i,j≤b) det(〈wi, (g−1
1 − 1)hwj〉b<i,j)

= det(〈wi, (g−1
1 − 1)hwj〉i,j≤b)

= det(〈wi, g−2 wj〉i,j≤b)
= (−1)dim K12+dim W2 det(〈g−2 wi, wj〉i,j≤b)
= (−1)dim U det(〈g−2 wi, wj〉i,j≤b),

This verifies (27). �

Corollary 10. With the above notation we have

det(〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉a<i,j≤b)

= (−1)dim U det(〈(g1g2)−wi, wj〉a<i,j)
det(〈g−1 wi, wj〉i,j) det(〈g−2 wi, wj〉i,j≤b)−1

.

2.5. Determinants over the reals. Consider two vector spaces U′, U′′ over R of the
same dimension equipped with positive definite bilinear symmetric forms B′, B′′ respec-
tively. Let u′1, u′2, . . ., u′n be a B′-orthonormal basis of U′ and let u′′1, u′′2, . . ., u′′n be a
B′′-orthonormal basis of U′′. Suppose L : U′ → U′′ is a linear bijection. Denote by M the
matrix of L with respect to the two ordered basis:

Lu′j =
n∑
i=1

Mi,ju
′′
i (j = 1, 2, . . . , n).

Then (det(M))2 does not depend on the choice of the orthonormal basis. (Indeed, if we
change the orthonormal bases in the two spaces, we get two matrices P = (P t)−1 and Q =
(Qt)−1, so that the new matrix is M ′ = PMQ. Thus det(M ′) = det(P ) det(M) det(Q).
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Since (det(P ))2 = (det(Q))2 = 1, we see that (det(M ′))2 = (det(M))2.) Thus we may
define (det(L))2 := (det(M))2.

We shall also need a notion of a determinant for a linear map between two vector
spaces (under some additional assumptions of course). For that reason we fix an element
J ∈ Sp(W) and the corresponding positive definite symmetric bilinear form B, that is,

B(w,w′) = 〈J(w), w′〉 (w,w′ ∈W). (33)

Then every subspace of W has a B-orthonormal basis.
For a subset S ⊆W let S⊥B ⊆W be the B-orthogonal complement of S. It is easy to

see that
S⊥B = J−1S⊥ = JS⊥. (34)

For an element h ∈ End(W) define h# ∈ End(W) by

〈hw,w′〉 = 〈w, h#w′〉 (w,w′ ∈W). (35)

Then (Kerh#)⊥ = hW.
Consider an element h ∈ End(W) such that Kerh = Kerh#. (In our applications

h will be equal to g−, where g ∈ Sp(W). Then g# = g−1 − 1 = −g−1g− has the
same kernel as g−.) Let L = J−1h. Denote by L∗ the adjoint to L with respect to
B, (B(Lw,w′) = B(w,L∗w′)). Then L∗ = Jh#. Hence Ker L = Ker L∗. Since B is
anisotropic, L maps (Ker L)⊥B = LW bijectively onto itself. Thus it makes sense to talk
about det(L|LW), the determinant of the restriction of L to LW. If w1, w2, . . ., wm is a
B-orthonormal basis of (Ker L)⊥B , then

det(L|LW) =
det(B(Lwi, wj)1≤i,j≤m)

det(B(wi, wj)1≤i,j≤m)
= det(B(Lwi, wj)1≤i,j≤m) (36)

= det(〈hwi, wj〉1≤i,j≤m).

Under the condition Kerh = Kerh#, we define det(h : W/Kerh → hW) to be the
quantity (36).

Suppose U ⊆W is a subspace and x ∈ Hom(U,W) is a linear map such that the formula

〈xu, u′〉 (u, u′ ∈ U)

defines a symmetric bilinear form on U with the radical V ⊆ U. The form B induces a
positive definite form on the quotient U/V. Pick a B-orthonormal basis u1+V, . . . , uk+V ∈
U/V and set

det(〈x , 〉U/V) = det(〈xui, uj〉1≤i,j≤k). (37)

It is easy to see that the quantity (37) does not depend on the choice of the B-orthonormal
basis.

Lemma 11. Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = {0}. Then

det((g1g2)− : W/K12 → U12)

det(g−1 : W→W) det(g−2 : W/K2 → U)
(38)

= (−1)dim U det(〈1
2

(c(g1) + c(g2)) , 〉U/V) (det(g−2 : K12 → V))−2.
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Proof. Let W2 ⊆ W be the B-orthogonal complement of K12 + K2. Then (23) holds,
because B is anisotropic. Let w1, w2, . . . be a basis of W such that w1, w2, . . ., wa is a
B-orthonormal basis of K12, wa+1, wa+2, . . ., wb is a B-orthonormal basis of W2 and wb+1,
wb+2, . . . is a B-orthonormal basis of K2. Let Q ∈ GL(W) be such that

Qw1, Qw2, . . . is a B-orthonormal basis of W,
Qwi = wi if i ≤ b,
Qwi ⊥B K12 + W2 if b < i.

Define the matrix elements Qj,i by

Qwi =
∑
j

Qj,iwj.

Then

Qj,i = δj,i if i ≤ b.

Hence,

det(Q) = det((Qj,i)1≤j,i) = det((Qj,i)b<j,i) = det((Qj,i)a<j,i)

and

1 = det(J−1) = det(B(J−1Qwi, Qwj)1≤i,j) = det(〈Qwi, Qwj〉1≤i,j)
= (det(Q))2 det(〈wi, wj〉1≤i,j).

Therefore

det((Qj,i)a<j,i)
2 det(〈wi, wj〉1≤i,j) = 1. (39)

Let u1, u2, . . ., ub be B-orthogonal basis of U such that u1, u2, . . ., ua span V. Define the
matrix elements (g−2 )k,i by

g−2 wi =
b∑

k=1

(g−2 )k,iuk (1 ≤ i ≤ b).

Since g−2 K12 = V, we see that

(g−2 )k,i = 0 if i ≤ a < k.

Hence

det(((g−2 )k,i)1≤k,i≤b) = det(((g−2 )k,i)1≤k,i≤a) det(((g−2 )k,i)a<k,i≤b). (40)

Also,

(det(g−2 : K12 → V))2 = (det(((g−2 )k,i)1≤k,i≤a))
2 and (41)

(det(g−2 : W2 → U/V))2 = (det(((g−2 )k,i)a<k,i≤b))
2.

Define h ∈ GL(W) as in (24). Then (26) shows that

det(〈(g1g2)−wi, wj〉a<i,j) det(h) = det(〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉a<i,j≤b). (42)
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Furthermore, by (27),

det(h) = det((g−1
1 − 1)−1(g−1

1 − 1)h) (43)

= det(g−1
1 − 1)−1 det((g−1

1 − 1)h)

= det(g−1
1 − 1)−1 det(〈wi, (g−1

1 − 1)hwj〉1≤i,j) det(〈wi, wj〉1≤i,j)−1

= det(g−1
1 − 1)−1(−1)dim U det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j)−1

Also,

det(〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉a<i,j≤b) (44)

= det(〈1
2

(c(g1) + c(g2))uk, ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)
2.

By (36),

det((g1g2)− : W/K12 → U12) = det(〈(g1g2)−Qwi, Qwj〉a<i,j) (45)

= det((Qi,j)a<i,j)
2 det(〈(g1g2)−wi, wj〉a<i,j).

Define an element q ∈ GL(W) by

qwi = J−1ui if i ≤ b,
qwi = wi if b < i.

Then qw1, qw2, . . ., qwb is a B-orthonormal basis of J−1U = K⊥B2 so that

det(g−2 : W/K2 → U) = det(〈g−2 qwi, qwj〉i,j≤b).
Define the coefficients qi,j by

qwi =
∑
j

qj,iwj.

Then
qj,i = δj,i if b < i

so that
det(q) = det((qj,i)1≤i,j) = det((qj,i)1≤i,j≤b).

Also,

g−2 qwi =
∑
j

qj,ig
−
2 wj =

∑
j≤b

qj,ig
−
2 wj (i ≤ b).

Therefore,
det(〈g−2 qwi, qwj〉i,j≤b) = det(q)2 det(〈g−2 wi, wj〉i,j≤b).

Define the coefficients q−1
i,j of the inverse map q−1 by

wi = q−1(qwi) =
∑
j

q−1
i,j qwj.

Since, the qwi form an orthonormal basis of W,

q−1
i,j = B(q−1qwi, qwj) = B(wi, qwj) = B(qwj, wi),
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so that

q−1
i,j =

 〈uj, wi〉 if j ≤ b,
B(wj, wi) if j > b,
B(wj, wi) = δi,j if i, j > b.

In particular, q−1
i,j = 0 if j ≤ b < i so that

det(q)−1 = det(q−1) = det((q−1
i,j )i,j≤b) = det(〈uj, wi〉i,j≤b).

Thus

det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U) = (det(〈g−2 wi, wj〉i,j≤b))2 det(q)2 (46)

= (det(〈
b∑

k=1

(g−2 )k,iuk, wj〉i,j≤b))2 det(q)2 = (det((g−2 )k,i)k,i≤b) det(〈uk, wj〉k,j≤b))2 det(q)2

= (det((g−2 )k,i)k,i≤b))
2 = (det(g−2 : K12 → V))2 (det(g−2 : W2 → U/V))2,

where the last equality follows from (40) and (41). The formula (38) follows from (39) -
(46) via a straightforward computation:

det((g1g2)− : W/K12 → U12)

det(g−1 : W→W) det(g−2 : W/K2 → U)

=
det((Qi,j)a<i,j)

2 det(〈(g1g2)−wi, wj〉a<i,j)
det(g−1 : W→W) det(g−2 : W/K2 → U)

=
det((Qi,j)a<i,j)

2 det(〈1
2
(c(g1) + c(g2))uk, ul〉a<k,l≤b) det((g(2

−)k,i)a<k,i≤b)
2

det(h) det g−1 det(g−2 : W/K2 → U)

=
(−1)dim U det((Qi,j)a<i,j)

2 det(〈1
2
(c(g1) + c(g2))uk, ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)

2

det(g−1
1 − 1)−1 det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j)−1 det g−1 det(g−2 : W/K2 → U)

=
(−1)dim U det(〈1

2
(c(g1) + c(g2))uk, ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)

2

det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U)

=
(−1)dim U det(〈1

2
(c(g1) + c(g2)) , 〉U/V) (det(g−2 : W2 → U/V))2

det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U)

=
(−1)dim U det(〈1

2
(c(g1) + c(g2)) , 〉U/V) (det(g−2 : W2 → U/V))2

(det(g−2 : K12 → V))2 (det(g−2 : W2 → U/V))2

=
(−1)dim U det(〈1

2
(c(g1) + c(g2)) , 〉U/V)

(det(g−2 : K12 → V))2
.

(Here the second equality follows from (42) and (44), and the third one from (43).) �

2.6. Determinants over p-fields. Let F be a commutative p-field in the terminology of
[52, Def 2, page 12], that is, F is a local non Archimedean field with finite residue field.
Hence F is a finite extension of either the p-adic field Qp or of Fp((t)) (the fraction field
of the ring Fp[[t]] of formal power series in one indeterminate t with coefficient in Fp).
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Denote by | |F the module on F, as in [52, page 4]. Then oF = {a ∈ F : |a|F ≤ 1} is
the ring of integers of F, and we have o×F = {a ∈ F : |a|F = 1} as in [52, page 12].

Being locally compact, F has a real-valued Haar measure: the unique translation in-
variant measure µF with the properties

dµ(ax) = |a|F dµ(x) (x ∈ F, a ∈ F×),

µF(oF) =

∫
|x|F≤1

dµ(x) = 1.

Let r ∈ Z. One has

µF($r
F oF) =

∫
|x|F≤qr

dµF(x) = qr. (47)

Then Eqn. (47) gives∫
|x|F=qr

dµF(x) =

∫
|x|F≤qr

dµF(x)−
∫
|x|F≤qr−1

dµF(x) = qr(1− q−1). (48)

More generally, let r, R ∈ Z with r ≤ R. One gets∫
qr≤|x|F≤qR

dµF(x) =

∫
|x|F≤qR

dµF(x)−
∫
|x|F≤qr

dµF(x) = qR − qr. (49)

Let r = (r1, r2, . . . , rn) ∈ Zn and R = (R1, R2, . . . , Rn) ∈ Zn where ri ≤ Ri for every
i ∈ {1, . . . , n}. We set

B(r,R) :=
{
x = (x1, x2, . . . , xn) ∈ Fn : qri ≤ |xi|F ≤ qRi for i = 1, . . . , n

}
.

It follows from (49) that

µFn(B(r,R)) =
n∏
i=1

(qRi − qri). (50)

The following Lemma relates the volume of the linear image of the set in Fn to the
volume of the set itself.

Lemma 12. Let L : Fn → Fn be an invertible linear transformation then

µFn(L(B)) = | det(L)|F µFn(B), for all B ∈ B(Fn). (51)

Proof. Call B(r,R)t := {xt : x ∈ B(r,R)} a cell in Fn. (Here xt means the transpose
of x.) We will first check that the relation (51) for every cell B(r,R)t. The matrix
representing L can be written as a product of elementary matrices, and since determinant
preserves products, it is sufficient to show that the relation (51) holds for elementary
matrices.

Let i ∈ {1, . . . , n}, let y ∈ F× and let Ei(y) be the elementary matrix obtained by
multiplying by y the i-th row of the identity n× n matrix. We have det(Ei(y)) = y and

Ei(y) ·B(r,R)t =
{

(x1, . . . , xi−1, yxi, xi+1, . . . , xn)t : qrk ≤ |xk|F ≤ qRk for k = 1, . . . , n
}

=
{

(x1, . . . , xn) : qrk ≤ |xk|F ≤ qRk for k 6= i, |y|riFq ≤ |xi|F ≤ |y|
Ri
Fq

}
,
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since |yxi|F = |y|F · |xi|F. Hence

µFn(Ei(y) ·B(r,R)t) = |y|F ·
n∏
k=1

(qRk − qrk) = | det(Ei(y))|F · µFn(B(r,R)t).

Let i, j ∈ {1, . . . , n}. Let Ei,j be the elementary matrix corresponding to the inter-
change of row i with row j. We have det(Ei,j) = −1 and

Ei,j ·B(r,R)t =

(x1, . . . , xn) :


qrk ≤ |xk|F ≤ qRk for k 6= i, j

qri ≤ |xj|F ≤ qRi

qrj ≤ |xi|F ≤ qRj

 .

Hence | det(Ei,j)|F = 1 and µFn(Ei,j ·B(r,R)t) = µFn(B(r,R)t).
Let Ei∪j be the elementary matrix obtained by replacing row i by the sum of row i and

row j. By multiplying by the matrix Ei,1 if necessary, we may assume that i = 1. We
have E1∪j(x1, . . . , xn)t = (x1 + xj, x2 . . . , xn)t. Hence det(E1∪j) = 1. We can view Fn as
the Cartesian product F× Fn−1. For every x′ = (x2, . . . , xn)t ∈ Fn−1, let

B(r,R)tx′ :=
{
z ∈ F : (z, x2, . . . , xn)t ∈ B(r,R)t

}
and similarly

(E1∪j ·B(r,R)t)x′ :=
{
z + xj ∈ F : (z + xj, x2, . . . , xn)t ∈ E1∪j ·B(r,R)t

}
.

We have

(E1∪j ·B(r,R)t)x′ = {z ∈ F : (z, x2, . . . , xn)t ∈ B(r,R)t} + xj

that is,

(E1∪j ·B(r,R)t)x′ = B(r,R)tx′ + xj.

Thus, for all x′ ∈ Fn−1, (E1∪j · B(r,R)t)x′ is a translation of B(r,R)tx′ and since, the
measure µF is translation-invariant, we have µF((E1∪j · B(r,R)t)x′) = µF(B(r,R)tx′). On
the other hand, by Fubini’s Theorem, we get

µFn(E1∪j ·B(r,R)t) =

∫
Fn−1

µF(((E1∪j ·B(r,R)t)x′)dµFn−1(x′)

=

∫
Fn−1

µFB(r,R)tx′)dµFn−1(x′) = µFn(B(r,R)t).

Every open set in Fn can be written as a countable union of cells in Fn and therefore,
by the countable additivity of the Haar measure on F, the measure µFn satisfies the
relation (51) is for any open set. Then the regularity of µFn implies that (51) holds for
any Borel set. �

Lemma 12 shows that Lemma 38 is still valid on the local nonarchimedean field F with
the pullback L∗(µV ) defined as in Eqn. (304) up to replacing the absolute value | | by
| |F, that is, we obtain here:

L∗(µV ) = | det(L̃)|−1
F µL−1(V ).
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(See (6.1) for the normalization of the Haar measure µV .) Let W be a finite dimensional
vector space over F and let L ⊆ W be a lattice, [52, page 28]. Let W∗ = Hom(W,F) be
the dual vector space and let

L∗ = {w∗ ∈W∗ : w∗(w) ∈ oF for all w ∈ L}.
This is the lattice dual to L.

Lemma 13. For any subspace U ⊆W, the restriction map

W∗ 3 w∗ → w∗|U ∈ U∗

induces the following short exact sequence

0→ L∗ ∩ U⊥ → L∗ → (L ∩ U)∗ → 0,

where U⊥ ⊆W∗ is the annihilator of U. In particular we have the isomorphisms of lattices

(L∗ + U⊥)/U⊥ = L∗/L∗ ∩ U⊥ = (L ∩ U)∗.

Proof. By [52, Theorem 1, page 29], there is a basis w1, . . . , wm, . . . of W such that
w1, . . . , wm is a basis of U and L = oFw1+oFw2+. . .. Hence, L∩U = oFw1+· · ·+oFwm. Let
w∗1, . . . , w

∗
m, . . . be the dual basis of W∗ (w∗i (wj) = δi,j). Then L∗ = oFw

∗
1 +· · ·+oFw

∗
m+. . .

and (L ∩ U)∗ = oFw
∗
1 + · · · + oFw

∗
m. Hence the restriction map is surjective. The rest is

obvious. �

Recall the notion of a norm, [52, page 24], and the norm associated to a lattice

NL(w) = inf{|x|−1
F : x ∈ F×, xw ∈ L} (w ∈W),

[52, page 28]. Then L = {w ∈W : NL(w) ≤ 1}. The following fact is stated in [52, page
29]

Lemma 14. Let N be a norm on W. The N = NL if and only if

L = {w ∈W : N(w) ≤ 1} (52)

and
{N(w) : w ∈W} = {|x|F : x ∈ F}. (53)

Let N be a norm on W. As in [52, p. 26], we shall say that two subspaces W′, W′′

of W are N-orthogonal to each other whenever W = W′ ⊕ W′′, and N(w′ + w′′) =
sup(N(w′), N(w′′)) for all w′ ∈W′ and all w′′ ∈W′′.

Lemma 15. Let V ⊆W be a subspace. Then

N(L+V)/V(w + V) = inf{NL(w + v) : v ∈ V} (w ∈W). (54)

Proof. [52, Theorem 1, page 29] implies that there is a subspace V′ ⊆ W which is NL-
orthogonal to V and such that

W = V′ ⊕ V (55)

and
L = L ∩ V′ ⊕ L ∩ V. (56)
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Let N(w + V) denote the right hand side of (54). For w ∈ W let w′ ∈ V′ denote the
V′-component of w, according to the decomposition (55). Then clearly

N(w + V) = NL(w′) (w ∈W).

In particular N is a norm on W/V. Also, the range of N coincides with the range of NL.
Hence Lemma 14 implies that N = NL′ , where L′ = {w + V ∈ W/V : N(w + V) ≤ 1}.
The condition N(w + V) ≤ 1 means that NL(w′) ≤ 1, which is equivalent to w′ ∈ L′.
Thus

L′ = {w + V ∈W/V : w′ ∈ L}.
But (56) shows that the condition w′ ∈ L is equivalent to w ∈ L+ V. (Indeed, if w′ ∈ L
then w ∈ L + V. Conversely, suppose w ∈ L + V. Then there is w0 ∈ L and v ∈ V such
that w = w0 + v. Hence, w′ = w′0. But w′0 ∈ L ∩ V′ by (56). Thus w′ ∈ L.) Therefore

L′ = (L+ V)/V.

�

Corollary 16. Under the identifications of Lemma 13, the following equalities hold for any
w∗ ∈W∗:

N(L∩U)∗(w
∗|U) = N(L∗+U⊥)/U⊥(w∗ + U⊥) = inf{NL∗(w∗ + w∗0) : w∗0 ∈ U⊥}

= max{|w∗(u)|F : u ∈ L ∩ U}.
(The second equality means that the norm on the quotient is the usual quotient norm.)

Proof. The first equality amounts to the last identification of Lemma 13. The second
equality follows from Lemma 15 with W, L and V replaced by W∗, L∗ and U⊥ respectively.
The third equality follows from the fact that

NL∗(w
∗) = max{|w∗(w)|F : w ∈ L}. (57)

One may verify the equality (57) as follows. The right hand side of (57) defines a norm
on W∗ whose range coincides with the range of | |F. The set of the w∗ such that the right
hand side is less or equal than 1 coincides with the set of the w∗ such that w∗(w) ∈ oF
for all w ∈ L. But this is L∗. Hence Lemma 14 implies (57). �

Let L ⊆ W be a lattice. We know from [52, Theorem1, page 29], that there is a basis
w1, w2, . . . of W such that

L = oFw1 + oFw2 + . . . . (58)

In particular the spaces Fw1, Fw2, . . . are NL-orthogonal and 1 = NL(w1) = NL(w2) = . . .
. Thus we may define a basis of W to be NL-orthonormal if the condition (58) holds.

Let w∗1, w∗2, . . . be the dual basis of W∗. Then

L∗ = oFw
∗
1 + oFw

∗
2 + . . . .

Hence the basis w∗1, w∗2, . . . is NL∗-orthonormal.

Lemma 17. For any T ∈ End(W) any Haar measure µ on the additive group W and any
measurable set B ⊆W

µ(T (B)) = | det(T )|F µ(B).
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Proof. This is a direct consequence of Lemma 12. �

Lemma 18. Suppose w1, w2, . . . is an NL-orthonormal basis of W and T ∈ End(W) is
such that Tw1, Tw2, . . . is also an NL-orthonormal basis of W. Then | det(T )|F = 1.

Proof. Since, by the assumption, T (L) = L, the map T preserves the Haar measure on
W. Hence, Lemma 17 shows that | det(T )|F = 1. �

Recall the NL-orthonormal basis w1, w2, . . . of W. Suppose W′ is another finite di-
mensional vector space over F with a lattice L′ and an NL′-orthonormal basis w′1, w

′
2, . . . .

Given h ∈ Hom(W,W′), there is the corresponding matrix

M(h) = [hji], h(wi) =
∑
j

hjiw
′
j.

The determinant det(M(h)) does depend on the choice of the bases, but, as we see from
Lemma 18, | det(M(h))|F does not. Hence we may define

| det(h : W→W′)|F = | det(M(h))|F ∈ R. (59)

Lemma 19. Let h ∈ Hom(W,W′) and let h∗ ∈ Hom(W′∗,W∗) be the adjoint map. Then

det(h : W→W′) = det(h∗ : W′∗ →W∗) .

Proof. Let w∗1, w∗2, · · · ∈ W∗ be the basis dual to w1, w2, . . . and let w′1
∗, w′2

∗, · · · ∈ W′∗

be the basis dual to w′1, w′2, . . . . Then,

h(wi) =
∑
j

hjiw
′
j if and only if h∗(w′j

∗) =
∑
i

hjiw
∗
i ,

because
hji = w′j

∗(
∑
j

hjiw
′
j) = w′j

∗(h(wi)) = h∗(w′j
∗)(wi).

Hence, the matrix M(h∗) is the transpose of the matrix M(h) and the claim follows. �

From now on we assume that the space W is equipped with a non-degenerate symplectic
form 〈 , 〉. We shall identify W with the dual W∗ by

w(u) = 〈u,w〉 (u,w ∈W). (60)

Then, for a subspace U ⊆ W the annihilator U⊥ in the dual coincides with the 〈 , 〉-
orthogonal complement. We shall say that the lattice L is self-dual in the sense that
L = L∗. Let us fix a self-dual lattice L ⊆W.

For any two subspaces V ⊆ U ⊆W, N shall denote the quotient norm of NL:

N(u+ V) = inf{NL(u+ v) : v ∈ V} (u ∈ U). (61)

For an element h ∈ End(W) define h# ∈ End(W) by

〈hw,w′〉 = 〈w, h#w′〉 (w,w′ ∈W).

Then (Imh)⊥ = Kerh#. Hence, if Kerh = Kerh# then we have the following short exact
sequence

0→ (Imh)⊥ →W→ Imh→ 0. (62)
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In the next Lemma, we shall consider Imh as the quotient W/(Imh)⊥, and N will be the
corresponding quotient norm as defined in (61).

Lemma 20. Suppose h ∈ End(W) is such that Kerh = Kerh#. Let u1, . . . , uk be an N-
orthonormal basis of Imh and let w1 +Kerh, . . . , wk +Kerh be the dual basis of W/Kerh.
Let M = M(h) be the matrix of the induced bijection h : W/Kerh→ Imh with respect to
these two ordered basis,

hwi =
∑
j

Mj,i(h)uj.

Then

det(M(h)) = det(〈hwi, wj〉1≤i,j≤k).
Also, we may choose the elements w1, . . . , wk so that the spaces Fw1, . . ., Fwk, Kerh are
N-orthogonal.

Proof. Since

〈hwi, wj〉 = 〈
∑
l

Ml,iul, wj〉 = Mj,i,

the formula for the determinant follows. The last statement follows from Lemma 15 and
Corollary 16. �

Notice that if u′1, . . . , u′k is another N -orthonormal basis of Imh, with dual basis
w′1 + Kerh, . . . , w′k + Kerh, then

det(〈hw′i, w′j〉1≤i,j≤k) = det(〈hwi, wj〉1≤i,j≤k) a2,

where a ∈ F× is the determinant of the transition matrix from u1, . . . , uk to u′1, . . . ,
u′k (which is also the determinant of the transition matrix from the corresponding dual
basis). We know from Lemma 18 that |a|F = 1. Hence without any ambiguity we may
define

det(h : W/Kerh→ Imh) = det(〈hwi, wj〉1≤i,j≤k) (o×F )2 (63)

as an element of F×/(o×F )2. (Here (o×F )2 = {(a2; a ∈ o×F }.) Also, without any ambiguity
we may define

| det(h : W/Kerh→ Imh)|F = | det(〈hwi, wj〉1≤i,j≤k)|F (64)

as a positive real number.
Similarly, if U ⊂W is a subspace and x ∈ Hom(U,W) is such that the bilinear form

〈xu, u′〉 (u, u′ ∈ U)

is symmetric, with the radical V ⊆ U, we define

det(〈x , 〉U/V) = det(〈xui, uj〉1≤i,j≤k) (o×F )2 (65)

and

| det(〈x , 〉U/V)|F = | det(〈xui, uj〉1≤i,j≤k)|F, (66)

where u1 + V, u2 + V, . . . , is an N -orthonormal basis of U/V.
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Lemma 21. If w1, w2, . . . is a NL-orthonormal basis of W, then

| det(〈wi, wj〉1≤i,j)|F = 1.

Proof. Since 〈wi, wj〉 ∈ oF,
| det(〈wi, wj〉1≤i,j)|F ≤ 1.

Since the lattice L is self-dual the same inequality holds for the dual basis. The product
of the two matrices is 1. Hence the equality follows. �

Lemma 19 may be rephrased as

Lemma 22. Let h ∈ End(W) and let K ⊆W be a subspace. Assume that h : K → hK is
injective. Then, with the definition (??),

h#((hK)⊥) ⊆ K⊥, (67)

and
| det(h : K → hK)|F = | det(h# : W/(hK)⊥ →W/K⊥)|F. (68)

Proof. The point is that W/K⊥ = K∗, W/(hK)⊥ = (hK)∗ and h# = h∗. �

In the next Lemma, we keep the notation defined in Notation 4 and Notation 6, that
is, for g1, g2 ∈ Sp(W),

U = U1 ∩ U2 = g−1 W ∩ g−2 W and U12 = (g1g2)−W,

K1 = Ker g−1 , K2 = Ker g−2 and K12 = Ker(g1g2)−.

Lemma 23. Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = {0}. Then, with the
definition (63),

det((g1g2)− : W/K12 → U12)

det(g−1 : W→W) det(g−2 : W/K2 → U)
(69)

= (−1)dim U det(〈1
2

(c(g1) + c(g2)) , 〉U/V) (det(g−2 : K12 → V))−2

and

| det((g1g2)− : W/K12 → U12)|F
| det(g−1 : W→W)|F| det(g−2 : W/K2 → U)|F

(70)

= | det(〈1
2

(c(g1) + c(g2)) , 〉U/V)|F | det(g−2 : K12 → V)|−2
F

Proof. Clearly (70) follows from (69). We shall verify (69). Let W2 ⊆ W be the NL-
orthogonal complement of K12 + K2. Then (23) holds. Let w1, w2, . . . be a basis of
W such that w1, w2, . . ., wa is a NL-orthonormal basis of K12, wa+1, wa+2, . . ., wb is a
NL-orthonormal basis of W2 and wb+1, wb+2, . . . is a NL-orthonormal basis of K2. Then
w1, w2, . . ., wb is NL-orthonormal basis of K12 +W2. Theorem 1 on page 29 in [52] implies
that we may extend it to an NL-orthonormal basis of W:

w1, . . . , wb, w
′
b+1, w

′
b+2, . . . .
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Define an element Q ∈ GL(W) by

Q(wi) =

{
wi if i ≤ b,

w′i if i > b.

Then
Qw1, Qw2, . . . is a NL-orthonormal basis of W,
Qwi = wi if i ≤ b,
FQwb+1 + FQwb+2 + . . . is NL-orthogonal to K12 + W2.

We see from Lemma 21 that

| det(〈Qwi, Qwj〉1≤i,j)|F = 1.

Hence, we may replace one of the wi by a suitable (oF)×-multiple of it so that

det(〈Qwi, Qwj〉1≤i,j) = 1. (71)

Define the matrix elements Qj,i by

Qwi =
∑
j

Qj,iwj.

Then

Qj,i = δj,i if i ≤ b.

In particular the matrix ((Qj,i)1≤j,i) looks as follows

((Qj,i)1≤j,i) =

(
I ∗
0 ((Qj,i)b<j,i)

)
,

where I is the identity matrix of size b. Hence,

det(Q) = det((Qj,i)1≤j,i) = det((Qj,i)b<j,i) = det((Qj,i)a<j,i).

Therefore (71) implies

det((Qj,i)a<j,i)
2 det(〈wi, wj〉1≤i,j) = 1. (72)

Let u1, u2, . . ., ub be a NL-orthogonal basis of U such that u1, u2, . . ., ua span V. (The
existence of such a basis follows from [52, Theorem 1, page 29].) Define the matrix
elements (g−2 )k,i by

g−2 wi =
b∑

k=1

(g−2 )k,iuk (1 ≤ i ≤ b).

Since g−2 K12 = V, we see that

(g−2 )k,i = 0 if i ≤ a < k.

Hence

det(((g−2 )k,i)1≤k,i≤b) (73)

= det(((g−2 )k,i)1≤k,i≤a) det(((g−2 )k,i)a<k,i≤b).
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Define h ∈ GL(W) as in (24). Then (26) shows that

det(〈(g1g2)−wi, wj〉a<i,j) det(h) (74)

= det(〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉a<i,j≤b).

Furthermore, by (27),

det(h) = det((g−1
1 − 1)−1(g−1

1 − 1)h) (75)

= det(g−1
1 − 1)−1 det((g−1

1 − 1)h)

= det(g−1
1 − 1)−1 det(〈wi, (g−1

1 − 1)−1hwj〉1≤i,j) det(〈wi, wj〉1≤i,j)−1

= det(g−1
1 − 1)−1(−1)dim U det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j)−1

Also,

det(〈1
2

(c(g1) + c(g2))g−2 wi, g
−
2 wj〉a<i,j≤b) (76)

= det(〈1
2

(c(g1) + c(g2))uk, ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)
2.

By (63),

det((g1g2)− : W/K12 → U12) = det(〈(g1g2)−Qwi, Qwj〉a<i,j) (o×F )2 (77)

= det((Qi,j)a<i,j)
2 det(〈(g1g2)−wi, wj〉a<i,j) (o×F )2.

We see from Lemma 20 that there are elements qwi ∈W, i ≤ b, such that

〈uj, qwi〉 = δj,i (j, i ≤ b) (78)

and the spaces Fqw1, . . . , Fqwb, K2 are N -orthogonal. Define an element q ∈ GL(W) by

q(wi) = qwi if i ≤ b,
q(wi) = wi if b < i.

Then
det(g−2 : W/K2 → U) = det(〈g−2 qwi, qwj〉i,j≤b) (o×F )2. (79)

Define the coefficients qi,j by

qwi =
∑
j

qj,iwj.

Then
qj,i = δj,i if b < i

so that
det(q) = det((qj,i)1≤i,j) = det((qj,i)1≤i,j≤b).

Also,

g−2 qwi =
∑
j

qj,ig
−
2 wj =

∑
j≤b

qj,ig
−
2 wj (i ≤ b).

Therefore,
det(〈g−2 qwi, qwj〉i,j≤b) = det(q)2 det(〈g−2 wi, wj〉i,j≤b). (80)
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Define the coefficients q−1
i,j of the inverse map q−1 by

wi = q−1(qwi) =
∑
j

q−1
i,j qwj.

Then, by (78),

q−1
i,j =

{
〈uj, wi〉 if j ≤ b,
δi,j if i > b.

Hence,
det(q)−1 = det(q−1) = det((q−1

i,j )i,j≤b) = det(〈uj, wi〉i,j≤b).
Thus

det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U) (81)

= (det(〈g−2 wi, wj〉i,j≤b))2 det(q)2 (o×F )2

= (det(〈
b∑

k=1

(g−2 )k,iuk, wj〉i,j≤b))2 det(q)2 (o×F )2

= (det((g−2 )k,i)k,i≤b)
2 det(〈uk, wj〉k,j≤b))2 det(q)2 (o×F )2

= (det((g−2 )k,i)k,i≤b))
2 (o×F )2

= (det(g−2 : K12 → V))2 (det(g−2 : W2 → U/V))2 (o×F )2,

where the first equality follows from (79) combined with (80), and the last equality follows
from (73). Now the formula (69) may be verified via a straightforward computation, where
we ignore the factor (o×F )2 for convenience:

det((g1g2)− : W/K12 → U12)

det(g−1 : W→W) det(g−2 : W/K2 → U)

=
det((Qi,j)a<i,j)

2 det(〈(g1g2)−wi, wj〉a<i,j)
det(g−1 : W→W) det(g−2 : W/K2 → U)

=
det((Qi,j)a<i,j)

2 det(〈1
2
(c(g1) + c(g2))uk, ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)

2

det(h) det g−1 det(g−2 : W/K2 → U)

=
(−1)dim U det((Qi,j)a<i,j)

2 det(〈1
2
(c(g1) + c(g2))uk, ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)

2

det(g−1
1 − 1)−1 det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j)−1 det g−1 det(g−2 : W/K2 → U)

=
(−1)dim U det(〈1

2
(c(g1) + c(g2))uk, ul〉a<k,l≤b) (det((g−2 )k,i)a<k,i≤b))

2

det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U)

=
(−1)dim U det(〈1

2
(c(g1) + c(g2)) , 〉U/V) (det((g−2 )k,i)a<k,i≤b)

2

(det(g−2 : K12 → V))2(det(g−2 : W2 → U/V))2

=
(−1)dim U det(〈1

2
(c(g1) + c(g2)) , 〉U/V)

(det(g−2 : K12 → V))2
.

(Here the first equality follows from (77), the second equality from (74) and (76), the
third from (75), the forth from (72) and the fifth from (81).) �
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3. The Weil representation over a finite field of odd characteristic

Let F be a finite field of odd characteristic and let χ : F → C× be a non-trivial
character of the additive group F. In this section we provide an elementary construction
of the corresponding the Weil representation, [5].

3.1. The Fourier transform. Let U be a finite dimensional vector space over F. Define
a measure µU on U by ∫

U

φ(u) dµU(u) = |U|−1/2
∑
u∈U

φ(u),

where |U| is the cardinality of U and φ : U → C is a function. For E a subset of U let
denote by IE the indicator function of E, that is, the normalized characteristic function
of E:

IE(u) :=

{
|E|−1 if u ∈ E;

0 otherwise.

Define the Fourier transform F by

Fφ(u∗) =

∫
U

φ(u)χ(−u∗(u)) dµU(u) (u∗ ∈ U∗).

Then µU∗ is the measure dual to µU in the sense that

φ(u) =

∫
U∗
Fφ(u∗)χ(u∗(u)) dµU∗(u

∗) (u ∈ U).

We record by the way the following, easy to verify, formula

FIV = |V||U|−1/2IV⊥ , (82)

where V ⊆ U is a vector subspace with the orthogonal complement V⊥ ⊆ U∗.

3.2. Gaussians on Fn. For a symmetric matrix A ∈ GL(Fn) define the corresponding
Gaussian γA by

γA(x) = χ(
1

2
xtAx) (x ∈ Fn),

where we view the x as a column vector. Also, let

γ(A) = FγA(0) =

∫
Fn
χ(

1

2
xtAx) dµFn(x).

Lemma 24. If we identify Fn with the dual (Fn)∗ by

y(x) = xty (x, y ∈ Fn),

then

FγA = γ(A)γ−A−1 .
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Proof. Notice that

1

2
xtAx =

1

2
(x− A−1y)tA(x− A−1y)− 1

2
ytA−1y + xty.

Hence,

FγA(y) =

∫
Fn
γA(x)χ(−xty) dµFn(x)

=

∫
Fn
χ(

1

2
(x− A−1y)tA(x− A−1y)) dµFn(x)χ(−1

2
ytA−1y)

=

∫
Fn
χ(

1

2
xtAx) dµFn(x)χ(−1

2
ytA−1y).

�

Lemma 25. Suppose n = 1. Then

(a) γ(a) = γ(ab2) (a, b ∈ F×),

(b) γ(−a) = γ(a) = γ(a)−1 (a ∈ F×),
(c) the function

a 7→ s(a) = γ(a)γ(−1) (a ∈ F×)

coincides with the unique non-trivial character of the group F×/(F×)2.

Proof. Part (a) and the first equation in (b) are obvious. Let us extend the character s
to F by letting s(0) = 0. Then, since 1

2
a 6= 0, we see from (82) that

γ(a) =

∫
F
(1 + s)(y)χ(

1

2
ay) dµF(y)

=

∫
F
χ(

1

2
ay) dµF(y) +

∫
F
s(y)χ(

1

2
ay) dµF(y)

=

∫
F×
s(y)χ(

1

2
ay) dµF(y) =

∫
F×
s(a−1y)χ(

1

2
y) dµF(y)

= s(a−1)

∫
F×
s(y)χ(

1

2
y) dµF(y) = s(a)γ(1).
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Also,

γ(1)γ(1) =

∫
F×

∫
F×
s(y)s(z)χ(

1

2
(y − z)) dµF(y) dµF(z)

=

∫
F×

∫
F×
s(yz)χ(

1

2
(y − z)) dµF(y) dµF(z)

=

∫
F×

∫
F×
s(y)χ(

1

2
(y − 1)z) dµF(y) dµF(z)

=

∫
F×

∫
F×
s(y)χ((y − 1)z) dµF(z) dµF(y)

=

∫
F×
s(y)

(∫
F
χ((y − 1)z) dµF(z)− |F|−1/2

)
dµF(y)

=

∫
F×
s(y)|F|1/2I0(y − 1) dµF(y)− |F|−1/2

∫
F×
s(y) dµF(y) = s(1),

because the restriction of µF to F× is a Haar measure on F× and s is a non-trivial character
of the abelian group F×. Since s(1) = 1, we see that

γ(1)γ(1) = 1.

In particular |γ(1)| = 1. Therefore the first computation in this proof shows that |γ(a)| =
1 for all a ∈ F×. This implies the second equality in (b). Finally

s(a) = γ(a)γ(1)−1 = γ(a)γ(−1),

as claimed in (c). �

Corollary 26. For arbitrary n ≥ 1 and a symmetric matrix A ∈ GL(Fn),

γ(A) = γ(1)n s(det(A)).

Proof. There is g ∈ GL(Fn) and a diagonal matrix D = diag(a1, a2, . . . , an) ∈ GL(Fn)
such that A = gtDg. Hence,

γ(A) =

∫
Fn
χ(

1

2
xtAx) dµFn(x) =

∫
Fn
χ(

1

2
xtDx) dµFn(x)

=

∫
Fn

n∏
j=1

χ(
1

2
ajx

2
j) dµFn(x) =

n∏
j=1

γ(aj) =
n∏
j=1

(γ(1)s(aj))

= γ(1)ns(
n∏
j=1

aj) = γ(1)ns(det(D)) = γ(1)ns(det(A)).

�
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3.3. Gaussians on a vector space. Let γ(q) = γ(Q), where Q is defined as in Eq. (12).

Lemma 27. If q is a non-degenerate symmetric bilinear form on U, then∫
U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) = γ(q)χ(−1

2
q∗(u∗, u∗)) (u∗ ∈ U∗).

Proof. Let xi = u∗i (u) and let yj = u∗(uj). Then∫
U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) =

∫
Fn
χ(

1

2
xtQx)χ(−xty) dµFn(x)

= γ(Q)χ(−1

2
ytQ−1y) = γ(q)χ(−1

2
q∗(u∗, u∗)),

where the second equality follows from Lemma 24 and the last one follows from Lemma 1.
�

Corollary 28. Let q be a symmetric form on U with the radical V. Denote by q̃ the induced
non-degenerate form on U/V. Then, for any u∗ ∈ U∗,∫

U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) = |V|1/2γ(q̃)IV⊥(u∗)χ(−1

2
q̃∗(u∗, u∗)),

where we identify V⊥ = (U/V)∗.

Proof. The left hand side is equal to∫
U/V

∫
V

χ(
1

2
q(u+ v, u+ v))χ(−u∗(u+ v)) dµV(v) dµU/V(u+ V)

=

∫
U/V

χ(
1

2
q̃(u+ V, u+ V))

(∫
V

χ(−u∗(u+ v)) dµV(v)

)
dµU/V(u+ V)

=

∫
U/V

χ(
1

2
q̃(u+ V, u+ V))

(
χ(−u∗(u))|V|1/2IV⊥(u∗)

)
dµU/V(u+ V)

= |V|1/2IV⊥(u∗)

∫
U/V

χ(
1

2
q̃(u+ V, u+ V))χ(−u∗(u)) dµU/V(u+ V)

= |V|1/2IV⊥(u∗)γ(q̃)χ(−1

2
q̃∗(u∗, u∗)).

�

3.4. Gaussians on a symplectic space.

Lemma 29. Suppose x ∈ Hom(U,W/U⊥) is such that

〈xu, v〉 = 〈xv, u〉 (u, v ∈ U).

Set

q(u, v) =
1

2
〈xu, v〉 (u, v ∈ U).

Let V be the radical of q and let q̃ be the induced non-degenerate form on U/V. Then

(a) V = Ker(x);
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(b) for any w ∈ V⊥ there is u ∈ U such that xu+ (w + U⊥) = 0;
(c) for any w ∈W∫

U

χ(
1

4
〈xu′, u′〉)χ(−1

2
〈u′, w〉) dµU(u′) = |V|1/2γ(q̃)IV⊥(w)χ(−1

4
〈u,w〉)

where u ∈ U is such that xu+ (w + U⊥) = 0.

Proof. Part (a) is obvious. Part (b) means that Ker(x)⊥ = Im(x), which is true.
We know from Corollary 28 that the left hand side of (c) is equal to

|V|1/2γ(q̃)IV⊥(w)χ(−1

2
q̃∗(

1

2
w,

1

2
w)).

Hence we may assume that w ∈ V⊥. Recall the map Φ: U/V→ (U/V)∗ = V⊥/U⊥:

Φ(u+ V)(u′ + V) = q̃(u′ + V, u+ V) =
1

2
〈xu′, u〉.

Suppose u ∈ U is such that Φ(u+ V) = 1
2
w + U⊥. Then, by the above,

〈u′, 1

2
w〉 =

1

2
〈xu′, u〉 = 〈u′,−1

2
xu〉 (u′ ∈ U).

Therefore, xu+ 1
2
w ∈ U⊥. In other words, xu+ (1

2
w + U⊥) = 0 and we see that

q̃∗(
1

2
w + U⊥,

1

2
w + U⊥) = 〈u, 1

2
w〉,

so that

−1

2
q̃∗(

1

2
w + U⊥,

1

2
w + U⊥) = −1

4
〈u,w〉.

The formula (c) follows. �

3.5. Twisted convolution of Gaussians. Recall the twisted convolution of two func-
tions φ, ψ : W→ C:

φ\ψ(w) =

∫
W

φ(u)ψ(w − u)χ(
1

2
〈u,w〉) dµW(u) (w ∈W). (83)

Let

χc(g)(u) = χ(
1

4
〈c(g)u, u〉) (u ∈ g−W).

More generally, for x and U as in Lemma 29, let

χx(u) = χ(
1

4
〈xu, u〉) (u ∈ U).

Denote the un-normalized characteristic function of E by:

1E(u) :=

{
1 if u ∈ E;

0 otherwise.

By a Gaussian we understand the following function,

1g−W(w)χc(g)(w) (w ∈W). (84)
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The goal of this subsection is to verify the following proposition.

Proposition 30. For any g1, g2 ∈ Sp(W),(
1U1χc(g1)

)
\
(
1U2χc(g2)

)
= C(g1, g2) 1U12 χc(g1g2),

where

C(g1, g2) =
|K12|1/2

|K1|1/2|K2|1/2
γ(q̃g1,g2).

Proof. Notice first that, by the definition of the twisted convolution (83),(
1U1χc(g1)

)
\
(
1U2χc(g2)

)
(w) = 0

if (U1∩(U2 +w) = ∅. Therefore we may assume that there is v ∈ U1 such that w−v ∈ U2.
Lemmas 2 and 5 plus a straightforward computation show that(

1U1χc(g1)

)
\
(
1U2χc(g2)

)
(w) (85)

=
|U|1/2

|W|1/2

∫
U

χc(g1)+c(g2)(u
′)χ(−1

2
〈u′, c(g1)v + c(g2)(v − w)− w〉) dµU(u′)

· χc(g1)(v)χc(g2)(v − w)χ(
1

2
〈v, w〉).

Since V⊥ = Ker(c(g1) + c(g2))⊥ is the image of c(g1) + c(g2), we see from Lemma 29 that
the expression (85) is not zero if and only if there is u ∈ U such that

(c(g1) + c(g2))u+ (c(g1)v + c(g2)(v − w)− w) ∈ U⊥. (86)

Let
u = g−1 v1 = g−2 v2, v = g−1 w1 and w − v = g−2 w2. (87)

Then,
g+

1 v1 + g+
2 v2 + g+

1 w1 − g+
2 w2 − w ∈ U⊥ = K1 +K2.

Hence, Lemma 3 shows that, without changing v or w − v, we may choose w1 and w2 in
(87) so that

g+
1 v1 + g+

2 v2 + (g+
1 )w1 − g+

2 w2 − w = 0. (88)

Multiplying (88) by g−1 we get

g−1 g
+
1 v1 + g−1 g

+
2 v2 + g−1 g

+
1 w1 − g−1 g+

2 w2 − g−1 w = 0.

Since, g−1 (g+
1 )v1 = (g+

1 )g−1 v1 = (g+
1 )g−2 v2, we see that

g+
1 g
−
2 v2 + g−1 g

+
2 v2 + g+

1 g
−
1 w1 − g−1 g+

2 w2 − g−1 w = 0.

But, by (87), g−1 w1 = w − g−2 w2. Hence,

g+
1 g
−
2 v2 + g−1 g

+
2 v2 + g+

1 w − g+
1 g
−
2 w2 − g−1 g+

2 w2 − g−1 w = 0.

Thus
(g+

1 g
−
2 + g−1 g

+
2 )(v2 − w2) + 2w = 0.

Therefore
w = (g1g2)−(w2 − v2). (89)
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Hence, w ∈ (g1g2)−W.
Conversely, suppose w = (g1g2)−w0 for some w0 ∈W. Then

w = g−1 g2w0 + g−2 w0.

Let w1 = g2w0 and let w2 = w0, so that

v = g−1 w1 and w − v = g−2 w2,

as in (87). Then,

c(g1)v + c(g2)(v − w)− w = g+
1 w1 − g+

2 w2 = (g+
1 g2 − g+

2 − (g1g2)−)w0 = 0 ∈ U⊥.

Therefore (86) holds with u = 0. Thus we have the indicator function I(g1g2)−W in the
formula of Proposition 30.

Furthermore, with u as in Lemma 29 (b),

− 〈u, c(g1)v + c(g2)(v − w)− w〉+ 〈c(g1)v, v〉+ 〈c(g2)(v − w), v − w〉+ 2〈v, w〉 (90)

= 〈g−2 v2,−g+
1 w1 + g+

2 w2 + w〉+ 〈g+
1 w1, g

−
1 w1〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈g−1 w1, w〉

= 〈g−2 v2,−g+
1 w1 + g+

2 w2 + w〉+ 〈g+
1 w1, w − g−2 w2〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈w − g−2 w2, w〉

= 〈g−2 v2,−g+
1 w1 + g+

2 w2 + w〉+ 〈g+
1 w1, w − g−2 w2〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈w, g−2 w2〉

= 〈g−2 v2, g
+
2 w2 + w〉+ 〈g+

1 w1, g
−
2 v2〉+ 〈g+

1 w1, w − g−2 w2〉+ 〈g+
2 w2, g

−
2 w2〉+ 2〈w, g−2 w2〉.

Notice that

〈g+
1 w1, g

−
2 v2〉 = 〈g+

1 w1, g
−
1 v1〉 = 〈(g−1

1 − 1)g+
1 w1, v1〉

= −〈g−1
1 g−1 (g+

1 )w1, v1〉 = −〈g−1
1 g+

1 g
−
1 w1, v1〉 = −〈g−1

1 g+
1 (w − g−2 w2), v1〉

= −〈(1 + g−1
1 )(w − g−2 w2), v1〉 = −〈w − g−2 w2, g

+
1 v1〉 = 〈g+

1 v1, w − g−2 w2〉.
Hence, (90) is equal to

〈g−2 v2, g
+
2 w2 + w〉+ 〈g+

1 v1, w − g−2 w2〉+ 〈g+
1 w1, w − g−2 w2〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈w, g−2 w2〉

= 〈g−2 v2, g
+
2 w2 + w〉+ 〈g+

1 w1 + g+
1 v1, w − g−2 w2〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈w, g−2 w2〉. (91)

Now we compute g+
1 w1 + g+

1 v1 from (88) and substitute in (91) to see that (91) is equal
to

〈g−2 v2, g
+
2 w2 + w〉+ 〈w + g+

2 w2 − g+
2 v2, w − g−2 w2〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈w, g−2 w2〉 (92)

= 〈g−2 v2, g
+
2 w2〉+ 〈g−2 v2, w〉+ 〈g+

2 w2, w〉 − 〈g+
2 v2, w〉 − 〈w, g−2 w2〉

−〈g+
2 w2, g

−
2 w2〉+ 〈g+

2 v2, g
−
2 w2〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈w, g−2 w2〉

= 〈g−2 v2, g
+
2 w2〉+ 〈g−2 v2, w〉+ 〈g+

2 w2, w〉 − 〈g+
2 v2, w〉+ 〈g+

2 v2, g
−
2 w2〉+ 〈w, g−2 w2〉

= 〈(g2 − g−1
2 )v2, w2〉+ 〈g−2 v2, w〉+ 〈g+

2 w2, w〉 − 〈g+
2 v2, w〉+ 〈(g−1

2 − g2)v2, w2〉+ 〈w, g−2 w2〉
= 〈g−2 v2, w〉+ 〈g+

2 w2, w〉 − 〈g+
2 v2, w〉 − 〈g−2 w2, w〉 = 〈2(w2 − v2), w〉.

But we know from (89) that w = (g1g2)−(w2 − v2). Hence, (92) is equal to

〈2(w2 − v2), (g1g2)−(w2 − v2)〉 = 〈(g1g2)−(w2 − v2) + 2(w2 − v2), (g1g2)−(w2 − v2)〉
= 〈(g1g

+
2 )(w2 − v2), (g1g2)−(w2 − v2)〉 = 〈c(g1g2)w,w〉.
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(Notice that the computation (90) - (93) may be simplified as follows. We already know
from (89) that w = (g1g2)−w0 for some w0 ∈ W. Hence, we may choose w1 = g2w0,
v = g−1 g2w0 and w2 = w0 in (87). Then

c(g1)v + c(g2)(v − w)− w = 0

and therefore it will suffice to show that

〈c(g1)v, v〉+ 〈c(g2)(w − v), w − v〉+ 2〈v, w − v〉 = 〈c(g1g2)w,w〉. (93)

The left hand side of (93) is equal to

〈g+
1 w1, g

−
1 w1〉+ 〈g+

2 w2, g
−
2 w2〉+ 2〈g−1 w1, g

−
2 w2〉

= 〈(g1g2 + g2)w0, (g1g2 − g2)w0〉+ 〈g+
2 w0, g

−
2 w0〉+ 2〈(g1g2 − g2)w0, g

−
2 w0〉

= 2〈w0, g1g2w0〉 = 〈(g1g
+
2 )w0, (g1g2)−w0〉,

which coincides with the right hand side.) Therefore Lemma 29 shows that for w ∈ V⊥,∫
U

χc(g1)+c(g2)(u
′)χ(−1

2
〈u′, c(g1)v + c(g2)(v − w)− w〉) dµU(u′)

· χc(g1)(v)χc(g2)(v − w)χ(
1

2
〈v, w〉)

= |V|1/2γ(q̃g1,g2)χc(g1g2)(w).

By combining this with (85) we see that(
1g−1 Wχc(g)

)
\
(
1g−2 Wχc(g)

)
=
|U|1/2|V|1/2

|W|1/2
γ(q̃g1,g2)1(g1g2)−Wχc(g1g2)

But Lemma 7 implies
|U|1/2|V|1/2

|W|1/2
=

|K12|1/2

|K1|1/2|K2|1/2
.

�

3.6. Normalization of Gaussians. Let B be a non-degenerate bilinear form on a finite
dimensional vector space over F. Define the discriminant of B as

dis(B) = s(det(A)), (94)

where A is the matrix obtained from a basis u1, u2, . . ., un of the space by

Ai,j = B(ui, uj) (1 ≤ i, j ≤ n).

Clearly the discriminant does not depend on the choice of the basis.
For any g ∈ Sp(W) the formula

〈g−w,w′〉 (w,w′ ∈W)

defines a bilinear form whose left and right radicals coincide with Ker(g−). Hence we get
a non-degenerate bilinear form Bg on the quotient W/Ker(g−). Then, for g 6= 1,

dis(Bg) = s(det(〈g−wi, wj〉1≤i,j≤r)),
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where w1 + Ker(g−), w2 + Ker(g−), . . ., wr + Ker(g−) is a basis of W/Ker(g−). For
completeness set dis(B1) = 1.

For g ∈ Sp(W) define

Θ(g) = |Ker(g−)|1/2 γ(1)dim g−W dis(Bg), (95)

T (g) = Θ(g) 1g−W χc(g).

Theorem 31. For any g1, g2 ∈ Sp(W),

T (g1)\T (g2) = T (g1g2).

Proof. Proposition 30 implies that we’ll be done as soon as we show that

C(g1, g2) =
Θ(g1g2)

Θ(g1)Θ(g2)
(g1, g2 ∈ Sp(W)). (96)

Also, we see from Proposition 30 that the absolute values of both sides of (96) are equal.
Hence, (96) is equivalent to

γ(q̃g1,g2) =
θ(g1g2)

θ(g1)θ(g2)
(g1, g2 ∈ Sp(W)), (97)

where

θ(g) = γ(1)dim g−W dis(Bg) (g ∈ Sp(W)).

Since the twisted convolution is associative, the function C(g1, g2) is a cocycle:

C(g1, g2)C(g1g2, g3) = C(g1, g2g3)C(g2, g3) (g1, g2, g3 ∈ Sp(W)).

Recall the non-degenerate symmetric form q̃g1,g2 defined in Notation 6. Hence, by the
formula for C(g1, g2) in Proposition 30, the function γ(q̃g1,g2) is also a cocycle:

γ(q̃g1,g2)γ(q̃g1g2,g3) = γ(q̃g1,g2g3)γ(q̃g2,g3) (g1, g2, g3 ∈ Sp(W)).

Let

C ′(g1, g2) =
θ(g1g2)

θ(g1)θ(g2)
(g1, g2 ∈ Sp(W)).

This is also a cocycle. Fix two elements g2, g3 ∈ Sp(W). We have seen in Lemma 8 that
there is g1 ∈ Sp(W) such that K1 = Ker g−1 = {0} and K12 = Ker(g1g2)− = {0}. Assume
that (97) holds when K1 = {0} . Then

γ(q̃g2,g3) =
γ(q̃g1,g2)γ(q̃g1g2,g3)

γ(q̃g1,g2g3)
=
C ′(g1, g2)C ′(g1g2, g3)

C ′(g1, g2g3)
= C ′(g2, g3).

Hence, in order to verify (97) we may assume that K1 = {0}. Then Corollary 10 implies

dis(q̃g1,g2) = dis(Bg1g2)s(−1)dim U dis(Bg1) dis(Bg2) (98)

= s(−1)dim U dis(Bg1g2)

dis(Bg1) dis(Bg2)
.
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But, it follows from Lemma 7 that

γ(1)dim U12

γ(1)dim U1 γ(1)dim U2
= γ(1)(− dim U−dim V). (99)

On the other hand, we see from Corollary 26 that

γ(q̃g1,g2) = γ(1)dim U−dim V dis(q̃g1,g2) = s(−1)dim Uγ(1)− dim U−dim V dis(q̃g1,g2),

because γ(1)2 = s(−1). Therefore (98) implies (97). �

3.7. The conjugation property. Let ω1,1 denote the permutation representation of
Sp(W) on L2(W):

ω1,1(g)φ(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)).

Also, let

φ∗(w) = φ(−w) (w ∈W, φ ∈ L2(W)).

Proposition 32. For any φ ∈ L2(W) and g ∈ Sp(W) we have

(a) T (1)\φ = φ\T (1) = φ,
(b) T (g)\φ\T (g−1) = ω1,1(g)φ,
(c) T (g)∗ = T (g−1).

Proof. Since,

T (1) = |W|1/21{0}
part (a) is easy to check. We see from (95) that the equality (c) is equivalent to

γ(1)− dim g−W dis(Bg) = γ(1)dim g−W dis(Bg−1),

which is the same as

s(−1)dim g−W = dis(Bg) dis(Bg−1).

But the last equality holds because

dis(Bg−1) = dis(−Bg) = s(−1)dim g−W dis(Bg).

Thus it remains to prove the equality (b), which is equivalent to

T (g)\1w0 = 1gw0\T (g). (100)

The left hand side of (100) evaluated at w′ is equal to

|W|−1/2Θ(g)1g−W(w′ − w0)χ(
1

4
(〈c(g)(w′ − w0), w′ − w0〉+ 2〈w′ − w0, w

′〉))

and the right hand side is equal to

|W|−1/2Θ(g)1g−W(w′ − gw0)χ(
1

4
(〈c(g)(w′ − gw0), w′ − gw0〉+ 2〈gw0, w

′〉)).

Since,

w′ − gw0 = (w′ − w0)− g−w0
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both sides have the same support. Also,

〈c(g)(w′ − gw0), w′ − gw0〉+ 2〈gw0, w
′〉 − (〈c(g)(w′ − w0), w′ − w0〉+ 2〈w′ − w0, w

′〉)
= 〈c(g)(w′ − gw0), w′ − gw0〉 − 〈c(g)(w′ − w0), w′ − w0〉+ 2〈g+w0, w

′〉
= 〈c(g)((w′ − w0)− g−w0, (w

′ − w0)− g−w0〉 − 〈c(g)(w′ − w0), w′ − w0〉+ 2〈g+w0, w
′〉

= 〈c(g)g−w0, g
−w0〉 − 2〈c(g)g−w0, w

′ − w0〉+ 2〈g+w0, w
′〉

= 〈g+w0, g
−w0〉 − 2〈g+w0, w

′ − w0〉+ 2〈g+w0, w
′〉

= 〈g+w0, g
−w0〉+ 2〈g+w0, w0〉 = 〈(g−1 − 1)g+w0, w0〉+ 2〈g+w0, w0〉

= 〈(g−1 − g)w0, w0〉+ 2〈gw0, w0〉 = 0.

Therefore the two sides of (100) are equal. �

3.8. The Weyl transform and the Weil representation. Pick a complete polariza-
tion

W = X⊕ Y (101)

and recall that our normalization of measures is such that dµW(x + y) = dµX(x)dµY(y).
Recall the Weyl transform

K : L2(W)→ L2(X× X), (102)

K(φ)(x, x′) =

∫
Y

φ(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y).

Each element K ∈ L2(X× X) defines an operator Op(K) ∈ Hom(L2(X),L2(X)) by

Op(K)v(x) =

∫
X

K(x, x′)v(x′) dµX(x′). (103)

A straightforward computation shows that Op ◦ K transforms the twisted convolution of
functions into the composition of the corresponding operators. Also,

tr Op ◦ K(φ) =

∫
X

K(φ)(x, x) dµX(x) = φ(0) and (Op ◦ K(φ))∗ = Op ◦ K(φ∗). (104)

Hence, the map
Op ◦ K : L2(W)→ H.S.(L2(X)) (105)

is an isometry. (Here H.S.(L2(X)) stands for the space of the Hilbert-Schmidt operators
on L2(X).) Let U(L2(X)) denote the group of the unitary operators on the Hilbert space
L2(X).

By combining (101) - (105) with Theorem 31 and Proposition 32 we deduce the following
theorem.

Theorem 33. Let ω = Op ◦ K ◦ T . Then

ω : Sp(W)→ U(L2(X))

is an injective group homomorphism. The function Θ coincides with the character of the
resulting representation:

Θ(g) = tr ω(g) (g ∈ Sp(W)).
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Moreover,

ω(g) Op ◦ K(φ)ω(g−1) = Op ◦ K(ω1,1(g)φ) (g ∈ Sp(W), φ ∈ L2(W)).

We end this section by recalling some well known formulas for the action of ω(g) for
some special elements g ∈ Sp(W).

Proposition 34. Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and
Y. Then the restriction to X defines a group isomorphism M 3 g → g|X ∈ GL(X) and

ω(g)v(x) = s(det(g|X))v(g−1x) (g ∈ M, v ∈ L2(X), x ∈ X). (106)

Proof. Fix an element g ∈ M. Let x1, x2, . . ., xk be elements of X such that the vectors
x1 + Ker(g−)|X, x2 + Ker(g−)|X, . . ., xk + Ker(g−)|X form a basis of the vector space
X/Ker(g−)|X. Pick y1, y2, . . ., yk in Y so that 〈xi, yj〉 = 1. Then the vectors y1+Ker(g−)|Y,
y2 + Ker(g−)|Y, . . ., yk + Ker(g−)|Y form a basis of the vector space Y/Ker(g−)|Y. Let
w1 := x1, . . ., w2k := yk. Then w1 +Ker(g−), . . ., w2k+Ker(g−) for a basis of W/Ker(g−).
Furthermore g defines an endomorphism g−1|X/Ker(g−)|X of the space X/Ker(g−)|X and

det(〈g−wi, wj〉1≤i,j≤2k)

= (−1)dim(X/Ker(g−)|X) det(〈g−xi, yj〉1≤i,j≤k) det(〈g−yi, xj〉1≤i,j≤k)
= (−1)dim(X/Ker(g−)|X) det(〈g−xi, yj〉1≤i,j≤k) det(〈yi, (g−1 − 1)xj〉1≤i,j≤k)
= (−1)dim(X/Ker(g−)|X) det(〈g−xi, yj〉1≤i,j≤k) det(〈g−1g−xj, yi〉1≤i,j≤k)
= (−1)dim(X/Ker(g−)|X)

(
det(〈g−xi, yj〉1≤i,j≤k)

)2
det(g−1|X/Ker(g−)|X).

But det(g−1|X/Ker(g−)|X) = det(g|−1
X ). Therefore

Θ(g) = |Ker(g−)|
1
2 · γ(1)dim g−W · s

(
(−1)dim(X/Ker(g−)|X) det(g|−1

X )
)

=

(
|W|
|g−W|

) 1
2

· γ(1)2 dim g−X · s
(

(−1)dim(X/Ker(g−)|X) det(g|−1
X )
)

=
|Y|
|g−Y|

· (s(−1))dim g−X · s
(

(−1)dim(X/Ker(g−)|X) det(g|−1
X )
)

=
|Y|
|g−Y|

· s
(
det(g|−1

X )
)
.

Let x, x′ ∈ X and let y ∈ Y be such that x − x′ + y ∈ g−W. Then x − x′ ∈ g−X and
y ∈ g−Y. Moreover,

1

4
〈c(g)(x− x′ + y), x− x′ + y〉〉 =

1

2
〈c(g)(x− x′), y〉.
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Hence, (82) shows that∫
g−Y

χc(g)(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y)

=

(
|g−Y|
|Y|

) 1
2
∫
g−Y

χ(
1

2
〈y, x+ x′ − c(g)(x− x′)〉) dµg−Y(y)

=

(
|g−Y|
|Y|

) 1
2 (
|g−Y|

) 1
2 IKer(g−)|X

(
1

2
(x+ x′ − c(g)(x− x′))

)
,

because the annihilator of g−Y in X coincides with Ker(g−)|X. But the condition x+ x′−
c(g)(x− x′) ∈ Ker(g−)|X means that x′ = g−1x. Indeed, if x− x′ = g−x̃, then

0 = g−(x+ x′ − c(g)(x− x′)) = g−(x+ x′ − g+x̃)

= g−(x+ x′)− g+(x− x′) = 2(gx′ − x).

Therefore,

K(T (g))(x, x′)

= Θ(g)

(
|g−Y|
|Y|

) 1
2 (
|g−Y|

) 1
2 δ0(g−1x− x′)

=
|Y|
|g−Y|

s
(
det(g|−1

X )
)( |g−Y|

|Y|

) 1
2 (
|g−Y|

) 1
2 δ0(g−1x− x′)

= |Y|
1
2 s
(
det(g|−1

X )
)
δ0(g−1x− x′)

and the formula for ω(g) follows. �

Proposition 35. Suppose g ∈ Sp(W) acts trivially on Y and on W/Y. Then det((−g)−
1) 6= 0 and

ω(g)v(x) = χc(−g)(2x)v(x) (v ∈ L2(X), x ∈ X).

Proof. Since −g acts as minus the identity on Y and on W/Y, det((−g) − 1) 6= 0 and
z := c(−g) ∈ sp(W) is well defined. Furthermore

z : X→ Y → 0.

Hence, ∫
Y

χz(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y) =

∫
Y

χz(x− x′)χ(
1

2
〈y, x+ x′〉) dµY(y)

= χz(x− x′)|Y |
1
2 δ0(

1

2
(x+ x′)) = χz(2x)|Y |

1
2 δ0(x+ x′)

Moreover,

Θ(−g) = γ(1)dim(W)s(det(−2)) = s(−1)dim(X)s((−2)dim(W)) = s(−1)dim(X).
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Thus
K(T (−g))(x, x′) = s(−1)dim(X)χz(2x)|Y |

1
2 δ0(x+ x′).

Therefore,

ω(−g)v(x) = s(−1)dim(X)χz(2x)v(−x).

Since, by Proposition 34,

ω(−1)v(x) = s(−1)dim(X)v(−x),

the formula for ω(g) follows. �

Proposition 36. Suppose g ∈ Sp(W) maps X bijectively onto Y and Y onto X and g2 = −1.
Then

ω(g)v(x) = γ(1)dim(X)

∫
X

χ(〈gx, x′〉)v(x′) dµX(x′) (v ∈ L2(X), x ∈ X).

(Thus ω(g) is a Fourier transform on L2(X).)

Proof. The formula
〈gx, x′〉 (x, x′ ∈ X)

defines a non-degenerate symmetric bilinear form on X. Hence, there is a basis x1, x2, . . .,
xn of X and scalars aj ∈ F× such that

〈gxi, xj〉 = ajδi,j (1 ≤ i, j ≤ n).

Set yj := −a−1
j gxj, 1 ≤ j ≤ n. Then y1, y2, . . ., yn is a basis of Y and 〈xi, yj〉 = δi,j for

all 1 ≤ i, j ≤ n. We have

g−xj = −ajyj − xj and g−yj = a−1
j xj − yj.

Set A = diag(a1, a2, . . . , an). Then, with I = In,

det
(
g−
)

= det

(
− I A−1

−A − I

)
= det

(
I 0
−A I

)(
− I A−1

−A − I

)
= det

(
− I A−1

0 −2 I

)
= 2n 6= 0.

Thus Ker(g−) 6= 0 so that g−W = W. Moreover, with wi = xi and wn+i = yi for
i = 1, 2, . . . , n, we have

det
(
〈g−wi, wj〉1≤i,j≤2n

)
= det

(
− I A−1

−A −2 I

)t(
0 I
− I 0

)
= 2n det

(
0 I
− I 0

)
= 2n.

Thus
dis(Bg) = s(2n).
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Hence,
Θ(g) = γ(1)2n s(2n) = s(−1)n s(2n) = s(−2)n.

Since g+ = g−(−g), we see that c(g) = −g. Further,

〈(c(g)(x− x′ + y), x− x′ + y〉 = 〈−g(x− x′ + y), x− x′ + y〉
= 〈−g(x− x′), x− x′〉+ 〈−gy, y〉.

Therefore, ∫
Y

χc(g)(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y)

= χ−g(x− x′)
∫
Y

χ−g(y)χ(
1

2
〈y, x+ x′〉) dµY(y)

= χ−g(x− x′) γ(q̃)χg(x+ x′) = γ(q̃)χ(〈gx, x′〉),
where q̃ is the following symmetric bilinear form on Y

q̃(y, y′) =
1

2
〈−gy, y′〉 (y, y′ ∈ Y).

Since,

det(q̃(yi, yj)1≤i,j≤n) =

(
−1

2

)n
,

we see that

γ(q̃) = γ(1)ns

(
−1

2

)n
.

Therefore,

K(T (g))(x, x′) = s(−2)n γ(1)n s

(
−1

2

)n
χ(〈gx, x′〉) = γ(1)n χ(〈gx, x′〉).

�

4. The Weil representation over R

Let χ(r) = exp(2πir), r ∈ R. This is a non-trivial character of the additive group R.
In this section we provide a construction of the corresponding Weil representation, [43],
[51].

4.1. The Fourier transform. Let U be a finite dimensional vector space over R and let
B be a positive definite scalar product on U. We normalize the Lebesgue measure µU on
U so that the volume of the unit cube (with respect to B) is 1. The formula

Φ(u)(v) = B(u, v) (u, v ∈ U)

defines a linear isomorphism Φ : U→ U∗. The form B∗ dual to B is given by

B∗(u∗, v∗) = v∗(Φ−1(u∗)) (u∗, v∗ ∈ U∗).

This is a symmetric positive definite bilinear form on U∗. Denote by µU∗ the corresponding
Lebesgue measure.
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Let S(U) be the Schwartz space on U, [14, Definition 7.1.2]. For φ ∈ S(U) let

Fφ(u∗) =

∫
U

φ(u)χ(−u∗(u)) dµU(u) (u∗ ∈ U∗)

be the Fourier transform of φ. Then, as is well known, Fφ ∈ S(U∗) and

φ(u) =

∫
U∗
Fφ(u∗)χ(u∗(u)) dµU∗(u

∗) (u∗ ∈ U∗),

see [14, Theorem 7.1.5].
Let S∗(U) denote the space of the tempered distributions on U, [14, Definition 7.1.7].

When convenient we shall identify any bounded locally integrable function f : U → C
with the tempered distribution fµU. In particular, S(U) ⊆ S∗(U). Then the Fourier
transform

F : S(U)→ S(U∗)

extends to
F : S∗(U)→ S∗(U∗),

[14, Definition 7.1.9].
Let V ⊆ U be a non-zero subspace. The form B restricts to V and determines the

Lebesgue measure µV. We may view µV as a tempered distribution on U by

µV(φ) =

∫
V

φ(v) dµV(v) (φ ∈ S(U)).

In the case when V is zero we define µV = µ0 to be the unit measure at 0. In other words
µ0 = δ0 is the Dirac delta at 0,

µ0(φ) = δ0(φ) = φ(0) (φ ∈ C(U)).

Also, for future reference, let δu ∈ S(U) be the Dirac delta at u ∈ U,

δu(φ) = φ(u) (φ ∈ C(U)).

For an arbitrary subspace V ⊆ U, let V⊥ ⊆ U∗ be the annihilator of V. Then,

FµV = µV⊥ , (107)

see [14, Theorem 7.1.25].
The quotient space U/V may be identified with the B-orthogonal complement of V in

U. Hence it inherits the natural scalar product.
Consider two real vector spaces U′, U′′ of the same dimension equipped with scalar

products B′, B′′ respectively. Let u′1, u
′
2, . . . , u

′
n be a B′-orthonormal basis of U′ and let

u′′1, u
′′
2, . . . , u

′′
n be a B′′-orthonormal basis of U′′. Suppose L : U′ → U′′ is a linear bijection.

Denote by M the matrix of L with respect to the two ordered basis:

Lu′j =
n∑
i=1

Mi,ju
′′
i (j = 1, 2, . . . , n).

Then | det(M)| does not depend on the choice of the orthonormal basis. Thus we may
define | det(L)| = | det(M)| (see section 2.5).
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Lemma 37. With the above notation we have∫
U′
φ(L(u′)) dµU′(u

′) | det(L)| =
∫
U′′
φ(u′′) dµU′′(u

′′) (φ ∈ S(U′′)). (108)

Proof. Since
∫ 1

0

∫ 1

0
· · ·
∫ 1

0
dxn · · · dx2 dx1 = 1 and by definition of µU′ , µU′([0, 1]u′1+[0, 1]u′2+

· · ·+ [0, 1]u′n) = 1,∫
U′
φ(u′) dµU′(u

′) =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(x′1u
′
1 + x′2u

′
2 + · · ·+ x′nu

′
n) dx′n · · · dx′2 dx′1,

and similarly for U′′. Therefore the right hand side of (108) equals∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(
n∑
i=1

x′′i u
′′
i ) dx

′′
n · · · dx′′2 dx′′1

=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(
n∑
i=1

n∑
j=1

Mi,jx
′
ju
′′
i ) dx

′
n · · · dx′2 dx′1| det(M)|

=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(
n∑
j=1

x′jL(u′j)) dx
′
n · · · dx′2 dx′1| det(M)|

which coincides with the left hand side. �

Lemma 38. Suppose X is a finite dimensional vector space over R with a positive definite
symmetric bilinear form and L : X→ U is a surjective linear map. Let

L̃ : X/L−1(V)→ U/V

be the induced bijection. Then

L∗(µV) = | det(L̃)|−1µL−1(V),

where the pullback L∗(µV) is defined as in [14, Theorem 6.1.2].

Proof. Let X′ ⊆ X be the orthogonal complement of Ker(L). Denote by L′ the restriction
of L to X′ and by L′′ the restriction of L to X′ ∩ L−1(V). Then

L′ : X′ → U and L′′ : X′ ∩ L−1(V)→ V

are bijections.
According to [14, Theorem 6.1.2], for a test function φ we have

L∗(µV)(φ) =

∫
Ker(L)

∫
V

φ(x+ L′−1(v)) dµV(v) dµKer(L)(x) | det(L′)|−1. (109)

Lemma 37 shows that the right hand side of (109) is equal to∫
Ker(L)

∫
L′′−1(V)

φ(x+ y) dµL′′−1(V)(y) dµKer(L)(x) | det(L′′)| | det(L′)|−1

=

∫
L−1(V)

φ(z) dµL−1(V)(z) | det(L′′)| | det(L′)|−1.
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Since | det(L′′)|−1 | det(L′)| = | det(L̃)|, we are done. �

4.2. Gaussians on Rn. Let B be the usual dot product on Rn,

B(x, y) = xty = x1y1 + x2y2 + · · ·+ xnyn (x, y ∈ Rn).

Then dµRn(x) = dx is the usual Lebesgue measure on Rn, see [42, Theorem 10.33].
For a symmetric matrix A ∈ GL(Rn) define the corresponding Gaussian γA by

γA(x) = χ(
1

2
xtAx) (x ∈ Rn).

Also, let

γ(A) = FγA(0) =

∫
Rn
χ(

1

2
xtAx) dx.

As customary, we shall identify Rn with the dual (Rn)∗ via the dot product. In these
terms we have the following theorem, [14, Theorem 7.6.1].

Theorem 39. For any symmetric matrix A ∈ GL(Rn),

FγA =
e
πi
4

sgn(A)√
| detA|

γ−A−1 ,

where sgn(A) is the number of the positive eigenvalues of A (counted with the multiplici-
ties) minus the number of the negative eigenvalues of A (counted with the multiplicities).
In particular,

γ(A) =
e
πi
4

sgn(A)√
| detA|

. (110)

Remark 1. Eqn.(110) follows also from [51, Chap. I Théorème 2 and Chap. II § 26].

Remark 2. Eqn.(110) implies that

γ(A) = ±γ(1)n−1 γ(detA), (111)

which can be viewed as the analog on R of Corollary 26.
Indeed, by applying Eqn.(110) to both 1 and detA, we get

γ(1) = e
πi
4 and γ(detA) =

e
πi
4

sign(detA)√
| detA|

,

where sign(detA) is the sign of the determinant of A. Hence we are reduced to compare
the congruence modulo 4 of sgn(A) with those of n−1+sign(detA). Let p (resp. q) denote
the number of the positive (resp. negative) eigenvalues of A. We have sgn(A) = p − q
and n = p+ q. It follows that

n− 1 + sign(detA)− sgn(A) = 2q − 1 + sign(detA) ≡ 0 (mod 4),

since sign(detA) = (−1)q.
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Remark 3. It is easy to see from (111) that(
γ(a)

γ(1)

)2

=
1

a
(a ∈ R×). (112)

4.3. Gaussians on a vector space. Let U be a finite dimensional vector space over
R with a symmetric positive definite bilinear form B. Suppose q is a non-degenerate
symmetric bilinear form on U. Let γ(q) = γ(Q), where Q is the matrix obtained from
any B-orthonormal basis u1, u2,..., un of U by

Qi,j = q(ui, uj) (1 ≤ i, j ≤ n).

Also, we define γ(0) = 1.

Lemma 40. If q is a non-degenerate symmetric bilinear form on U, then∫
U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) = γ(q)χ(−1

2
q∗(u∗, u∗)) (u∗ ∈ U∗).

Proof. Fix a B-orthonormal basis u1, u2, . . ., un of U and let u∗1, u∗2, . . ., u∗n be the dual
basis of U∗. This is a B∗-orthonormal basis. As we have seen in the proof of Lemma 27,
if Q is the matrix corresponding to q, as above, then Q−1 corresponds to q∗.

Let xi = u∗i (u) and let yj = u∗(uj). Then∫
U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) =

∫
Rn
χ(

1

2
xtQx)χ(−xty) dx

= γ(Q)χ(−1

2
ytQ−1y) = γ(q)χ(−1

2
q∗(u∗, u∗)),

where the second equality follows from Theorem 39. �

4.4. Gaussians on a symplectic space. Let W be a finite dimensional vector space
over R with a non-degenerate symplectic form 〈 , 〉. Fix a positive definite compatible
complex structure J on W. In other words, J ∈ sp(W), J2 = − I and the form

B(w,w′) = 〈J(w), w′〉 (w,w′ ∈W) (113)

is positive definite. As explained in section 4.1, this leads to a normalization of the
Lebesgue measures on any subspace of U ⊆ W and on any quotient U/V, where V is a
subspace of U.

We shall identify W with the dual W∗ by

w∗(w) = 〈w,w∗〉 (w,w∗ ∈W). (114)

Then

U∗ = W/U⊥ and (U/V)∗ = V⊥/U⊥, (115)

where the orthogonal complements are taken in W, with respect to the symplectic form
〈 , 〉.



48 A.-M. AUBERT AND T. PRZEBINDA

Lemma 41. Suppose x ∈ Hom(U,W/U⊥) is such that

〈xu, v〉 = 〈xv, u〉 (u, v ∈ U).

Set

q(u, v) =
1

2
〈xu, v〉 (u, v ∈ U).

Let V be the radical of q and let q̃ be the induced non-degenerate form on U/V. Then

(a) V = Ker(x);
(b) The element x determines a bijection

x : U/V→ V⊥/U⊥,

with the inverse

x−1 : V⊥/U⊥ → U/V;

(c) Let x−1 : V⊥ → U/V be the composition of x−1 with the quotient map V⊥ →
V⊥/U⊥. Define

χx(u) = χ(
1

4
〈xu, u〉) (u ∈ U), (116)

χx−1(w) = χ(
1

4
〈x−1w,w〉) (w ∈ V⊥). (117)

Then, for any φ ∈ S(W),∫
U

∫
W

χx(u)χ(−1

2
〈u,w〉)φ(w) dµW(w) dµU(u) (118)

= 2dim(V)γ(q̃)

∫
V⊥
χx−1(w)φ(w) dµV⊥(w)

= 2dim(V)γ(q̃)

∫
V⊥/U⊥

χx−1(w + U⊥)

∫
U⊥
φ(w + v) dµU⊥(v) dµV⊥/U⊥(w + U⊥).

Also, for any φ ∈ S(W/U⊥),∫
U

∫
W/U⊥

χx(u)χ(
1

2
〈u,w〉)φ(w + U⊥) dµW/U⊥(w + U⊥) dµU(u) (119)

= 2dim(V)γ(q̃)

∫
V⊥/U⊥

χx−1(w)φ(w + U⊥) dµV⊥/U⊥(w + U⊥).
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Proof. Part (a) is obvious. Part (b) means that Ker(x)⊥ = Im(x), which is true. For
φ ∈ S(W) we have, ∫

U

∫
W

χx(u)χ(−1

2
〈u,w〉)φ(w) dµW(w) dµU(u)

=

∫
W

F(γqµU)(
1

2
w)φ(w) dµW(w)

=

∫
W

F(γqµU)(w)φ(2w) dµW(w) 2dim W

= γ(q̃)

∫
V⊥
γ−q̃∗(w)φ(2w) dµV⊥(w) 2dim W

= γ(q̃)

∫
V⊥
γ−q̃∗(

1

2
w)φ(w) dµV⊥(w) 2dim W−dim V⊥

= γ(q̃)

∫
V⊥
χx−1(w)φ(w) dµV⊥(w) 2dim V.

This verifies (118). For φ ∈ S(W/U⊥) we have,∫
U

∫
W/U⊥

χx(u)χ(
1

2
〈u,w〉)φ(w + U⊥) dµW/U⊥(w + U⊥) dµU(u)

=

∫
U/V

∫
V

∫
W/U⊥

χx(u+ V)χ(
1

2
〈u+ v, w〉)φ(w + U⊥) dµW/U⊥(w + U⊥) dµV(v) dµU/V(u+ V)

=

∫
U/V

∫
V

∫
W/U⊥

γq̃(u+ V)χ(〈u+ v, w〉)φ(2w + U⊥) dµW/U⊥(w + U⊥) dµV(v) dµU/V(u+ V)

2dim W/U⊥

=

∫
U/V

∫
V⊥/U⊥

γq̃(u+ V)χ(〈u,w〉)φ(2w + U⊥) dµW/U⊥(w + U⊥) dµU/V(u+ V) 2dim W/U⊥

= γ(q̃)

∫
V⊥/U⊥

γ−q̃∗(w + U⊥)φ(2w + U⊥) dµW/U⊥(w + U⊥) 2dim W/U⊥

= γ(q̃)

∫
V⊥/U⊥

γ−q̃∗(
1

2
w + U⊥)φ(w + U⊥) dµW/U⊥(w + U⊥) 2dim W/U⊥−dim V⊥/U⊥

= γ(q̃)

∫
V⊥/U⊥

χx−1(w + U⊥)φ(w + U⊥) dµW/U⊥(w + U⊥) 2dim V.

This verifies (119). �

By a Gaussian on the symplectic space W we shall understand any non-zero constant
multiple of the tempered distribution

χxµU ∈ S∗(W) (120)

where the function χx is defined in Lemma 41. In these terms Lemma 41 says that the
Fourier transform of a Gaussian is another Gaussian.
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4.5. Twisted convolution of Gaussians. Recall the twisted convolution of two Schwartz
functions ψ, φ ∈ S(W):

ψ\φ(w) =

∫
W

ψ(u)φ(w − u)χ(
1

2
〈u,w〉) dµW(u) (w ∈W). (121)

It is easy to see that the above integral converges and that ψ\φ ∈ S(W). Also, the twisted
convolutions

δw0\φ(w) = φ(w − w0)χ(
1

2
〈w0, w〉) and φ\δw0(w) = φ(w − w0)χ(

1

2
〈w,w0〉) (122)

are well defined for any continuous function φ.
Let

t(g) = χc(g)µg−W (g ∈ Sp(W)) . (123)

For any φ ∈ S(W), the twisted convolution t(g)\φ is a continuous function given by the
following absolutely convergent integral

t(g)\φ(w) =

∫
g−W

χc(g)(u)φ(w − u)χ(
1

2
〈u,w〉) dµg−W(u) (w ∈W). (124)

Lemma 42. For any g ∈ Sp(W),

t(g)\(δw0\φ) = δgw0\(t(g)\φ) (φ ∈ S(W), w0 ∈W).

Proof. The left hand side evaluated at w ∈W is equal to∫
g−W

χc(g)(u)(δw0\φ)(w − u)χ(
1

2
〈u,w〉) dµg−W(u)

=

∫
g−W

χc(g)(u)φ(w − u− w0)χ(
1

2
〈w0, w − u〉)χ(

1

2
〈u,w〉) dµg−W(u)

=

∫
g−W

φ(w − u− w0)χ(
1

4
(〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉)) dµg−W(u)

and the right hand side is equal to

(t(g)\φ)(w − gw0)χ(
1

2
〈gw0, w〉)

=

∫
g−W

χc(g)(u)φ(w − gw0 − u)χ(
1

2
〈u,w − gw0〉) dµg−W(u)χ(

1

2
〈gw0, w〉)

=

∫
g−W

χc(g)(u− g−w0)φ(w − gw0 − (u− g−w0))

χ(
1

2
〈u− g−w0, w − gw0〉) dµg−W(u)χ(

1

2
〈gw0, w〉)

=

∫
g−W

φ(w − u− w0)χ(
1

4
(〈c(g)(u− g−w0), u− g−w0〉

+ 2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉)) dµg−W(u).
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A straightforward computation shows that

〈c(g)(u− g−w0), u− g−w0〉+ 2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉
− (〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉) = 0.

Hence, the two sides are equal. �

Let

∂w0 = lim
t→0

δtw0 − δ0

t
.

Then, for any φ ∈ S(W) and w0 ∈W,

∂w0\φ(w) = πi〈w0, w〉φ(w) + ∂w0 ∗ φ(w) (125)

φ\∂w0(w) = −πi〈w0, w〉φ(w) + ∂w0 ∗ φ(w)

where ∂w0 ∗ φ(w) = d
dt
φ(w− tw0)|t=0 is the directional derivative in the direction of −w0.

Corollary 43. For any g ∈ Sp(W),

t(g)\(∂w0\φ) = ∂gw0\(t(g)\φ) (φ ∈ S(W), w0 ∈W).

Proposition 44. For any g ∈ Sp(W) and φ ∈ S(W), t(g)\φ ∈ S(W). Moreover the map

S(W) 3 φ→ t(g)\φ ∈ S(W)

is continuous.

Proof. We see from Corollary 43 with the formulas (125) that for any w0, w ∈W,

2πi〈w0, w〉(t(g)\φ)(w) = ∂w0\(t(g)\φ)(w)− (t(g)\φ)\∂w0(w)

= t(g)\(∂g−1w0
\φ− φ\∂w0)(w)

and similarly

2∂w0 ∗ (t(g)\φ)(w) = t(g)\(∂g−1w0
\φ+ φ\∂w0)(w).

Hence, for any polynomial coefficient differential operator P on W there is a polynomial
coefficient differential operator Q on W such that

P (t(g)\φ) = t(g)\Q(φ) (φ ∈ S(W)). (126)

Notice also that by the definition (124)

‖ t(g)\φ ‖∞≤ sup
w∈W

∫
g−W

|φ(w − u)| dµg−W(u) <∞ (127)

and that the right hand side is a continuous seminorm on S(W). The proposition clearly
follows from these two facts. �

Since the left and right twisted convolutions commute, Proposition (44) together with
Corollary 65 below show that for any two elements g1, g2 ∈ Sp(W) there is a tempered
distribution t(g1)\t(g2) ∈ S∗(W) such that

(t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ) (φ ∈ S(W)). (128)
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In order to verify Proposition 46 below, we shall need an explicit formula for the function
t(g)\φ of Proposition 44. This is provided by the following Lemma.

Lemma 45. Fix an element g ∈ Sp(W). Let U = g−W. The map

U 3 u→ 〈 , (1− c(g))u〉 ∈ U∗ = W/U⊥ = W/Ker(g−) (129)

is bijective.
Fix a complement Z of U in W so that

W = U⊕ Z.

We shall denote the elements of U by u and elements of Z by z. In particular every w ∈W
has a unique decomposition

w = u+ z.

Then, for any φ ∈ S(W) and any w′ = u′ + z′ ∈W,

t(g)\φ(w′) (130)

= χc(g)(u
′)χ(

1

2
〈u′, w′〉)

∫
U

χc(g)(u)φ(u+ z′)χ(−1

2
〈u, (1− c(g))u′ + z′〉) dµU(u).

In particular, (130) implies that t(g)\φ ∈ S(W).

Proof. Suppose 〈 , (1 − c(g))u〉 = 0. Then (1 − c(g))u ∈ Ker g−. There is u0 ∈ W such
that u = g−u0. Therefore

0 = g−(1− c(g))u = g−(1− c(g))g−u0 = g−(g−)u0 − g−g+u0

= g−(g−)u0 − g+g−u0 = (g− − g−)g−u0 = −2g−u0 = −2u.

This verifies (129).
The left hand side of (130) is equal to

t(g)\φ(w′) =

∫
U

χc(g)(u)φ(w′ − u)χ(
1

2
〈u,w′〉) dµU(u)

=

∫
U

χc(g)(u+ u′)φ(z′ − u)χ(
1

2
〈u+ u′, w′〉) dµU(u)

=

∫
U

χc(g)(u
′)χc(g)(u)χ(

1

2
〈c(g)u′, u〉)φ(z′ − u)χ(

1

2
〈u+ u′, w′〉) dµU(u)

= χc(g)(u
′)χ(

1

2
〈u′, w′〉)

∫
U

χc(g)(u)φ(z′ − u)χ(
1

2
〈u,w′ − c(g)u′〉) dµU(u),

which coincides with the right hand side. �

In the following proposition we use Notation 4 and Notation 6.

Proposition 46. Fix two elements g1, g2 ∈ Sp(W). Let U′1 ⊆ U1 be the orthogonal com-
plement of U with respect to the positive definite form B, so that

U1 = U′1 ⊕ U.
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Then the map

L : U′1 + U2 3 u′1 + u2 → c(g1)u′1 − c(g2)u2 − u′1 − u2 + U⊥ ∈W/U⊥

is well defined, surjective and L−1(V⊥/U⊥) = U12. Denote by

L̃ : (U1 + U2)/U12 3 u1 + u2 + U12 → c(g1)u1 − c(g2)u2 − u1 − u2 + V⊥ ∈W/V⊥

= (W/U⊥)/(V⊥/U⊥)

the induced bijection and set

C(g1, g2) = γ(q̃g1,g2)2
dim V| det(L̃)|−1. (131)

Then C is a cocycle, with C(g1, 1) = C(1, g2) = 1, and

t(g1)\t(g2) = C(g1, g2)t(g1g2). (132)

Furthermore, C(g1, g2) = C(g2, g1).

Here, and elsewhere in this paper, the determinant of the zero map on a zero vector
space is by definition equal 1.

Proof. Since V⊥/U⊥ = (c(g1) + c(g2))U, the map L̃ is well defined. Suppose u′1 ∈ U′1 and
u2 ∈ U2 are such that L(u′1 + u2) ∈ V⊥/U⊥. Then there is u ∈ U such that

(c(g1) + c(g2))u+ c(g1)u′1 − c(g2)u2 − u′1 − u2 ∈ U⊥.

Let u = g−1 v1 = g−2 v2, v = u′1 = g−1 w1, and w − v = u2 = g−2 w2. Then

(c(g1) + c(g2))u+ c(g1)v + c(g2)(v − w)− w ∈ U⊥.

Hence, the computation (87) - (89) shows that w = (g1g2)−(w2 − v2) ∈ U12. Therefore
L−1(V⊥/U⊥) ⊆ U12.

The map L is surjective. Indeed, for every w ∈ W , set u2 = g−2 w2 with w2 = −1
2
g−1

2 w.
Then

L(u2) = −c(g2)u2 − u1 + U⊥ = −g+
2 w2 − g−2 w2 + U⊥

= −2g2w2U
⊥ = w + U⊥ .

Lemma 7 (b) shows that dim((U1+U2)/U12) = dim((W/U⊥)/(V⊥/U⊥)). Thus L−1(V⊥/U⊥) =
U12.

Here is a direct proof of this last equality. We already know that L−1(V⊥/U⊥) ⊆ U12.
Therefore it will suffice to show that L(U12) ⊂ V ⊥/U⊥. This is true, because one can show
(as was done in the first part of the proof), that for u = (g1g2)−w = u1+u2 = (u′1+u′)+u2,
with u1 = g−1 g2w and u2 = g−2 w, one has:

L(u) = c(g1)g−1 g2w − c(g2)g−2 w − (c(g1) + c(g2))u′ − (u1 + u2) + U⊥

= (g+
1 )g2w − g+

2 w − u− (c(g1) + c(g2))u′ + U⊥

= (g1g2)−w − u− (c(g1) + c(g2))u′ + U⊥

= u− u− (c(g1) + c(g2))u′ + U⊥ ∈ V ⊥/U⊥.
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The computation (89) - (93) shows that, if u′1 + u2 ∈ U12 then

〈c(g1)u′1, u
′
1〉+ 〈c(g2)u2, u2〉+ 2〈u′1, u2〉+ 〈(c(g1) + c(g2))−1L(u′1 + u2), L(u′1 + u2)〉

= 〈c(g1g2)(u′1 + u2), u1 + u2〉
so that

χc(g1)(u
′
1)χc(g2)(u2)χ(

1

2
〈u′1, u2〉)χ(c(g1)+c(g2))−1(L(u′1 + u2)) = χc(g1g2)(u

′
1 + u2). (133)

Any u1 ∈ U1 has a unique decomposition u1 = u′1 + u, where u′1 ∈ U′1 and u ∈ U. With
this notation, Lemma 45 shows that for any φ ∈ S(W),

t(g1)\(t(g2)\φ)(0) (134)

=

∫
U1

χc(g1)(u1)t(g2)\φ(u1) dµU1(u1)

=

∫
U1

∫
U2

χc(g1)(u1)χc(g2)(u)χ(
1

2
〈u, u′1〉)χ(

1

2
〈u2, (c(g2)− 1)u〉)

χc(g2)(u2)χ(−1

2
〈u2, u

′
1〉)φ(u2 + u′1) dµU2(u2) dµU1(u1)

=

∫
U

∫
U′1

∫
U2

χc(g1)(u1)χc(g2)(u)χ(
1

2
〈u, u′1〉)χ(

1

2
〈u2, (c(g2)− 1)u〉)

χc(g2)(u2)χ(−1

2
〈u2, u

′
1〉)φ(u2 + u′1) dµU2(u2) dµU′1

(u′1) dµU(u)

The formula (119) applied with x = c(g1) + c(g2) shows that∫
U

χc(g1)(u1)χc(g2)(u)χ(
1

2
〈u, u′1〉)χ(

1

2
〈u2, (c(g2)− 1)u〉) dµU(u) (135)

= χc(g1)(u
′
1)

∫
U

χc(g1)+c(g2)(u)χ(
1

2
〈u, c(g1)u′1 − c(g2)u2 − u′1 − u2〉) dµU(u)

= 2dim Vγ(q̃g1,g2)χc(g1)(u
′
1)(χ(c(g1)+c(g2))−1µV⊥/U⊥)(c(g1)u′1 − c(g2)u2 − u′1 − u2).

Furthermore, Lemma 38 shows that, for u′1 + u2 ∈ U12,

µV⊥/U⊥(c(g1)u′1 − c(g2)u2 − u′1 − u2) = L∗(µV⊥/U⊥)(u′1 + u2) (136)

= | det(L̃)|−1µU12(u
′
1 + u2).

The formula (132) follows directly from (133) - (136).
We see from (122) that

t(g1)\(t(g2)\φ)(w) = (t(g1)\(t(g2)\φ))\δ−w(0) = (t(g1)\(t(g2)\(φ\δ−w)))(0)

= ((t(g1)\t(g2))\(φ\δ−w))(0) = ((t(g1)\t(g2))\φ)\δ−w)(0) = (t(g1)\t(g2))\φ(w).

Therefore
(t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ).

Hence, t(g1)\t(g2) coincides with the composition of t(g1) and t(g2) as elements of the
associative algebra End(S(W)). Therefore the function C is a cocycle.
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The last statement is easy to check if g1 − 1, g2 − 1 and g1g2 − 1 are invertible. Since
the cocycle C is a continuous function, the equality for all group elements follows. �

4.6. Normalization of Gaussians and the metaplectic group. For a subset S ⊆W
let S⊥B ⊆ W be the B-orthogonal complement of S and for an element h ∈ End(W) let
h# ∈ End(W) be as in (35). In particular, (Kerh#)⊥ = hW.

Lemma 47. Let h ∈ End(W) and let K ⊆W be a subspace. Then

h#((hK)⊥) ⊆ K⊥ (137)

and
| det(h : K → hK)| = | det(h# : W/(hK)⊥ →W/K⊥)|. (138)

Proof. The inclusion (137) follows directly from (35).
Let w1, . . ., wa be a B-orthonormal basis of K and let u1, ..., ua be a B-orthonormal

basis of hK. Since J is a B-isometry, Jw1, . . ., Jwa ∈ JK and Ju1, . . ., Jua ∈ JhK are
B-orthonormal basis. Define a matrix (hk,i)1≤k,i≤a by

hwi =
a∑
k=1

hk,iuk (1 ≤ i ≤ a).

Then
| det(h : K → hK)| = | det((hk,i)1≤k,i≤a)|. (139)

We see from (34) that

JhK = (hK)⊥⊥B and JK = K⊥⊥B .

Therefore
| det(h# : W/(hK)⊥ →W/K⊥)| = | det((h#

k,i)1≤k,i≤a)|, (140)

where

h#Jui ∈
a∑
k=1

h#
k,iJwk +K⊥ (1 ≤ i ≤ a).

But,

hj,i =
a∑
k=1

hk,iB(uj, uk) = −
a∑
k=1

hk,i〈uk, Juj〉 = −〈hwi, Juj〉

= −〈wi, h#Juj〉 = −〈wi,
a∑
k=1

h#
k,jJwk〉 = −

a∑
k=1

h#
k,j〈wi, Jwk〉

=
a∑
k=1

h#
k,jB(wk, wi) = h#

i,j.

Hence, (138) follows from (139) and (140). �

Lemma 48. Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = Ker g−1 = 0. Then

2− dim V| det(L̃)| = | det(g−2 : K12 → V)|−1.
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Proof. Since, by Lemma 7 (c), V = g−2 K12 = (g−1
1 − 1)K12, the right hand side of the

equation we need to prove makes sense. Also,

2− dim V| det(L̃)| = | det(
1

2
L̃)|

and a straightforward computation shows that

1

2
L̃ : W/U12 3 w + U12 →

1

2
(c(g1)− 1)w + V⊥ = (g−1 )−1w + V⊥ ∈W/V⊥.

Hence,

| det(
1

2
L̃)|−1 = | det(g−1 : W/V⊥ →W/U12)|.

Notice that g−1
1 − 1 = g#

1 . Since V = g−2 K12 and U12 = K⊥12, Lemma 47 shows that

| det(g−1 : W/V⊥ →W/U12)| = | det(g−1
1 − 1: K12 → V)|.

Since the restrictions of g−1
1 and g2 to K12 are equal, we are done. �

Consider an element h ∈ End(W) such that Kerh = Kerh#. (In our applications h
will be equal to g−, where g ∈ Sp(W). Then g# = g−1 − 1 = −g−1g− has the same
kernel as g−.) Let L = J−1h. Denote by L∗ the adjoint to L with respect to B (i.e.
B(Lw,w′) = B(w,L∗w′)). Then L∗ = Jh#. Hence KerL = KerL∗. Therefore L maps
(KerL)⊥B = LW bijectively onto itself. Thus it makes sense to talk about det(L|LW), the
determinant of the restriction of L to LW. If w1, w2, . . ., wm is a B-orthonormal bais of
(KerL)⊥B , then

det(L|LW) = det(B(Lwi, wj)1≤i,j≤m) = det(〈hwi, wj〉1≤i,j≤m). (141)

Under the condition Kerh = Kerh#, we define det(h : W/Kerh → hW) to be the
quantity (141).

Since
B(Jwi, Jwj) = 〈JJwi, Jwj〉 = 〈Jwi, wj〉 = B(wi, wj),

Jw1, Jw2, . . ., Jwm is a B-orthonormal basis of hW (=JLW). Further, if the coefficients
hj,i are defined by

hwi =
∑
j

hj,iJwj,

then

det(〈hwi, wj〉1≤i,j≤m) = det(〈
∑
k

hk,iJwk, wj〉1≤i,j≤m)

= det((hk,i)1≤k,i≤m) det(〈Jwk, wj〉1≤k,j≤m) = det((hk,i)1≤k,i≤m) det(B(wk, wj)1≤k,j≤m)

= det((hk,i)1≤k,i≤m).

Thus | det(h : W/Kerh → hW)| = | det((hk,i)1≤k,i≤m)| coincides with the absolute value
of the determinant defined previously in section 4.1. In particular,

det(h : W/Kerh→ hW) (142)

= sgn(det(h : W/Kerh→ hW))| det(h : W/Kerh→ hW)|.
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Hence, if we identify R×/(R×)2 with {±1} via the sgn, then det(h : W/Kerh → hW) is
equal to the discriminant of the bilinear form induced by 〈h , 〉 on the quotient W/Kerh
times | det(h : W/Kerh→ hW)|.

Also,

(hJ−1)Jwi =
∑
j

hj,iJwj and (J−1h)wi =
∑
j

hj,iwj

and hJ−1 maps hW into itself bijectively. Hence,

det(h : W/Kerh→ hW) = det((hk,i)1≤k,i≤m) (143)

= det((hJ−1)|hW) = det((J−1h)|JhW) .

Definition 49. For g ∈ Sp(W) define

Θ2(g) := γ(1)2 dim g−W det(g− : W/Ker(g−)→ g−W)−1

= γ(1)2 dim g−W−2 (γ(det(g− : W/Ker(g−)→ g−W))2.

(Here the second equality follows from (112).)

Lemma 50. We have

Θ2(g1g2)

Θ2(g1)Θ2(g2)
= C(g1, g2)2 (g1, g2 ∈ Sp(W)). (144)

Proof. Both sides of the equality (144) are cocycles. Hence, Lemma 8 shows that we may
assume that K1 = {0}. In terms of the notation of Lemma 11 we have

− dim U12+dim W+dim U = dim K12+dim U = dim V+dim U = − dim (U/V)+2 dim U.

Hence,

γ(1)2(− dim U12+dim W+dim U) = γ(1)4 dimU γ(1)−2 dim(U/V ) = (−1)dim U γ(1)−2 dim(U/V). (145)

Therefore the equality (38) is equivalent to

γ(1)−2 dim U12 det((g1g2)− : W/K12 → U12)

γ(1)−2 dim W det(g−1 : W→W)γ(1)−2 dim U det(g−2 : W/K2 → U)
(146)

= γ(1)−2 dim(U/V) det(〈1
2

(c(g1) + c(g2)) , 〉U/V) det(g−2 : K12 → V)−2.

By Remark 2, we get

γ(q̃g1,g2) = e
πi
4

sgn(q̃g1,g2 )| det(〈1
2

(c(g1) + c(g2)) , 〉U/V)|−1/2

and

sgn(q̃g1,g2) = p− q,
where p is the dimension of the maximal subspace of U/V on which the form 〈c(g1) +
c(g2) , 〉 is positive definite and q is the dimension of the maximal subspace of U/V on
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which the form 〈c(g1) + c(g2) , 〉 is negative definite. Hence,

γ(q̃g1,g2)
2 = ip−q| det(〈1

2
(c(g1) + c(g2)) , 〉U/V)|−1

= ip−q(−1)q det(〈1
2

(c(g1) + c(g2)) , 〉U/V)−1

= ip+q det(〈1
2

(c(g1) + c(g2)) , 〉U/V)−1

= idim(U/V) det(〈1
2

(c(g1) + c(g2)) , 〉U/V)−1.

This, together with Lemma 48, shows that the right hand side of (146) is equal to

γ(q̃g1,g2)
−2
(

2− dim V| det(L̃)|
)2

,

which, by Proposition 46, coincides with C(g1, g2)−2. �

Definition 51. Let

S̃p(W) = {(g, ξ); g ∈ Sp(W), ξ ∈ C×, ξ2 = Θ2(g)}.

where Θ2(g) is defined by Definition 49.

Lemma 52. S̃p(W) is a group with the multiplication defined by

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) (g1, g2 ∈ Sp(W)) (147)

the identity equal to (1, 1) and the inverse given by

(g, ξ)−1 = (g−1, ξ) (g ∈ Sp(W)).

Proof. Lemma 50 shows that the right hand side of (147) belongs to S̃p(W). A standard

computation, as in [22, page 366] together with Proposition 46, shows that S̃p(W) is a
group with the multiplication given by (147), the identity equal to (1, C(1, 1)−1) and

(g, ξ)−1 = (g−1, C(g−1, g)−1ξ−1).

Since, by Proposition 46, C(1, 1) = 1, it remains to check that

C(g−1, g)−1ξ−1 = ξ.

But, as in the proof of Lemma 48,

C(g−1, g) = 2dim V| det(L̃)|−1

= | det(g− : W/Ker(g−)→ g−W)| = |Θ2(g)|−1 = |ξ|−2.

This completes the proof. �

Notice that the map

S̃p(W) 3 (g, ξ)→ g ∈ Sp(W)
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is a group homomorphism with the kernel consisting of two elements. Thus S̃p(W) is a
central extension of Sp(W) by the two element group Z/2Z:

1→ Z/2Z→ S̃p(W)→ Sp(W)→ 1. (148)

Proposition 53. The extension (148) does not split.

Proof. Pick a two-dimensional symplectic subspace W1 ⊆W and let W2 = W⊥
1 , so that

W = W1 ⊕W2.

Define an element g ∈ Sp(W) by

g(w1 + w2) = −w1 + w2 (w1 ∈W1, w2 ∈W2).

Then
Θ2(g) = i2 det(−2 : W1 →W1)−1 = (i/2)2

and
C(g, g) = 22 · 1 · 1 = 22.

Let g̃ = (g, i/2). Then g̃ ∈ S̃p(W) and

g̃2 = (g2, (i/2)2C(g, g)) = (1,−1) and g̃4 = (1, 1).

Thus the subgroup of S̃p(W) generated by g̃ is cyclic of order 4. The subgroup of Sp(W)
generated by g is cyclic of order 2. Hence the extension (148) does not split over that
subgroup. �

Corollary 54. Up to an equivalence of central group extensions, as in [22, sec. 6.10], (148)
is the only non-trivial central extension of Sp(W) by Z/2Z.

Proof. Since, as is well known (see [27, Theorems 5.10 and 11.1 (b)]),

H2(Sp(W),Z/2Z) = Hom(Z,Z/2Z),

the claim follows. �

Let

φ∗(w) = φ(−w) and u∗(φ) = u(φ∗) (φ ∈ S(W), u ∈ S∗(W), w ∈W).

Lemma 55. For any g ∈ Sp(W), t(g)∗ = t(g−1).

Proof. By the definition (123),

t(g)∗ =
(
χc(g)µg−W

)∗
= χc(g)µg−W = χ−c(g)µg−W.

Since g−W = (g−1 − 1)W, it will suffice to check that for any w ∈W

−c(g)g−w = c(g−1)g−w.

The left hand side is equal to −g+w. The right hand side is equal to

−c(g−1)(g−1 − 1)gw = −(g−1 − 1)gw = −g+w.

�
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Definition 56. For g̃ = (g, ξ) ∈ S̃p(W) define

Θ(g̃) = ξ and T (g̃) = Θ(g̃)t(g). (149)

Lemma 57. With the notation of (149), the following formulas hold

T (g̃1)\T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ S̃p(W)), (150)

T (g̃)∗ = T (g̃−1) (g̃ ∈ S̃p(W)). (151)

Proof. By Proposition 46 the left hand side of (150) is equal to

Θ(g̃1)Θ(g̃2)

Θ(g̃1g̃2)
C(g1, g2)T (g̃1g̃2).

Lemma 52 shows that
Θ(g̃1)Θ(g̃2)

Θ(g̃1g̃2)
C(g1, g2) = 1. (152)

This verifies (150).
The equality (151) follows from Lemma 52 and Lemma 55:

T (g̃)∗ = Θ(g̃)t(g)∗ = Θ(g̃−1)t(g−1) = T (g̃−1).

�

Notice that Sp(W) is a connected Lie group. As such it has a unique connected double

cover (up to an isomorphism of covers). See [3, sec. 16.30]. This way we may view S̃p(W),
the metaplectic group, as a connected Lie group.

Lemma 58. The map T : S̃p(W)→ S∗(W) is injective and continuous.

Proof. The injectivity of T follows from the injectivity of t : Sp(W) → S∗(W), which is
obvious. Let

Spc(W) = {g ∈ Sp(W); det g− 6= 0}.
Lemma 8 shows that

Sp(W) =
⋃

h∈Sp(W)

Spc(W)h. (153)

Let S̃p
c
(W) ⊆ S̃p(W) be the preimage of Spc(W). Then

S̃p(W) =
⋃

h̃∈S̃p(W)

S̃p
c
(W)h̃.

By Lemma 57, we have

T (g̃) = T (g̃h̃−1)\T (h̃) (g̃ ∈ S̃p
c
(W)h̃)

Thus for φ ∈ S(W),

T (g̃)\φ = T (g̃h̃−1)\(T (h̃)\φ).

By Proposition 44, the map

S(W) 3 φ→ T (h̃)\φ ∈ S(W)
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is continuous. Hence it will suffice to check that the restriction of T to S̃p
c
(W) is contin-

uous. But this is obvious. �

4.7. The conjugation property. Let L2(W) denote the Hilbert space of the Lebesgue
measurable functions φ : W→ C, with the norm given by

‖ φ ‖2
2=

∫
W

|φ(w)|2 dµW(w).

Lemma 57 shows that for any g̃ ∈ S̃p(W) and any φ ∈ S(W)

‖ T (g̃)\φ ‖2
2= (T (g̃)\φ)∗\(T (g̃)\φ)(0) = φ∗\T (g̃)∗\T (g̃)\φ(0) = φ∗\φ(0) =‖ φ ‖2

2 .

Hence, the continuous linear map

S(W) 3 φ→ T (g̃)\φ ∈ S(W)

extends by continuity to an isometry

L2(W) 3 φ→ T (g̃)\φ ∈ L2(W).

Furthermore, the formula

ω1,1(g)φ(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)).

defines a unitary representation ω1,1 of the symplectic group Sp(W) on L2(W).

Proposition 59. For any φ ∈ L2(W) and g̃ ∈ S̃p(W) in the preimage of g ∈ Sp(W),
T (g̃)\φ\T (g̃−1) = ω1,1(g)φ.

Proof. Since T (g̃) is a bounded operator, we may assume that φ ∈ S(W). Lemma 42 says
that

t(g)\δw = δgw\t(g) (w ∈W).

Therefore

T (g̃)\δw = δgw\T (g̃) (w ∈W).

Since,

φ =

∫
W

φ(w)δw dµW(w) and

∫
W

φ(w)δgw dµW(w) = ω1,1(g)φ,

we see that

T (g̃)\φ = (ω1,1(g)φ)\T (g̃).

�
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4.8. The Weyl transform and the Weil representation. Pick a complete polariza-
tion

W = X⊕ Y (154)

and recall that our normalization of measures is such that dµW(x + y) = dµX(x)dµY(y).
Recall the the Weyl transform

K : S∗(W)→ S∗(X× X), (155)

K(f)(x, x′) =

∫
Y

f(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y),

This is an isomorphism of linear topological spaces, which restricts to an isometry

K : L2(W)→ L2(X× X). (156)

Each element K ∈ S∗(X× X) defines an operator Op(K) ∈ Hom(S(X),S∗(X)) by

Op(K)v(x) =

∫
X

K(x, x′)v(x′) dµX(x′). (157)

Schwartz Kernel Theorem, [46, statement (51.7), page 531], implies that

Op : S∗(X× X)→ Hom(S(X),S∗(X)) (158)

is an isomorphism of linear topological vector spaces. (One may prove it using [14, The-
orem 5.2.1].) A straightforward computation shows that Op ◦ K transforms the twisted
convolution of distributions (when it makes sense) into the composition of the correspond-
ing operators. Also,

(Op ◦ K(f))∗ = Op ◦ K(f ∗) (f ∈ S∗(W)) (159)

and

tr Op ◦ K(f) =

∫
X

K(f)(x, x) dµX(x) = f(0) (160)

if Op ◦ K(f) is of trace class, [18, Theorem 3.5.4]. Hence, the map

Op ◦ K : L2(W)→ H.S.(L2(X)) (161)

is an isometry, which is a well known fact [18, Theorem 1.4.1]. (Here H.S.(L2(X)) stands
for the space of the Hilbert-Schmidt operators on L2(X).)

Let U(L2(X)) denote the group of the unitary operators on the Hilbert space L2(X).

Theorem 60. Let ω = Op ◦ K ◦ T . Then

ω : S̃p(W)→ U(L2(X))

is an injective group homomorphism. For each v ∈ L2(X), the map

S̃p(W) 3 g̃ → ω(g̃)v ∈ L2(X)

is continuous, so that (ω,L2(X)) is a unitary representation of the metaplectic group. The
function Θ coincides with the character of this representation:∫

S̃p(W)

Θ(g̃)Ψ(g̃) dg̃ = tr

∫
S̃p(W)

ω(g̃)Ψ(g̃) dg̃ (Ψ ∈ C∞c (S̃p(W)),
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where the integral on the left is absolutely convergent. (Here dg̃ stands for any Haar

measure on S̃p(W).) Moreover,

ω(g̃) Op ◦ K(φ)ω(g̃−1) = Op ◦ K(ω1,1(g)φ) (g̃ ∈ S̃p(W), φ ∈ L2(W)).

Proof. We see from the discussion in section 4.7 that the left multiplication by ω(g̃) is an
isometry on H.S.(L2(X)). This implies that ω(g̃) is a unitary operator.

We see from (158) that for any two function v1, v2 ∈ S(X) there is φ ∈ S(W) such that∫
X

ω(g̃)v1(x)v2(x) dµX(x) = T (g̃)(φ) (g̃ ∈ Sp(W)).

Hence Lemma 58 shows that the left hand side is a continuous function of g̃. Since
the operators ω(g̃) are uniformly bounded (by 1), we see that the left hand side is a
continuous function of g̃ for any v1, v2 ∈ L2(X). This implies the strong continuity of ω,
see [49, Lemma 1.1.3] or [50, Proposition 4.2.2.1].

Lemmas 57 and 58 show that the ω : S̃p(W) → U(L2(X)) is an injective group homo-
morphism.

It is not difficult to check that the function

det(Ad(g)− 1)

det g−
(g ∈ Sp(W))

is locally bounded. Furthermore, as shown by Harish-Chandra [11, Lemma 53, page 504],
the function

| det(Ad(g)− 1)|−1/2 (g ∈ Sp(W))

is locally integrable. Hence the function,

|Θ(g̃)| = | det g−|−1/2 (g̃ ∈ S̃p(W)) (162)

is locally integrable.

Notice that for any Ψ ∈ C∞c (S̃p(W)),∫
S̃p(W)

T (g̃)Ψ(g̃) dg̃ ∈ S(W). (163)

Indeed, since the Zariski topology on Sp(W) is noetherian the covering (153) contains a

finite subcovering (see for example [13, Exercise 1.7(b)]). Hence, there are elements h̃1,

h̃2, . . ., h̃m in S̃p(W) such that

S̃p(W) =
m⋃
j=1

S̃p
c
(W)h̃j.

Therefore Proposition 44, Lemma 57 and a standard partition of the unity argument

reduces the proof of (163) to the case when Ψ ∈ C∞c (S̃p
c
(W)). In this case (163) is equal

to ∫
sp(W)

e
πi
2
〈xw,w〉ψ(x) dx (164)
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where ψ ∈ C∞c (sp(W)) and dx is a Lebesgue measure on sp(W). The function (164) is

equal to the pullback of a Fourier transform ψ̂ of ψ from sp∗(W) to W via the unnormalized
moment map

τ : W→ sp∗(W), τ(w)(x) = 〈xw,w〉 (x ∈ sp(W), w ∈W). (165)

Since ψ̂ ∈ S(sp(W)) and since τ is a polynomial map with uniformly bounded fibers,

ψ̂ ◦ τ ∈ S(W).

This verifies (163). Hence, we may compute the trace as follows:

tr

∫
S̃p(W)

ω(g̃)Ψ(g̃) dg̃ =

(∫
S̃p(W)

T (g̃)Ψ(g̃) dg̃

)
(0) =

(∫
S̃p
c
(W)

T (g̃)Ψ(g̃) dg̃

)
(0)

=

∫
S̃p
c
(W)

T (g̃)(0)Ψ(g̃) dg̃ =

∫
S̃p(W)

Θ(g̃)Ψ(g̃) dg̃.

The last formula is a direct consequence of Proposition 59. �

We end this section by recalling some well known formulas for the action of ω(g̃) for

some special elements g̃ ∈ S̃p(W).

Proposition 61. Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and
Y. Let Mc = {g ∈ M : det g− 6= 0}. Set

det
−1/2
X (g̃) = Θ(g̃)| det(

1

2
(c(g|X) + 1))|−1 (g̃ ∈ M̃c).

Then (
det
−1/2
X (g̃)

)2

= det(g|X)−1 (g̃ ∈ M̃c), (166)

the function det
−1/2
X : M̃c → C× extends to a continuous group homomorphism

det
−1/2
X : M̃→ C×

and
ω(g̃)v(x) = det

−1/2
X (g̃)v(g−1x) (g̃ ∈ M̃, v ∈ S(X), x ∈ X). (167)

Proof. Set n = dim X. Fix an element g ∈ Mc. Then

Θ2(g) = det(ig−)−1 = (−1)n det(g|X − 1)−1 det(g|Y − 1)−1

= det(g|X − 1)−1 det(1− g|Y)−1

= det(g|X − 1)−1 det(1− (g|X)−1)−1

= det(g|X − 1)−2 det(g|X).

Also,

| det(
1

2
(c(g|X) + 1))|−1 = | det((g|X)(g|X − 1)−1)|−1

= | det(g|X − 1))|| det(g|X)|−1.

This verifies (166).
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Let x, x′ ∈ X and let y ∈ Y. Then

K(t(g))(x, x′) =

∫
Y

t(g)(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y)

=

∫
Y

χ(
1

2
〈c(g)(x− x′), y〉)χ(

1

2
〈y, x+ x′〉) dµY(y)

= δ0(
1

2
c(g)(x− x′)− x− x′) = δ0(

1

2
((c(g)− 1)x− (c(g) + 1)x′))

= | det(
1

2
(c(g|X) + 1))|−1δ0(g−1x− x′).

Therefore

K(T (g̃))(x, x′) = det
−1/2
X (g̃)δ0(g−1x− x′).

Thus we have (167) for g̃ ∈ M̃c. Since ω is a representation of M̃, the remaining claims
follow. �

Proposition 62. Suppose g ∈ Sp(W) acts trivially on Y and on W/Y. Then det((−g)−
1) 6= 0 and

ω(g̃)v(x) = ±χc(−g)(2x)v(x) (v ∈ S(X), x ∈ X).

Proof. Since −g acts as minus the identity on Y and on W/Y, det((−g) − 1) 6= 0 and
z := c(−g) ∈ sp(W) is well defined. We have

z(w) = (−g)+((−g)−)−1(w) (w ∈W).

Since g acts trivially on Y and on W/Y, we get, for every x ∈ X and every y ∈ Y:

g(x+ y) = x+ y + yx, where yx ∈ Y.

It gives (−g)−(x+ y) = −2x− 2y− yx. Also, (−g)−y = −2y, so that ((−g)−)−1y = −1
2
y.

Hence,

((−g)−)−1(x+ y) = −1

2
(x+ y + ((−g)−)−1yx) = −1

2
(x+ y) +

1

4
yx.

We obtain

z(x+ y) = (−g)+(−1

2
(x+ y) +

1

4
yx),

that is,

z(x+ y) = z(x) =
1

2
yx. (168)

In particular, we have

z : X→ Y → 0.

Also, det(z−1) 6= 0 and c(z) is well defined. On the other hand, we have (z−1)(x+y) =
−(x+ y) + 1

2
yx and (z − 1)y = −y. It follows that

(z − 1)−1(x+ y) = −(x+ y)− 1

2
yx.
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Hence,

c(z)(x+ y) = (z + 1)

(
−(x+ y)− 1

2
yx

)
= −1

2
yx − (x+ y)− 1

2
yx,

that is,
c(z)(w) = −w − 2z(w), for every w ∈W. (169)

We have c(z) ∈ Sp(W). Indeed, for any w,w′ ∈ W, writing w = x + y and w′ = x′ + y′,
with x, x′ ∈ X and y, y′ ∈ Y, we have

〈c(z)(w), c(z)(w′)〉 = 〈−w − yx,−w′ − yx′〉 = 〈w,w′〉+ 〈x, yx′〉+ 〈yx, x′〉.
However, since g is in Sp(W), we have

〈x, x′〉 = 〈gx, gx′〉 = 〈x+ yx, x
′ + yx′〉 = 〈x, x′〉+ 〈x, yx′〉+ 〈yx, x′〉,

which gives
〈x, yx′〉+ 〈yx, x′〉 = 0.

Hence,

K(t(c(z)))(x, x′) =

∫
Y

χ−z(x− x′)χ(
1

2
〈y, x+ x′〉) dµY(y)

= χ−2z(x− x′)δ0(
1

2
(x+ x′)) = 2n χ−2z(x− x′) δ0(x+ x′)

K(t(c(z)))(x, x′) =

∫
Y

χ−z(x− x′)χ(
1

2
〈y, x+ x′〉) dµY(y)

= χ−z(x− x′)δ0(
1

2
(x+ x′)) = 2nχ−z(x− x′)δ0(x+ x′).

Moreover,

Θ2(c(z)) =

(
i

2

)2n

,

since dim ((c(z)− 1)(W)) = dim W = 2n, and,

det (c(z)− 1) = (−2)2n.

Thus
K(T (c̃(z)))(x, x′) = ±inχ−z(x− x′)δ0(x+ x′).

Since Proposition 61 shows that

ω((−̃1))v(x) = ζ(−̃1)v(−x). (170)

the proof is complete. �

Proposition 63. Suppose g ∈ Sp(W) acts trivially on X and on W/X. Then det((−g)−
1) 6= 0 so that z = c(−g) ∈ sp(W) is well defined and z : Y → X→ 0. Assume z(Y) = X.
Then

ω(g̃)v(x) = ± e
πi
4

sgn〈z, 〉|Y

| det(z : Y → X)|1/2

∫
X

χz−1(x− x′)v(x′) dµX(x′) (v ∈ S(X), x ∈ X),
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where z−1 : X→ Y is the inverse of z : Y → X.

Proof. The existence of z and its properties are verified as in the proof of Proposition 62.
In particular, for all x ∈ X and y ∈ Y, we have

g(x+ y) = x+ y + xy, where xy ∈ X.

Similarly to the proof of Proposition 62, we get

z(x+ y) = z(y) =
1

2
xy. (171)

and

c(z)(x+ y) = −(x+ y)− xy, (172)

that is,

c(z)(w) = −w − 2z(w), for every w ∈W. (173)

From (171)and (172), we obtain

〈c(z)(w), w〉 = 〈−w − 2z(w), w〉 = −2〈z(w), w〉. (174)

With notation (116), it gives

χc(z)(w) = χ

(
1

4
〈c(z)(w), w〉

)
= χ

(
−1

2
〈z(w), w〉

)
= χ−2z(w). (175)

Let

q(y, y′) =
1

2
〈zy, y′〉 (y, y′ ∈ Y).

Then, in terms of Lemma 40 and the identification (114),

q∗(x, x′) = −2〈z−1x, x′〉 (x, x′ ∈ X)

and

γ(q) =
e
πi
4

sgn〈z, 〉|Y

| det(1
2
z : Y → X)|1/2

.

Indeed, using notation of Eqn.(11),

〈y′,Φ(y)〉 = Φ(y)(y′) = q(y, y′) =
1

2
〈zy, y′〉 = 〈y′,−1

2
zy〉.

Hence, Φ(y) = x if and only if −1
2
zy = x. Thus Φ−1(x) = −2z−1x. Therefore

q∗(x, x′) = x′(Φ−1(x)) = 〈Φ−1(x), x′〉 = 〈−2z−1x, x′〉.
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Hence, by the definition of K (155), the assumption that z annihilates X and maps Y into
X and Lemma 40, we obtain

K(t(c(z)))(x, x′) =

∫
Y

χ(
1

4
〈−z(x− x′ + y), x− x′ + y〉)χ(

1

2
〈y, x+ x′〉) dµY(y)

=

∫
Y

χ(
1

4
〈−zy, y〉)χ(

1

2
〈y, x+ x′〉) dµY(y)

=

∫
Y

χ(
1

2
q(y, y))χ(−〈y,−1

2
(x+ x′)〉) dµY(y)

= γ(q)χ(−1

2
q∗(−1

2
(x+ x′),−1

2
(x+ x′)))

= γ(q)χ(〈z−1(−1

2
(x+ x′)),−1

2
(x+ x′)〉) = γ(q)χz−1(x+ x′).

Therefore

K(T (c̃(z)))(x, x′) = Θ(c̃(z))γ(q)χz−1(x+ x′).

But Θ(c̃(z)) = ±
(
i
2

)n
(where dim W = 2n), so that

Θ(c̃(z))γ(q) = ±
(
i

2

)n
e
πi
4

sgn〈z, 〉|Y

| det(1
2
z : Y → X)|1/2

= ±in e
πi
4

sgn〈z, 〉|Y

| det(z : Y → X)|1/2
.

Furthermore, by Proposition 61,

K(T (−̃1))(x′, x′′) = ±inδ0(x′ − x′′).

Hence, the formula for ω(g̃) = ω(c̃(z)(−̃1)) follows. �

4.9. An extension of ω to S̃p(W) n H(W). By the Heisenberg group we understand
the direct product H(W) = W × R with the multiplication given by

(w, r)(w′, r′) = (w + w′, r + r′ +
1

2
〈w,w′〉) ((w, r), (w′, r′) ∈ H(W)).

Set

T (w, r) = χ(r)δw ((w, r) ∈ H(W)). (176)

Then

T : H(W)→ S∗(W)

is a continuous embedding of the Heisenberg group into the space of the tempered distri-
butions on W.

Theorem 64. Let ω = Op ◦ K ◦ T . Then

ω : H(W)→ U(L2(X))

is an injective group homomorphism. For each v ∈ L2(X), the map

H(W) 3 g̃ → ω(g̃)v ∈ L2(X)
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is continuous, so that (ω,L2(X)) is a unitary representation of the group. Explicitly, for
v ∈ L2(X) and x ∈ X,

ω(x0, r)v(x) = χ(r)v(x− x0) (x0 ∈ X, r ∈ R) , (177)

ω(y0, r)v(x) = χ(r)χ(〈y0, x〉)v(x) (y0 ∈ Y, r ∈ R) ,

Hence, the representation (ω,L2(X)) of H(W) is irreducible. Similarly, the representation
(ω,S(X)) of H(W) is irreducible, so that

EndH(W)(S(X)) = C · I. (178)

Corollary 65. For any continuous endomorphism F of S(W) which commutes all the
twisted convolutions by δw, w ∈ W, from the right, there is a unique tempered distribution
f ∈ S∗(W) such that

F : S(W) 3 φ→ f\φ ∈ S(W) . (179)

In other words,
End\T (H(W))(S(W)) = S∗(W)\ . (180)

Proof. Recall the isomorphisms of linear topological spaces

S(W)
K→ S(X× X)

Op→ Hom(S∗(X),S(X)) = S(X)⊗ S(X) ,

where in the last equality we used the reflexivity of the Schwartz space S(X). Also,

ω : H(W)
T→ S∗(W)

K→ S∗(X× X)
Op→ Hom(S(X),S∗(X)) .

With the appropriate tensor product, we have

End(S(X)⊗ S(X)) = End(S(X))⊗ End(S(X)) . (181)

It is easy to check that, in these terms, for a fixed h ∈ H(W), the post-multiplication
by ω(h) on Hom(S∗(X),S(X)) coincides with I ⊗ ω(h). Hence the conjugation by that
post-multiplication is given by I ⊗ Ad(ω(h)). Therefore (178) implies that the subspace
of End(S(X) ⊗ S(X)) invariant under conjugations by all post-multiplication by ω(h),
h ∈ H(W), is equal to

End(S(X))⊗ I . (182)

These are the pre-multiplications by elements of End(S(X)) on S(X)⊗ S(X).
Since End(S(X)) ⊆ Hom(S(X),S∗(X)), and since the twisted convolution translates to

the composition of operators, (182) implies the statement of the Corollary. �

Since the metaplectic group acts on the Heisenberg group via automorphisms

g̃(w, r) = (gw, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)),

we have the semidirect product S̃p(W) n H(W), which we embed into the space of the
tempered distributions by

T (g̃, (w, r)) = T (g̃)\T (w, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)). (183)

Lemma 42 shows that

T (g̃)\T (w, r)\T (g̃−1) = T (gw, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)). (184)
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Theorem 66. Let ω = Op ◦ K ◦ T . Then

ω : S̃p(W) n H(W)→ U(L2(X))

is an injective group homomorphism. For each v ∈ L2(X), the map

S̃p(W) n H(W) 3 g̃ → ω(g̃)v ∈ L2(X)

is continuous, so that (ω,L2(X)) is a unitary representation of the group. In particular,

ω(g̃)ω(w, r)ω(g̃−1) = ω(gw, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)). (185)

For a test function Φ ∈ C∞c (H(W)) define a partial Fourier transform

Φχ(w) =

∫
R

Φ(w, r)χ(r) dr (w ∈W, r ∈ R).

Then

trω(Φ) = Φχ(0). (186)

Thus the character of ω|H(W) is equal to the the tensor product δ0 ⊗ χ of the Dirac delta
on W and the character χ multiplied by the Lebesgue measure on R.

For test functions Ψ ∈ C∞c (S̃p(W)) and Φ ∈ C∞c (H(W)),

tr (ω(Ψ)ω(Φ)) = (T (Ψ)\Φχ)(0) = T (Ψ)(Φχ). (187)

Proof. This is straightforward. For the irreduciblility it is convenient to check that the
only bounded operator on L2(X) that commutes with the action of the Heisenberg group
is a constant multiple of the identity. �

4.10. The oscillator semigroup. Let WC 3 w → w ∈ WC denote the complex conju-
gation with respect to W ⊆ WC. It is easy to check that the formula

i〈w,w′〉 (w,w′ ∈ WC) (188)

defines a hermitian form on WC.

Lemma 67. Let x, y ∈ sp(W) and let z = x+ iy with det(z − 1) 6= 0. Then

i〈w,w〉 > i〈c(z)w, c(z)w〉 (w ∈ WC \ {0}) (189)

if and only if

〈yw,w〉 > 0 (w ∈ W \ {0}) . (190)

Later we shall abbreviate the condition (190) as 〈y , 〉 > 0.

Proof. Notice that

1− c(z)
−1
c(z) = 1− ((z + 1)(z − 1)−1)−1(z + 1)(z − 1)−1

= 1− (z + 1)−1(z − 1)(z + 1)(z − 1)−1

= (z + 1)−1((z + 1)(z − 1)− (z − 1)(z + 1))(z − 1)−1

= 4i(z + 1)−1y(z − 1)−1 .
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Hence

i〈w,w〉 − i〈c(z)w, c(z)w〉 = i〈(1− c(z)
−1
c(z))w,w〉

= −4〈y(z − 1)−1w, (−z + 1)−1w〉
= 4〈yw′′, w′′〉 ,

where w′′ = (z − 1)−1w. Clearly, w′′ 6= 0 if and only if w 6= 0. Also,

〈yw′′, w′′〉 = 〈y Re(w′′), Re(w′′)〉+ 〈y Im(w′′), Im(w′′)〉 ,
where Re(w′′) = 1

2
(w′′ + w′′) and Im(w′′) = 1

2i
(w′′ − w′′). This completes the proof. �

Corollary 68. Define

sp(WC)++ (191)

= {z = x+ iy, x, y ∈ sp(W), det(z − 1) 6= 0, 〈yw,w〉 > 0, w ∈ W \ {0}}
and

Sp(WC)++ = {g ∈ Sp(WC); i〈w,w〉 > i〈gw, gw〉, w ∈ WC \ {0}} . (192)

Then c(sp(WC)++) = Sp(WC)++. Moreover, if g ∈ Sp(WC)++ then g−1 ∈ Sp(WC)++.

Proof. Notice that the condition

i〈w,w〉 > i〈gw, gw〉, w ∈ WC \ {0}
implies that 1 is not an eigenvalue of g. Thus

Sp(WC)++ = {g ∈ Sp(WC); det(g − 1) 6= 0, i〈w,w〉 > i〈gw, gw〉, w ∈ WC \ {0}} .
Since det(z − 1) 6= 0 implies det(c(z)− 1) 6= 0 and since c ◦ c is the identity, the equality

c(sp(WC)++) = Sp(WC)++ follows from Lemma 67. Since, c(x+ iy)
−1

= c(−x + iy), the
last claim follows. �

Lemma 69. Consider an element g ∈ Sp(WC)++. If λ is an eigenvalue of g then |λ| 6= 1.
In particular

det(
1

2
((g−1g)2 + 1)) > 1 . (193)

Proof. If w is a g-eigenvector, i.e. gw = λw, then λ
−1
w = g−1w. Also,

i〈w,w〉 > i〈gw, gw〉 = |λ|2i〈w,w〉 .
Hence i〈w,w〉 6= 0 and |λ|2 6= 1. This verifies the first statement. Since

i〈gw, gw〉 = i〈g−1gw,w〉
we see that the eigenvalues of g−1g are real. Therefore the eigenvalues of (g−1g)2 are
positive. But (g−1g)2 ∈ Sp(WC)++. Hence, by the first statement, the eigenvalues of
(g−1g)2 are positive and come in pairs ν 6= ν−1. Therefore the determinant (193) is the
product of numbers that look like

1

4
(ν + 1)(ν−1 + 1)



72 A.-M. AUBERT AND T. PRZEBINDA

and therefore are greater than 1. �

Lemma 70. The set Sp(WC)++ ⊆ Sp(WC) is a subsemigroup without the identity, closed
under the operation g → g−1. Furthermore

Sp(WC)++Sp(W) = Sp(W)Sp(WC)++ ⊆ Sp(WC)++ (194)

and

Sp(WC)++ ∪ Sp(W) ⊆ Sp(WC) . (195)

is a sub-semigroup. Moreover, Sp(W) is contained in the closure of Sp(WC)++.

Proof. Everything except the last statement follows from the definition (192). Ler g ∈
Sp(W). Then

g = c(0)(−1)g = lim
y→0, 〈y , 〉>0

c(iy)(−1)g,

where c(iy)(−1)g ∈ Sp(WC)++, by (194). �

Notice that the set

{〈−iz , 〉; z = x+ iy, 〈y , 〉 > 0}
coincides with the set of symmetric bilinear forms on WC with positive definite real part

Re〈−iz , 〉|W = 〈y , 〉|W > 0.

Since the determinant of such a form may be identified with det(−iz), we see that there
is a unique holomorphic function

det1/2(−iz) (z ∈ sp(WC)++) (196)

such that

det1/2(y) > 0 (y ∈ sp(W), 〈y , 〉 > 0). (197)

Set

˜Sp(WC)
++

= {(g, ξ); g ∈ Sp(WC)++, ξ2 = det(i(g − 1))−1} (198)

and

C(g1, g2) = det−1/2(
1

2i
(c(g1) + c(g2)) (g1, g2 ∈ Sp(WC)++) . (199)

Lemma 71. The set ˜Sp(WC)
++

with the multiplication

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) (200)

is a semigroup.

This is the normalized oscillator semigroup of Howe, [20, (11.4)]
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Proof. Notice that

1

2
(c(g1) + c(g2)) =

1

2
(g1 − 1)−1((g1 + 1)(g2 − 1) + (g1 − 1)(g2 + 1))(g2 − 1)−1

= (g1 − 1)−1(g1g2 − 1)(g2 − 1)−1 .

Hence,

det(i(g1 − 1))−1 det(i(g2 − 1))−1 det(− i
2

(c(g1) + c(g2)))−1

= det(i(g1 − 1))−1 det(i(g2 − 1))−1 det(−i(g1 − 1)−1(g1g2 − 1)(g2 − 1)−1)−1

= det(i(g1g2 − 1))−1.

Hence the product of two elements of ˜Sp(WC)
++

is contained in ˜Sp(WC)
++

. One still have
to check the associativity, i.e. the cocycle property of C:

C(g1, g2)C(g1g2, g3) = C(g1, g2g3)C(g2, g3) (g1, g2, g3 ∈ Sp(WC)++) . (201)

Since both sides are holomorphic functions of the three variables we may assume that
gj = c(iyj), yj ∈ sp(W), 〈yj , 〉 > 0, j = 1, 2, 3. Then each function in (201) is positive,
so we’ll be done as soon as we show that

(C(g1, g2)C(g1g2, g3))−2 = (C(g1, g2g3)C(g2, g3))−2 (g1, g2, g3 ∈ Sp(WC)++) . (202)

In terms of the determinants (202) looks as follows

det(y1 + y2) det(−ic(c(iy1)c(iy2)) + y3) = det(y1 − ic(c(iy2)c(iy3)) det(y2 + y3) . (203)

Since
c(c(a)c(b)) = (b− 1)(a+ b)−1(a− 1) + 1

(203) reduces to

det(y1 + y2) det((y2 + i)(y1 + y2)−1(y1 + i) + y3 − i) (204)

= det(y1 − i+ (y3 + i)(y2 + y3)−1(y2 + i)) det(y2 + y3) .

Further

(y2 + i)(y1 + y2)−1(y1 + i) + y3 − i
= (y2 + i)(y1 + y2)−1(y1 + i+ (y1 + y2)(y2 + i)−1(y3 − i))

and

y1 − i+ (y3 + i)(y2 + y3)−1(y2 + i)

= ((y1 − i)(y2 + i)−1(y2 + y3) + y3 + i)(y2 + y3)−1(y2 + i) .

Therefore (204) is equivalent to

det(y1 + i+ (y1 + y2)(y2 + i)−1(y3 − i)) (205)

= det((y1 − i)(y2 + i)−1(y2 + y3) + y3 + i) .

But
(y1 + y2)(y2 + i)−1 = (y1 − i+ y2 + i)(y2 + i)−1 = (y1 − i)(y2 + i)−1 + 1
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and similarly
(y2 + i)−1(y2 + y3) = 1 + (y2 + i)−1(y3 − i) .

Hence (205) is equivalent to

det(y1 + (y1 − i)(y2 + i)−1(y3 − i) + y3) (206)

= det((y1 − i)(y2 + i)−1(y3 − i) + y1 + y3) ,

which is true. Thus (202) follows. �

Recall the following holomorphic function

chc(x+iy) =

∫
W

χx+iy(w) dw = det−1/2(
1

2i
(x+iy)) (x, y ∈ sp(W), 〈y·, ·〉 > 0) . (207)

This is the reciprocal of the unique holomorphic square root of the determinant of

1

2i
(x+ iy) =

1

2
(y − ix) ,

which is positive for x = 0, see (196).

Lemma 72. The cocycles (131) and (199) match to form a continuous function

C :
(
Sp(WC)++ ∪ Sp(W)

)
×
(
Sp(WC)++ ∪ Sp(W)

)
→ C× .

Proof. Let
C ′ : Sp(WC)++ × Sp(WC)++ → C×

denote the function (131) and let

C ′′ : Sp(W)× Sp(W)→ C×

denote the function (199). We know that both are continuous. Hence it will suffice to
check that they match on a dense subset consisting of the pairs

(g1, g2) ∈
(
Sp(WC)++ ∪ Sp(W)

)
×
(
Sp(WC)++ ∪ Sp(W)

)
such that

det(g1 − 1) det(g2 − 1) det(g1g2 − 1) 6= 0 . (208)

Since
1

2
(c(g1) + c(g2)) = (g1 − 1)−1(g1g2 − 1)(g2 − 1)−1 ,

it is clear from (199) that C ′ extends to a continuous function on the indicated subset.
On the other hand, in terms of Proposition 46, | det(L̃)| = 1 and by (207) and (135),

chc(c(g1) + c(g2)) = 2dimV γ(q̃g1,g2)

which shows that
C ′(g1, g2) = C ′′(g1, g2)

for g1, g2 ∈ Sp(W) satisfying (208). �

Define Sp(WC)+ = Sp(WC)++ ∪ Sp(W) and

˜Sp(WC)
+

= ˜Sp(WC)
++

∪ S̃p(W) . (209)



THE WEIL REPRESENTATION 75

Corollary 73. The set (209) with the multiplication

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) (210)

is a semigroup. Also, the map

Sp(WC)+ 3 (g, ξ)→ (g, ξ)∗ = (g−1, ξ) ∈ Sp(WC)+ (211)

is a well defined involution.

Proof. Only the second claim needs checking, which is easy. �

This is the normalized oscillator semigroup extended by the metaplectic group as in
[20, sec. 16].

Corollary 74. The function

Θ : ˜Sp(WC)
++

3 (g, ξ)→ ξ ∈ C (212)

is holomorphic. It extends to a function

Θ : ˜Sp(WC)
+

3 (g, ξ)→ ξ ∈ C , (213)

which satisfies the equality

Θ(g̃1g̃2)

Θ(g̃1)Θ(g̃2)
= C(g1, g2) (g1, g2 ∈ ˜Sp(WC)

+

) . (214)

Moreover, for g1, g2 ∈ Sp(WC)+ with g1 − 1 and g2 − 1 invertible

C(g1, g2) = det−1/2(
1

2i
(c(g1) + c(g2)) = chc(c(g1) + c(g2)) . (215)

Furthermore, for any test function Ψ ∈ C∞c (S̃p(W))∫
S̃p(W)

Θ(g̃)Ψ(g̃) dg̃ = lim
p̃→1

∫
S̃p(W)

Θ(p̃g̃)Ψ(g̃) dg̃ , (216)

where the Θ on the left hand side is defined by (149), the Θ on the right hand side by

(213) and p̃ ∈ ˜Sp(WC)
++

.

Notice that the topology of the metaplectic group is not the one inherited from the
embedding

S̃p(W) ⊆ Sp(W)× C× ,

see Definition 51, because the function Θ : S̃p(W)→ C× is not continuous.

Proof. The first claim is obvious. The equality (214) follows from Corollary 73. The first
equality in (215) follows from from (199) and the second one from (207).

Fix an element (̃−1) ∈ S̃p(W) in the preimage of −1 and let c̃ be a real analytic lift of

the Cayley transform c such that (̃−1)c̃(0) = 1. In order to prove (216) we may assume
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that Ψ is supported in a neighborhood of 1 contained in the range of (̃−1)c̃. Then the
integral on the right hand side of (216) is equal to∫

S̃p(W)

Θ(p̃g̃)Ψ(g̃) dg̃ =

∫
S̃p(W)

Θ(p̃(̃−1)g̃)Ψ((̃−1)g̃) dg̃

=

∫
S̃p(W)

Θ(c̃(iy)g̃)Ψ((̃−1)g̃) dg̃

=

∫
sp(W)

Θ(c̃(iy)c̃(x))Ψ((̃−1)c̃(x))Jac(x) dx ,

where Jac(x) is the jacobian and, by Corollary 68, p̃(̃−1) = c̃(iy), with 〈y , 〉 > 0. We
see from (213) and (214) that

Θ(c̃(iy)c̃(x)) = Θ(c̃(iy))Θ(c̃(x))chc(x+ iy) .

Therefore the integral on the right hand side of (216) is equal to∫
sp(W)

Θ(c̃(iy))chc(x+ iy)ψ(x) dx , (217)

where ψ(x) = Θ(c̃(x))Ψ(c̃(x))Jac(x) is a smooth compactly supported function. Here
lim
y→0

Θ(c̃(iy)) = Θ(c̃(0)) exists. Also,∫
sp(W)

chc(x+ iy)ψ(x) dx =

∫
sp(W)

∫
W

χx+iy(w)ψ(x) dw dx

=

∫
W

∫
sp(W)

χx+iy(w)ψ(x) dx dw

=

∫
W

χiy(w)

∫
sp(W)

χx(w)ψ(x) dx dw .

Furthermore ∫
sp(W)

χx(w)ψ(x) dx = ψ̂(
1

4
τ(w)) ,

where τ is the unnormalized moment map defined in (165) and

ψ̂(ξ) =

∫
sp(W)

ψ(x)e2πiξ(x) dx (ξ ∈ sp(W)∗)

is the Fourier transform of ψ. Also

χiy(w) = e−
π
2
〈yw,w〉 ≤ 1 (w ∈ W) .

Therefore

lim
y→0

∫
sp(W)

chc(x+ iy)ψ(x) dx =

∫
W

ψ̂(
1

4
τ(w)) dw , (218)

exists.
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The function chc(x), x ∈ sp(W), is locally integrable on sp(W). This can be seen by
checking, on Cartan subsalgebras, that the invariant function

det(ad(x))

det(x)
(x ∈ sp(W))

is locally bounded and using a theorem of Harish-Chadra saying that

| det(ad(x)− 1)|−
1
2 (x ∈ sp(W))

is locally integrable.
Notice that the matrix of the symmetric form 〈J , 〉 with respect to the basis e1, ..., en, f1, ..., fn

(235) is the identity I. Also, let B denote the matrix of the form 〈x , 〉 with respect to
the same basis. Then for t > 0, |chc(x+ itJ)| is a constant multiple of | det(−iB+ tI)|1/2.
By diagonalizing B we see that

| det(−iB + tI)| ≤ | det(iB)| .

Hence

|chc(x+ itJ)| ≤ |chc(x)| .
Therefore

lim
t→0+

∫
sp(W)

chc(x+ itJ)ψ(x) dx =

∫
sp(W)

chc(x)ψ(x) dx , (219)

where the integral on the right converges absolutely. We see from (218) that the limit on
the left hand side of (219) does exist, but since at this point we don’t know the Fourier
transform of chc, we need (219) to conclude that

lim
y→0

∫
sp(W)

chc(x+ iy)ψ(x) dx =

∫
sp(W)

chc(x)ψ(x) dx , (220)

and (216) follows. �

Theorem 75. In addition to (123), define

t(g) = χc(g)µW (g ∈ Sp(WC)++) (221)

and let

T (g̃) = Θ(g̃)t(g) (g̃ ∈ ˜Sp(WC)
+

) . (222)

Then

T : ˜Sp(WC)
+

→ S∗(W) (223)

is a continuous injective map such that

T (g̃1)\T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ ˜Sp(WC)
+

) (224)

and

T (g̃∗) = T (g̃)∗ (g̃ ∈ ˜Sp(WC)
+

) . (225)
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Proof. We know from Lemma 57 that the equalities (224) and (225) hold for g̃1, g̃2, g̃ ∈
S̃p(W). Suppose g̃1, g̃2 ∈ S̃p(W)

++

. Then the condition (208) holds. Hence a straightfor-
ward computation using (207) shows that

t(g1)\t(g2) = chc(c(g1) + c(g2))t(g1g2) .

This together with (215) and (214) verifies (224) for g̃1, g̃2 ∈ S̃p(W)
++

. Verifying (225)

for g̃ ∈ S̃p(W) is straightforward.
The map (223) is clearly injective. Thus we’ll be done as soon as we show that it is

continuous. The restrictions to ˜Sp(WC)
++

is obviously continuous and so is the restriction

to S̃p(W), by Lemma (58). Thus it will suffice that T restricted to the set of the g̃ with
det(g − 1) 6= 0 is continuous, but this is straightforward. �

Lemma 76. For any g̃ ∈ ˜Sp(WC)
++

the following inequalities hold

0 <

∫
W

T (g̃g̃∗)(w) dw (226)

and

0 <

∫
W

T ((g̃g̃∗)2)(w) dw ≤ 1 . (227)

Proof. Notice that, by (207),∫
W

T (g̃g̃∗)(w) dw = Θ(g̃g̃∗)chc(c(gg−1)) . (228)

We see from (214) that

Θ(g̃g̃∗) = Θ(g̃)Θ(g̃∗)C(g, g−1)

and from and (215) that

C(g, g−1) = chc(c(gg−1)) > 0 ,

because c(gg−1) ∈ isp(W). Since, by (211), Θ(g̃∗) = Θ(g̃), the inequality (226) follows.
The first inequality in (227) is a particular case of (226).

On the other hand, a straightforward computation shows that

|Θ(g̃)||chc(c(g))| = | det(
1

2
(g + 1))|−

1
2 (g̃ ∈ ˜Sp(WC)

++

) . (229)

Hence, the (228) is equal to

| det(
1

2
((gg−1)2 + 1))|−

1
2 (230)

which is greater than 1, by (193). �

Let C(L2(X)) denote the semigroup of contractions on the Hilbert space L2(X).
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Theorem 77. Let ω = Op ◦ K ◦ T . Then

ω : ˜Sp(WC)
+

→ C(L2(X))

is an injective semigroup homomorphism. Also, for any p̃ ∈ ˜Sp(WC)
++

, the operator ω(p̃)
is of trace class with

trω(p̃) = Θ(p̃) .

In particular∫
S̃p(W)

Θ(p̃g̃)Ψ(g̃) dg̃ = tr

∫
S̃p(W)

ω(p̃g̃)Ψ(g̃) dg̃ (p̃ ∈ ˜Sp(WC)
++

, Ψ ∈ C∞c (S̃p(W)) .

Proof. Let g̃ ∈ ˜Sp(WC)
++

. Recall that for each w ∈ W, the twisted convolution with the
Dirac delta δw, φ→ δw\φ, is a unitary operator on L2(W). Since

T (g̃)\φ =

∫
W

T (g̃)(w)δw\φ dµW(w) ,

the norm of the operator

L2(W) 3 φ→ T (g̃)\φ ∈ L2(W)

is bounded by the L1 norm of T (g̃). Lemma 76 shows that L1 norm of T ((g̃g̃∗)2) is at
most 1. But

T ((g̃g̃∗)2)\ = T (g̃)\T (g̃)∗\T (g̃)\T (g̃)∗\

Since we work in the C∗ algebra of the bounded operators on the Hilbert space L2(W),

we see that ‖ T (g̃)\ ‖≤ 1. Hence, ‖ ω(g̃) ‖≤ 1. Also, ω(g̃) is unitary for any g̃ ∈ S̃p(W).
Hence the first claim follows.

Since for p̃ ∈ ˜Sp(WC)
++

, trω(p̃) = T (p̃)(0) = Θ(p̃), the second claim is clear. �

For completeness we mention the following theorem proven in [20, sec. 25].

Theorem 78. Any element g̃ ∈ ˜Sp(WC)
++

can be decomposed as

g̃ = ũp̃ ,

where ũ ∈ S̃p(W) and p̃ = p̃∗ ∈ ˜Sp(WC)
++

has positive eigenvalues. Then the operator
ω(ũ) is unitary and ω(p̃) = ω(p̃)∗ is positive, so that

ω(g̃) = ω(ũ)ω(p̃)

is the polar decomposition of ω(g̃).
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4.11. Fock model: a formula of Robinson and Rawnsley. Fix a positive complex
structure J on W and let us view W as a complex vector space the action of J defines the
multiplication by i ∈ C. Then the formula

(w,w′) = 〈Jw,w′〉+ i〈w,w′〉 (w,w′ ∈ W) (231)

defines a positive definite Hermitian form on W.
Suppose for a moment that dimW = 2. Then we may choose a basis e, f of W so that

〈e, e〉 = 〈f, f〉 = 0, 〈e, f〉 = 1, Je = −f, Jf = e. (232)

Then the map
W 3 w → z(w) = 〈e, w〉+ i〈w, f〉 ∈ C (233)

is a C-linear isomorphism and

(w,w′) = z(w)z(w′) .

By computing in polar coordinates in C = R2 we see that the functions

fm(z) =

√
πm

m!
zme−

π
2
|z|2 (z ∈ C,m = 0, 1, 2, ...) (234)

form an orthonormal set in L2(C). By studying the Taylor expansion of the entire func-
tions centered at zero, we see that in fact these functions form an orthonormal basis of
the Hilbert space of the square integrable functions of the form

f(z) = h(z)e−
π
2
|z|2 ,

where h is antiholomorphic.
Now we consider the general case with dimW = 2n. We may choose a basis e1, e2, ...,

f1, f2, ... of W so that for 1 ≤ j, k ≤ n

〈ej, ek〉 = 〈fj, fk〉 = 0, 〈ek, fk〉 = δj,k, Jej = −fj, Jfj = ej. (235)

Then the map

W 3 w → z(w) = (z1(w), z2(w), ..., zn(w)) ∈ Cn , (236)

zj(w) = 〈ej, w〉+ i〈w, fj〉
is a C-linear isomorphism and

(w,w′) =
n∑
j=1

zj(w)zj(w′) (w,w′ ∈ W) .

LetH denote the space of all the functions of the form h(z(w)), where h is antiholomorphic
and ∫

W

|h(z(w))|2e−π(w,w) dw <∞.

This is a Hilbert space with the norm equal to the square root of the above integral.
Notice that

χiJ(w) = e−
π
2

(w,w) (w,w′ ∈ W) .
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Hence,
HχiJ ⊆ L2(W)

is a closed subspace. Furthermore the map

H 3 φ→ f = φχiJ ∈ HχiJ (237)

is is a Hilbert space isomorphism. Also, using the case dimW = 2 we see that the functions

fα(w) =

√
π|α|

α!
z(w)

α
e−

π
2

(w,w) (w ∈ W, α ∈ Zn≥0) (238)

form an orthonormal basis of HχiJ and that the functions

φα(w) =

√
π|α|

α!
z(w)

α
(w ∈ W, α ∈ Zn≥0) (239)

form an orthonormal basis of H.

Lemma 79. Let φ ∈ H and let f = φχiJ . Then for w,w0 ∈ W,

δw0\f(w) = f(w − w0)χ(
1

2
〈w0, w〉) (240)

= φ(w − w0)e−
π
2

(w0,w0)eπ(w0,w)χiJ(w) .

In particular the formula

σ(w0, t) = φ(w − w0)e−
π
2

(w0,w0)eπ(w0,w)χ(t) (241)

defines a unitary representation of the Heisenberg group H(W) on H.

Proof. The first equality is obvious from the definition of the twisted convolution, (121).
For the second equality we compute

χ(
1

4
〈iJ(w − w0), w − w0〉+

1

2
〈w0, w〉)

= χ(
1

4
〈iJw,w〉+

1

4
〈iJw0, w0〉 −

1

2
〈iJw0, w〉+

1

2
〈w0, w〉)

= e
π
2

(−〈Jw,w〉−〈Jw0,w0〉+2〈Jw0,w〉+2i〈w0,w〉)

= χiJ(w)e−
π
2

(w0,w0)eπ(w0,w) .

Since
‖ δw0\f ‖=‖ f ‖ ,

we the lemma follows. �

Let X denote the span of the fj and let Y denote the span of the ej. The W = X ⊕ Y
is a complete polarization and we have the corresponding Weyl transform K, as in (155).

Lemma 80. For f ∈ HχiJ the function

K(f)(x, x′)eπx
′2

(x, x′ ∈ X) , (242)

where x′2 = (x′, x′), does not depend on x′.
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Proof. We may assume that dimW = 2 and that f = fm is one of the basis elements, as
in (234). Let us identify W = C by the isomorphism (233). Notice that

e−πx
2

∂xe
πx2 = 2πx+ ∂x (243)

and that, as a representation of the Lie algebra,

ω(f − ie) = ω(f)− iω(e) = −∂x + 2πx . (244)

Furthermore, with the notation (125), for v ∈ S(R),∫
R
((2πx′ + ∂x′)K(fm)(x, x′))v(x′) dx′ (245)

=

∫
R
K(fm)(x, x′)((2πx′ − ∂x′)v(x′)) dx′

=

∫
R
K(fm\(∂f − i∂e))(x, x′)v(x′) dx′ .

But

(fm\(∂f − i∂e))(w) = −πi〈f − ie, w〉fm(w) + (∂f − i∂e) ∗ fm(w)

= (−π(x− iy)− ∂x + i∂y)fm(x+ iy)

= −e−
π
2

(x2+y2)(∂x − i∂y)e
π
2

(x2+y2)fm(x+ iy) ,

where the last equality follows from (243). Since

(∂x − i∂y)(x− iy)m = 0

by the proof is complete. �

Recall the Hermite polynomials Hk(x),

Hk(x) = ex
2

(−∂x)e−x
2

=

k/2∑
j=0

k!

j!(k − 2j)!
(−1)j(2x)k−2j (x ∈ R, k = 0, 1, 2, ...) .

Lemma 81. For any m = 0, 1, 2, ...,

K(fm)(x, x′) =
21/4

√
2mm!

Hm(
√

2πx)e−πx
2 · 21/4e−πx

′2
.
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Proof. By the definition of the Weyl transform, the left hand side is equal to√
πm

m!

∫
R
(x− x′ − iy)me−

π
2

((x−x′)2+y2)eiπy(x+x′) dy

=

√
πm

m!
e−

π
2

(x−x′)2
m∑
k=0

(
m
k

)
(x− x′)m−k(− 1

π
∂x)

k

∫
R
e−

π
2
y2eiπy(x+x′) dy

=

√
πm

m!
e−

π
2

(x−x′)2
m∑
k=0

(
m
k

)
(x− x′)m−k(− 1

π
∂x)

k21/2e−
π
2

(x+x′)2

= 21/2

√
πm

m!
e−π(x2+x′2)

m∑
k=0

(
m
k

)
(x− x′)m−kπ−ke

π
2

(x+x′)2(−∂x)ke−
π
2

(x+x′)2

= 21/2

√
πm

m!
e−π(x2+x′2)

m∑
k=0

(
m
k

)
(x− x′)m−k(

√
2π)−kHk(

√
π

2
(x+ x′))

= 21/2

√
πm

m!
e−πx

2
m∑
k=0

(
m
k

)
xm−k(

√
2π)−kHk(

√
π

2
x) ,

where the last equality follows from Lemma 80. Furthermore,

m∑
k=0

(
m
k

)
xm−k(

√
2π)−kHk(

√
π

2
x)

=
m∑
k=0

(
m
k

)
xm−kπ−k

(√
π

2

)k
Hk(

√
π

2
x)

=
m∑
k=0

(
m
k

)
xm−k(

√
2π)−k

k/2∑
j=0

k!

j!(k − 2j)!
(−1)j(

√
2πx)k−2j

=
m∑
k=0

k/2∑
j=0

(
m
k

)
k!

j!(k − 2j)!
(−2π)−jxm−2j

=

m/2∑
j=0

∑
2j≤k≤m

(
m
k

)
k!

j!(k − 2j)!
(−2π)−jxm−2j

=

m/2∑
j=0

∑
2j≤k≤m

(
m
k

)
k!

j!(k − 2j)!
(−2π)−jxm−2j

=

m/2∑
j=0

∑
2j≤k≤m

(m− 2j)!

(m− k)!(k − 2j)!

m!

j!(m− 2j)!
(−2π)−jxm−2j
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=

m/2∑
j=0

2m−2j m!

j!(m− 2j)!
(−2π)−jxm−2j

= (
√

2π)−mHm(
√

2πx) ,

and the formula follows. �

Let

vm(x) =
21/4

√
2mm!

Hm(
√

2πx)e−πx
2

(x ∈ R, m = 0, 1, 2, ...) .

Then Lemma 81 shows that

K(fm)(x, x′) = vm(x)v0(x′) (x, x′ ∈ X) .

Hence
vm = Op ◦ K(fm)v0 (m = 0, 1, 2, ...) . (246)

Let
vα(x) = vα1(x1)vα2(x2)...vαn(xn) (α ∈ Zn≥0, x ∈ Rn) . (247)

Let us identify X with Rn by

Rn 3 x→ x1f1 + x2f2 + ...+ xnfn ∈ X.

Then the vα are functions on X. Also, we see from (238) and (246) that

vα = Op ◦ K(fα)v0 (α ∈ Zn≥0) . (248)

Theorem 82. The functions (247) form an orthonormal basis of the space L2(X), the
functions (238) form an orthonormal basis of the space HχiJ and the functions (239)
form an orthonormal basis of the space H. The maps

HχiJ 3 f → Op ◦ K(f)v0 ∈ L2(X) (249)

and
H 3 φ→ Op ◦ K(φχiJ)v0 ∈ L2(X) (250)

are H(W)-intertwining isometries.

Proof. As we noticed before, the map

H 3 φ→ φχiJ ∈ HχiJ
is an H(W)-intertwining isometry. The left twisted convolution results in in the left
multiplication of the operators. Hence (250) is an H(W)-intertwining isometry. Thus the
range of the map (250) is an H(W)-invariant closed subspace. Since, by Theorem 66, the
group H(W) acts irreducibly on L2(X), the range is equal to L2(X). However this range is
spanned by the functions vα. Hence they form an orthonormal basis of L2(X). �

Let Hfinite denote the space spanned by finite linear combinations the the basis elements
(239) and let

H∞ = {φ ∈ H; φχiJ ∈ S(W)} . (251)

Then Hfinite ⊆ H∞ ⊆ H are dense subspace.
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Lemma 83. For f ∈ H∞χiJ and for w,w′ ∈ W

δw′\f(w) =

∫
W

f(w′′)e−
π
2

(w′′,w′′)e−
π
2

(w,w)eπ(w′′,w)

e−
π
2

(w′,w′)eπ((w′,w)−(w′′,w′)) dw′′ ,

where the integral is absolutely convergent.

Proof. Write

f(w) =
∑
α

∫
W

f(w′′)fα(w′′) dw′′fα(w) =

∫
W

f(w′′)

(∑
α

fα(w′′)fα(w)

)
dw′′ .

Then

δw′\f(w) =

∫
W

f(w′′)

(∑
α

fα(w′′)fα(w − w′)χ(
1

2
〈w′.w〉)

)
dw′′ .

Furthermore, the term in the parenthesis,∑
α

fα(w′′)fα(w − w′)χ(
1

2
〈w′.w〉)

=
∑
α

π|α|

α!
e−

π
2

(w′′,w′′)z(w′′)αe−
π
2

(w−w′,w−w′)z(w − w′)αe−
π
2

((w,w′)−(w′,w))

= e−
π
2

(w′′,w′′)e−
π
2

(w,w)eπ(w′′,w−w′)e−
π
2

(w′,w′)e−
π
2

((w,−w′)+(−w′,w)+(w,w′)−(w′,w))

= e−
π
2

(w′′,w′′)e−
π
2

(w,w)eπ(w′′,w)e−
π
2

(w′,w′)eπ((w′,w)−(w′′,w′)) ,

and the formula follows. The integral is absolutely convergent because the function of w′′

under the integral is dominated by e−
π
2

(w′′,w′′). �

Lemma 84. For x ∈ sp(W), f ∈ H∞χiJ and w ∈ W,

χx\f(w) =

∫
W

f(w′′)e−
π
2

(w′′,w′′)e−
π
2

(w,w)eπ(w′′,w)

chc(x+ iJ)χ(x+iJ)−1((1 + iJ)w + (1− iJ)w′′) dw′′ ,

where the integral is absolutely convergent.

Proof. This follows from Lemma 83. Indeed,

χx\f(w) =

∫
W

χx(w
′)δw′\f(w) dw′

=

∫
W

χx(w
′)

∫
W

f(w′′)e−
π
2

(w′′,w′′)e−
π
2

(w,w)eπ(w′′,w)e−
π
2

(w′,w′)eπ((w′,w)−(w′′,w′)) dw′′ dw′ .

The function under the double integral is dominated by

e−
π
2

(w′′,w′′)e−
π
2

(w′,w′) .
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Hence we may change the order of integration and use the formula∫
W

χx(w
′)e−

π
2

(w′,w′)eπ((w′,w)−(w′′,w′)) dw′

=

∫
W

χx+iJ(w′)χ(
1

2
〈w′, (1 + iJ)w + (1− iJ)w′′〉) dw′

= chc(x+ iJ)χ(x+iJ)−1((1 + iJ)w + (1− iJ)w′′) .

which follows from (118). �

For g ∈ End(W), let gJ = JgJ−1.

Lemma 85. The following inequality holds

det(
1

2
(g + gJ)) ≥ 1 (g ∈ Sp(W)) .

Proof. Let g = kp be the polar decomposition of g with respect to the positive definite form
〈J ·, ·〉, with k orthogonal and p positive. (Since the conjugation by J is a Cartan involution
on the group Sp(W), this is the Cartan decomposition of g.) Then the eigenvalues of p
are positive and pJ = p−1. Also t+ t−1 ≥ 2 for any positive t. Hence,

det(
1

2
(g + gJ)) = det(

1

2
(p+ pJ)) = det(

1

2
(p+ p−1)) ≥ 1 .

�

Set

C(g) =
1

2
(g + gJ), A(g) =

1

2
(g − gJ) (g ∈ Sp(W)) . (252)

Lemma 86. Let x ∈ sp(W) be in the domain of the Cayley transform and let g = c(x) ∈
Sp(W). Then for w,w′′ ∈ W,

χ(x+iJ)−1((1 + iJ)w + (1− iJ)w′′) (253)

= e−
π
2

(C(g−1)−1A(g−1)w,w)e−
π
2

(w′′,C(g)−1A(g)w′′)eπ(w′′,C(g)−1w)e−π(w′′,w) .

Proof. The phase function of the left hand side is equal to

〈(x+ iJ)−1((1 + iJ)w + (1− iJ)w′′), (1 + iJ)w + (1− iJ)w′′〉 (254)

= 〈(1− iJ)(x+ iJ)−1(1 + iJ)w,w〉
+ 〈(1 + iJ)(x+ iJ)−1(1− iJ)w′′, w′′〉
+ 2〈(1 + iJ)(x+ iJ)−1(1 + iJ)w,w′′〉 .

Let (x+ iJ)−1 = A+ iB, with A and B real. Then

i(1− iJ)(x+ iJ)−1(1 + iJ) = J(A+ JAJ + JB −BJ) + i(A+ JAJ + JB −BJ) ,

i(1 + iJ)(x+ iJ)−1(1− iJ) = J(−A− JAJ + JB −BJ)− i(−A− JAJ − JB +BJ) ,

i(1 + iJ)(x+ iJ)−1(1 + iJ) = J(−A+ JAJ + JB +BJ) + i(A− JAJ − JB −BJ) .
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Hence the left hand side of (253) is equal to

e
π
2

((A+JAJ+JB−BJ)w,w)e
π
2

(w′′,(−A−JAJ+JB−BJ)w′′)eπ(w′′,(−A+JAJ+JB+BJ)w) . (255)

Thus in order to complete the proof we need to verify the following equalities

−A+ JAJ + JB +BJ + 1 = C(g)−1 , (256)

−(A+ JAJ + JB −BJ) = C(g−1)−1A(g−1) , (257)

A+ JAJ − JB +BJ = C(g)−1A(g) . (258)

A straightforward computation shows that

A = −xJ(1− xxJ)−1 and B = (1− xJx)−1J .

Notice that

xJ(xxJ − 1)−1 = (xJx− 1)−1xJ . (259)

Indeed the difference between the left hand side and the right hand side is equal to

(xJx− 1)−1((xJx− 1)xJ − xJ(xxJ − 1))(xxJ − 1)−1 = 0 .

The left hand side of (256) is equal to

(xJ − 1)(1− xxJ)−1 + (x− 1)(1− xJx)−1 + 1

=
(
1− (xJ − 1)(xxJ − 1)−1

)
− (x− 1)(xJx− 1)−1

= (x− 1)xJ(xxJ − 1)−1 − (x− 1)(xJx− 1)−1

= (x− 1)(xJx− 1)−1xJ − (x− 1)(xJx− 1)−1

= (x− 1)(xJx− 1)−1(xJ − 1) ,

where the third equality follows from (259). The right hand side of (256) is equal to

1

2
((x+ 1)(x− 1)−1 + (xJ − 1)−1(xJ + 1))−1

=
1

2
(x− 1)((xJ − 1)(x+ 1) + (xJ + 1)(x− 1))−1(xJ − 1)

= (x− 1)(xJx− 1)−1(xJ − 1) ,

and (256) follows.
The left hand side of (257) is equal to

(x+ 1)(xJx− 1)−1 − (xJ + 1)(xxJ − 1)−1

and the right hand side to

(x+ 1)(xJx− 1)−1((x+ 1)− (xJ + 1))(x+ 1)−1

Hence, the equality (257) is equivalent to

(xJ + 1)(xxJ − 1)−1 = (x+ 1)(xJx− 1)−1(xJ + 1)(x+ 1)−1 ,
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or

(xJ + 1)(xxJ − 1)−1xJ(x+ 1) = (x+ 1)(xJx− 1)−1(xJ + 1) . (260)

The formula (259) implies that (260) is equivalent to

xJ(xxJ − 1)−1x+ (xxJ − 1)−1 = x(xJx− 1)−1xJ + (xJx− 1)−1 ,

which is equivalent to

xJ(xxJ − 1)−1x− (xJx− 1)−1 = x(xJx− 1)−1xJ − (xxJ − 1)−1 . (261)

Again, by (259), (261) is equivalent to

(xJx− 1)−1xJx− (xJx− 1)−1 = (xxJ − 1)−1xxJ − (xxJ − 1)−1 ,

which is true. This verifies (257).
Replacing x by −x results in replacing g by g−1. Hence (258) follows from (257). �

Lemma 87. For g̃ ∈ S̃p(W) over g ∈ Sp(W) with g − 1 invertible

(Θ(g̃)chc(c(g) + iJ))2 =
(
det(C(g))WC,J=−i

)−1
.

Proof. The complexification of W splits into the direct sum of the eigenspaces for J :

WC = WC,J=−i ⊕WC,J=i

and the maps

p− : WC 3 w →
1

2
(1 + iJ)w ∈ WC,J=−i ,

p+ : WC 3 w →
1

2
(1− iJ)w ∈ WC,J=i

are the corresponding projections. The map gp− + p+ preserves WC,J=i and acts on it as
the identity. Therefore

det(gp− + p+) = det(p−gp−)WC,J=−i .

But

p−gp− =
1

4
(g + iJg)(1 + iJ)

=
1

4
(g + iJg + giJ + gJ) ,

so

p−gp−|WC,J=−i =
1

4
(g + gJ iJ + giJ + gJ)

=
1

4
(2g + 2gJ) = C(g) .

Therefore

det(gp− + p+) = det(C(g))WC,J=−i . (262)
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On the other hand

(Θ(g̃)chc(c(g) + iJ))2 = det−1(i(g − 1)) det−1(
1

2i
(c(g) + iJ))

= det−1(i(g − 1)
1

2i
(c(g) + iJ))

= det−1(
1

2
(g + 1 + (g − 1)iJ))

=
(
det(gp− + p+)

)−1
.

This combined with (262) completes the proof. �

Set
‖ w ‖2= (w,w) (w ∈ W) .

Lemma 88. For any g ∈ Sp(W), C(g)−1A(g) ∈ sp(W), and for any w ∈ W,

(w,w)± (C(g)−1A(g)w,w) ≥ 0 . (263)

Proof. We follow [40, sec.1]. A straightforward computation, using the definition (231),
shows that

(C(g)w,w′) = (w,C(g−1)w′) (w,w′ ∈ W).

In other words, the hermitian conjugate C(g)∗ of C(g) with respect to the form (231) is
equal to C(g−1).

We see from (258) that for g with g − 1 invertible, C(g)−1A(g) ∈ sp(W). Hence by
Lemma 84 and by continuity, the claim holds for all g ∈ Sp(W). Hence, using the definition
(231) again, we check that

(C(g)−1A(g)w,w′) = (w, (C(g)−1A(g)w′) (w,w′ ∈ W) .

Hence ((C(g)−1A(g))2)∗ = (C(g)−1A(g))2.
Using cross multiplication we check that

C(g−1)−1A(g−1) = −A(g)C(g)−1 .

Hence
(1− C(g)−1A(g))C(g−1) = g−1 .

Therefore

C(g)(1− (C(g)−1A(g))2)C(g)∗ = C(g)(1 + C(g)−1A(g))(1− C(g)−1A(g))C(g−1)

= (C(g) + A(g))g−1 = 1 .

Hence

(w,w) = (C(g)(1− (C(g)−1A(g))2)C(g)∗w,w)

= ((1− (C(g)−1A(g))2)C(g)∗w,C(g)∗w) .

Replacing w by C(g)∗−1w = C(g−1)−1w we see that

((1− (C(g)−1A(g))2)w,w) = (C(g−1)−1w,C(g−1)−1w) .
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Hence
‖ C(g)−1A(g)w ‖=

√
‖ w ‖2 − ‖ C(g−1)−1w ‖2 .

Cauchy’s inequality

|(C(g)−1A(g)w,w)| ≤‖ C(g)−1A(g)w ‖‖ w ‖
shows that

(w,w)− (C(g)−1A(g)w,w) ≥ (‖ w ‖ − ‖ C(g)−1A(g)w ‖) ‖ w ‖
= (‖ w ‖ −

√
‖ w ‖2 − ‖ C(g−1)−1w ‖2) ‖ w ‖ ,

which verifies the inequality. �

Here is the main theorem of this section

Theorem 89. The function

Θ(g̃)chc(c(g) + iJ) (g̃ ∈ S̃p(W)) , (264)

defined by (149) and (207) for g̃ with g − 1 invertible, extends to a continuous function

on the whole group S̃p(W). Motivated by the formula of Lemma 87, we shall denote this
extended function by

det−1/2(C(g̃))WC,J=−i (g̃ ∈ S̃p(W)) . (265)

This is the unique continues function whose square is equal to

det−1(C(g))WC,J=−i (g ∈ Sp(W)) .

Then, for f ∈ HfiniteχiJ and g̃ ∈ S̃p(W),

T (g̃)\f(w) = det−1/2(C(g̃))WC,J=−ie
−π

2
(w,w)

∫
W

f(w′′)e−
π
2

(w′′,w′′) (266)

e−
π
2

(C(g−1)−1A(g−1)w,w)e−
π
2

(w′′,C(g)−1A(g)w′′)eπ(w′′,C(g)−1w) dw′′ ,

where the integral is absolutely convergent.

Proof. Lemmas 84 and 86 and 87 imply that (266) holds for g with g − 1 invertible.
By Lemma 58 the left hand side extends to a continuous function. By Lemma 88, the
integral on the right does too. Hence (265) follows from Lemma 87 and we get (266) in
general. �

In the following corollary we recover a result of Robinson and Rawnsley, [40, (2.4)].

Corollary 90. The unitary representation (ω,L2(X)) is equivalent to (σ,H), where for
φ ∈ Hfinite,

σ(g̃)φ(w) = det−1/2(C(g̃))WC,J=−i (267)∫
W

φ(w′′)e−
π
2

(C(g−1)−1A(g−1)w,w)e−
π
2

(w′′,C(g)−1A(g)w′′)eπ(w′′,C(g)−1w)e−π(w′′,w′′) dw′′ ,

where the integral is absolutely convergent. In particular, if gJ = g, then

σ(g̃)φ(w) = det−1/2(g̃)WC,J=−iφ(g−1w) . (268)
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Proof. The first part follows from Theorem 89. Since σ(1)φ = φ, i.e.

φ(w) =

∫
W

φ(w′′)eπ(w′′,w)e−π(w′′,w′′) dw′′ ,

we see that (267) implies (268). �

4.12. The action of the Lie algebra in the Fock model. Suppose x ∈ sp(W) is such
that xJ = −x, in other words x anticommutes with J . Then the function

W ×W 3 w → (w, xw) ∈ C

is holomorphic, in fact a quadratic polynomial. Hence there are unique complex numbers
xjk such that

(w, xw) =
n∑

j,k=1

xjkzj(w)zk(w) (w ∈ W). (269)

Corollary 91. Let us identify W = Cn as in (236). Suppose x ∈ sp(W) is such that
xJ = −x. Then

σ(x) =
π

2

n∑
j,k=1

xjkzjzk −
1

2π

n∑
j,k=1

xjk∂zj∂zk .

Proof. Notice that for t ∈ R

C(exp(tx)) =
1

2
(exp(tx) + exp(−tx)) = ch(tx) ,

A(exp(tx)) =
1

2
(exp(tx)− exp(−tx)) = sh(tx) ,

and

C(exp(tx))−1A(exp(tx)) = th(tx) .

Further,

d

dt

(
e−

π
2

(th(−tx)w,w)e−
π
2

(w′′,th(tx)w′′)eπ(w′′,ch(tx)w)
)
t=0

=
π

2
((xw,w)− (w′′, xw′′))eπ(w′′,w)

and, by the chain rule,
d

dt

(
det1/2(ch(tx))WC,J=i

)
t=0

= 0 .

Let φ ∈ H be a finite linear combination of the elements (239) of the basis of H. Then
the above calculations show that

σ(x)φ(w) =

∫
W

φ(w′′)
π

2
((xw,w)− (w′′, xw′′))eπ(w′′,w)e−π(w′′,w′′) dw′′ .
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Notice that

(w′′, xw′′)eπ(w′′,w) =
n∑

j,k=1

xjkzj(w
′′)zk(w

′′)eπ
∑n
j=1 zj(w

′′)zj(w′′)

=
n∑

j,k=1

xjkzjzke
π
∑n
j=1 zjzj

=
1

π2

n∑
j,k=1

xjk∂zj∂zke
π
∑n
j=1 zjzj

and recall that

φ(w) =

∫
W

φ(w′′)eπ(w′′,w)e−π(w′′,w′′) dw′′ .

Thus the formula follows. �

Corollary 92. Let us identify W = Cn as in (236). Then the image of the complexified Lie
algebra sp(WC) under the representation σ is the C-linear span of the following operators

zjzk , ∂zj∂zk , zj∂zk + ∂zkzj (1 ≤ j, k ≤ n)

If we rename zj to zj the we obtain the holomorphic functions rather than the anti-
holomorphic functions and the usual description of the Fock model, as in [21, (2.2)].

4.13. Restriction to the maximal compact subgroup S̃p(W)J in the Fock model.
In this section we study the restriction of the character Θ to a maximal compact subgroup
and to a compact Cartan subgroup as a distribution and as a function and we relate these
restrictions to the traces of the restricted representation.

Let G be a real reductive group and let K ⊆ G be a maximal compact subgroup.
Consider an finite sum Π of irreducible unitary representations of G with the distribution
character ΘΠ. Then the intersection of the wave front set of ΘΠ with the conormal bundle
to the embedding K → G is empty. This is because there are no non-zero nilpotent
elements in g which belong to the −1 eigenspace of the Cartan involution, and the fibers
of the wave front set consist of nilpotent elements. Hence the restriction

ΘΠ|K ∈ D′(G) (270)

is well defined. In fact we have the following Lemma

Lemma 93. For any f ∈ C∞(K) the operator Π(f) is of trace class and

ΘΠ|K(f) = tr Π(f) .

Proof. The first claim is well known and the proof is similar to the argument we used in
the proof of Lemma 107, see [49, 8.1.1]. The second one follows from [14, Theorem 8.2.3],
as we shall explain below.
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Let φk ∈ C∞c (G) be approximative identity in the sense that φk ≥ 0,
∫

G
φk(g) dg = 1

and suppφk tends to the identity if k →∞. Let ψj ∈ C∞c (G) be such that ψj = 1 on any
compact set in G for large j. Theorem 8.2.3 in [14] implies that

ΘΠ|K(f) = lim
j,k→∞

ΘΠ(ψj(f ∗ φk)) . (271)

For j large ψj is equal to 1 on the support of f ∗ φk. Hence

ΘΠ|K(f) = lim
k→∞

ΘΠ(f ∗ φk) . (272)

Fix ε > 0. Then there is fε ∈ C∞(K) such that the trace norm ‖ fε ‖1< ε and Π(f − fε)
is of finite rank. Then

ΘΠ(f ∗ φk)−ΘΠ(f) = tr(Π(f)(Π(φk)− I))

= tr(Π(fε)(Π(φk)− I)) + tr(Π(f − fε))(Π(φk)− I))

where

| tr(Π(fε)(Π(φk)− I))| ≤‖ Π(fε) ‖1‖ Π(φk)− I ‖≤ ε · 2

and

lim
k→∞

tr(Π(f − fε))(Π(φk)− I)) = 0 .

�

Corollary 94. In terms of distributions on K,

ΘΠ|K =
∑
σ∈K̂

mσΘσ ,

where mσ is the multiplicity of σ in Π. In particular

mσ = ΘΠ|K(Θ̌σ) ,

where Θ̌σ(k) = Θσ(k−1).

Suppose G has a Cartan subgroup T ⊆ K. There are examples where the intersection
of the conormal bundle of the embeding T ⊆ G with the wave front set of ΘΠ is non-
empty. Hence the restriction ΘΠ|T may not exist. Nevertheless, we’ll see below that it
does exist when G is the metaplectic group and Π is the Weil representation. However
in general, Harish-Chandra’s regularity theorem impies that ΘΠ|Greg is a function. Hence
the restriction ΘΠ|Treg exists, as a function.

Corollary 95. Suppose the rank of K is equal to the rank of G. Then the following series
converges

ΘΠ(k) =
∑
σ∈K̂

mσΘσ(k) (k ∈ K ∩Greg) . (273)



94 A.-M. AUBERT AND T. PRZEBINDA

Proof. The restriction of ΘΠ to Greg is a function, which may be further restricted to
K ∩ Greg. By the equality of rank assumption, this set is open in K and not empty. We
know from Corollary 94 that for any test function f ∈ C∞(K)

ΘΠ|K(f) =
∑
σ∈K̂

mσ

∫
K

Θσ(k)f(k) dk .

In particular, for f ∈ C∞(K ∩Greg),∫
K

ΘΠ(k)f(k) dk =
∑
σ∈K̂

mσ

∫
K

Θσ(k)f(k) dk .

Since ΘΠ and each Θσ are real analytic on K ∩Greg, taking f close to the Dirac delta at
k implies (273). �

Notice that the following equation

ΘΠ|K(f) =

∫
K∩Greg

ΘΠ(k)f(k) dk (f ∈ C∞(K)) . (274)

is not true in general. In fact the integral on the right may not be convergent. The
holomorphic discrete series of G = SL2(R) provides such an example.

From now on we study the case G = S̃p(W), K = S̃p(W)J and Π = ω. Let

W =
n⊕
j=1

Wj (275)

be a direct sum orthogonal (with respect to the symplectic form) decomposition preserved
by J , with dimWj = 2. Denote by Jj the restriction of J to Wj. Then

t =
n⊕
j=1

RJj (276)

is an elliptic Cartan subalgebra of sp(W). Denote by

exp : sp(W)→ Sp(W) and ẽxp : sp(W)→ S̃p(W) (277)

the exponential maps. Then T = exp(t) ⊆ Sp(W) and T̃ = ẽxp(t) ⊆ S̃p(W) are compact
Cartan subgroups.

Lemma 96. Suppose w ∈ W is such that

〈xw,w〉 = 0 (x ∈ t) .

Then w = 0.

Proof. Let w =
∑n

j=1wj according to the decomposition (275) and let x =
∑n

j=1 xjJj, as

in (277). Then

0 = 〈xw,w〉 =
∑
j

〈xwj, wj〉 =
∑
j

xj〈Jjwj, wj〉
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Hence
〈Jjwj, wj〉 = 0 j = 1, 2, ..., n) .

But 〈Jj , 〉 > 0. Hence each wj = 0 �

Corollary 97. The intersection of the conormal bundle of the embedding T̃ ⊆ S̃p(W) with
the wave front set of Θ is empty. Hence the restriction Θ|T̃ is a well defined distribution

on T̃.

Proof. We identify the cotangent bundle to S̃p(W) with S̃p(W)× sp(W)∗ as in [19, (1.7)]

and use the fact that the wave front set of Θ is contained in S̃p(W) × τ(W), proven in

[38]. Then the intersection in question consists of points (t̃, τ(w)) ∈ T̃× τ(W) such that
τ(w) 6= 0 and τ(w)|t = 0. But then, according to Lemma 96, τ(w) = 0. �

The following proposition describes the multiplication in the maximal compact sub-

group S̃p(W)J ⊆ S̃p(W).

Proposition 98. The map

S̃p(W)J 3 g̃ → (g, det−1/2(g̃)WC,J=−i) ∈ Sp(W)J × C× (278)

is an injective group homomorphism which justifies the following identification

S̃p(W)J = {(g, ζ) ∈ Sp(W)J × C×; ζ2 = det−1(g)WC,J=−i} . (279)

In particular S̃p(W)J is an algebraic group.

Proof. This is clear from Corollary 90. �

Notice that (
˜Sp(WC)

)J
is the complexification of S̃p(W)J and (

˜Sp(WC)
)T

is the complexification of T̃.

Corollary 99. In terms of distributions equal to limits of holomorphic functions,

Θ|S̃p(W)J (k̃) = lim
p̃→1

Θ(p̃k̃) (k̃ ∈ S̃p(W)J , p̃ ∈
(

˜Sp(WC)
++
)J

) (280)

and

Θ|T̃(t̃) = lim
p̃→1

Θ(p̃t̃) (t̃ ∈ T̃, p̃ ∈
(

˜Sp(WC)
++
)T

) . (281)

Proof. Theorems 3.1.15 and 8.2.4 in [14] imply that if a distribution is the limit of a
holomorphic function, then the restriction of it to a real analytic manifold is equal to the
limit of the holomorphic function restricted to the local complexification of that manifold.
Hence the formulas follow. �
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Lemma 100. Define t++
C = tC ∩ sp(WC)++, T++

C = TC ∩ Sp(WC)++ and T̃++
C = T̃C ∩

˜Sp(WC)
++

. Then

t++
C = {

n∑
j=1

(xj + iyj)Jj, yj > 0, 1 ≤ j ≤ n} , (282)

T++
C = exp(t++

C ) (283)

and

T̃++
C = ẽxp(t++

C ) . (284)

Proof. The equality (282) is obvious from definitions. In order to verify the remaining
equalities we may assume that n = 1. Corollary 68 shows that T++

C = c(t++
C ). For a

complex number z 6= ±i we have

c(zJ) = (zJ + 1)(zJ − 1)−1 = (zJ + 1)
1

z2 + 1
(−zJ − 1)

=
z2 − 1

z2 + 1
I − 2z

z2 + 1
J

and for another complex number u,

exp(uJ) = cos(u)I + sin(u)J .

Hence exp(uJ) = c(zJ) is equivalent to

cos(u) =
z2 − 1

z2 + 1
and sin(u) = − 2z

z2 + 1
, (285)

which implies

eiu = cos(u) + i sin(u) =
z2 − i2z − 1

z2 + 1
=
z − i
z + i

. (286)

Recall that given z 6= i in the upper half plane, z−i
z+i

is in the unit disc and therefore there
is u in the upper half plane such that (286) holds. Since

cos(u) =
1

2
(eiu + e−iu) =

1

2

(
z − i
z + i

+
z + i

z − i

)
=
z2 − 1

z2 + 1

and

sin(u) =
1

2i
(eiu − e−iu) =

1

2i

(
z − i
z + i

− z + i

z − i

)
=
−2z

z2 + 1
,

the equality (285) holds for this u. Thus the left hand side of (283) is contained in the
right hand side.

Conversely, given u in the upper half plane, we solve (286) for z in the upper half plane
and get the equality (285). This verifies (283).

Since ẽxp : tC → T̃C is surjective, (283) implies (284). �
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Proposition 101. For z ∈ t++
C , with z =

∑n
j=1 zjJj, zj = xj + iyj, xj, yj ∈ R, yj > 0, the

following formula holds,

Θ(ẽxp(z)) =

∏n
j=1 e

i
zj
2∏n

j=1(1− eizj)
.

(Here izj are the eigenvalues of z on WC,J=i.)

Proof. We see from (284) that

(Θ(ẽxp(z)))2 = det(i(exp(z)− 1))−1

= (det(i(exp(z)− 1))WC,J=−i det(i(exp(z)− 1))WC,J=i)
−1

=

(
n∏
j=1

(i(e−izj − 1)(eizj − 1))

)−1

=
n∏
j=1

eizj

(
n∏
j=1

(1− eizj))

)−2

.

Since the function Θ(ẽxp(z)) is holomorphic and since the set t++
C is simply connected,

we must have either

Θ(ẽxp(z)) =
n∏
j=1

e
izj
2

(
n∏
j=1

(1− eizj))

)−1

or

Θ(ẽxp(z)) = −
n∏
j=1

e
izj
2

(
n∏
j=1

(1− eizj))

)−1

.

Let y =
∑n

j=1 yjJj, with all yj > 0 and let p̃ = ẽxp(iy). Then p̃2 ∈ T̃++
C and (214) shows

that
Θ(p̃2)

Θ(p̃)2
= chc(2c(p)) > 0 .

As we just computed, Θ(p̃)2 > 0. Hence Θ(p̃2) > 0 and the formula follows. �

Corollary 102. Let t, t′ ∈ T++
C have eigenvalues tj and t′j on the space WC,J=i. Let

t̃, t̃′ ∈ T̃++
C be some elements in the preimage under the covering map. We assume that

they are determined by the ambiguity of the square roots(
n∏
j=1

tj

) 1
2

and

(
n∏
j=1

t′j

) 1
2

so that

Θ(t̃) =

(∏n
j=1 tj

) 1
2∏n

j=1(1− tj)
and Θ(t̃′) =

(∏n
j=1 t

′
j

) 1
2∏n

j=1(1− t′j)
.
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Then

Θ(t̃t̃′) =

(∏n
j=1 tj

) 1
2
(∏n

j=1 t
′
j

) 1
2∏n

j=1(1− tjt′j)
.

Proof. We see from (214) that the last formula will follow if we check that

chc(c(t) + c(t′)) =

∏n
j=1(1− tj)(1− t′j)∏n

j=1(1− tjt′j)
. (287)

In terms of Proposition 101 we have

Θ(ẽxp(z)) =

∏n
j=1 e

i
zj
2∏n

j=1(1− eizj)
,

Θ(ẽxp(z′)) =

∏n
j=1 e

i
z′j
2∏n

j=1(1− eiz′j)
,

Θ(ẽxp(z + z′)) =

∏n
j=1 e

i
zj+z

′
j

2∏n
j=1(1− ei(zj+z′j))

.

Hence, by (214),

chc(z + z′) =
n∏
j=1

(1− eizj)(1− eiz′j)
1− eizjeiz′j

,

which coincides with (287). �

We normalize the Haar measure on the group T̃ so that the total mass is 1. Then
Proposition 101 and (281) imply the following corollary.

Corollary 103. For any Ψ ∈ C∞(T̃),

Θ|T̃(Ψ) = lim
y→0

1

(4π)n

∫ 4π

0

...

∫ 4π

0

Ψ(ẽxp(
n∑
j=1

xjJj))

∏n
j=1 e

ixj−yj
2∏n

j=1(1− eixj−yj)
,

where all yj > 0.

The space Hfinite, defined just before (251), is equal to the space of the antiholomorphic
polynomials on W. Let H(m) ⊆ Hfinite denote the subspace of the polynomials homoge-
neous of degree m = 0, 1, 2, .... Let ρ denote the permutation action of the group Sp(W)J

on these spaces:

ρ(g)φ(w) = φ(g−1w) .

Define

λj : t 3 x =
n∑
j=1

xjJj → xj ∈ R .
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We choose the positive root system of t in sp(WC)J so that in the resulting order, λ1 >
λ2 > ... > λn.

Lemma 104. The representation (ρ,H(m)) is irreducible, with the highest weight miλ1.
Moreover (ρ|T,H(m)) decomposes into the direct sum of one-dimensional representation
each occurring with multiplicity one,

H(m) =
∑
|a|=m

H(m)
a ,

where a = (a1, ..., an), with all aj non-negative integers, |a| = a1 + ...+ an, and

ρ(exp(x))v = eia1x1+...+ianxnv (v ∈ H(m)
α ) .

Proof. We may assume that the decomposition (275) is consistent with (236). Then we
see from (236) that

zj(exp(−xjJj)wj) = eixjzj(wj) .

Hence, in terms of (239),

φa(exp(−x)w) = eiax1+...+ianxnφa(w) .

Thus φa is a weight vector with weight a1iλ1 + ... + aniλn. The polynomials φa with
|a| = m form a basis of the space H(m). Any non-zero Sp(W)J -invariant subspace is a
sum of the weight spaces and they are permuted by the Weyl group W (T), permuting
the Wj. Hence the representation is irreducible. Clearly miλ1 is the highest weight. �

Recall the representation (σ,H), defined and proven to be unitarily equivalent to
(ω,L2(X)) in Corollary 90.

Corollary 105. The representation (σ|S̃p(W)J ,H
(m)) is irreducible, with the highest weight

miλ1 +
1

2

n∑
j=1

iλj .

Moreover (σ|T̃,H(m)) decomposes into the direct sum of one-dimensional representation
each occurring with multiplicity one,

H(m) =
∑
|a|=m

H(m)
a ,

where a = (a1, ..., an), with all aj non-negative integers, |a| = a1 + ...+ an, and

σ(ẽxp(x))v = ei(a1+ 1
2

)x1+...+i(an+ 1
2

)xnv (v ∈ H(m)
a ) .

Lemma 106. For any Ψ ∈ C∞(T̃), σ(Ψ) ∈ End(H) is a trace class operator and

ΘT̃(Ψ) = tr σ(Ψ) =
∑
|a|=m

Ψ̂(a1 +
1

2
, ..., an +

1

2
) , (288)
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where

Ψ̂(b1, ..., bn) =
1

(4π)n

∫ 4π

0

...

∫ 4π

0

Ψ(ẽxp(
n∑
j=1

xjJj))e
i(b1x1+...+i(bnxn) dx1...dxn (289)

is the Forier coefficient of the periodic function at the indicated point.

Proof. Since the a occur with multiplicity one, Plancherel formula implies that σ(Ψ) is
a Hilbert-Schmidt operator, and hence of trace class. The second equality in (288) is
obvious. The first one is verified as in the proof of Lemma 93. �

The following lemma is a particular case of the first part of Lemma 93. We include a
proof for completeness of our study of the Weil representation.

Lemma 107. For any smooth function Ψ on the group Sp(W)J , the operator ρ(Ψ) ∈
End(H) is of trace class.

Proof. Recall the Harish-Chandra isomorphism

γ : U(sp(W)JC)Sp(W)J → U(tC)W (T) = C[t∗C]W (T) ,

[10, Lemma 19]. Let C ∈ U(sp(W)JC)Sp(W)J be such that

γ(C)(z1iλ1 + ...+ zniλn) = (2z1)2 + ...+ (2zn)2 .

The sum of the positive roots multiplied by 1
2

is equal to

iδ =
n∑
j=1

n+ 1− 2j

2
iλj .

In particular

miλ1 + iδ =
n− 1 + 2m

2
iλ1 +

n∑
j=2

n+ 1− 2j

2
iλj .

Hence C acts on H(m) via multiplication by

(n− 1 + 2m)2 +
n∑
j=2

(n+ 1− 2j)2 .

Also,

dimH(m) =
(m+ n− 1)!

m!(n− 1)!
is a polynomial of degree n− 1 in the variable m. Therefore

∞∑
m=0

dimH(m)

ρ(Cn)|H(m)

<∞ .

In other words, ρ(Cn)−1 is a trace class operator on H. Since

ρ(Ψ) = ρ(Cn)−1ρ(CnΨ)

and since ρ(CnΨ) is a bounded operator, we see that the operator ρ(Ψ) is of trace class. �
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5. Rossmann’s formula for Θ.

The group of the sign changes {1,−1}n and the group of the permutations Sn act on
the Lie algebra t by

εx = ε

(
n∑
j=1

xjJj

)
=

n∑
j=1

εjxjJj, (ε = (ε1, ε2, ..., εn) ∈ {1,−1}n)

σx = σ

(
n∑
j=1

xjJj

)
=

n∑
j=1

xσ−1(j)Jj, (σ ∈ Sn)

and hence so does the semidirect product Snn{1,−1}n, wich coincides with the compact
Weyl group W (T),

(εσ)x =
n∑
j=1

εjxσ−1(j)Jj .

The action on the dual t∗ is defined as usual

(σε)λ(x) = λ((ε−1σ−1)(x)) =
n∑
j=1

εjxσ(j)Jj (x ∈ t, λ ∈ t∗) .

For x ∈ sp(W) with the eigenvalues ν of ad(x) satisfying |ν| < π, define

p(x) =

(
ead(x/2) − e−ad(x/2)

ad(x/2)

) 1
2

.

Then,

p(x) =
∏
α>0

eα(x/2) − e−α(x/2)

α(x/2)
(x ∈ t) , (290)

where the product is over the positive roots, in some order of roots. We know from Lemma
104 and Proposition 101 that the weigts of t in the Weil representation are(

1

2
+ a1

)
iλ1 +

(
1

2
+ a2

)
iλ2 + ...+

(
1

2
+ an

)
iλn (aj ∈ Z≥0, 1 ≤ j ≤ n) .

We choose the the following elements to be positive roots of tC in sp(WC)

iλj − iλk, iλj + iλk, i2λl (1 ≤ j < k ≤ n, 1 ≤ l ≤ n) .

Then the Weil representation is a lowest weight representation with the lowest weight

1

2
iλ1 +

1

2
iλ2 + ...+

1

2
iλn .

The sum of the positive roots multiplied by 1
2

is equal to

n∑
j=1

(n+ 1− j)iλj .
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Hence the lowest weight minus the above sum is equal to

iλ = −
n∑
j=1

(n− j +
1

2
)iλj .

This element represents the infinitesimal character of th Weil representation. Let Θeven

denote the charcter of the even part of the Weil representation and let Θodd denote the
charcter of the odd part.

Proposition 108. There is a constant C such that for any regular element x ∈ t

p(x)Θ(ẽxp(x)) = C
∑

ε∈{1,−1}n
sgn(ε)

∑
σ∈Sn sgn(σ)ei(ελ)(σ−1(x))∏

α>0 α(x)
,

p(x)Θeven(ẽxp(x)) = C
∑

ε∈{1,−1}n, sgn(ε)=1

∑
σ∈Sn sgn(σ)ei(ελ)(σ−1(x))∏

α>0 α(x)
,

p(x)Θodd(ẽxp(x)) = −C
∑

ε∈{1,−1}n, sgn(ε)=−1

∑
σ∈Sn sgn(σ)ei(ελ)(σ−1(x))∏

α>0 α(x)
.

Proof. Proposition 101 and (290) shows that

Θ(ẽxp(x)) =
∏

α>0, α long

eα(x)/4

1− eα(x)/2
=

∏
α>0, α long

1

e−α(x)/4 − eα(x)/4
.

Hence, ∏
α>0

α(x/2) · p(x) ·Θ(ẽxp(x)) (291)

=
∏
α>0

(eα(x)/2 − e−α(x)/2) ·
∏

α>0, α long

1

e−α(x)/4 − eα(x)/4

=
∏
j<k

(ei(xj−xk)/2 − e−i(xj−xk)/2) ·
∏
j<k

(ei(xj+xk)/2 − e−i(xj+xk)/2)

·
∏
l

(−eixl/2 − e−ixl/2) .

Modulo the multiplication by (−1)n we recognize here the Weyl denominator for SO2n+1,
with the sum of the positive roots is equal to −iλ. Since (−1)nsgn(ε) = sgn(−ε), we see
that (291) is equal to

(−1)n
∑
ε,σ

sgn(σε)e−i(σε)λ(x) =
∑
ε,σ

sgn(σε)ei(σε)λ(x)

and the first formula follows.
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Lemma 104 implies that

Θeven(ẽxp(x)) =
1

2

(
n∏
j−1

eixj/2

1− eixj
+

n∏
j−1

eixj/2

1 + eixj

)

=
1

2

(
Θ(ẽxp(x)) + e−i

π
2
nΘ(ẽxp(x+ π))

)
,

where x+π =
∑n

j=1(xj+π)Jj. Let q(x) =
∏

α>0(eα(x)/2−e−α(x)/2). Then a straightforward
computation shows that

q(x+ π) = (−1)
n(n+1)

2 q(x) .

Hence,

q(x)Θeven(ẽxp(x)) =
1

2

(
q(x)Θ(ẽxp(x)) + (−1)

n(n+1)
2 e−i

π
2
nq(x+ π)Θ(ẽxp(x+ π)

)
.

On th other hand,

ei(ελ)((x+π)) = e−i
∑n
j=1(n−j+ 1

2
)εj(xj+π) = (−1)

n(n−1)
2

n∏
j=1

e−i
π
2
εj · ei(ελ)(x)

and

(−1)
n(n+1)

2 e−i
π
2
n · (−1)

n(n−1)
2

n∏
j=1

e−i
π
2
εj = (−1)ne−i

π
2
n

n∏
j=1

e−i
π
2
εj

= ei
π
2
n

n∏
j=1

e−i
π
2
εj =

n∏
j=1

ei
π
2

(1−εj) = sgn(ε) .

Therefore the formulas for Θeven and Θodd follow from the formula for Θ. �

Let µελ be the tempered distribution on the Lie algebra sp(W) equal to the appropriately
normalized orbital integral on the Sp(W)-orbit through ελ, as defined in [41, (5)]. Let µ̂ελ
be the Fourier transform of µελ, denoted by θελ in [41, (5)]. Thanks to Harish-Chandra’s
Regularity Theorem, µ̂ελ is a function. The following corollary follows from Proposition
108 and [41, Corollary, page 217].

Corollary 109. There is a constant C such that for any regular element x ∈ t

p(x)Θ(ẽxp(x)) = C
∑

ε∈{1,−1}n
sgn(ε)µ̂ελ(x) ,

p(x)Θeven(ẽxp(x)) = C
∑

ε∈{1,−1}n, sgn(ε)=1

µ̂ελ(x) ,

p(x)Θodd(ẽxp(x)) = −C
∑

ε∈{1,−1}n, sgn(ε)=−1

µ̂ελ(x) .

Our direct proof may be replaced by a short argument using [4.5, Corollary 2.3].
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6. The Weil representation over a p-adic field

Let F be a p-adic field, i.e. a finite extension of Qp. (In fact our argument works for
all non Archimedean fields of characteristic other than 2 till the statement (362) below.
Hence our additional assumption.)

Let χ(r), r ∈ F, be a character of the additive group F such that the kernel of χ
is equal to oF. In this section we provide a construction of the corresponding the Weil
representation, [51].

6.1. The Fourier transform. Let U be a finite dimensional vector space over F and let
L be a lattice in U. We normalize the Haar measure µU on U so that the volume of the
lattice L is 1. Let L∗ ⊆ U∗ be the dual lattice. Denote by µU∗ the corresponding Haar
measure.

Let S(U) be the Schwartz-Bruhat space on U, i.e., the space of complex-valued locally
constant functions with compact support on U. (Recall that a function φ on U is called
locally constant if for each u ∈ U there is an open neighborhood U of u such that φ is
constant on U .) For φ ∈ S(U) let

Fφ(u∗) =

∫
U

φ(u)χ(−u∗(u)) dµU(u) (u∗ ∈ U∗) (292)

be the Fourier transform of φ. Then, as is well known, Fφ ∈ S(U∗) and

φ(u) =

∫
U∗
Fφ(u∗)χ(u∗(u)) dµU∗(u

∗) (u ∈ U), (293)

see [52, Corollary 1, page 107].
As a linear topological space, S(U) is the inductive limit of the finite dimensional

subspaces spanned by the characteristic functions of finite collections of open compact
subsets. Let S∗(U) denote the linear topological dual of S(U). It corresponds to the space
of the tempered distributions on U in the real case. When convenient we shall identify
any bounded locally integrable function f : U → C with the tempered distribution fµU.
In particular, S(U) ⊆ S∗(U). Then the Fourier transform

F : S(U)→ S(U∗)

extends to
F : S∗(U)→ S∗(U∗).

In fact, if we identify U∗∗ = U then the Fourier transform (292) is given by

Fψ(u) =

∫
U∗
ψ(u∗)χ(−u∗(u)) dµU∗(u

∗) (ψ ∈ S(U∗), u ∈ U) (294)

and the inverse (293) by

ψ(u∗) =

∫
U

Fψ(u)χ(u∗(u)) dµU(u) (ψ ∈ S(U∗), u∗ ∈ U∗). (295)

Therefore
F(f)(φ) = f(F(φ)) (f ∈ S∗(U), φ ∈ S(U∗)).
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Indeed, if f ∈ S(U), then

F(fµU)(φ) = ((Ff)µU∗)(φ)

=

∫
U∗

∫
U

f(u)χ(−u∗(u)) dµU(u)φ(u∗) dµU∗(u
∗)

=

∫
U

f(u)Fφ(u) dµU(u).

Let V ⊆ U be a non-zero subspace. Then L ∩ V is a lattice in V which determines the
Haar measure µV. We may view µV as a tempered distribution on U by

µV(φ) =

∫
V

φ(v) dµV(v) (φ ∈ S(U)).

In the case when V is zero, µV = µ0 is the unit measure at 0. In other words µ0 = δ0 is
the Dirac delta at 0,

µ0(φ) = δ0(φ) = φ(0) (φ ∈ S(U)).

Also, for future reference, let δu ∈ S(U) be the Dirac delta at u ∈ U,

δu(φ) = φ(u) (φ ∈ C(U)).

For an arbitrary subspace V ⊆ U, let V⊥ ⊆ U∗ be the annihilator of V. Then,

FµV = µV⊥ . (296)

Indeed, the formula (294) implies that (296) holds if V = {0}.
The quotient space U/V contains the lattice (L + V)/V, which determines the nor-

malization of the Haar measure µU/V. Then for φ ∈ S(U) we have φ̃ ∈ S(U/V) defined
by

φ̃(u+ V) =

∫
V

φ(u+ v) dµV(v).

Since (296) holds for the Fourier transform on U/V, with (U/V)∗ = V⊥ and the left hand
side being the evaluation of the Fourier transform of a test function at zero, we have, with
φ = Fψ,

µV(Fψ) = µV(φ) =

∫
V

φ(v) dµV(v) = φ̃(0) =

∫
V⊥
F φ̃(u∗) dµV⊥(u∗)

=

∫
V⊥

∫
U/V

φ̃(u+ V)χ(−u∗(u)) dµU/V(u+ V) dµV⊥(u∗)

=

∫
V⊥

∫
U/V

∫
V

φ(u+ v) dµV(v)χ(−u∗(u)) dµU/V(u+ V) dµV⊥(u∗)

=

∫
V⊥

∫
U

φ(u)χ(−u∗(u)) dµU(u) dµV⊥(u∗)

=

∫
V⊥
Fφ(u∗) dµV⊥(u∗)

= µV⊥(F(φ)) = µV⊥(F2(ψ)) = µV⊥(ψ),



106 A.-M. AUBERT AND T. PRZEBINDA

where the last equality follows from the fact that F2ψ(u) = ψ(−u), which is a simple
consequence of (294) and (293). This completes the proof (296).

Consider two vector spaces U′, U′′ over F of the same dimension equipped with lattices
L′, L′′ respectively. Let u′1, u

′
2, . . . , u

′
n be a L′-orthonormal basis of U′ and let u′′1, u

′′
2, . . . , u

′′
n

be a L′′-orthonormal basis of U′′. Suppose L : U′ → U′′ is a linear bijection. Denote by M
the matrix of L with respect to the two ordered basis:

Lu′j =
n∑
i=1

Mi,ju
′′
i (j = 1, 2, . . . , n).

Then | det(M)|F does not depend on the choice of the orthonormal basis. Thus we may
define | det(L)|F = | det(M)|F (see section 2.6).

Lemma 110. With the above notation we have∫
U′
φ(L(u′)) dµU′(u

′) | det(L)|F =

∫
U′′
φ(u′′) dµU′′(u

′′) (φ ∈ S(U′′)). (297)

Proof. This follows from Lemma 17. Indeed, let φ be the indicator function of L′′. Then
the right hand side of the equation (108) is equal to 1. Hence we need to show that∫

U′
φ(L(u′)) dµU′(u

′) | det(L)|F = 1.

However, φ ◦ L is the indicator function of L−1(L′′). Thus the problem is to check that

µU′(L
−1(L′′)) | det(L)|F = 1.

Fix an L′-orthonormal basis u′1, u
′
2, . . . of U′ and an L′′-orthonormal basis u′′1, u

′′
2, . . . of

U′′. Let T be the endomorphism of U′ defined by

T (L−1(u′j)) = u′′j (j = 1, 2, . . . ). (298)

Then

T (L−1(L′′)) = L′.
Hence, by Lemma 17,

µU′(L
−1(L′′)) | det(T )|F = µU′(T (L−1(L′′))) = µU′(L′)) = 1.

But (298) implies that | det(T )|F = | det(L)|F. Hence the claim follows. �

Let X and U be two finite dimensional vector spaces over F equipped with lattices and
the corresponding normalized Haar measures µX and µU. Let L : X → U be a surjec-
tive linear map. Suppose f is a bounded function on U so that fµU ∈ S∗(U). Define
L∗(fµU) := (f ◦ L)µX. Thus for a test function φ ∈ S(U),

L∗(fµU)(φ) =

∫
X

f(L(x))φ(x) dµX(x). (299)
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Choose a subspace X ′ ⊆ X complementary to Ker(L) so that X = Ker(L) ⊕ X ′. Let
µKer(L) and µX′ denote the corresponding normalized Haar measures on Ker(L) and X ′

respectively. Then (299) may be rewritten as∫
X′

∫
Ker(L)

f(L(x′ + x′′))φ(x′ + x′′) dµKer(L)(x
′′) dµX′(x

′). (300)

Let L′ denote the restriction of L to X ′. Then L′ : X ′ → U is a bijection and Lemma 110
shows that (300) may be rewritten as∫

U

f(u)L∗(φ)(u) dµU(u). (301)

where

L∗(φ)(u) =

∫
Ker(L)

φ(L′−1(u) + x′′) dµKer(L)(x
′′) | det(L′)|−1

F . (302)

Notice that L∗ : S(X) → S(U) is a continuous map. Hence we have the notion of a
pullback of a distribution

L∗(f)(φ) = f(L∗(φ)) (φ ∈ S(X), f ∈ S∗(U)) (303)

which is consistent with [14, Theorem 6.1.2].

Lemma 111. Let X and U are two finite dimensional vector space over F equipped with
lattices and the corresponding normalized Haar measures µX and µU. Let L : X→ U be a
surjective linear map. Let

L̃ : X/L−1(V)→ U/V

be the induced bijection. Then

L∗(µV) = | det(L̃)|−1
F µL−1(V).

Proof. Let X′ ⊆ X be the orthogonal complement of Ker(L). Denote by L′ the restriction
of L to X′ and by L′′ the restriction of L to X′ ∩ L−1(V). Then

L′ : X′ → U and L′′ : X′ ∩ L−1(V)→ V

are bijections.
According to (303), for a test function φ ∈ S(X) we have

L∗(µV)(φ) =

∫
Ker(L)

∫
V

φ(x+ L′−1(v)) dµV(v) dµKer(L)(x) | det(L′)|−1
F . (304)

Then the right hand side of (304) is equal to∫
Ker(L)

∫
L′′−1(V)

φ(x+ y) dµL′′−1(V)(y) dµKer(L)(x) | det(L′′)|F | det(L′)|−1
F

=

∫
L−1(V)

φ(z) dµL−1(V)(z) | det(L′′)|F | det(L′)|−1
F .

Since | det(L′′)|−1
F | det(L′)|F = | det(L̃)|F, we are done. �
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6.2. Gaussians on Fn. Let B be the usual dot product on Fn,

B(x, y) = xty = x1y1 + x2y2 + · · ·+ xnyn (x, y ∈ Fn).

Then the Haar measure associated to the lattice onF ⊆ Fn, dµFn(x) = dx1dx2 . . . dxn, is
the n-fold direct product of Lebesgue measure dxi on F, such that

∫
oF
dxi = 1.

For a symmetric matrix A ∈ GL(Fn) define the corresponding Gaussian γA by

γA(x) := χ(
1

2
xtAx) (x ∈ Fn).

Also, let

γ(A) = FγA(0) =

∫
Fn
χ(

1

2
xtAx) dx.

In particular, taking n = 1, we have

γ(a) =

∫
F
χ(

1

2
ax2) dx, (a ∈ F×).

Let γW be the gamma factor defined by Weil in [51, n◦14 cor. 2]. It is related to γ by
the equality

γ(A) = | det(A)|−1/2
F γW (A). (305)

We set

γW (q) := γW (Q),

if q is a quadratic form with associated symmetric matrix Q as in Eq. (12). Then γW
defines a unitary character of the Witt group of F. The scalar γW (a) is the gamma factor
attached to the quadratic form x 7→ ax2 (a ∈ F×). It depends only on the class of a
modulo (F×)2. In particular, we have

γW (a2) = γW (1) for all a ∈ F×. (306)

Of course Eqn. (306) would not be true with γ instead of γW : we get γ(a2) = |a|−1
F γW (1).

Note that γW (1) and γ(1) are equal.
Recall the Hilbert symbol ( , ): for any a, b ∈ F×,

(a, b) :=

{
1 if z2 = ax2 + by2 has a non-zero solution (x, y, z) ∈ F3,

−1 otherwise.

Equivalently, if A is a central simple algebra over F with a basis i, j, and k = ij = −ji
such that i2 = a and j2 = b, then (a, b) = −1 if A is a division algebra and (a, b) = 1 if
it is isomorphic to the algebra of 2 by 2 matrices. It is related to the above γ factor as
follows:

Proposition 112. For any a, b ∈ F×, we have

(a, b) =
γ(ab) γ(1)

γ(a)γ(b)
. (307)
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Equivalently

(a, b) =

γ(ab)
γ(1)

γ(a)
γ(1)

γ(b)
γ(1)

. (308)

Also

γW (a)8 =
(
|a|1/2F γ(a)

)8

= 1 (a ∈ F×) . (309)

Proof. It follows from [51, n◦25 prop. 3 and n◦28 prop. 4] that

(a, b) =
γW (ab) γW (1)

γW (a)γW (b)
. (310)

This is the formula at the bottom of page 176 in [51]. Also, a proof of (309) is on the
pages 176 and 177 in [51].

Then the equality (307) is an immediate consequence of the equality γ(a) = γW (a) |a|−1/2
F .

(See also [30, Corollary 2.16, page 440].) �

Corollary 113. The function

a 7→ s(a) := |a|F
γ(a)2

γ(1)2
=
γW (a)2

γW (1)2

is a character of F×/(F×)2.

Remark. The function a 7→ γ(a)2

γ(1)2
is a character of F×. However it does not have trivial

restriction to (F×)2.

Remark. The character s will play a similar role to that of the character s which was

defined in Lemma 25 in the case of finite fields, and of a 7→ |a|
a

in the case of R.

In these terms we have the following theorem due to Weil.

Theorem 114. For any symmetric matrix A ∈ GL(Fn),

FγA = γ(A) γ−A−1 , (311)

and
γ(A) = ±γ(1)n−1γ(det(A)). (312)

Here the ± function is invariant under the natural action of GL(Fn) on the symmetric
matrices. In particular (

γ(1)−nγ(A)
)2

=
(
γ(1)−1γ(det(A))

)2
. (313)

Proof. Suppose A is similar to 
a1 0 0 ... 0
0 a2 0 ... 0
.. .. .. ... ..
0 0 0 ... an

 .
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Since γW is a homomorphism from the Witt group of the symmetric forms to C we have

γW (A) = γW (a1)γW (a2)...γW (an) .

On the other hand (310) implies inductively that

γW (a1a2...an) = (a1a2...an−1, an)γW (1)−1γW (a1a2...an−1)γW (an) (314)

= (a1, a2)(a1a2, a3)...(a1a2...an−1, an)γW (1)1−nγW (a1)γW (a2)...γW (an) .

Thus

γ(det(A)) = (a1, a2)(a1a2, a3)...(a1a2...an−1, an)γ(1)1−nγ(A) ,

or equivalently,

γ(A) = (a1, a2)(a1a2, a3)...(a1a2...an−1, an)γ(1)n−1γ(det(A)) (315)

and (312) follows.
Equivalently, we have (see [51, Chap. I Théorème 2 and Chap. II § 26])

γW (A) = ±γ(1)n−1 γW (detA). (316)

Hence, from Eqn. (305) we obtain

γ(A) = ±γ(1)n−1 γ(detA). (317)

Then the first equation in the statement of the theorem follows from [51, Eqn. (17) and
Théorème 2, I. § 14] applied to the character of second degree x 7→ γA(x). �

6.3. Gaussians on a vector space. Let U be a finite dimensional vector space over F
with a lattice L ⊆ U. Suppose q is a non-degenerate symmetric bilinear form on U. Let
γ(q) = γ(Q), where Q is the matrix obtained from any NL-orthonormal basis u1, u2, . . .,
un of U by

Qi,j = q(ui, uj) (1 ≤ i, j ≤ n).

Also, we define γ(0) = 1.

Lemma 115. If q is a non-degenerate symmetric bilinear form on U, then∫
U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) = γ(q)χ(−1

2
q∗(u∗, u∗)) (u∗ ∈ U∗).

Proof. Fix a NL-orthonormal basis u1, u2, . . ., un of U and let u∗1, u∗2, . . ., u∗n be the dual
basis of U∗. This is a NL∗-orthonormal basis. As we have seen in the proof of Lemma 27,
if Q is the matrix corresponding to q, as above, then Q−1 corresponds to q∗.

Let xi = u∗i (u) and let yj = u∗(uj). Then∫
U

χ(
1

2
q(u, u))χ(−u∗(u)) dµU(u) =

∫
Fn
χ(

1

2
xtQx)χ(−xty) dx

= γ(Q)χ(−1

2
ytQ−1y) = γ(q)χ(−1

2
q∗(u∗, u∗)),

where the second equality follows from Theorem 114. �
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6.4. Gaussians on a symplectic space. Let W be a finite dimensional vector space
over F with a non-degenerate symplectic form 〈 , 〉. We shall identify W with the dual
W∗ by

w∗(w) = 〈w,w∗〉 (w,w∗ ∈W). (318)

The identification (318) provides to the following isomorphisms

U∗ = W/U⊥ and (U/V)∗ = V⊥/U⊥, (319)

where the orthogonal complements are taken in W, with respect to the symplectic form
〈 , 〉. Let {e1, . . . , en, e−n, . . . , e−1} be a symplectic basis of W, that is:

〈ei, ej〉 = 〈e−i, e−j〉 = 0 and 〈ei, e−j〉 = δij, for all 1 ≤ i, j ≤ n.

Let L :=
∑n

j=−n oFej. Then L is a self-dual lattice in W, i.e.,

{w ∈W; 〈u,w〉 ∈ oF for all u ∈ L} = L.
Moreover,

{〈w1, w2〉; w1, w2 ∈ L} = oF.

As explained in section 6.1, L leads to a normalization of the Haar measures on any
subspace of U ⊆W and on any quotient U/V, where V is a subspace of U.

Lemma 116. Suppose x ∈ Hom(U,W/U⊥) is such that

〈xu, v〉 = 〈xv, u〉 (u, v ∈ U).

Set

q(u, v) = qx(u, v) =
1

2
〈xu, v〉 (u, v ∈ U).

Let V be the radical of q and let q̃ be the induced non-degenerate form on U/V. Then

(a) If x ∈ sp(W) is invertible, i.e. U = W, then

chc(x) =

∫
W

χ(
1

4
〈xw,w〉) dµW(w) = ±γ(1)dimF W−1γ(det(

1

2
x)) ,

where the ± function is invariant under the adjoint action of the symplectic group.
(b) V = Ker(x);
(c) The element x determines a bijection

x : U/V→ V⊥/U⊥,

with the inverse

x−1 : V⊥/U⊥ → U/V;

(d) Let x−1 : V⊥ → U/V be the composition of x−1 with the quotient map V⊥ →
V⊥/U⊥. Define

χx(u) = χ(
1

4
〈xu, u〉) (u ∈ U),

χx−1(w) = χ(
1

4
〈x−1w,w〉) (w ∈ V⊥).



112 A.-M. AUBERT AND T. PRZEBINDA

Then, for any φ ∈ S(W),∫
U

∫
W

χx(u)χ(−1

2
〈u,w〉)φ(w) dµW(w) dµU(u) (320)

= γ(q̃)

∫
V⊥
χx−1(w)φ(w) dµV⊥(w)

= γ(q̃)

∫
V⊥/U⊥

χx−1(w + U⊥)

∫
U⊥
φ(w + v) dµU⊥(v) dµV⊥/U⊥(w + U⊥).

Also, for any φ ∈ S(W/U⊥),∫
U

∫
W/U⊥

χx(u)χ(
1

2
〈u,w〉)φ(w + U⊥) dµW/U⊥(w + U⊥) dµU(u) (321)

= γ(q̃)

∫
V⊥/U⊥

χx−1(w)φ(w + U⊥) dµV⊥/U⊥(w + U⊥).

Proof. For part (a) set {u1, . . . , u2n} = {e1, . . . , en, e−n, . . . , e−1} and notice that

chc(x) =

∫
W

χ(
1

2
qx(w)) dµW(w) = γ(qx) = ±γ(1)dimF W−1γ(det(〈1

2
xuj, uk〉))

= ±γ(1)dimF W−1γ(det(
1

2
x)) ,

where the last equality follows from Lemma 20.
Part (b) is obvious. Part (c) means that Ker(x)⊥ = Im(x), which is true. For φ ∈ S(W)

we have, ∫
U

∫
W

χx(u)χ(−1

2
〈u,w〉)φ(w) dµW(w) dµU(u)

=

∫
W

F(γqµU)(
1

2
w)φ(w) dµW(w)

=

∫
W

F(γqµU)(w)φ(2w) dµW(w) |2dim W|F

=

∫
W

F(γqµU)(w)φ(2w) dµW(w)

= γ(q̃)

∫
V⊥
γ−q̃∗(w)φ(2w) dµV⊥(w)

= γ(q̃)

∫
V⊥
γ−q̃∗(

1

2
w)φ(w) dµV⊥(w)

= γ(q̃)

∫
V⊥
χx−1(w)φ(w) dµV⊥(w).
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This verifies (320). For φ ∈ S(W/U⊥) we have,∫
U

∫
W/U⊥

χx(u)χ(
1

2
〈u,w〉)φ(w + U⊥) dµW/U⊥(w + U⊥) dµU(u)

=

∫
U/V

∫
V

∫
W/U⊥

χx(u+ V)χ(
1

2
〈u+ v, w〉)φ(w + U⊥) dµW/U⊥(w + U⊥) dµV(v) dµU/V(u+ V)

=

∫
U/V

∫
V

∫
W/U⊥

γq̃(u+ V)χ(〈u+ v, w〉)φ(2w + U⊥) dµW/U⊥(w + U⊥) dµV(v) dµU/V(u+ V)

=

∫
U/V

∫
V⊥/U⊥

γq̃(u+ V)χ(〈u,w〉)φ(2w + U⊥) dµW/U⊥(w + U⊥) dµU/V(u+ V)

= γ(q̃)

∫
V⊥/U⊥

γ−q̃∗(w + U⊥)φ(2w + U⊥) dµW/U⊥(w + U⊥)

= γ(q̃)

∫
V⊥/U⊥

γ−q̃∗(
1

2
w + U⊥)φ(w + U⊥) dµW/U⊥(w + U⊥)

= γ(q̃)

∫
V⊥/U⊥

χx−1(w + U⊥)φ(w + U⊥) dµW/U⊥(w + U⊥).

This verifies (321). �

By a Gaussian on the symplectic space W we shall understand any non-zero constant
multiple of the tempered distribution

χxµU ∈ S∗(W) (322)

where the function χx is defined in Lemma 116. In these terms Lemma 116 says that the
Fourier transform of a Gaussian is another Gaussian.

6.5. Twisted convolution of Gaussians. Recall the twisted convolution of two Schwartz
functions ψ, φ ∈ S(W):

ψ\φ(w) =

∫
W

ψ(u)φ(w − u)χ(
1

2
〈u,w〉) dµW(u) (w ∈W). (323)

It is easy to see that the above integral converges and that ψ\φ ∈ S(W). Also, the twisted
convolutions

δw0\φ(w) = φ(w − w0)χ(
1

2
〈w0, w〉) and φ\δw0(w) = φ(w − w0)χ(

1

2
〈w,w0〉) (324)

are well defined for any continuous function φ.
Let

t(g) = χc(g)µg−W. (325)

For any φ ∈ S(W), the twisted convolution t(g)\φ is a continuous function given by the
following absolutely convergent integral

t(g)\φ(w) =

∫
g−W

χc(g)(u)φ(w − u)χ(
1

2
〈u,w〉) dµg−W(u) (w ∈W). (326)
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Lemma 117. For any g ∈ Sp(W),

t(g)\(δw0\φ) = δgw0\(t(g)\φ) (φ ∈ S(W), w0 ∈W).

Proof. The left hand side evaluated at w ∈W is equal to∫
g−W

χc(g)(u)(δw0\φ)(w − u)χ(
1

2
〈u,w〉) dµg−W(u)

=

∫
g−W

χc(g)(u)φ(w − u− w0)χ(
1

2
〈w0, w − u〉)χ(

1

2
〈u,w〉) dµg−W(u)

=

∫
g−W

φ(w − u− w0)χ(
1

4
(〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉)) dµg−W(u)

and the right hand side is equal to

(t(g)\φ)(w − gw0)χ(
1

2
〈gw0, w〉)

=

∫
g−W

χc(g)(u)φ(w − gw0 − u)χ(
1

2
〈u,w − gw0〉) dµg−W(u)χ(

1

2
〈gw0, w〉)

=

∫
g−W

χc(g)(u− g−w0)φ(w − gw0 − (u− g−w0))

χ(
1

2
〈u− g−w0, w − gw0〉) dµg−W(u)χ(

1

2
〈gw0, w〉)

=

∫
g−W

φ(w − u− w0)χ(
1

4
(〈c(g)(u− g−w0), u− g−w0〉

+ 2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉)) dµg−W(u).

A straightforward computation shows that

〈c(g)(u− g−w0), u− g−w0〉+ 2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉
− (〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉) = 0.

Hence, the two sides are equal. �

Lemma 118. Fix an element g ∈ Sp(W). Let U = g−W. The map

U 3 u→ 〈 , (1− c(g))u〉 ∈ U∗ = W/U⊥ = W/Ker(g−) (327)

is bijective.
Fix a complement Z of U in W so that

W = U⊕ Z.

We shall denote the elements of U by u and elements of Z by z. In particular every w ∈W
has a unique decomposition

w = u+ z.
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Then, for any φ ∈ S(W) and any w′ = u′ + z′ ∈W,

t(g)\φ(w′) (328)

= χc(g)(u
′)χ(

1

2
〈u′, w′〉)

∫
U

χc(g)(u)φ(u+ z′)χ(−1

2
〈u, (1− c(g))u′ + z′〉) dµU(u).

In particular, (328) and (327) imply that t(g)\φ ∈ S(W) and that the map

S(W) 3 φ→ t(g)\φ ∈ S(W)

is continuous.

Proof. Suppose 〈 , (1 − c(g))u〉 = 0. Then (1 − c(g))u ∈ Ker g−. There is u0 ∈ W such
that u = g−u0. Therefore

0 = g−(1− c(g))u = g−(1− c(g))g−u0

= g−(g−)u0 − g−g+u0 = g−(g−)u0 − g+g−u0

= (g− − g−)g−u0 = −2g−u0 = −2u.

This verifies (327).
The left hand side of (328) is equal to

t(g)\φ(w′) =

∫
U

χc(g)(u)φ(w′ − u)χ(
1

2
〈u,w′〉) dµU(u)

=

∫
U

χc(g)(u+ u′)φ(z′ − u)χ(
1

2
〈u+ u′, w′〉) dµU(u)

=

∫
U

χc(g)(u
′)χc(g)(u)χ(

1

2
〈c(g)u′, u〉)φ(z′ − u)χ(

1

2
〈u+ u′, w′〉) dµU(u)

= χc(g)(u
′)χ(

1

2
〈u′, w′〉)

∫
U

χc(g)(u)φ(z′ − u)χ(
1

2
〈u,w′ − c(g)u′〉) dµU(u),

which coincides with the right hand side. �

In particular Lemma 118 shows that for any two elements g1, g2 ∈ Sp(W) there is a
tempered distribution t(g1)\t(g2) ∈ S∗(W) such that

(t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ) (φ ∈ S(W)). (329)

Proposition 119. Fix two elements g1, g2 ∈ Sp(W). Let U′1 ⊆ U1 be the NL-orthogonal
complement of U, so that

U1 = U′1 ⊕ U.

Then the map

L : U′1 + U2 3 u′1 + u2 → c(g1)u′1 − c(g2)u2 − u′1 − u2 + U⊥ ∈W/U⊥

is well defined, surjective and L−1(V⊥/U⊥) = U12. Denote by

L̃ : (U1 + U2)/U12 3 u1 + u2 + U12 → c(g1)u1 − c(g2)u2 − u1 − u2 + V⊥ ∈W/V⊥

= (W/U⊥)/(V⊥/U⊥)
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the induced bijection and set

C(g1, g2) = γ(q̃g1,g2)| det(L̃)|−1
F . (330)

Then C is a cocycle, with C(1, 1) = 1, and

t(g1)\t(g2) = C(g1, g2)t(g1g2). (331)

Proof. Since V⊥/U⊥ = (c(g1) + c(g2))U, the map L̃ is well defined. Suppose u′1 ∈ U′1 and
u2 ∈ U2 are such that L(u′1 + u2) ∈ V⊥/U⊥. Then there is u ∈ U such that

(c(g1) + c(g2))u+ c(g1)u′1 − c(g2)u2 − u′1 − u2 ∈ U⊥.

Let

u = g−1 v1 = g−2 v2, v = u′1 = g−1 w1, w − v = u2 = g−2 w2.

Then

(c(g1) + c(g2))u+ c(g1)v + c(g2)(v − w)− w ∈ U⊥.

Hence, the computation (87) - (89) shows that w = (g1g2)−(w2 − v2) ∈ U12. Therefore
L−1(V⊥/U⊥) ⊆ U12. But (327) implies that L is surjective and Lemma 7 (b) shows that
dim((U1 + U2)/U12) = dim((W/U⊥)/(V⊥/U⊥)). Thus L−1(V⊥/U⊥) = U12.

The computation (89) - (93) shows that, if u′1 + u2 ∈ U12 then

〈c(g1)u′1, u
′
1〉+ 〈c(g2)u2, u2〉+ 2〈u′1, u2〉+ 〈(c(g1) + c(g2))−1L(u′1 + u2), L(u′1 + u2)〉

= 〈c(g1g2)(u′1 + u2), u1 + u2〉

so that

χc(g1)(u
′
1)χc(g2)(u2)χ(

1

2
〈u′1, u2〉)χ(c(g1)+c(g2))−1(L(u′1 + u2)) = χc(g1g2)(u

′
1 + u2). (332)

Any u1 ∈ U1 has a unique decomposition u1 = u′1 + u, where u′1 ∈ U′1 and u ∈ U. With
this notation, Lemma 118 shows that for any φ ∈ S(W),

t(g1)\(t(g2)\φ)(0) (333)

=

∫
U1

χc(g1)(u1)t(g2)\φ(u1) dµU1(u1)

=

∫
U1

∫
U2

χc(g1)(u1)χc(g2)(u)χ(
1

2
〈u, u′1〉)χ(

1

2
〈u2, (c(g2)− 1)u〉)

χc(g2)(u2)χ(−1

2
〈u2, u

′
1〉)φ(u2 + u′1) dµU2(u2) dµU1(u1)

=

∫
U

∫
U′1

∫
U2

χc(g1)(u1)χc(g2)(u)χ(
1

2
〈u, u′1〉)χ(

1

2
〈u2, (c(g2)− 1)u〉)

χc(g2)(u2)χ(−1

2
〈u2, u

′
1〉)φ(u2 + u′1) dµU2(u2) dµU′1

(u′1) dµU(u)
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The formula (321) applied with x = c(g1) + c(g2) shows that∫
U

χc(g1)(u1)χc(g2)(u)χ(
1

2
〈u, u′1〉)χ(

1

2
〈u2, (c(g2)− 1)u〉) dµU(u) (334)

= χc(g1)(u
′
1)

∫
U

χc(g1)+c(g2)(u)χ(
1

2
〈u, c(g1)u′1 − c(g2)u2 − u′1 − u2〉) dµU(u)

= 2dim Vγ(q̃g1,g2)χc(g1)(u
′
1)(χ(c(g1)+c(g2))−1µV⊥/U⊥)(c(g1)u′1 − c(g2)u2 − u′1 − u2).

Furthermore, Lemma 111 shows that, for u′1 + u2 ∈ U12,

µV⊥/U⊥(c(g1)u′1 − c(g2)u2 − u′1 − u2) = L∗(µV⊥/U⊥)(u′1 + u2) (335)

= | det(L̃)|−1µU12(u
′
1 + u2).

The formula (331) follows directly from (332) - (335).
We see from (324) that

t(g1)\(t(g2)\φ)(w) = (t(g1)\(t(g2)\φ))\δ−w(0) = (t(g1)\(t(g2)\(φ\δ−w)))(0)

= ((t(g1)\t(g2))\(φ\δ−w))(0) = ((t(g1)\t(g2))\φ)\δ−w)(0) = (t(g1)\t(g2))\φ(w).

Therefore

(t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ).

Hence, t(g1)\t(g2) coincides with the composition of t(g1) and t(g2) as elements of the
associative algebra End(S(W)). Therefore the function C is a cocycle. �

6.6. Normalization of Gaussians and the metaplectic group. For an element h ∈
End(W) define h# ∈ End(W) by

〈hw,w′〉 = 〈w, h#w′〉 (w,w′ ∈W). (336)

Then (Kerh#)⊥ = hW.

Lemma 120. Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = Ker g−1 = 0. Then

| det(
1

2
L̃))|F = | det(g−2 : K12 → V|F)−1.

Proof. Since, by Lemma 7 (c), g−2 K12 = V, the right hand side of the equation we need
to prove makes sense. A straightforward computation shows that

1

2
L̃ : W/U12 3 w + U12 →

1

2
(c(g1)− 1)w + V⊥ = g−1

1 w + V⊥ ∈W/V⊥.

Hence,

det(
1

2
L̃)−1 = det(g−1 : W/V⊥ →W/U12).

Notice that g−1
1 − 1 = g#

1 . Since V = g−2 K12 and U12 = K⊥12, Lemma 22 shows that

det(g−1 : W/V⊥ →W/U12) = det(g−1
1 − 1: K12 → V).

Since the restrictions of g−1
1 and g2 to K12 are equal, we are done. �
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Let B be a non-degenerate (not necessarily symmetric) bilinear form on a finite dimen-
sional vector space over F. Define the discriminant of B as

dis(B) =
γW (det(A))

γ(1)
, (337)

where A is the matrix obtained from a basis u1, u2, . . ., un of the space by

Ai,j = B(ui, uj) (1 ≤ i, j ≤ n).

Clearly the discriminant does not depend on the choice of the basis.
We have

dis(B)2 = s(det(A)). (338)

For any g ∈ Sp(W) the formula

〈g−w,w′〉 (w,w′ ∈W)

defines a bilinear form whose left and right radicals coincide with Ker(g−). Hence we get
a non-degenerate bilinear form Bg on the quotient W/Ker(g−). Then

dis(Bg) =
γW (det(〈g−wi, wj〉1≤i,j≤r))

γ(1)
,

where w1 + Ker(g−), w2 + Ker(g−), . . ., wr + Ker(g−) is a basis of W/Ker(g−).
For g ∈ Sp(W) define

θ(g) := γ(1)dim g−W dis(Bg). (339)

Lemma 121. Let g1, g2 ∈ Sp(W). Assume that K1 = Ker g−1 = {0}. Then

γW (q̃g1,g2)
2 =

θ(g1g2)2

θ(g1)2 θ(g2)2
, (340)

where q̃g1,g2 is the non-degenerate symmetric form defined in Notation 6.

Proof. Let h be the element in GL(W) defined in Eqn. (24). Then since s is a character,
it follows from Eqns. (338) and (26) that

s(det(〈(g1g2)−wi, hwj〉a<i,j) = dis(q̃g1,g2)
2 s(det(〈g−1 wi, hwj〉b<i,j)). (341)

But
s(det(〈(g1g2)−wi, wj〉a<i,j)) = dis(Bg1g2)

2.

Therefore (341) may be rewritten as

dis(Bg1g2)
2 s(det(h)) = dis(q̃g1,g2)

2. (342)

Notice that

dis(Bg1)
2 = s(det g−1 ) = s(det(g1(g−1

1 − 1))) = s(det(g−1
1 − 1))

= s(det(g−1
1 − 1))−1.

Then, from (27), we obtain

dis(Bg1)
−2 s(det(h)) = s(−1)dim U dis(Bg2)

2.



THE WEIL REPRESENTATION 119

Therefore
s(det(h)) = s(−1)dim U dis(Bg1)

2 dis(Bg2)
2. (343)

By combining (342) and (343) we see that

dis(q̃g1,g2)
2 = dis(Bg1g2)

2 s(−1)dim U dis(Bg1)
2 dis(Bg2)

2 (344)

= s(−1)dim U dis(Bg1g2)
2

dis(Bg1)
2 dis(Bg2)

2
.

We see from (316) that

γW (q̃g1,g2)
2 = γ(1)2 dim U−2 dim V dis(q̃g1,g2)

2 = s(−1)dim Uγ(1)−2 dim U−2 dim V dis(q̃g1,g2)
2,

because γ(1)4 = s(−1), which follows from the equality γ(1)γ(−1) = 1. Therefore (344)
implies (340). �

Definition 122. For g ∈ Sp(W) define

Θ2(g) := γ(1)2 dim g−W−2 (γ(det(g− : W/Ker(g−)→ g−W))2

= θ2(g)| det(g− : W/Ker(g−)→ g−W)|−1
F ,

where
θ2(g) = γ(1)2 dim g−W s(det(g− : W/Ker(g−)→ g−W)).

(Here s was defined in Corollary 113.)

Lemma 123. We have

Θ2(g1g2)

Θ2(g1)Θ2(g2)
= C(g1, g2)2 (g1, g2 ∈ Sp(W)). (345)

Proof. Both sides of the equality (345) are cocycles. Hence, Lemma 8 shows that we may
assume that K1 = {0}. Therefore the equality (345) is equivalent to

det((g1g2)− : W/K12 → U12)

det(g−1 : W→W) det(g−2 : W/K2 → U)
(346)

= (−1)dim U det(〈1
2

(c(g1) + c(g2)) , 〉U/V) (det(g−2 : K12 → V))−2

In particular

| det((g1g2)− : W/K12 → U12)|F
| det(g−1 : W→W)|F| det(g−2 : W/K2 → U)|F

(347)

= | det(〈1
2

(c(g1) + c(g2)) , 〉U/V)|F | det(g−2 : K12 → V)|−2
F

This, together with Lemma 120, shows that the right hand side of (347) is equal to

| det(〈1
2

(c(g1) + c(g2)) , 〉U/V)|F
(

2− dim V| det(L̃)|F
)2

,

which, by Proposition 119, coincides with |C(g1, g2)|−2. Hence, the absolute values of
the two sides of (345) are equal. Hence, (345) (without the absolute values) follows from
Lemma 121. �
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Definition 124. Let

S̃p(W) := {(g, ξ); g ∈ Sp(W), ξ ∈ C×, ξ2 = Θ2(g)},
where Θ2(g) is as in Definition 122.

Lemma 125. S̃p(W) is a group with the multiplication defined by

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) (g1, g2 ∈ Sp(W)) (348)

the identity equal to (1, 1) and the inverse given by

(g, ξ)−1 = (g−1, ξ) (g ∈ Sp(W)).

Proof. Lemma 123 shows that the right hand side of (348) belongs to S̃p(W). A standard

computation, as in [22, page 366], shows that S̃p(W) is a group with the multiplication
given by (348), the identity equal to (1, C(1, 1)−1) and

(g, ξ)−1 = (g−1, C(g−1, g)−1ξ−1).

Since, by Proposition 119, C(1, 1) = 1, it remains to check that

C(g−1, g)−1ξ−1 = ξ.

But, as in the proof of Lemma 120,

C(g−1, g) = 2dim V| det(L̃)|−1
F

= | det(g− : W/Ker(g−)→ g−W)|F = |Θ2(g)|−1
F = |ξ|−2

F .

This completes the proof. �

Notice that the map

S̃p(W) 3 (g, ξ)→ g ∈ Sp(W)

is a group homomorphism with the kernel consisting of two elements. Thus S̃p(W) is a
central extension of Sp(W) by the two element group Z/2Z:

1→ Z/2Z→ S̃p(W)→ Sp(W)→ 1. (349)

Proposition 126. The extension (349) does not split.

Proof. Pick a two-dimensional symplectic subspace W1 ⊆W and let W2 = W⊥
1 , so that

W = W1 ⊕W2.

Define an element g ∈ Sp(W) by

g(w1 + w2) = −w1 + w2 (w1 ∈W1, w2 ∈W2).

Then g−|W1 = (a− 1) I2 and g−|W2 = 0. Hence Ker(g−) = W2 and g−(W) = W1. We get

Θ2(g) = γ(1)4 s(det(g− : W1 →W1)) | det g− : W1 →W1))|−1
F

= γ(1)4 s(4) | − 4|−1
F

=
γ(1)4

| − 4|2F
.
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We have g2 − 1 = 0, and Eqn. (345) gives

C(g, g)2 =
1

(Θ2(g))2
= | − 2|4F.

Let g̃ =

(
g,

γ(1)2

| − 2|F

)
. Then g̃ ∈ S̃p(W), and

g̃2 = (g2,Θ2(g)C(g, g)) = (g2, γ(1)4) and g̃4 = (g4,Θ2(g2)C(g2, g2)) = (g4, 1).

Thus the subgroup of S̃p(W) generated by g̃ is cyclic of order 4. The subgroup of Sp(W)
generated by g is cyclic of order 2. Hence the extension (349) does not split over that
subgroup. �

Corollary 127. Up to an equivalence of central group extensions, as in [22, sec. 6.10],
(349) is the only non-trivial central extension of Sp(W) by Z/2Z.

Proof. Since, as is well known (see [27, Theorems 5.10 and 11.1 (b)]),

H2(Sp(W),Z/2Z) = Hom(Z,Z/2Z),

the claim follows. �

Let

φ∗(w) = φ(−w) and u∗(φ) = u(φ∗) (φ ∈ S(W), u ∈ S∗(W), w ∈W).

Lemma 128. For any g ∈ Sp(W), t(g)∗ = t(g−1).

Proof. By the definition (325),

t(g)∗ =
(
χc(g)µg−W

)∗
= χc(g)µg−W = χ−c(g)µg−W.

Since g−W = (g−1 − 1)W, it will suffice to check that for any w ∈W

−c(g)g−w = c(g−1)g−w.

The left hand side is equal to −g+w. The right hand side is equal to

−c(g−1)(g−1 − 1)gw = −(g−1 − 1)gw = −g+w.

�

Definition 129. For g̃ = (g, ξ) ∈ S̃p(W) define

Θ(g̃) = ξ and T (g̃) = Θ(g̃)t(g). (350)

Lemma 130. With the notation of (350), the following formulas hold

T (g̃1)\T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ S̃p(W)), (351)

T (g̃)∗ = T (g̃−1) (g̃ ∈ S̃p(W)). (352)



122 A.-M. AUBERT AND T. PRZEBINDA

Proof. By Proposition 119 the left hand side of (351) is equal to

Θ(g̃1)Θ(g̃2)

Θ(g̃1g̃2)
C(g1, g2)T (g̃1g̃2).

Lemma 125 shows that

Θ(g̃1)Θ(g̃2)

Θ(g̃1g̃2)
C(g1, g2) = 1.

This verifies (351).
The equality (352) follows from Lemma 125 and Lemma 128:

T (g̃)∗ = Θ(g̃)t(g)∗ = Θ(g̃−1)t(g−1) = T (g̃−1).

�

Lemma 131. The map T : S̃p(W)→ S∗(W) is injective and continuous.

Proof. The injectivity of T follows from the injectivity of t : Sp(W) → S∗(W), which is
obvious. Let

Spc(W) = {g ∈ Sp(W); det g− 6= 0}.

Lemma 8 shows that

Sp(W) =
⋃

h∈Sp(W)

Spc(W)h. (353)

Let S̃p
c
(W) ⊆ S̃p(W) be the preimage of Spc(W). Then

S̃p(W) =
⋃

h̃∈S̃p(W)

S̃p
c
(W)h̃.

By Lemma 130, we have

T (g̃) = T (g̃h̃−1)\T (h̃) (g̃ ∈ S̃p
c
(W)h̃)

Thus for φ ∈ S(W),

T (g̃)\φ = T (g̃h̃−1)\(T (h̃)\φ).

By Lemma 118, the map

S(W) 3 φ→ T (h̃)\φ ∈ S(W)

is continuous. Hence it will suffice to check that the restriction of T to S̃p
c
(W) is contin-

uous. But this is obvious. �
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6.7. The conjugation property. Let L2(W) denote the Hilbert space of the Lebesgue
measurable functions φ : W→ C, with the norm given by

‖ φ ‖2
2=

∫
W

|φ(w)|2 dµW(w).

Lemma 57 shows that for any g̃ ∈ S̃p(W) and any φ ∈ S(W)

‖ T (g̃)\φ ‖2
2= (T (g̃)\φ)∗\(T (g̃)\φ)(0) = φ∗\T (g̃)∗\T (g̃)\φ(0) = φ∗\φ(0) =‖ φ ‖2

2 .

Hence, the continuous linear map

S(W) 3 φ→ T (g̃)\φ ∈ S(W)

extends by continuity to an isometry

L2(W) 3 φ→ T (g̃)\φ ∈ L2(W).

Furthermore, the formula

ω1,1(g)φ(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)).

defines a unitary representation ω1,1 of the symplectic group Sp(W) on L2(W).

Proposition 132. For any φ ∈ L2(W) and g̃ ∈ S̃p(W) in the preimage of g ∈ Sp(W),
T (g̃)\φ\T (g̃−1) = ω1,1(g)φ.

Proof. Since T (g̃)\ is a bounded operator, we may assume that φ ∈ S(W). Lemma 42
says that

t(g)\δw = δwg\t(g) (w ∈W).

Therefore

T (g̃)\δw = δwg\T (g̃) (w ∈W).

Since,

φ =

∫
W

φ(w)δw dµW(w) and

∫
W

φ(w)δgw dµW(w) = ω1,1(g)φ,

we see that

T (g̃)\φ = (ω1,1(g)φ)\T (g̃).

�

6.8. The Weyl transform and the Weil representation. Pick a complete polariza-
tion

W = X⊕ Y (354)

and recall that our normalization of measures is such that dµW(x + y) = dµX(x)dµY(y).
Recall the Weyl transform

K : S∗(W)→ S∗(X× X), (355)

K(f)(x, x′) =

∫
Y

f(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y),
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This is an isomorphism of linear topological spaces, which restricts to an isometry

K : L2(W)→ L2(X× X). (356)

Each element K ∈ S∗(X× X) defines an operator Op(K) ∈ Hom(S(X),S∗(X)) by

(Op(K)(v))(u) = K(u⊗ v) (u, v ∈ S(X)). (357)

Since the map
S(X)× S(X) 3 (u, v)→ u⊗ v ∈ S(X× X)

is continuous, (357) defines a continuous injection

Op : S∗(X× X)→ Hom(S(X),S∗(X)). (358)

Conversely, if S ∈ Hom(S(X),S∗(X)), then

S(v)(u) (u, v ∈ S(X))

defines a continuous linear map on S(X) ⊗ S(X) = S(X × X). Hence the map (358) is
bijective and thus a linear topological isomorphism.
A straightforward computation shows that Op ◦ K transforms the twisted convolution of
distributions (when it makes sense) into the composition of the corresponding operators.
Also,

(Op ◦ K(f))∗ = Op ◦ K(f ∗) (f ∈ S∗(W)) (359)

and

tr Op ◦ K(f) =

∫
X

K(f)(x, x) dµX(x) = f(0) (360)

if Op ◦ K(f) is of trace class, [18, Theorem 3.5.4] (More precisely the same proof works).
Hence, the map

Op ◦ K : L2(W)→ H.S.(L2(X)) (361)

is an isometry, which is a well known fact [18, Theorem 1.4.1]. (Here H.S.(L2(X)) stands
for the space of the Hilbert-Schmidt operators on L2(X).)

Let U(L2(X)) denote the group of the on the Hilbert space L2(X).

Theorem 133. Let ω = Op ◦ K ◦ T . Then

ω : Sp(W)→ U(L2(X))

is an injective group homomorphism. For each v ∈ L2(X), the map

S̃p(W) 3 g̃ → ω(g̃)v ∈ L2(X)

is continuous, so that (ω,L2(X)) is a unitary representation of the metaplectic group. The
function Θ coincides with the character of this representation:∫

S̃p(W)

Θ(g̃)Ψ(g̃) dg̃ = tr

∫
S̃p(W)

ω(g̃)Ψ(g̃) dg̃ (Ψ ∈ C∞c (S̃p(W)),

where the integral on the left is absolutely convergent. (Here dg̃ stands for any Haar

measure on S̃p(W).) Moreover,

ω(g̃) Op ◦ K(φ)ω(g̃−1) = Op ◦ K(ω1,1(g)φ) (g̃ ∈ S̃p(W), φ ∈ L2(W)).
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Proof. We see from the discussion in section 6.7 that the left multiplication by ω(g̃) is an
isometry on H.S.(L2(X)). This implies that ω(g̃) is a unitary operator.

We see from (358) that for any two function v1, v2 ∈ S(X) there is φ ∈ S(W) such that∫
X

ω(g̃)v1(x)v2(x) dµX(x) = T (g̃)(φ) (g̃ ∈ Sp(W)).

Hence Lemma 131 shows that the left hand side is a continuous function of g̃. Since
the operators ω(g̃) are uniformly bounded (by 1), we see that the left hand side is a
continuous function of g̃ for any v1, v2 ∈ L2(X). This implies the strong continuity of ω,
see [49, Lemma 1.1.3] or [50, Proposition 4.2.2.1].

Lemmas 130 and 131 show that the ω : Sp(W) → U(L2(X)) is an injective group
homomorphism.

It is not difficult to check that the function

det(Ad(g)− 1)

det g−
(g ∈ Sp(W))

is locally bounded. Furthermore, as shown by Harish-Chandra [12, Section 8], the function

| det(Ad(g)− 1)|−1/2
F (g ∈ Sp(W)) (362)

is locally integrable. Hence the function,

|Θ(g̃)| = | det g−|−1/2
F (g̃ ∈ S̃p(W))

is locally integrable. (We would like to thank Alan Roche for the reference, [12].)

Notice that for any Ψ ∈ C∞c (S̃p(W)),∫
S̃p(W)

T (g̃)Ψ(g̃) dg̃ ∈ S(W). (363)

Indeed, since the Zariski topology on Sp(W) is noetherian the covering (153) contains a

finite subcovering (see for example [13, Exercise 1.7(b)]). Hence, there are elements h̃1,

h̃2, . . ., h̃m in S̃p(W) such that

S̃p(W) =
m⋃
j=1

S̃p
c
(W)h̃j.

Therefore Lemma 130 and a standard partition of the unity argument reduces the proof

of (163) to the case when Ψ ∈ C∞c (S̃p
c
(W)). In this case (163) is equal to∫

sp(W)

χx(w)ψ(x) dx (364)

where ψ ∈ C∞c (sp(W)) and dx is a Haar measure on sp(W). The function (364) is equal

to the pullback of a Fourier transform ψ̂ of ψ from sp∗(W) to W via the unnormalized
moment map

τ : W→ sp∗(W), τ(w)(x) = 〈xw,w〉 (x ∈ sp(W), w ∈W). (365)
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Since ψ̂ ∈ S(sp(W)) and since τ is a polynomial map with uniformly bounded fibers,

ψ̂ ◦ τ ∈ S(W).

This verifies (363). Hence, we may compute the trace as follows:

tr

∫
S̃p(W)

ω(g̃)Ψ(g̃) dg̃ =

(∫
S̃p(W)

T (g̃)Ψ(g̃) dg̃

)
(0) =

(∫
S̃p
c
(W)

T (g̃)Ψ(g̃) dg̃

)
(0)

=

∫
S̃p
c
(W)

T (g̃)(0)Ψ(g̃) dg̃ =

∫
S̃p(W)

Θ(g̃)Ψ(g̃) dg̃.

The last formula is a direct consequence of Proposition 132. �

We end this section by recalling some well known formulas for the action of ω(g̃) for

some special elements g̃ ∈ S̃p(W).

Proposition 134. Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and
Y. Let Mc := {g ∈ M : det g− 6= 0}. Set

ζ(g̃) := Θ(g̃) | det(
1

2
(c(g|X) + 1))|−1

F (g̃ ∈ M̃c).

Then

(ζ(g̃))2 = (s(det(g|X)))−1 | det(g|X)|−1
F (g̃ ∈ M̃c), (366)

the function ζ : M̃c → C× extends to a continuous group homomorphism

ζ : M̃→ C×

and

ω(g̃)v(x) = ζ(g̃)v(g−1x) (g̃ ∈ M̃, v ∈ S(X), x ∈ X). (367)

Proof. Set n = dim X. Fix an element g ∈ Mc. Observe that

det(g|Y − 1) = det((g|X)−1 − 1) = det((g|X)−1) det(1− g|X).

Then it follows from Definition 122 that

Θ2(g) = γ(1)4n s(det g−) | det g−|−1
F

= γ(1)4n s(det(g|X − 1) det(g|Y − 1)) | det(g|X − 1)−1 det(g|Y − 1)|−1
F

= γ(1)4n s(det(g|X − 1)) s(det(g|Y − 1) | det(g|X − 1)|−1
F | det(g|Y − 1)|−1

F

= γ(1)4n s(det(g|X − 1)2) s(det(−(g|X)−1)) | det(g|X − 1)|−2
F | det(g|X)|F

= γ(1)4n s((−1)n) (s(det(g|X)))−1 | det(g|X − 1)|−2
F | det(g|X)|F

= γ(1)4n (s(−1))n (s(det(g|X)))−1 | det(g|X − 1)|−2
F | det(g|X)|F.

Also,

| det(
1

2
(c(g|X) + 1))|−1

F = | det((g|X)(g|X − 1)−1)|−1
F

= | det(g|X − 1))|F | det(g|X)|−1
F .
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Hence

(ζ(g̃))2 = γ(1)4n (s(−1))n(s(det(g|X)))−1 | det(g|X)|−1
F

= γ(1)2n γ(−1)2n (s(det(g|X)))−1 | det(g|X)|−1
F

= (s(det(g|X)))−1 | det(g|X)|−1
F .

This verifies (366).
Let x, x′ ∈ X and let y ∈ Y. Then

K(t(g))(x, x′) =

∫
Y

t(g)(x− x′ + y)χ(
1

2
〈y, x+ x′〉) dµY(y)

=

∫
Y

χ(
1

2
〈c(g)(x− x′), y〉)χ(

1

2
〈y, x+ x′〉) dµY(y)

= δ0(
1

2
c(g)(x− x′)− x− x′) = δ0(

1

2
((c(g)− 1)x− (c(g) + 1)x′))

= | det(
1

2
(c(g|X) + 1))|−1

F δ0(g−1x− x′).

Therefore

K(T (g̃))(x, x′) = ζ(g̃)δ0(g−1x− x′).

Thus we have (367) for g̃ ∈ M̃c. Since ω is a representation of M̃, the remaining claims
follow. �

Proposition 135. Suppose g ∈ Sp(W) acts trivially on Y and on W/Y. Then det((−g)−
1) 6= 0 and

ω(g̃)v(x) = ξ0 χc(−g)(2x) v(x) (v ∈ S(X), x ∈ X), where ξ2
0 = (s(2))2n.

Proof. Since −g acts as minus the identity on Y and on W/Y, det((−g) − 1) 6= 0 and
z = c(−g) ∈ sp(W) is well defined. We have

z(w) = (−g)+((−g)−)−1(w) (w ∈W).

Since g acts trivially on Y and on W/Y, we get, for every x ∈ X and every y ∈ Y:

g(x+ y) = x+ y + yx, where yx ∈ Y.

It gives (−g)−(x+ y) = −2x− 2y − yx. Hence

((−g)−)−1(x+ y) = −1

2
(x+ y) +

1

4
yx.

We obtain

z(x+ y) = (−g)+(−1

2
(x+ y) +

1

4
yx) =

1

2
yx.

In particular, we have

z : X→ Y → 0.
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Also, det(z−1) 6= 0 and c(z) is well defined. On the other hand, we have (z−1)(x+y) =
−(x+ y) + 1

2
yx. It follows that

(z − 1)−1(x+ y) = −(x+ y)− 1

2
yx.

Hence,

c(z)(x+ y) = (z + 1)

(
−(x+ y)− 1

2
yx

)
= −1

2
yx − (x+ y)− 1

2
yx,

that is,

c(z)(x+ y) = −(x+ y)− yx. (368)

We have c(z) ∈ Sp(W). Indeed, for any w,w′ ∈ W, writing w = x + y and w′ = x′ + y′,
with x, x′ ∈ X and y, y′ ∈ Y, we have

〈c(z)(w), c(z)(w′)〉 = 〈−w − yx,−w′ − yx′〉 = 〈w,w′〉+ 〈x, yx′〉+ 〈yx, x′〉.
However, since g is in Sp(W), we have

〈x, x′〉 = 〈gx, gx′〉 = 〈x+ yx, x
′ + yx′〉 = 〈x, x′〉+ 〈x, yx′〉+ 〈yx, x′〉,

which gives

〈x, yx′〉+ 〈yx, x′〉 = 0.

We obtain

K(t(c(z)))(x, x′) =

∫
Y

χz(x− x′)χ(
1

2
〈y, x+ x′〉) dµY(y)

= χz(x− x′)δ0(
1

2
(x+ x′)) = 2n χz(x− x′) δ0(x+ x′).

We have dim ((c(z)− 1)(W)) = dim W = 2n, and,

det (c(z)− 1) = (−2)2n.

We get

Θ2(c(z)) = γ(1)4n (s(−2))2n 2−2n

= γ(1)4n (s(−1)s(2))2n 2−2n

= γ(1)4n (s(−1))2n γ(2)4n

γ(1)4n
,

since s(−1) = γ(1)4, and γ(1)8 = 1. Hence,

Θ2(c(z)) = γ(2)4n. (369)

Thus

K(T (c̃(z)))(x, x′) = 2n ξ′0 χz(x− x′)δ0(x+ x′), where (ξ′0)2 = γ(2)4n.

Proposition 134 shows that

ω((−̃1))v(x) = ζ(−̃1)v(−x).
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We have (
ζ(−̃1)

)2

= s((−1)n)−1 = (s(−1))−n = γ(1)−4n.

Since

(s(2))2n = 22n

(
γ(2)2

γ(1)2

)2n

,

the proof is complete. �

Proposition 136. Suppose g ∈ Sp(W) acts trivially on X and on W/X. Then det((−g)−
1) 6= 0 so that z = c(−g) ∈ sp(W) is well defined and z : Y → X→ 0. Assume z(Y) = X.
Then

ω(g̃)v(x) = ±
(
s(2)

2

)n
γ(q)

∫
X

χz−1(x− x′)v(x′) dµX(x′) (v ∈ S(X), x ∈ X),

where z−1 : X→ Y is the inverse of z : Y → X. (The explicit computation of γ(q) may be
found in [36, Appendix].

Proof. The existence of z and its properties are verified as in the proof of Proposition 135.
In particular, for all x ∈ X and y ∈ Y, we have

g(x+ y) = x+ y + xy, where xy ∈ X.

Similarly to the proof of Proposition 135, we get

z(x+ y) = z(y) =
1

2
xy. (370)

and

c(z)(x+ y) = −(x+ y)− xy, (371)

that is,

c(z)(w) = −w − 2z(w), for every w ∈W. (372)

Let

q(y, y′) =
1

2
〈zy, y′〉 (y, y′ ∈ Y).

Then, in terms of Lemma 115 and the identification (318),

q∗(x, x′) = −2〈z−1x, x′〉 (x, x′ ∈ X).
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Hence, by the definition of K (355), the assumption that z annihilates X and maps Y into
X and Lemma 115, we obtain

K(t(c(z)))(x, x′) =

∫
Y

χ(
1

4
〈−z(x− x′ + y), x− x′ + y〉)χ(

1

2
〈y, x+ x′〉) dµY(y)

=

∫
Y

χ(
1

4
〈−zy, y〉)χ(

1

2
〈y, x+ x′〉) dµY(y)

=

∫
Y

χ(
1

2
q(y, y))χ(−〈y,−1

2
(x+ x′)〉) dµY(y)

= γ(q)χ(−1

2
q∗(−1

2
(x+ x′),−1

2
(x+ x′)))

= γ(q)χ(〈z−1(−1

2
(x+ x′)),−1

2
(x+ x′)〉) = γ(q)χz−1(x+ x′).

Therefore

K(T (c̃(z)))(x, x′) = Θ(c̃(z))γ(q)χz−1(x+ x′).

But Θ(c̃(z))2 = ±γ(2)4n (see Eqn. (369)), where dim W = 2n. Furthermore, by Proposi-
tion 134,

K(T (−̃1))(x′, x′′) = ζ(−̃1) δ0(x′ − x′′),
where (ζ(−̃1))2 = γ(1)−4n. Hence, the formula for ω(g̃) follows. �

6.9. An extension of ω to S̃p(W) n H(W). By the Heisenberg group we understand
the direct product H(W) = W × F with the multiplication given by

(w, r)(w′, r′) = (w + w′, r + r′ +
1

2
〈w,w′〉) ((w, r), (w′, r′) ∈ H(W)).

Set

T (w, r) = χ(r)δw ((w, r) ∈ H(W)). (373)

Then

T : H(W)→ S∗(W)

is a continuous embedding of the Heisenberg group into the space of the tempered distribu-
tions on W. Since the metaplectic group acts on the Heisenberg group via automorphisms

g̃(w, r) = (gw, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)),

we have the semidirect product S̃p(W) n H(W), which we embed into the space of the
tempered distributions by

T (g̃, (w, r)) = T (g̃)\T (w, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)). (374)

Lemma 117 shows that

T (g̃)\T (w, r)\T (g̃−1) = T (gw, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)). (375)
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Theorem 137. Let ω = Op ◦ K ◦ T . Then

ω : S̃p(W) n H(W)→ U(L2(X))

is an injective group homomorphism. For each v ∈ L2(X), the map

S̃p(W) n H(W) 3 g̃ → ω(g̃)v ∈ L2(X)

is continuous, so that (ω,L2(X)) is a unitary representation of the group. In particular,

ω(g̃)ω(w, r)ω(g̃−1) = ω(gw, r) (g̃ ∈ S̃p(W), (w, r) ∈ H(W)). (376)

Explicitly, for v ∈ L2(X) and x ∈ X,

ω(x0, r)v(x) = χ(r)v(x− x0) (x0 ∈ X, r ∈ F) , (377)

ω(y0, r)v(x) = χ(r)χ(〈y0, x〉)v(x) (y0 ∈ Y, r ∈ F) ,

Hence, the restriction of ω to H(W) is irreducible.
For a test function Φ ∈ C∞c (H(W)) define a partial Fourier transform

Φχ(w) =

∫
R

Φ(w, r)χ(r) dr (w ∈W, r ∈ F).

Then
trω(Φ) = Φχ(0). (378)

Thus the character of ω|H(W) is equal to the the tensor product δ0 ⊗ χ of the Dirac delta
on W and the charcter χ multiplied by the Lebesgue measure on F.

For test functions Ψ ∈ C∞c (S̃p(W)) and Φ ∈ C∞c (H(W)),

tr (ω(Ψ)ω(Φ)) = (T (Ψ)\Φχ)(0) = T (Ψ)(Φχ). (379)

Proof. This is straightforward. For the irreduciblility it is convenient to check that the
only bounded operator on L2(X) that commutes with the action of the Heisenberg group
is a constant multiple of the identity. �

6.10. The lattice model. Let IL denote the indicator function of the lattice L ⊆ W.
Then the twisted convolution (323),

δw\IL(w′) = Iw+L(w′)χ(
1

2
〈w,w′〉) (w,w′ ∈ W) . (380)

Since we asume that the kernel of the character χ is equal to oF, we see from above that

δw+l\IL = χ(
1

2
〈l, w〉)δw\IL (w ∈ W, l ∈ L) . (381)

Thus δw+l\IL is a constant multiple of δw\IL. Select a set of representatives A ⊆ W of the
cosets W/L so that we have the disjoint union decomposition of W,

W =
⋃
α∈A

(α + L) . (382)

We shall assume tht 0 ∈ A. Let

fα = δα\IL (α ∈ A) . (383)
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The functions (383) form an orthonormal subset of L2(W). Let H ⊆ L2(W) be the Hilbert
subspace spanned by them,

H =

{∑
α∈A

cαfα;
∑
α∈A

|cα|2 <∞

}
. (384)

This subspace is invariant under the action of the Heisenberg group H(W) by left twisted
convolutions:

H 3 f → T (w, r)\f ∈ H , (385)

where T (w, r) was defined in (373).
We may assume that the complete polarization (354) is NL-orthogonal, so that

L = X ∩ L+ Y ∩ L (386)

so that

IL(x+ y) = IX∩L(x)IY∩L(y) (x ∈ X, y ∈ Y) . (387)

Then a straightforward computation shows that

K(IL)(x, x′) = IX∩L(x)IX∩L(x′) (x, x′ ∈ X) . (388)

With some more effort, using (380), we compute that

K(δw\IL)(x, x′) = vw(x)IX∩L(x′) (x, x′ ∈ X, w ∈ W) , (389)

where

vw(x) = IX∩L+xw(x)χ(〈w, x〉)χ(
1

2
〈xw, yw〉) (390)

with w = xw + yw according to the decomposition (354). In particular

vw = ω((w, 0))IX∩L (w ∈ W) . (391)

Thus

K(fα)(x, x′) = vα(x)v0(x′) (x, x′ ∈ X, α ∈ A) . (392)

Hence the set of the vα is orthonormal in L2(X). Furthermore the map

H 3 f → Op ◦ K(f)v0 ∈ L2(X) (393)

intertwines the action of the Heisenberg group H(W). We notice that, since L2(X) is
irreducible under this action, so is H, and the vα form an orthonormal basis of L2(X).

Let Sp(W)L ⊆ Sp(W) denote the stabilizer of the lattice. This is a maximal compact
subgroup of the symplectic group.

Lemma 138. The indicator function of the lattice L is an eigenvector for the action of
Sp(W)L via left twisted convolution:

t(g)\IL =

∫
((g−1)W)∩L

χc(g)(u) dµ(g−1)W(u) · IL (g ∈ Sp(W)L) . (394)
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Proof. Let U = (g − 1)W. In Lemma 118 we may chose the complementary subspace Z
to be NL-orthogonal to U, so that

L = U ∩ L+ Z ∩ L .

Then the formula (328) applied to φ = IL and w′ = u′ + z′ reads

t(g)\IL(w′)

= χc(g)(u
′)χ(

1

2
〈u′, z′〉)

∫
U

χc(g)(u)IU∩L(u)IZ∩L(z′)χ(−1

2
〈u, (1− c(g))u′ + z′〉) dµU(u) .

Here u ∈ L and z′ ∈ L. Hence χ(−1
2
〈u, z′〉) = 1. Thus the above quantity is equal to

χc(g)(u
′)χ(

1

2
〈u′, z′〉)IZ∩L(z′)

∫
U∩L

χc(g)(u)χ(−1

2
〈u, (1− c(g))u′〉) dµU(u) .

Notice that (g − 1)L ⊆ U ∩ L is an open compact subgroup. Also, for u ∈ (g − 1)L and
for r ∈ U ∩ L we have 〈c(g)u, r〉 ∈ oF and 〈c(g)u, u〉 ∈ oF. Hence∫

U∩L
χc(g)(u)χ(−1

2
〈u, (1− c(g))u′〉) dµU(u)

=
∑

r∈U∩L/(g−1)L

∫
(g−1)L

χc(g)(r + u)χ(−1

2
〈r + u, (1− c(g))u′〉) dµU(u)

=
∑

r∈U∩L/(g−1)L

χc(g)(r)χ(−1

2
〈r, (1− c(g))u′〉)

∫
(g−1)L

χ(−1

2
〈u, (1− c(g))u′〉) dµU(u) .

But

〈u, (1− c(g))u′〉 = 〈(1 + c(g))u, u′〉 = 2〈g(g − 1)−1u, u′〉 = 2〈(g − 1)−1u, g−1u′〉 .

Thus ∫
(g−1)L

χ(−1

2
〈u, (1− c(g))u′〉) dµU(u) =

∫
(g−1)L

χ(−〈(g − 1)−1u, g−1u′〉) dµU(u)

= | det(g − 1 : W/Ker(g − 1)→ (g − 1)W)|
∫
L
χ(〈(w,−g−1u′〉) dµW(w)

= | det(g − 1 : W/Ker(g − 1)→ (g − 1)W)| · IL(−g−1u′)

= | det(g − 1 : W/Ker(g − 1)→ (g − 1)W)| · IL(u′) .
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Therefore

t(g)\IL(w′)

= | det(g − 1 : W/Ker(g − 1)→ (g − 1)W)| · IU∩L(u′)IZ∩L(z′) ·

χc(g)(u
′)χ(

1

2
〈u′, z′〉)

∑
r∈U∩L/(g−1)L

χc(g)(r)χ(−1

2
〈r, (1− c(g))u′〉)

= | det(g − 1 : W/Ker(g − 1)→ (g − 1)W)| · IL(w′)

χc(g)(u
′)

∑
r∈U∩L/(g−1)L

χc(g)(r)χ(−1

2
〈c(g)u, r〉)

=
∑

r∈U∩L/(g−1)L

χc(g)(u
′ − r)| det(g − 1 : W/Ker(g − 1)→ (g − 1)W)| · IL(w′)

=

∫
U∩L

χc(g)(u
′ − u) dµU(u) · IL(w′)

and (394) follows. �

Corollary 139. Denote by S̃p(W)L ⊆ S̃p(W) the preimage in the metaplectic group. Then

T (g̃)\IL = ΘL(g̃)IL (g̃ ∈ S̃p(W)L) , (395)

where

ΘL(g̃) = Θ(g̃)

∫
((g−1)W)∩L

χc(g)(u) dµ(g−1)W(u) (g̃ ∈ S̃p(W)L) .

The map ΘL : S̃p(W)L → C× is a group homomorphism.

Lemma 117 shows that,

T (g̃)\δα\IL = T (g̃)\δα\T ((g̃)−1)\T (g̃)\IL = T (g̃)\δα\T ((g̃)−1)ΘL(g̃)IL = δgαΘL(g̃)IL

Therefore (see Proposition 132),

T (g̃)\f = ΘL(g̃)ω1,1(g)f (g̃ ∈ S̃p(W)L, f ∈ H) . (396)

Hence the map

H 3 f → Op ◦ K(f)v0 3 L2(X) (397)

is a unitary equivalence of the representation (ΘL ⊗ ω1,1,H) and (ω,L2(X)) of the group

S̃p(W)L.

The entire group S̃p(W) acts on the right hand side of (393). Hence it does on the

left hand side. The resulting representation of S̃p(W) is called the lattice model of the

Weil representation (ω,L2(X)). As we just computed, its restriction to S̃p(W)L is equal
to (ΘL ⊗ ω1,1,H).
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École Norm. Sup. (4), 1969, 2(1), 1–62.
[28] Müller D., Ricci F., Analysis of second order differential operators on Heisenberg group I. Invent.

Math., 1990, 101, 545–582.



136 A.-M. AUBERT AND T. PRZEBINDA

[29] Nazarov M., Neretin Y., Olshanskii G., Semi-groupes engendrés par la représentation de Weil du
groupe symplectique de dimension infinie. C. R. Acad. Sci. Paris Sr. I Math. 1989, 309, 443–446 (in
French).

[30] Neretin Y., Lectures on Gaussian integral operators and classical groups. EMS Series of Lectures in
Mathematics European Mathematical Society (EMS), Zurich, 2011.

[34] Neretin Y., On a semigroup of operators in the boson Fock space. (Russian) Funktsional. Anal. i
Prilozhen. 24 (1990), 63-73, 96; translation in Funct. Anal. Appl. 24 (1990), 135-144.

[35] Neuhauser M., An explicit construction of the metaplectic representation over a finite field, Journal
of Lie Theory 12, 2002, 15–30.

[36] Perrin P., Représentations de Schrödinger, Indice de Maslov et groupe métaplectique, Non Commu-
tative Harmonic Analysis and Lie Groups 880 (1981), 370–407.

[37] Prasad A., On character values and decomposition of the Weil representation associated to a finite
abelian group, J. Analysis, 17, 2009, 73–86.

[38] Howe R., Characters, dual pairs, and unipotent representations. J. Funct. Anal., 1991, 98, 59–96.
[39] Ranga Rao R., On some explicit formulas in the theory of Weil representations. Pacific Journal of

Mathematics, 1993, 157, 335—371.
[40] P.L. Robinson and J. H. Rawnsley, The metaplectic representation, Mpc - structures and geometric

quantization. Memoirs of the AMS, (410), 1998.
[41] W. Rossmann, Kirillov’s character formula for reductive Lie groups. Invent. Math., 1978, (48), 207–

220.
[42] Rudin W., Principles of mathematical analysis, McGraw-Hill, Inc, 1964.
[43] Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc., 1962, 340, 309–321.
[44] Thomas T., Character of the Weil representation, 2008, 77(2), 221 –239.
[45] Thomas T., The Weil representation, the Weyl transform, and transfer factor, 2009.
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[54] John von Neumann, Die Eindeutigkeit der schrödingerschen Operatoren, Math. Annalen, 1926, 96,

737-755.

I.M.J.-P.R.G. (U.M.R. 7586 du C.N.R.S.), Université Pierre et Marie Curie, 4 place
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