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The Optimal Transform for the Discrete Hirschman We shall identifyG (A) with the Cartesian product x 4 x A via
Uncertainty Principle the map
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Abstract—We determine all signals giving equality for the discrete
Hirschman uncertainty principle. We single out the case where the In terms of (1), the matrix multiplication and the inverse look as fol-
entropies of the time signal and its Fourier transform are equal. These [ows:
signals (up to scalar multiples) form an orthonormal basis giving an
orthogonal transform that optimally packs a finite-duration discrete-time
signal. The transform may be computed via a fast algorithm due to its  (x, y, 2)(2, ', z")=(x+2', y+y', 2+ +ay"),
relationship to the discrete Fourier transform.

—1 li li !
. . . T, Y, 2 =(—u, —y, —z4+zy)(v, Yy, z, 2,y , z EA).
Index Terms—Entropy, information measures, orthogonal functions, (@, y, 2) ( & )(: Y, 2 & )

signal representation theory.
Let

|. INTRODUCTION x(a) = exp(2wja/N) (a € A).

In [1], we introduced the weighted average of the entropies of a dis- . . . . .
crete-time signal and its Fourier transfoi, that measures the con-Thls is a unitary character of the (additive) grodp For a function
centration of a signal in the sample-frequency phase plane. This Wast — © let
used to show that discretized Gaussian pulses may not be the most
compact basis [2], and a lower limit on the compaction in the phase Jul]2 = <
plane was conjectured. We have since discovered that part of this con-
jectured lower limit was proven in [3] under the moniker of “a discrete N ) _ _
Hirschman’s uncertainty principle.” This principle states that is and letL<(A) denote the Hilbert space of all such functions, with the
at least! log(IV), whereN is the length of the discrete-time signal.nom (2). Let
However, that result did not describe the characteristics of the signals
that meet the limit, as our conjecture did [1], [4]. We further argued in(x, y, z)u(a)

[5] that this measure indicates two possible “best basis” options: = (ay+ 2)ula+2)(u € L*(A); a, 2, y, = € A). (3)

1/2
> |u<u>|2> 2

aCA

1) the multitransform (nonorthogonal) option,

2) the orthogonal discrete Hirschman uncertainty principle optio#. IS €asy to check that is a group homomorphism froi¥, (4) to
the group of unitary operators dit (A). In other words is a unitary
We have discussed many results in the first option (see [1] faipresentation off, (A) on the spacé&?(A).

pointers to many references). The second option is the focus of thiRecall the discrete Fourier transform (DFT), defined with respect to
correspondence. We have found a basis (transform) that is orthogafal charactex
and that uniquely minimizes the discrete Hirschman uncertainty

principle. Fu(b) = a(b) = |A|"/? Z u(a)x(—ab) (u € L*(A), b€ A).
a€A
Il. STATEMENT OF THE MAIN THEOREM

Fix a positive integetV. Let A denote the ringZ/NZ. ThusA = Here|A| = N is the cardinality of the seti. The inverse Fourier
{0, 1, 2, ..., N —1}, with the addition and multiplication modufy. ~ transform is given by
Often we shall viewA as a group with respect to the addition.

The Heisenberg group of degree one, with coefficientd jris the ula) = |A|—‘/2 Z a(b)x(ab) (u € L?(A), a € A).
groupG (A) of all matrices of the form hea

Lz =z A straightforward calculation shows that

01 y (z,y, z € A).
! Fple, g 0F = pl=y. v, —ay)  (ep.:€4). @

ther words, the Fourier transform normalizes the groi: (A)).

Ino
Manuscript received October 5, 1999; revised January 25, 2001. This W'j._rs%ru c LQ(A)’ with [[ulls = 1, let

was supported in part by the National Science Foundation under Grant D

9622610.

T. Przebinda and M. Ozaydin are with the Department of Mathematics, The N 2 2
University of Oklahoma, Norman, OK 73019 USA (e-mail: przebin@crystal. H(u) =~ Z lu(a)]" log (|u(a)| )
ou.edu; mozaydin@ou.edu). a€A

V. DeBrunner is with the School of Electrical and Computer Engineering, The
University of Oklahoma, Norman, OK 73019 USA (e-mail: vdebrunn@ou.eduand let
Communicated by J. A. O'Sullivan, Associate Editor for Detection and Esti-
mation.
Publisher Item Identifier S 0018-9448(01)04430-3. Hy(u)=pH(u)+ (1 —p)H(d) (0<p<1).

0018-9448/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

It is easy to see that
Hy(p(h)u) = Hy(u)  (h€Gi(A4), 0<p<1).

We would like to considen € L*(A) with ||«||. = 1 equivalent to
v = Au where|\| = 1. AsH(u) = H(v) andH,(u) = H,(v) for

equivalentt andv, H andH, are defined on the equivalence classes. dt?
This set of equivalence classes forms a complex projective space which

we will denote byP( A). Note that being orthogonal is well-defined o

the equivalence classes, so a subsdt(of) being orthonormal makes

sense. There is an induced action of the Heisenberg grayg ) on

P(A) defined via (3) at the level of representatives for the equivalence

classes. Below we will use the same symbr an element of.?(A)
with ||«|2= = 1 and the equivalence class it represent®im).

If B isasubsetofi, letlg denote the indicator function @. Thus,
Ig(a) =1if a € B,andlg(a) = 0if a € A\ B. Here is our main
theorem.

Theorem 1 (Main Theorem):
a) Ifu € P(A), thenH, 5(u) > é log(|A]).

b) The set of vectors € P(A) andH, /»(u) = 1 log(|A|) coin-
cides with the union of the orbits

p(G1(A)) \/T'?' I 5(B—a subgroup of4). (5)
c) Each orbit (5) is an orthonormal basisiof(A).
d) The set of vectora € P(A) andH,(u) =  log(|A|) for all

2087

A straightforward calculation shows that for a nonzero function
u: A — C and for a numbed < ¢ < o the following formulas hold:

d u(a)]'/* u(a)]'/*
ogllulli ==Y log 6)
dt =l llull}/:
and
I Ju(@)[/!

1
log [Jully/e = 7 >

= Nl
u(a 1
n .<10g<| >1|/L>
lully ¢
, 1/t , 1/t 2
_y ) 10g<|u<b>| )) ,
/t 1/t
beA ||7”||1/f, ||"’||1/f

Since the second derivative is nonnegative, the fundir|«||; .,
0 < t < oo, is convex. Hence, fou € L?(A) with ||u|> = 1

d . d
H(u)= Elog”unl/t . Stilgto 7 log ||u||1 e =log(|supp u|)
] 1 /

-2
7
where|supp u| stands for the cardinality ofupp v, the support of..
The inequality (7) is of course well known.
Since||d||2 = |Ju||2, and since
lilloe < 1AI7"?ully
the Riesz—Thorin theorem, [10, Ch. 12, eq. (1.11)], implies
Nl sc—o <1 )
— < . 8
Tl S 2 ®

By applying negative logarithm to both sides of (8) we obtain the fol-
lowing inequality:

1
Lt

A —<t<lLu#0

0 < p < 1is not empty if and only iffA| is a square. In this
case, this set coincides with the orbit (5) for the unique subgrowy (|lu|l, ,,) — log(llall, ;1) >
B C A of cardinality| B| = +/|Al. ) B

Part a) of the above theorem has been proven by Dembo, Cover and
Thomas, [3]. The idea of their proof is based on Hirschman'’s work, [6].
In fact, those authors name the inequality a) “the discrete Hirsch .
uncertainty principle.” Following this line, we have chosen the title dfonvex functions. _
this correspondence. While unaware of the work in [3], we conjectured V& assume from flow on thitt||2 = 1. Then both sides of (9) are
a result close to the above theorem in [1]. The conjecture was refirfé@a! to zero for = 5. Hence, (6) and (7) imply
in [4]. H(u)+ H(it) > log(|A]).

The strategy of the proof of part b) is to reduce it to a result of Donohg . - .
and Stark [7, Theorem 13]. In order to keep the presentation self-cgﬂlls verlfle_s part a) Of_ the theprem asin _[3]' ) )
tained, we give proofs for this as well as part a). Part c) suggests aclos}éve are interested in functions for which the equality holds in

A

(t—%)log( )
thgl). 9)

(10)

§ an aside, notice that the left-hand side of (9) is a difference of two

connection of the functions listed in b) with wavelets, along the lindd0). We are going to use some ideas of Zygmund, [10, Ch. 12, egs.

explored partially in [8]. (1.20)—(1.24)]. For a complex numbere C define

A generalization of parts a) and b) of the Main Theorem, where the 1L N 5. a(b)
- . q: . —5+=z ZF |u|2/, e (b)|&(b)|z/,
finite cyclic group A is replaced with a compactly generated, locally [] i (b)
compact abelian group is available [9]. This includes multidimensional bed )
finite (4 is a product of finite cyclic groups), continuoud = R™), Here%‘ = 0 outside the support af, and, similarly, forﬁ.
and periodic 4 = (R/Z)") cases, as well as their products. Notice that fory € R

|F (5 + )| <l )2 - a2

= lullz - fafl = 1-1=1,

)

A

flz) =

[ll. PROOF OF THEMAIN THEOREM

For a functionu: A — C and a numbed < p < oc let
)1/19

[|t]|oc = max{|u(a)|; a € A}.

and

u

Jul

[llaP ),

[F(L+iy)| < |42

F <|U |2+i2y

llull, = (Z lu(a)l? o
a€A
< a3 - a3 = 1.
Also, let

17 (2)

<1 <%§Rn(z)§1).

Hence, by the Phragmén and Lindel6f theorem, [10, Ch. 12, eq. (1.1)]
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A straightforward calculation shows that

= F()log(lA]) + 4 FH SO F

beA

- <|u|‘:mlog<|ur>) )l

a(b)
| (D)]

ATy F <Ilm) )

beA

_|_

=

u(b)
a(b)|

Hence, by Plancherel's formula

f (%) = log(

Thus, the equality in (10) is equivalent fé(%) = 0. Altogether, we
have checked that the functigiiz) has the following propertied:(z)
is an entire function

for% <Re(z) <1, f<%) =1, andf«(%) =0.

log(|a(0)[*).

A

) — H(u) — H(ii).

7)< 1L,
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Similarly, fora € suppu

u(a) =]A[72 > a(b)x(abd)
bEsupp i
—jaf oy A0 u(a)
| | b€§ppuu( ) |u(b)| |LL((J,)|

and, therefore,

lu(a) =475 3" Ja(b)]

bEsupp @

(a € suppu). (14)

The statements (13) and (14) mean that the functiehsnd || are
constant on their support. Sinfle||. = 1, it follows that

Ju(a)| = |supp u|~*/* and|i(b)| = |suppa|~/*
(a € suppu, b € supp ).
Hence,

H(u)+ H(d) = log(|supp u|) + log(|supp i|).

Thus, the equality in (10) implies

lsupp u| - [supp @] =

Thus, part b) of the theorem will follow as soon as we verify the fol-

In particular,Re(f(z)) is a real-valued harmonic function in the disdowing theorem of Donoho and Stark, [7].

of radius ; centered at =

3. This harmonic function achieves its
maximum atz = é and has derivative equal to zero at this point.
Hence, the Hopf’'s Maximum Principle [11, Theorem 3.1.67], implies

Theorem 2: Letw € L?(A). Then the equation

A

|[suppv| - [supp 0| =

thatRe(f(z)) is constant on this disc. Hence, by standard properties

of entire functionsf(

z) = 1forall z € C. This equation coincides holdsif and only if there is a subgroup C A, an elemenk € G1(A),

with the formula [10, Ch. 12, eq. (1.24)], which has been obtained thezgd a constantconst” such thatv = const p(h)ls

under a slightly stronger assumption, [10, Ch. 12, eq. (1.20)]. In par-

ticular, for = = 1 we obtain

L= f(1) = 1A12 Y F (Julu) (b)]a(b)[a(b). (11)
beA
Now we follow Zygmund’s proof of [10, Ch. 12, eq. (2.18)].
The formula (11) may be rewritten as
(a) a(b)
1= u(a) || (b) ab) 2 ) 12
ZE| W@ (=ab) o (12)
Since
> lw(@Pla®) = flu 3 -lallz =1
a,bEA
(12) implies
o w(a) a(b) .
1 = x( ) a(a)] [a(0)] (a € suppu, b € supp ).

Hence, forb € supp i

a) =141"% 3"

u(a)x(~ab)

agcsupp u
—|4|"% u(a) ad)
" o Tato)

By taking the absolute value of the extreme left and right sides of the

above equations, we get

(0| = 4]

S Ju(a)

aEsupp u

(b € supp ). (13)

Lemma3[7]: Letv € L*(A) and letn = |supp «|. Thend cannot
have more tham: consecutive zeros.

Proof: Since the translations @fdo not effect the support af,
it shall suffice to show that

(8(0), 9(1), ..., 8(m — 1)) £ (0,0, .... 0). (15)
Letsuppv = {a1, a2, ..., am}. Then
T 9(0)
(1)
(2)
Lo(m — 1) ]
- 1 1 1 -
x(=ar)  x(—az2) X(=am)
— a3 | x(—a1)®  x(—a2)? X(—am)?
[y ™ X" (=)
F o (a1) T
v(az)
v(as)

LV (am) _
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Since, by Vandermonde, the abowe x m-matrix is invertible, (15) This is a normal subgroup ofG;(A4), the quotient group

follows, and we are done. G1(A)/Stabg,(4)(Clg) is isomorphic to (4/B) x (A4/B™h),
Next we recall a few facts concerning the Fourier transform. Fonaa (1), and, by (17), hagA|/|B|)(|A|/|B*|) = |A| elements. Thus,
subsetS C A let the number of distinct elements in the orb'[tG‘l(A))ﬁ I5, (5),
St = {a € A;ab=0forallb € S}. coincides with the dimension of the spak#&(A).

It remains to check that any two distinct elements of this orbit are

. 1 1.1 . .. . . .
Itis easy to see that — is a subgroup ofl, and thats " isthe smallest  orthogonal. Since the representatjois unitary, it shall suffice to show
subgroup of4 containingS. Furthermorey is invariant under transla- ¢

tions by(supp'ﬁ)l, ie.,
> o,y 0) - Is(a)ls(a) = 0(x € A\ Bory € A\ BY). (19)

via+b)=v(a) (a €A, be (suppd)h). (16) =
Here is a statement dual to (16) The left-hand side of (19) is equal to
for a subgroupB C A, if v(a +b) = v(a) S Xy = >0 xlay). (20)
fora € A andb € B, thensuppd C B™. a€BN(—z+B) a€BN(z+B)

If » € A\ B, thenB N (= + B) is empty, so the quantity (20) is

zero. Ifz € B,thenB N (z + B) = B, so the quantity (20) is equal

Al =|B||B*| A7) toF(Is)(y) = 0, by (18). This completes our proof of part c) of the
Main Theorem, and thus of the whole theorem.

An elementary counting argument shows that for any subgfodp A

and
‘ 1 I] IV. THE HIRSCHMAN OPTIMAL TRANSFORM
— gl =
VB 5 Now that we have seen the theorem that actually defined the discrete
Hirschman uncertainty principle optimal transform (HOT), we provide
H < 1 Is | = log(|B|) details regarding the transform.
V1B ’
and A. The HOT Basis Functions
The basis functions that define the HOT are derived according to
F 1 g | = 1 I (18) part b) of the Main Theorem, and those that are suggested in [7]. Con-
VIB| VBt B sequently, we use thE -dimensional DFT as the originator signals for

our N = K?-dimensional HOT basis. Each of these basis functions
must then be shifted and interpolated to produce the sufficient number
of orthogonal basis functions that define the HOT. We note that the DFT
. p 1 : P —— 1 : W 1 : basis can be extended in a similar manner to produde€ an k" L-di-
p(h) \/@ B p(h) \/W s=p(h’) \/W BL: men5|ona_| tra_nsform. This ba§|s, however, doe_s not yield a HOT.
To detail this process, consider the three-point DFT defined

Proof of Theorem 3.1:Let B C A be a subgroup and lét €
G1(A). We know from (4) and (18) that there/i§ € G (A) such that

Hence, by (17)

X(0) 1 1 1 x[0]
1 1 - —;2r _; 4
supp F p(h)\/—? Ig || |suppp(h) \/—f Iz X)) =|1 e& e’ (2]
Bl |B] N X(2) 1 e i i x[3]
=IB71- 1Bl = 4] This three-point DFT yields the nine-point HOT shown at the bottom
Conversely, suppose € L?(A) is such thafsuppuv| - |[supp#| =  of the next page.

Al. Then the lemma implies that the elementsofp ¢ are equally This organization is not unique—the rows can be reordered as
spaced. Hence, there is € G1(A) such thatsupp p(h)v is a sub- desired. This representation would be consistent with the DFT. The
group of A. Thus, we may assume thatpp @ is a subgroup ofd. Matlab source that implements the general version of the HOT is
Let B be the unique subgroup of such thatBt = supp . Then shown:

v is invariant under translations by elementsiifby (16). In partic-
ular, |supp v| is a multiple of|B|. But our assumption implies that

function  H = hot(x);

0, i i H — .
suppo| = [A]/|B| = |B|. Hencey is a translation of . % The lunction implements an & k"2 Hirschman
This completes the proof of part b) of the Main Theorem. Part d) % Hp_ hot (x):
the Main Theorem is immediate from part b) because the equation % Input ¥ is a sequence of length 0= k™
H,(u) = £ log(|4]) (0<p< % Output: H is the transform sequence
. ) [N, M] = size(x);
is equivalent to K = sqr(N); '
H(u)= H(i) = L loe(|A T = zeros(size(N));
(w) = H(2) = 5 log(|4] b reion
which, foru = —— I, becomes$B|* = | 4|, by (18). n=1:K:N

. 15 . . éor tr=0: K—-1
It remains to verify part ¢) of the Main Theorem. A straightforwar
T(n+ tr, n+ tr) =W,

argument shows that, under the isomorphism (1), the stabilizer of thed

complex lineClg, in G1(A4), is given by gn: (1/5qre(K)) + T:

Stabe,(4)(Clp) = B x B x A. H=Txx;



2090 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

In this script,H is the transform sequence,is the transform, and  Of course, in practice, the square roots need not be carried out. This
x is the input sequence. The transform is unitary to a scale (just likg as is commonly done in the DFT; that is, by moving the one square
the DFT), and so the inverse transform can be achieved by taking thet out of the analysis relationship and moving it into the synthesis re-
conjugate transpose and scalingwyx . lationship to create the sca}b. The N-point HOT is computationally
more efficient than théV-point DFT, and increasingly more efficient
asN — oo. As we have mentioned above, this is somewhat simplistic
because the squared integers are not, in general, powersCainse-

Because the HOT is based on periodic shifts of the DFThe=  quently, for any lengthV we should compare specific counts.
K?-point HOT can be accomplished usitg separatey -point DFT
computations. Because the HOT requires lengththat are squares
of integers, the efficiency of any computational procedure will depend
on the exact lengtlv. For N = 4, 16, 64, 256, etc., this provides a
fast HOT that require®)(Vlog I') computations. For other Iengths  tne authors would like to thank Dr. M. Doroslovacki at George
N, the efficiency is less. For instance, in the= 9-point HOT shown  \yashington University in Washington, DC, for his comments on [1]
above, we can see that the HOT transform coefficients are determlrgﬁgt helped lead us to finding some example signals that met the con-

B. Fast HOT Computation
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from jectured minimum, and thus ultimately to this proof that defines all such
FH(0)7 (0] signals that are optimal according to the discrete form of the Hirschman
( r uncertainty principle.
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