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The Optimal Transform for the Discrete Hirschman
Uncertainty Principle

Tomasz Przebinda, Victor DeBrunner, Senior Member, IEEE, and
Murad Özaydın

Abstract—We determine all signals giving equality for the discrete
Hirschman uncertainty principle. We single out the case where the
entropies of the time signal and its Fourier transform are equal. These
signals (up to scalar multiples) form an orthonormal basis giving an
orthogonal transform that optimally packs a finite-duration discrete-time
signal. The transform may be computed via a fast algorithm due to its
relationship to the discrete Fourier transform.

Index Terms—Entropy, information measures, orthogonal functions,
signal representation theory.

I. INTRODUCTION

In [1], we introduced the weighted average of the entropies of a dis-
crete-time signal and its Fourier transformHp that measures the con-
centration of a signal in the sample-frequency phase plane. This was
used to show that discretized Gaussian pulses may not be the most
compact basis [2], and a lower limit on the compaction in the phase
plane was conjectured. We have since discovered that part of this con-
jectured lower limit was proven in [3] under the moniker of “a discrete
Hirschman’s uncertainty principle.” This principle states thatH is

at least1
2
log(N), whereN is the length of the discrete-time signal.

However, that result did not describe the characteristics of the signals
that meet the limit, as our conjecture did [1], [4]. We further argued in
[5] that this measure indicates two possible “best basis” options:

1) the multitransform (nonorthogonal) option,

2) the orthogonal discrete Hirschman uncertainty principle option.

We have discussed many results in the first option (see [1] for
pointers to many references). The second option is the focus of this
correspondence. We have found a basis (transform) that is orthogonal
and that uniquely minimizes the discrete Hirschman uncertainty
principle.

II. STATEMENT OF THE MAIN THEOREM

Fix a positive integerN . Let A denote the ring =N . ThusA =
f0; 1; 2; . . . ; N�1g, with the addition and multiplication moduloN .
Often we shall viewA as a group with respect to the addition.

The Heisenberg group of degree one, with coefficients inA, is the
groupG1(A) of all matrices of the form

1 x z

0 1 y

0 0 1

(x; y; z 2 A):
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We shall identifyG1(A) with the Cartesian productA � A � A via
the map

G1(A) 3

1 x z

0 1 y

0 0 1

! (x; y; z) 2 A �A� A: (1)

In terms of (1), the matrix multiplication and the inverse look as fol-
lows:

(x; y; z)(x0; y0; z0)=(x+x0; y+y0; z+z0+xy0);

(x; y; z)�1=(�x; �y; �z+xy)(x; y; z; x0; y0; z02A):

Let

�(a) = exp(2�ja=N) (a 2 A):

This is a unitary character of the (additive) groupA. For a function
u:A ! let

kuk2 =
a2A

ju(a)j2
1=2

(2)

and letL2(A) denote the Hilbert space of all such functions, with the
norm (2). Let

�(x; y; z)u(a)

= �(ay + z)u(a+ x)(u 2 L2(A); a; x; y; z 2 A): (3)

It is easy to check that� is a group homomorphism fromG1(A) to
the group of unitary operators onL2(A). In other words,� is a unitary
representation ofG1(A) on the spaceL2(A).

Recall the discrete Fourier transform (DFT), defined with respect to
the character�

Fu(b) = û(b) = jAj�1=2

a2A

u(a)�(�ab) (u 2 L2(A); b 2 A):

Here jAj = N is the cardinality of the setA. The inverse Fourier
transform is given by

u(a) = jAj�1=2

b2A

û(b)�(ab) (u 2 L2(A); a 2 A):

A straightforward calculation shows that

F�(x; y; z)F�1 = �(�y; x; z � xy) (x; y; z 2 A): (4)

In other words, the Fourier transform normalizes the group�(G1(A)).
Foru 2 L2(A), with kuk2 = 1, let

H(u) = �
a2A

ju(a)j2 log ju(a)j2

and let

Hp(u) = pH(u) + (1� p)H(û) (0 � p � 1):
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It is easy to see that

Hp(�(h)u) = Hp(u) (h 2 G1(A); 0 � p � 1):

We would like to consideru 2 L2(A) with kuk2 = 1 equivalent to
v = �u wherej�j = 1. AsH(u) = H(v) andHp(u) = Hp(v) for
equivalentu andv, H andHp are defined on the equivalence classes.
This set of equivalence classes forms a complex projective space which
we will denote byP (A). Note that being orthogonal is well-defined on
the equivalence classes, so a subset ofP (A) being orthonormal makes
sense. There is an induced action of the Heisenberg groupG1(A) on
P (A) defined via (3) at the level of representatives for the equivalence
classes. Below we will use the same symbolu for an element ofL2(A)
with kuk2 = 1 and the equivalence class it represents inP (A).

If B is a subset ofA, let B denote the indicator function ofB. Thus,
B(a) = 1 if a 2 B, and B(a) = 0 if a 2 A n B. Here is our main

theorem.

Theorem 1 (Main Theorem):

a) If u 2 P (A), thenH1=2(u) �
1
2
log(jAj).

b) The set of vectorsu 2 P (A) andH1=2(u) =
1
2
log(jAj) coin-

cides with the union of the orbits

�(G1(A))
1

jBj
B(B—a subgroup ofA): (5)

c) Each orbit (5) is an orthonormal basis ofL2(A).

d) The set of vectorsu 2 P (A) andHp(u) = 1
2
log(jAj) for all

0 � p � 1 is not empty if and only ifjAj is a square. In this
case, this set coincides with the orbit (5) for the unique subgroup
B � A of cardinalityjBj = jAj.

Part a) of the above theorem has been proven by Dembo, Cover and
Thomas, [3]. The idea of their proof is based on Hirschman’s work, [6].
In fact, those authors name the inequality a) “the discrete Hirschman
uncertainty principle.” Following this line, we have chosen the title of
this correspondence. While unaware of the work in [3], we conjectured
a result close to the above theorem in [1]. The conjecture was refined
in [4].

The strategy of the proof of part b) is to reduce it to a result of Donoho
and Stark [7, Theorem 13]. In order to keep the presentation self-con-
tained, we give proofs for this as well as part a). Part c) suggests a close
connection of the functions listed in b) with wavelets, along the lines
explored partially in [8].

A generalization of parts a) and b) of the Main Theorem, where the
finite cyclic groupA is replaced with a compactly generated, locally
compact abelian group is available [9]. This includes multidimensional
finite (A is a product of finite cyclic groups), continuous (A = N ),
and periodic (A = ( = )N) cases, as well as their products.

III. PROOF OF THEMAIN THEOREM

For a functionu:A ! and a number0 < p < 1 let

kukp =
a2A

ju(a)jp
1=p

:

Also, let

kuk1 = maxfju(a)j; a 2 Ag:

A straightforward calculation shows that for a nonzero function
u:A! and for a number0 < t <1 the following formulas hold:

d

dt
log kuk1=t =�

a2A

ju(a)j1=t

kuk
1=t
1=t

log
ju(a)j1=t

kuk
1=t
1=t

(6)

and
d2

dt2
log kuk1=t =

1

t
a2A

ju(a)j1=t

kuk
1=t
1=t

� log
ju(a)j1=t

kuk
1=t
1=t

�
b2A

ju(b)j1=t

kuk
1=t
1=t

log
ju(b)j1=t

kuk
1=t
1=t

2

:

Since the second derivative is nonnegative, the functionlog kuk1=t,
0 < t <1, is convex. Hence, foru 2 L2(A) with kuk2 = 1

H(u)=
d

dt
log kuk1=t

t=

� lim
t!+1

d

dt
log kuk1=t=log(jsuppuj)

(7)

wherejsuppuj stands for the cardinality ofsuppu, the support ofu.
The inequality (7) is of course well known.

Sincekûk2 = kuk2, and since

kûk1 � jAj�1=2kuk1

the Riesz–Thorin theorem, [10, Ch. 12, eq. (1.11)], implies

kûk1=(1�t)

kuk1=t
� jAj �t 1

2
� t � 1; u 6= 0 : (8)

By applying negative logarithm to both sides of (8) we obtain the fol-
lowing inequality:

log(kuk1=t)� log(kûk1=(1�t)) � t�
1

2
log(jAj)

1

2
� t � 1 : (9)

As an aside, notice that the left-hand side of (9) is a difference of two
convex functions.

We assume from now on thatkuk2 = 1. Then both sides of (9) are
equal to zero fort = 1

2
. Hence, (6) and (7) imply

H(u) +H(û) � log(jAj): (10)

This verifies part a) of the theorem as in [3].
We are interested in functionsu for which the equality holds in

(10). We are going to use some ideas of Zygmund, [10, Ch. 12, eqs.
(1.20)–(1.24)]. For a complex numberz 2 define

f(z) = jAj� +z

b2A

F juj2z
u

juj
(b)jû(b)j2z

û(b)

jû(b)j
:

Here u
juj

= 0 outside the support ofu, and, similarly, for û
jûj

.
Notice that fory 2

f 1
2
+ iy �kjuj1+i2yk2 � kjûj

1+i2yk2

= kuk2 � kûk2 = 1 � 1 = 1;

and

jf(1 + iy)j � jAj F juj2+i2y
u

juj 1

� kjûj2+i2yk1

�kuk22 � kûk
2
2 = 1:

Hence, by the Phragmén and Lindelöf theorem, [10, Ch. 12, eq. (1.1)]

jf(z)j � 1
1

2
� Re(z) � 1 :
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A straightforward calculation shows that

d

dz
f(z) = f

0(z)

= f(z) log(jAj) + jAj� +z

b2A

F

� juj2z
u

juj
log(juj2) (b)jû(b)j2z

û(b)

jû(b)j

+ jAj� +z

b2A

F juj2z
u

juj
(b)jû(b)j2z

�
û(b)

jû(b)j
log(jû(b)j2):

Hence, by Plancherel’s formula

f
0 1

2
= log(jAj)�H(u)�H(û):

Thus, the equality in (10) is equivalent tof 0( 1
2
) = 0. Altogether, we

have checked that the functionf(z) has the following properties:f(z)
is an entire function

jf(z)j � 1; for
1

2
� Re(z) � 1; f

1

2
= 1; andf 0

1

2
= 0:

In particular,Re(f(z)) is a real-valued harmonic function in the disc
of radius 1

4
centered atz = 3

4
. This harmonic function achieves its

maximum atz = 1

2
, and has derivative equal to zero at this point.

Hence, the Hopf’s Maximum Principle [11, Theorem 3.1.6’], implies
thatRe(f(z)) is constant on this disc. Hence, by standard properties
of entire functions,f(z) = 1 for all z 2 . This equation coincides
with the formula [10, Ch. 12, eq. (1.24)], which has been obtained there
under a slightly stronger assumption, [10, Ch. 12, eq. (1.20)]. In par-
ticular, for z = 1 we obtain

1 = f(1) = jAj
b2A

F (juju) (b)jû(b)jû(b): (11)

Now we follow Zygmund’s proof of [10, Ch. 12, eq. (2.18)].
The formula (11) may be rewritten as

1 =
a; b2A

ju(a)j2jû(b)j2�(�ab)
u(a)

ju(a)j

û(b)

jû(b)j
: (12)

Since

a; b2A

ju(a)j2jû(b)j2 = ku k22 �kûk
2
2 = 1

(12) implies

1 = �(�ab)
u(a)

ju(a)j

û(b)

jû(b)j
(a 2 suppu; b 2 supp û):

Hence, forb 2 supp û

û(b) = jAj�

a2supp u

u(a)�(�ab)

= jAj�

a2supp u

u(a)
u(a)

ju(a)j

û(b)

jû(b)j
:

By taking the absolute value of the extreme left and right sides of the
above equations, we get

jû(b)j = jAj�

a2supp u

ju(a)j (b 2 supp û): (13)

Similarly, for a 2 suppu

u(a) = jAj�

b2supp û

û(b)�(ab)

= jAj�

b2supp û

û(b)
û(b)

jû(b)j

u(a)

ju(a)j

and, therefore,

ju(a)j = jAj�

b2supp û

jû(b)j (a 2 suppu): (14)

The statements (13) and (14) mean that the functionsjuj and jûj are
constant on their support. Sincekuk2 = 1, it follows that

ju(a)j = jsuppuj�1=2 andjû(b)j = jsupp ûj�1=2

(a 2 suppu; b 2 supp û):

Hence,

H(u) +H(û) = log(jsuppuj) + log(jsupp ûj):

Thus, the equality in (10) implies

jsuppuj � jsupp ûj = jAj:

Thus, part b) of the theorem will follow as soon as we verify the fol-
lowing theorem of Donoho and Stark, [7].

Theorem 2: Let v 2 L2(A). Then the equation

jsupp vj � jsupp v̂j = jAj

holds if and only if there is a subgroupB � A, an elementh 2 G1(A),
and a constant “const” such thatv = const �(h) B .

Lemma 3 [7]: Letv 2 L2(A) and letm = jsuppuj. Thenv̂ cannot
have more thanm consecutive zeros.

Proof: Since the translations of̂v do not effect the support ofv,
it shall suffice to show that

(v̂(0); v̂(1); . . . ; v̂(m� 1)) 6= (0; 0; . . . ; 0): (15)

Let supp v = fa1; a2; . . . ; amg. Then

v̂(0)

v̂(1)

v̂(2)

...

v̂(m� 1)

= jAj�

1 1 � � � 1

�(�a1) �(�a2) �(�am)

�(�a1)
2 �(�a2)

2 �(�am)2

...
. . .

�(�a1)
m�1 �(�a2)

m�1 �(�am)m�1

�

v (a1)

v (a2)

v (a3)

...

v (am)
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Since, by Vandermonde, the abovem � m-matrix is invertible, (15)
follows, and we are done.

Next we recall a few facts concerning the Fourier transform. For a
subsetS � A let

S? = fa 2 A; ab = 0 for all b 2 Sg:
It is easy to see thatS? is a subgroup ofA, and thatS?? is the smallest
subgroup ofA containingS. Furthermore,v is invariant under transla-
tions by(supp v̂)?, i.e.,

v(a+ b) = v(a) (a 2 A; b 2 (supp v̂)?): (16)

Here is a statement dual to (16)

for a subgroupB � A; if v(a+ b) = v(a)

for a 2 A andb 2 B; thensupp v̂ � B?:

An elementary counting argument shows that for any subgroupB � A

jAj = jBjjB?j (17)

and

1

jBj B
2

=1

H
1

jBj IB = log(jBj)

and

F 1

jBj B =
1

jB?j B : (18)

Proof of Theorem 3.1:Let B � A be a subgroup and leth 2
G1(A). We know from (4) and (18) that there ish0 2 G1(A) such that

F �(h)
1

jBj B =F�(h)F�1F 1

jBj B=�(h0)
1

jB?j B :

Hence, by (17)

suppF �(h)
1

jBj B � supp �(h)
1

jBj B

= jB?j � jBj = jAj:
Conversely, supposev 2 L2(A) is such thatjsupp vj � jsupp v̂j =
jAj. Then the lemma implies that the elements ofsupp v̂ are equally
spaced. Hence, there ish 2 G1(A) such thatsupp�(h)v is a sub-
group ofA. Thus, we may assume thatsupp v̂ is a subgroup ofA.
Let B be the unique subgroup ofA such thatB? = supp v̂. Then
v is invariant under translations by elements ofB, by (16). In partic-
ular, jsupp vj is a multiple of jBj. But our assumption implies that
jsupp vj = jAj=jB?j = jBj. Hence,v is a translation ofB .

This completes the proof of part b) of the Main Theorem. Part d) of
the Main Theorem is immediate from part b) because the equation

Hp(u) =
1
2
log(jAj) (0 � p � 1)

is equivalent to

H(u) = H(û) = 1
2
log(jAj)

which, foru = 1p
jBj

, becomesjBj2 = jAj, by (18).

It remains to verify part c) of the Main Theorem. A straightforward
argument shows that, under the isomorphism (1), the stabilizer of the
complex line B , in G1(A), is given by

StabG (A)( B) = B �B? �A:

This is a normal subgroup ofG1(A), the quotient group
G1(A)=StabG (A)( B) is isomorphic to (A=B) � (A=B?),
via (1), and, by (17), has(jAj=jBj)(jAj=jB?j) = jAj elements. Thus,
the number of distinct elements in the orbit�(G1(A)) 1p

jBj
B , (5),

coincides with the dimension of the spaceL2(A).
It remains to check that any two distinct elements of this orbit are

orthogonal. Since the representation� is unitary, it shall suffice to show
that

a2A

�(x; y; 0) � B(a) B(a) = 0(x 2 A nB or y 2 A nB?): (19)

The left-hand side of (19) is equal to

a2B\(�x+B)

�(ay) =
a2B\(x+B)

�(ay): (20)

If x 2 A n B, thenB \ (x + B) is empty, so the quantity (20) is
zero. Ifx 2 B, thenB \ (x+ B) = B, so the quantity (20) is equal
to F( B)(y) = 0, by (18). This completes our proof of part c) of the
Main Theorem, and thus of the whole theorem.

IV. THE HIRSCHMAN OPTIMAL TRANSFORM

Now that we have seen the theorem that actually defined the discrete
Hirschman uncertainty principle optimal transform (HOT), we provide
details regarding the transform.

A. The HOT Basis Functions

The basis functions that define the HOT are derived according to
part b) of the Main Theorem, and those that are suggested in [7]. Con-
sequently, we use theK-dimensional DFT as the originator signals for
ourN = K2-dimensional HOT basis. Each of these basis functions
must then be shifted and interpolated to produce the sufficient number
of orthogonal basis functions that define the HOT. We note that the DFT
basis can be extended in a similar manner to produce anN = KL-di-
mensional transform. This basis, however, does not yield a HOT.

To detail this process, consider the three-point DFT defined

X(0)

X(1)

X(2)

=

1 1 1

1 e�i e�i

1 e�i e�i

x[0]

x[2]

x[3]

:

This three-point DFT yields the nine-point HOT shown at the bottom
of the next page.

This organization is not unique—the rows can be reordered as
desired. This representation would be consistent with the DFT. The
Matlab source that implements the general version of the HOT is
shown:

function H = hot(x);
% This function implements an N = K

^
2 Hirschman

optimal transform
% H = hot(x);
% Input: x is a sequence of length N = K

^2
% Output: H is the transform sequence
[N; M] = size(x);
K = sqrt(N);
T = zeros(size(N));
W = fft(eye(K));
n = 1 : K : N;
for tr = 0 : K � 1

T(n + tr; n + tr) = W;
end
T = (1=sqrt(K)) � T;
H = T � x;
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In this script,H is the transform sequence,T is the transform, and
x is the input sequence. The transform is unitary to a scale (just like
the DFT), and so the inverse transform can be achieved by taking the
conjugate transpose and scaling by

p
K.

B. Fast HOT Computation

Because the HOT is based on periodic shifts of the DFT, theN =
K2-point HOT can be accomplished usingK separateK-point DFT
computations. Because the HOT requires lengthsN that are squares
of integers, the efficiency of any computational procedure will depend
on the exact lengthN . ForN = 4; 16; 64; 256; etc., this provides a
fast HOT that requiresO(N log K) computations. For other lengths
N , the efficiency is less. For instance, in theN = 9-point HOT shown
above, we can see that the HOT transform coefficients are determined
from

H(0)

H(3)

H(6)

=DFT
x[0]

x[3]

x[6]

and

H(1)

H(4)

H(7)

=DFT
x[1]

x[4]

x[7]

and, finally, that

H(2)

H(5)

H(8)

= DFT
x[2]

x[5]

x[8]

:

This requires three separate three-point DFT computations. In gen-
eral, we have the (unitary) transform relationship

H(Kr + l) =
1p
K

K�1

n=0

x[Kn+ l]e�j nr
; 0 � r; l � K � 1

and its inverse

x[Kn + l] =
1p
K

K�1

r=0

H(Kr+ l)ej nr
; 0 � n; l � K � 1:

Of course, in practice, the square roots need not be carried out. This
is, as is commonly done in the DFT; that is, by moving the one square
root out of the analysis relationship and moving it into the synthesis re-
lationship to create the scale1

K
. TheN -point HOT is computationally

more efficient than theN -point DFT, and increasingly more efficient
asN !1. As we have mentioned above, this is somewhat simplistic
because the squared integers are not, in general, powers of2. Conse-
quently, for any lengthN we should compare specific counts.
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H(5)

H(6)

H(7)
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=
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0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 e�i 0 0 e�i 0 0

0 1 0 0 e�i 0 0 e�i 0

0 0 1 0 0 e�i 0 0 e�i

1 0 0 e�i 0 0 e�i 0 0

0 1 0 0 e�i 0 0 e�i 0

0 0 1 0 0 e�i 0 0 e�i

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

:


