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1. Introduction

Let W be a symplectic real vector space, Sp the corresponding symplectic group and 
S̃p the metaplectic group. Let G, G′ ⊂ Sp be a real reductive dual pair, and let G̃ and 
G̃′ be the preimages of G and G′ in S̃p, respectively. Furthermore, let Π ⊗ Π ′ be an 
irreducible admissible representation of G̃ × G̃′ in Howe’s correspondence. Each such 
representation Π ⊗Π ′ is attached to a tempered distribution f = fΠ⊗Π′ on W, called 
the intertwining distribution of Π ⊗ Π ′, which is uniquely determined up to a scalar 
multiple. One may therefore expect that the properties of the intertwining distribution 
contain useful information on the representation itself.

Let g and g′ respectively denote the Lie algebras of G and G′. Let U(g) denote the 
universal enveloping algebra of g, and let U(g)G be the subalgebra of the G-invariants in 
U(g). Then the intertwining distribution turns out to be G̃×G̃′-invariant and an eigendis-
tribution of U(g)G and U(g′)G′ , with eigenvalue equal to the infinitesimal characters of 
Π and Π ′, respectively; see [19]. In other words, fΠ⊗Π′ is an invariant eigendistribution
on the symplectic space W.

Harish-Chandra’s method of descent is one of the main tools for studying questions 
involving the structure of invariant eigendistributions on a real reductive Lie algebra g. 
Ultimately, it transfers problems of invariant harmonic analysis from the Lie algebra g
to the Cartan subalgebras of g, see for example [1]. Our goal is to develop a “method 
of descent” allowing us to study invariant eigendistributions on symplectic spaces. We 
use the fact that the symplectic space W is the odd part s1 of a classical real Lie su-
peralgebra s, which is constructed from the dual pair (G, G′). The method of descent 
will consist in transferring problems of invariant harmonic analysis from s1 to suitably 
defined Cartan subspaces in s1. (Notice that the name “Cartan subspace” is also used 
in other contexts, for example in the theory of symmetric spaces. Our usage of this term 
is however different.)

To single out the candidates for the Cartan subspaces in s1, one needs a detailed 
knowledge of the geometry of the adjoint action of S = G ×G′ on s1. This step has been 
accomplished in [21] for all irreducible reductive dual pairs except for the following two
ortho-symplectic cases:

Op,q × Sp2n(R) with p + q odd and p + q < 2n (1)
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Op(C) × Sp2n(C) with p odd and p < 2n. (2)

The results of this paper also include these two cases. This leads us to a definition of 
Cartan subspace which is slightly different from the one used in [21], as well as to the 
notion of almost semisimple elements in s1. The definitions agree with those from [21]
when the dual pair is not isomorphic to (1) or (2). In fact, most of the results of [21]
carry over.

Our first result is an analog of the Weyl Harish-Chandra formula on the symplectic 
space W (Theorem 21). It gives the integral on W = s1 of a continuous compactly 
supported function in terms of semisimple orbital integrals parametrized by the mutually 
non-conjugate Cartan subspaces of s1. As an important intermediate step, we prove that 
the set of the semisimple elements in W is dense, unless the dual pair is isomorphic to (1)
or (2). This property was stated in [21, Proposition 6.6] without a proof. Here we show 
explicitly how any nilpotent element of W may be approximated by semisimple elements. 
For the remaining cases we introduce the notion of almost semisimple elements and show 
that they are dense (Theorem 20).

The Weyl Harish-Chandra formula provides an orbital integral decomposition for the 
integral on W = s1 of continuous compactly supported functions. For the analysis of 
tempered eigendistributions, one needs to know that this formula extends to Schwartz 
functions on W. The main result of this article, Theorem 26, shows that any such orbital 
integral of a rapidly decreasing function on W is rapidly decreasing at infinity on h1, 
though it might have logarithmic growth near walls defined by some real roots. This 
guarantees the extension of the Weyl Harish-Chandra formula to Schwartz functions. 
However, unlike the Lie algebra case, it is not necessarily true that a semisimple orbital 
integral of a Schwartz function on the symplectic space is a Schwartz function on the 
corresponding Cartan subspace, though it is certainly differentiable on the regular set. 
Since the radial components of invariant differential operators in this setting do not 
behave as well as in the case of a Lie algebra, it doesn’t seem to be easy to estimate 
these derivatives.

Our analysis follows closely Harish-Chandra’s work. Indeed, the even part s0 of the 
Lie superalgebra s is the reductive Lie algebra g × g′. So the map of s1 to s0 given by 
z �→ z2 relates geometrical and analytical objects on s1 to the corresponding objects 
on s0 = g × g′. In particular, if h1 ⊆ s1 is a Cartan subspace, then h2

1, that is the 
linear span of the all the anticommutants of the elements of h1, is contained in some 
Cartan subalgebra of s0. Nevertheless we shall need several ingredients not included 
in the work of Harish-Chandra. For instance, in the proof of Proposition 5, we need 
Rossmann’s theorem expressing some nilpotent orbital integrals as limits of derivatives 
of the Harish-Chandra semisimple integrals, [22].

The regularity properties of an invariant eigendistribution f on W = s1 can be ob-
tained from the analysis of the system of partial differential equations it satisfies. By 
determining the characteristic variety of this system, we prove in Corollary 29 that the 
restriction of f to the set Wreg ⊆ W of the regular almost semisimple elements is a 
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smooth function. However, most of the times, this distribution is not regular on the 
entire W. We will provide some examples in our future work.

Our paper is organized as follows. In Section 2 we recall the construction of the 
intertwining distribution attached to an irreducible admissible representation in Howe’s 
correspondence. In Section 3 we collect some results on orbital integrals on semisimple 
Lie algebras which will be needed in the Lie superalgebra situation. The study of the 
adjoint action of a dual reductive pair G ×G′ on the symplectic space W is developed in 
Section 4. We use the Lie superalgebra approach from [21] by considering W as the odd 
part s1 of a classical real Lie superalgebra s. We introduce a general notion of Cartan 
subspace of s1 which for complex dual pairs coincides with the notion of Cartan subspace 
in [4]. Then we prove the density in s1 of the almost semisimple elements (Theorem 20). 
This yields the Weyl Harish-Chandra formula on s1 (Theorem 21). In Section 5 we make 
a detailed study of the orbital integrals through each Cartan subspace in s1. Theorem 26
provides sharp estimates for the orbital integral of rapidly decreasing functions on W. 
The structure theory developed in Section 4 reduces the proof of this theorem to the 
analysis of three special cases: the case of elliptic Cartan subspaces; the case a dual 
pair of the form (GL1(D), GL1(D)), where D = R, C or H (the quaternions); the case of 
(GL2(R), GL2(R)) with centralizer of h2

1 in s0 equal to a fundamental Cartan subalgebra. 
Finally, in Section 6 we include a brief study of the regularity properties of the invariant 
eigendistributions from the differential equation point of view.

Some proofs that have not been included in the main text have been collected in
Appendices A, B, C and D.

2. Intertwining distributions

Let W be a vector space of finite dimension 2n over R with a non-degenerate symplectic 
form 〈·,·〉. Denote by Sp the corresponding symplectic group and by sp its Lie algebra. 
Recall the Cayley transform c(y) = (y + 1)(y − 1)−1, [14], and let

S̃p
c

=
{
g̃ = (g, ξ) ∈ Sp × C, det(g − 1) 
= 0, ξ2 = det

(
i(g − 1)

)−1}
. (3)

For each x ∈ sp, 〈x · ,·〉 is a symmetric bilinear form on W with the signature sgn〈x · ,·〉
equal to the maximal dimension of a subspace where this form is positive definite minus 
the maximal dimension of a subspace where this form is negative definite. Set

chc(x) = 2n
∣∣det(x)

∣∣− 1
2 exp

(
π

4 i sgn〈x·, ·〉
) (

x ∈ sp, det(x) 
= 0
)
. (4)

(This is a Fourier transform of one of the two minimal non-zero nilpotent co-adjoint orbits 
in sp∗, [20, Proposition 9.3] and [12, Theorem 7.6.1].) For two elements (g1, ξ1), (g2, ξ2) ∈
S̃p

c
, with c(g1) + c(g2) invertible, define the product

(g1, ξ1)(g2, ξ2) =
(
g1g2, ξ1ξ2chc

(
c(g1) + c(g2)

))
. (5)
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Theorem 1. (See [14, Section 16].) Up to a group isomorphism there is a unique connected 
group S̃p containing S̃p

c
with the multiplication given by (5) on the indicated subset of 

S̃p
c
× S̃p

c
. The map

S̃p
c
� g̃ �→ g ∈ Sp

extends to a double covering homomorphism

S̃p � g̃ �→ g ∈ Sp.

Fix the unitary character χ(r) = e2πir, r ∈ R, and a suitably normalized Lebesgue 
measure dw on W. For φ1, φ2 ∈ S(W), the Schwartz space of W, we have the twisted 
convolution, [14],

φ1�φ2
(
w′) =

∫
W

φ1(w)φ2
(
w′ − w

)
χ

(
1
2
〈
w,w′〉) dw

(
w′ ∈ W

)
. (6)

Multiplication by the Lebesgue measure gives an embedding of S(W) into S∗(W), the 
space of the temperate distributions on W. The twisted convolution (6) extends to some, 
but not all, temperate distributions. Also, we have a ∗-operation on S(W),

φ∗(w) = φ(−w)
(
w ∈ W, φ ∈ S(W)

)
, (7)

which does extend to S∗(W) by

f∗(φ) = f
(
φ∗) (

f ∈ S∗(W), φ ∈ S(W)
)
. (8)

Define the following functions

Θ : S̃p
c
� g̃ = (g, ξ) → ξ ∈ C,

T : S̃p
c
� g̃ → Θ(g̃)χc(g) ∈ S∗(W),

where, for x = c(g) ∈ sp, we have set χx(w) = χ(1
4〈x(w), w〉).

Theorem 2. (See [14].) The map T extends to an injective continuous map T : S̃p →
S∗(W) and the following formulas hold

T (g̃1)�T (g̃2) = T (g̃1g̃2)
(
g̃1, g̃2 ∈ S̃p

c
, det

(
c(g1) + c(g2)

)

= 0
)
,

T (g)∗ = T
(
g−1) (g ∈ S̃p),

T (1) = δ,

where δ is the Dirac delta at the origin.
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The oscillator representation of S̃p may be realized as follows. Pick a complete polar-
ization

W = X ⊕ Y (9)

and recall the Weyl transform

K : S∗(W) → S∗(X × X),

K(f)
(
x, x′) =

∫
Y

f
(
x− x′ + y

)
χ

(
1
2
〈
y, x + x′〉) dy, f ∈ S(W) (10)

with the inverse given by

K−1(K)(x + y) = 2−n

∫
X

K

(
x′ + x

2 ,
x′ − x

2

)
χ

(
1
2
〈
x′, y

〉)
dx′ (

x, x′ ∈ X, y ∈ Y
)
.

(11)

Each element K ∈ S∗(X × X) defines an operator OP(K) ∈ Hom(S(X), S∗(X)) by

OP(K)v(x) =
∫
X

K
(
x, x′)v(x′) dx′. (12)

The map OP extends to an isomorphism of linear topological spaces, S∗(X × X) and 
Hom(S(X), S∗(X)). This is known as the Schwartz Kernel Theorem, [12, Theorem 5.2.1].

The oscillator representation ω of S̃p, corresponding to the character χ, is defined by

ω(g) = OP
(
K
(
T (g)

))
(g ∈ S̃p). (13)

Each operator (13) extends to a unitary operator on the Hilbert space Hω = L2(X) and 
to an automorphism of S∗(X). The space of the smooth vectors H∞

ω = S(X), and Θ
coincides with the distribution character of ω.

Let G, G′ ⊆ Sp be a dual pair. Denote by G̃, G̃′ the preimages of G and G′ in S̃p. Let 
Π ⊗Π ′ be an irreducible admissible representation of G̃× G̃′ in Howe’s correspondence. 
Then, up to infinitesimal equivalence, Π ⊗Π ′ may be realized as a subspace of H∞

ω
∗ =

S∗(X). Furthermore, Howe proved in [15] that

dim
(
HomG̃G̃′

(
H∞

ω , Π ⊗Π ′)) = 1. (14)

Thus for each representation Π ⊗Π ′ there is a unique (up to a scalar multiple) distri-
bution fΠ⊗Π′ ∈ S∗(W), called the intertwining distribution, such that

C · OP
(
K(fΠ⊗Π′)

)
= Hom ˜ ˜ ′

(
H∞

ω , Π ⊗Π ′). (15)
GG
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In this exposition we presented the Schrödinger model of the oscillator representation ω
attached to the polarization (9), but the distribution f = fΠ⊗Π′ does not depend on this 
particular model. Furthermore, as shown in [19], the intertwining distribution f satisfies 
the following system of differential equations:

T (z)�f = γΠ(z)f
(
z ∈ U(g)G

)
, (16)

where

T (z)�f = d

dt
T
(
exp(tz)

)
�f
∣∣
t=0 (z ∈ g)

and γΠ : U(g)G → C is the infinitesimal character of Π. (One obtains the same system of 
equations replacing U(g)G by U(g′)G′ in (16).) Thus, f is an invariant eigendistribution 
on the symplectic space W.

3. Singular semisimple orbital integrals on a semisimple Lie algebra

This section collects some properties which will be needed in Section 5 for studying 
the convergence of semisimple orbital integrals on a symplectic space. These properties 
adapt to our situation some well known results of Harish-Chandra; see [9, Sections 4 
and 5] or [24, Part 1, Ch. 3].

As in [9], g stands for a real semisimple Lie algebra and G is the (connected) adjoint 
group of g. Fix a semisimple element z ∈ g. Let h ⊆ g be a Cartan subalgebra contain-
ing z. Let z = gz denote the centralizer of z in g and let Z ⊆ G be the centralizer of z
in G. Then Z is a real reductive group with the Lie algebra z. Let c denote the center of z. 
Then c ⊆ h ⊆ z and c does not depend on h. Recall that a root α for the pair (hC, gC) is 
said to be real if α(h) ⊆ R and imaginary if α(h) ⊆ iR; if α is neither real nor imaginary, 
it is said to be complex. We fix a set of positive roots of (hC, gC). For h ⊆ q ⊆ g, let πg/q

denote the product of all positive roots such that the corresponding root spaces do not 
occur in qC. Thus πg/h is the product of all positive roots and

πg/z =
∏

α>0, α(z) �=0

α. (17)

Let creg ⊆ c be the subset where πg/z does not vanish. Moreover, denote by d(gZ) a 
positive G-invariant measure on the quotient space G/Z. This measure does exist because 
both G and Z are unimodular.

In the proofs of this section we shall need some notation concerning constant coeffi-
cients differential operators on g. For x ∈ g let ∂(x) denote the corresponding directional 
derivative

∂(x)ψ(y) = d
ψ(y + tx)|t=0

(
x, y ∈ g, ψ ∈ C∞(g)

)
. (18)
dt
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Then ∂ extends to an isomorphism from the symmetric algebra S(g) of gC onto the 
algebra of the constant coefficient differential operators on g. If u ∈ S(g) is homogeneous 
of degree d, then the differential operator ∂(u) is said to be of degree d. Fix a g-invariant 
non-degenerate symmetric bilinear form B(·, ·) on the real vector space g. (So B is a 
nonzero constant multiple of the Killing form.) This form extends to the complexification 
gC and provides an isomorphism of gC with the dual g∗

C
, and hence a GC-equivariant 

identification of S(g) with P(g), the algebra of the complex valued polynomial functions 
on g. Here GC denotes the adjoint group of gC. Furthermore, let D be a differential 
operator on g and let x ∈ g. Then there exists a unique element p ∈ S(g) such that

Dψ(x) =
(
∂(p)ψ

)
(x)

(
ψ ∈ C∞(g)

)
.

The constant coefficient differential operator ∂(p) is called the local expression of D at 
x, and is denoted by D|x.

In the following, | · | is a fixed norm on the real vector space g and g.x denotes the 
adjoint action of g ∈ G on x ∈ g.

Theorem 3. For every M ≥ 0 there is N ≥ 0 such that

sup
x∈creg

(
1 + |x|

)M ∣∣πg/z(x)
∣∣ ∫
G/Z

(
1 + |g.x|

)−N
d(gZ) < ∞.

Proof. Let z′′ = [z, z] be the derived algebra of z. Then z = c ⊕ z′′ and z ∈ c. Let b ⊆ z′′

be a fundamental Cartan subalgebra. Then h = c ⊕ b is a Cartan subalgebra of g, see 
[24, Part 1, Ch. 1, Lemma 1].

Let πz/h denote the product of all the positive roots for (hC, gC) such that the corre-
sponding root spaces occur in zC. According to Harish-Chandra, [10, Theorem 3, p. 568], 
there is a non-zero constant C ∈ R such that for all f ∈ C∞

c (z) and all x ∈ c,

∂(πz/h)
(
πz/h(x + y)

∫
Z/H

f
(
x + g′′.y

)
d
(
g′′H

))∣∣∣∣
y=0

= Cf(x). (19)

Here y ∈ b, πz/h(x + y) = πz/h(y) and the differential operator ∂(πz/h) acts with respect 
to the variable y. Let ψ ∈ C∞

c (g). Suppose x + y ∈ hreg. Then

πz/h(x + y)
∫

G/H

ψ
(
g.(x + y)

)
d(gH)

=
∫

G/Z

(
πz/h(x + y)

∫
Z/H

ψ
(
g.
(
x + g′′.y

))
d
(
g′′H

))
d(gZ). (20)

Since h is fundamental in z, there are no real roots, so the expression in the parenthesis 
in (20) is the Harish-Chandra orbital integral, which depends on the parameter gZ. By a 
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theorem of Harish-Chandra, [9, Theorem 3, p. 225], this is a smooth compactly supported 
function of the variable gZ, while x + y is allowed to vary over a compact subset of hreg. 
Hence, Leibnitz’s Rule, [6, 8.11.2], shows that

∂(πz/h)
(
πz/h(x + y)

∫
G/H

ψ
(
g.(x + y)

)
d(gH)

)

=
∫

G/Z

∂(πz/h)
(
πz/h(x + y)

∫
Z/H

ψ
(
g.
(
x + g′′.y

))
d
(
g′′H

))
d(gZ). (21)

By taking the limit if y → 0 in (21) and applying (19) we see that for x ∈ creg,

∂(πz/h)
(
πz/h(x + y)

∫
G/H

ψ
(
g.(x + y)

)
d(gH)

)∣∣∣∣
y=0

=
∫

G/Z

∂(πz/h)
(
πz/h(x + y)

∫
Z/H

ψ
(
g.
(
x + g′′.y

))
d
(
g′′H

))∣∣∣∣
y=0

d(gZ)

= C

∫
G/Z

ψ(g.x) d(gZ). (22)

Let W (g, h) denote the Weyl group of (hC, gC) and let P(h)W (g,h) be the space of the 
W (g, h)-invariants in P(h). Let η ∈ P(h)W (g,h) be viewed as a differential operator of 
degree zero, i.e. multiplication by η. Then(

∂(πg/h)η
)∣∣

0 = η(0)∂(πg/h), (23)

where the left hand side is the local expression at zero of the composition of the two 
differential operators and η(0) ∈ C is the value of η at 0 ∈ h. Indeed, there is a unique 
ζ ∈ P(h) such that the left hand side of (23) is equal to ∂(ζ). Since πg/h is W (g, h)-skew 
invariant, so is ζ. Lemma 10 in [8, p. 100] implies that there is ξ ∈ P(h)W (g,h) such that 
ζ = ξπg/h. But, by the definition of ζ, the degree of ζ is less than or equal to the degree 
of πg/h. Hence ξ is a constant.

Let η+ be the sum of the homogeneous components of positive degrees of η, so 
that η = η(0) + η+. Then ∂(πg/h)(η+πg/h)(0) = 0. Hence, ∂(πg/h)(ηπg/h)(0) =
η(0)(∂(πg/h)πg/h)(0). Therefore,

ξ
(
∂(πg/h)πg/h

)
(0) = ∂(ζ)πg/h(0) = ∂(πg/h)(ηπg/h)(0) = η(0)

(
∂(πg/h)πg/h

)
(0),

which shows that ξ = η(0), and (23) follows.
We apply (23) with g replaced by z and η replaced by πg/z, which is W (z, h)-invariant. 

Then for x ∈ creg and y ∈ h′′,
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(
∂(πz/h)πg/z(x + y)

)∣∣
y=0 =

(
πg/z(x)∂(πz/h)

)∣∣
y=0. (24)

Since πg/h = πg/zπz/h, Eqs. (22) and (24) show that for ψ ∈ C∞
c (g) and x ∈ creg,

∂(πz/h)
(
πg/h(x + y)

∫
G/H

ψ
(
g.(x + y)

)
d(gH)

)∣∣∣∣
y=0

= Cπg/z(x)
∫

G/Z

ψ(g.x) d(gZ). (25)

Since C 
= 0, (25) together with a theorem of Harish-Chandra, [9, Theorem 3, p. 225 
and Lemma 25, p. 232], implies that for any M ≥ 0 there is a continuous seminorm ν
on S(g) such that for all ψ ∈ C∞

c (g) and all x ∈ creg

(
1 + |x|

)M ∣∣∣∣πg/z(x)
∫

G/Z

ψ(g.x) d(gZ)
∣∣∣∣ ≤ ν(ψ). (26)

Notice that for each x ∈ creg the formula

(
1 + |x|

)M ∣∣πg/z(x)
∣∣ ∫
G/Z

ψ(g.x) d(gZ)

defines a positive Borel measure on g. Hence, [24, Lemma 8, p. 37] shows that there are 
finite non-negative constants C, N such that

(
1 + |x|

)M ∣∣πg/z(x)
∣∣ ∫
G/Z

(
1 + |g.x|

)−N
d(gZ) ≤ C (x ∈ creg). (27)

This completes the proof of the theorem. �
Corollary 4. Theorem 3 extends to the case where G is a real reductive Lie group with 
finitely many connected components.

Proof. Suppose first that G is connected. The Lie algebra of G decomposes as g =
z(g) ⊕ g′′ where z(g) is the center of g and g′′ = [g, g] is semisimple. Write x = xz(g) +x′′

for the corresponding decomposition of x ∈ g. The center Z(G) of G has Lie algebra z(g), 
and G/Z(G) ∼= Ad(G) is a connected semisimple Lie group with Lie algebra g′′. A Cartan 
subalgebra in g is of the form h = z(g) ⊕ h′′ where h′′ is a Cartan subalgebra of g′′. The 
roots of (hC, gC) coincide with those of (h′′

C
, g′′

C
) and vanish on z(g). Let z = zz(g)+z′′ ∈ h. 

If Z is the centralizer of z in G, then Z/Z(G) is the centralizer of z′′ in G/Z(G). The Lie 
algebra of Z/Z(G) is z′ = (g′′)z′′ . Write z′ = c′ ⊕ z′′, where c′ and z′′ are respectively the 
center and the derived Lie algebra of z′. Then the Lie algebra z = gz of Z decomposes as 
z = z(g) ⊕ z′ = c ⊕ z′′ where c = z(g) ⊕ c′ is the center of z. For x = xz(g) +x′′ ∈ c we have 
πg/z(x) = πg′′/z′(x′′). In particular, the regularity of x depends only on the regularity of 
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its semisimple part x′′. Furthermore, g.x = xz(g) + g.x′′. Thus the inequality stated in 
Theorem 3 for G follows from the corresponding inequality for G/Z(G).

Suppose now that G has finitely many connected components. Let G0 be the connected 
component of the identity. Then G0 is an open normal subgroup of G. Let Z and Z0 be 
respectively the centralizers of z in G and in G0. Then Z0 = Z ∩G0 is normal in Z and G0Z
is normal in G. Let π : G → G/Z be the canonical projection. Then ι : G0/Z0 → G/Z
given by ι(gZ0) = gZ is an open embedding so that π−1ι(G0/Z0) = G0Z. In particular, 
we can normalize the invariant measure on G0/Z0 ∼= ι(G0/Z0) so that it agrees with the 
one induced by G/Z. Moreover, if x1G0Z, . . . , xnG0Z, with xj ∈ G, are distinct elements 
of G/G0Z, then G/Z =

⋃n
j=1 sjι(G0/Z0) (disjoint union). Hence, if f is a sufficiently 

regular measurable function on g, then

∫
G/Z

f(g.x) d(dZ) =
n∑

j=1

∫
G0/Z0

f(sjg.x) d
(
gZ0).

If ‖ · ‖ denotes the operator norm in some finite dimensional representation of g on a 
Hilbert space, then for all j there is a constant Cj > 0 so that for all g ∈ G we have 
‖g.x‖ = ‖s−1

j sjg.x‖ ≤ Cj‖sjg.x‖. Since all norms on g are equivalent, we obtain for a 
suitable constant C > 0,

πg/z(x)
∫

G/Z

(
1 + |g.x|

)−N
d(gZ) = πg/z(x)

n∑
j=1

∫
G0/Z0

(
1 + |sjg.x|

)−N
d(gZ)

≤ Cπg/z(x)
∫

G0/Z0

(
1 + |g.x|

)−N
d
(
gZ0).

Hence the inequality of Theorem 3 for G follows from the corresponding inequality 
for G0. �

We keep the notation introduced at the beginning of this section. Recall the derived 
Lie algebra z′′ = [z, z] of z. Assume z′′ is isomorphic to a symplectic Lie algebra sp2n(R)
or sp2n(C). Let Z′′ be the commutator subgroup of Z. Then Z′′ is a Lie subgroup of 
Z with the Lie algebra z′′. Let O′′ ⊆ z′′ be a non-zero minimal nilpotent orbit. Fix an 
element n ∈ O′′ and let Zn ⊆ Z be the centralizer of n. Then

Z/Zn = Z′′/Z′′ n = O′′.

Since there is an invariant measure on O′′ we see that the group Zn is unimodular. Let 
d(gZn) denote an invariant measure on the quotient G/Zn.

Proposition 5. Suppose the Cartan subalgebra h ⊆ g is fundamental. Then, under the 
above assumptions, for every M ≥ 0 there is N ≥ 0 such that
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sup
x∈creg

(
1 + |x|

)M ∣∣πg/z(x)
∣∣ ∫
G/Zn

(
1 +
∣∣g.(x + n)

∣∣)−N
d
(
gZn
)
< ∞.

Proof. The proof is entirely analogous to the proof of Theorem 3. For reader’s conve-
nience, we repeat it with necessary modifications.

We consider first the case when z′′ is isomorphic to sp2n(R). The Cartan subalgebra 
h ∩ z′′ is elliptic. Let πshort

z/h be the product of the positive short roots of h in zC. A result 
of Rossmann, [22, Corollary 5.4, p. 283], shows that there is a non-zero constant C ∈ C
such that for all f ∈ C∞

c (z) and all x ∈ c,

∂
(
πshort
z/h

)(
πz/h(x + y)

∫
Z/H

f
(
x + g′′.y

)
d
(
g′′H

))∣∣∣∣
y=0

= C

∫
Z/Zn

f
(
x + g′′.n

)
d
(
g′′Zn

)
. (28)

Here y ∈ h ∩ z′′ approaches zero from a fixed connected component of the set of the 
regular elements of h ∩ z′′, and the constant C, which is not relevant for us, depends on 
that component. Moreover, the differential operator ∂(πshort

z/h ) acts with respect to the 
variable y ∈ h ∩ z′′. (We shall verify the assumptions of [22, Corollary 5.4, p. 283] in 
Appendix A.)

Let ψ ∈ C∞
c (g). Then (28) shows that for x ∈ creg,

∂
(
πshort
z/h

)(
πz/h(x + y)

∫
G/H

ψ
(
g.(x + y)

)
d(gH)

)∣∣∣∣
y=0

=
∫

G/Z

∂
(
πshort
z/h

)(
πz/h(x + y)

∫
Z/H

ψ
(
g.
(
x + g′′.y

))
d
(
g′′H

))∣∣∣∣
y=0

d(gZ)

= C

∫
G/Zn

ψ
(
g.(x + n)

)
d
(
gZn
)
. (29)

Let η ∈ P(h)W (z,h) be viewed as a differential operator of degree zero, i.e. multiplication 
by η. Then (

∂
(
πshort
z/h

)
η
)∣∣

0 = η(0)∂
(
πshort
z/h

)
, (30)

where the left hand side is the local expression at zero of the composition of the two 
differential operators and η(0) ∈ C is the value of η at 0 ∈ h. Indeed, there is a unique 
ζ ∈ P(h) such that the left hand side of (30) is equal to ∂(ζ). The polynomial ζ transforms 
under the Weyl group W (z, h) the same way πshort

z/h does. In particular ζ times the product 
of the long roots is W (z, h)-skew invariant. Lemma 10 in [8, p. 100] implies that there is 
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ξ ∈ P(h)W (z,h) such that ζ times the product of the long roots is equal to ξπz/h. Thus 
ζ = ξπshort

z/h . But, by the definition of ζ, the degree of ζ is less than or equal to the degree 

of πshort
z/h . Hence ξ is a constant.

Let η+ be the sum of the homogeneous components of positive degrees of η, so that 
η = η(0) + η+. Then ∂(πshort

z/h )(η+πshort
z/h )(0) = 0. Hence,

∂
(
πshort
z/h

)(
ηπshort

z/h

)
(0) = η(0)∂

(
πshort
z/h

)
πshort
z/h (0).

Therefore,

ξ∂
(
πshort
z/h

)
πshort
z/h (0) = ∂(ζ)πshort

z/h (0) = ∂
(
πshort
z/h

)(
ηπshort

z/h

)
(0) = η(0)∂

(
πshort
z/h

)
πshort
z/h (0),

which shows that ξ = η(0), and (30) follows.
We apply (30) with η = πg/z, which is W (z, h)-invariant. Then for x ∈ creg and 

y ∈ z′′ ∩ h,

(
∂
(
πshort
z/h

)
πg/z(x + y)

)∣∣
y=0 =

(
πg/z(x + y)∂

(
πshort
z/h

))∣∣
y=0. (31)

Since πg/h = πg/zπz/h, (29) and (31) show that for ψ ∈ C∞
c (g) and x ∈ creg,

∂
(
πshort
z/h

)(
πg/h(x + y)

∫
G/H

ψ
(
g.(x + y)

)
d(gH)

)∣∣∣∣
y=0

= Cπg/z(x)
∫

G/Zn

ψ
(
g.(x + n)

)
d
(
gZn
)
. (32)

Since C 
= 0, (32) together with a theorem of Harish-Chandra, [9, Theorem 2, p. 207 
and Lemma 25, p. 232], implies that for any M ≥ 0 there is a seminorm ν on S(g) such 
that for all ψ ∈ C∞

c (g) and all x ∈ creg

(
1 + |x|

)M ∣∣∣∣πg/z(x)
∫

G/Zn

ψ
(
g.(x + n)

)
d
(
gZn
)∣∣∣∣ ≤ ν(ψ). (33)

Notice that for each x ∈ creg the formula

(
1 + |x|

)M ∣∣πg/z(x)
∣∣ ∫
G/Zn

ψ
(
g.(x + n)

)
d
(
gZn
)

defines a positive Borel measure on g. Hence, [24, Lemma 8, p. 37] shows that there are 
finite non-negative constants C, N such that



M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335 291
(
1 + |x|

)M ∣∣πg/z(x)
∣∣ ∫
G/Zn

(
1 +
∣∣g.(x + n)

∣∣)−N
d
(
gZn
)
≤ C (x ∈ creg). (34)

This ends the proof for the case when z′′ is isomorphic to sp2n(R).
Suppose now that z′′ is isomorphic to sp2n(C). Let O ⊆ z′′ be the unique non-zero 

minimal nilpotent orbit and let μO be a (non-zero) invariant measure on O. Let f → f̂

denote the Fourier transform on z′′ defined with respect to the Killing form. Then μ̂O
may be computed as in the real case; see for instance [20, proof of Proposition 9.3]. In 
particular the restriction of μ̂O to h′′ = h ∩ z′′ is the reciprocal of the product of the long 
roots of h′′ in z′′

C
. Hence, πz′′/h′′ μ̂O is the product of the short roots. Therefore, with an 

appropriate normalization of all the measures involved, for a test function ψ ∈ S(z′′)∫
z′′

ψ dμO =
∫
z′′

μ̂O(x)ψ̂(x) dx

= 1
|W (Z′′,H′′)|

∫
h′′

(
μ̂O(x)πz′′/h′′(x)

)(
πz′′/h′′(x)

∫
Z′′/H′′

ψ̂(g.x) d
(
gH′′)) dx

= C∂(μ̂Oπz′′/h′′)
(
πz′′/h′′(y)

∫
Z′′/H′′

ψ(g.y) d
(
gH′′))

y=0
, (35)

where C is a constant. The last equality follows from the fact that for complex semisimple 
groups the Harish-Chandra orbital integral commutes with Fourier transform, see [11, 
Lemma 35.1, p. 198]. The proof for the real symplectic case carries over, with (28)
replaced by (35). �
4. A Weyl Harish-Chandra formula on the odd part of an ordinary classical Lie 
superalgebra

In this section we restrict ourselves to real reductive dual pairs (G, G′) which are 
irreducible, that is no nontrivial direct sum decomposition of the symplectic space W
is simultaneously preserved by G and G′. Irreducible reductive dual pairs have been 
classified by Howe [13] and are of two types:

Type I: (Op,q, Sp2n(R)), (Op(C), Sp2n(C)), (Up,q, Ur,s), (O∗
2n, Spp,q).

Type II: (GLn(D), GLm(D)) (D ∈ {R, C, H}).
(In the type I case, one should add to each (G, G′) the pair (G′, G), if not already listed.)

According to [21, Section 2], we may view an irreducible reductive dual pair (G, G′)
acting on the symplectic space W as a supergroup (S, s). Here S is a Lie group isomorphic 
to the direct product G × G′, and s = s0 ⊕ s1 is a Lie superalgebra with even part s0
equal to the Lie algebra of S and odd part s1 equal to W. The Lie superalgebra s can 
be realized as a subalgebra of the Lie superalgebra End(V) of the endomorphisms of a 
finite dimensional (Z/2Z)-graded vector space V = V0 ⊕ V1 over D. The vector space 
V = V0 ⊕ V1 is called the defining module for (S, s).
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We denote by [·,·] the superalgebra Lie bracket on s. Its restriction to x, y ∈ s1
coincides with the anticommutator

{x, y} = xy + yx ∈ s0

of the endomorphisms x and y of V. If x ∈ s0 and y ∈ sα (α ∈ Z/2Z) is homogeneous, 
then [x, y] = xy − yx ∈ sα is the usual commutator in End(V). The adjoint action of S
on s0, s1 and s is given by conjugation by elements of S. In the following, S-orbits always 
mean adjoint orbits. The S-orbit of x is denoted by S.x.

Recall that there is a non-degenerate, S-invariant, bilinear form 〈·,·〉 on s such that 
〈·,·〉|s0×s0 is symmetric, 〈·,·〉|s1×s1 is skew-symmetric, and s0 is orthogonal to s1 with 
respect to 〈·,·〉. Furthermore, there is an automorphism θ of s, unique up to conjuga-
tion by S, such that the restriction of θ to s0 is a Cartan involution associated with 
〈·,·〉|s0×s0 and the restriction of θ to s1 is a negative compatible complex structure, [21, 
Theorem 2.19]. In particular

−〈θ·, ·〉 (36)

is a non-degenerate positive definite symmetric bilinear form on s. Moreover θ preserves 
each member of the dual pair.

An element x ∈ s is called semisimple (resp., nilpotent) if x is semisimple (resp., 
nilpotent) as an endomorphism of V. Thus x is nilpotent if there is k ∈ N so that xk = 0. 
If D = R or C, then x is semisimple provided it is diagonalizable over C; if D = H, we 
consider V as a vector space over C by identifying H as a 2-dimensional right vector 
space over C (see e.g. [16, p. 61]).

Every element x ∈ End(V) admits a Jordan decomposition x = xs + xn with xs

semisimple, xn nilpotent and so that xsxn = xnxs; see e.g. [3, Ch. VII, §5, no. 9]. If 
x, y ∈ s1, then xs ∈ s1 and xn ∈ s1. Moreover, an element y ∈ s1 anticommutes with x
if and only if it anticommuteswith xs and xn. See [21, Theorem 4.1].

Suppose g is a semisimple Lie algebra consisting of endomorphisms of a vector space M. 
It is a classical property (see e.g. [2, §6, n03]) that x ∈ g is nilpotent (or semisimple) if 
and only if adx is nilpotent (or semisimple) in End(g). The elements of s1 have a similar 
property.

Lemma 6. Let x ∈ s1. Then x is nilpotent (resp. semisimple) if and only if adx is a 
nilpotent (resp. semisimple) endomorphism of s.

Proof. If x is nilpotent, there is k ∈ N so that xk = 0. We prove that (adx)2k−1 = 0. 
Indeed, [x, y] = xy ± yx for y ∈ sβ (β ∈ Z/2Z). Hence, for m ∈ N,

(adx)m(y) =
∑
a,b>0

Ca,bx
ayxb,
a+b=m
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where Ca,b ∈ Z. If m = 2k − 1 and b < k, then a = 2k − 1 − b > k − 1 and xa = 0. So 
(adx)2k−1(y) = 0. Thus adx is nilpotent in End(s).

If x is semisimple, there is a basis B = {e1, . . . , en} of VC and elements λ1, . . . , λn ∈ C
so that x(ej) = λjej for all j = 1, . . . , n. Let Ei,j denote the n ×n-matrix with all entries 
0 but the ij-th which is equal to 1. Then x admits matrix representation x =

∑n
j=s λsEs,s

with respect to B. Hence

adx(Ei,j) =
n∑

j=s

λs[Es,s, Ei,j ] = (λi − λj)Ei,j .

Indeed Es,s ∈ End(V)0, so [Es,s, Ei,j ] is the usual commutator of matrices. It follows 
that adx is diagonalizable in End(VC), hence semisimple in End(V).

Suppose now that x ∈ s1 is semisimple. Let x = xs + xn be its Jordan decomposition 
with xs ∈ s1 semisimple and xn ∈ s1 nilpotent. Then adx = adxs + adxn. By the 
above, adxs is semisimple and adxn is nilpotent. Then adxn = adx − adxs is at the 
same time semisimple and nilpotent, so adxn = 0. This means that xn anticommutes 
with all elements of s1, i.e. xn ∈ s1s1. By [21, Lemma 13.0′], s1s1 = 0. Thus xn = 0, and 
x = xs is semisimple.

The case where adx is nilpotent can be proven in a similar way. In fact, one 
does not need to invoke [21, Lemma 13.0′]. In fact, one now gets adxs = 0, i.e. xs

anticommutes with all elements of s1. In particular, it anticommutes with itself. So 
x2
s = 1/2{xs, xs} = 0. Thus xs is at the same time nilpotent and semisimple, i.e. xs = 0

and x = xn is nilpotent. �
As in the classical Lie algebra case, the property of being semisimple or nilpotent can 

be stated in terms of adjoint orbits.

Lemma 7. Let x ∈ s1. Then x is semisimple if and only if the orbit S.x is closed. It is 
nilpotent if and only if 0 ∈ S.x.

Proof. The first part is [21, Theorem 4.3]. To prove the second, suppose first that x ∈ s1
is nilpotent. Then 0 = xs ∈ S.x by [21, Theorem 4.2]. Conversely, suppose 0 ∈ S.x. Let 
gn ∈ S so that 0 = limn→∞ gn.x. Then 0 = limn→∞(gn.x)2 = limn→∞ gn.x

2. Hence 
0 ∈ S.x2. Since x2 = 1/2{x, x} ∈ s0, the classical property of nilpotent adjoint orbits 
in reductive Lie algebras, e.g. [24, Lemma 4], proves that x2 is nilpotent. Thus x is 
nilpotent. �

Lemma 7 shows that our definitions of semisimple and nilpotent elements agree with 
those in [4]. Following [4], we say that a semisimple element x ∈ s1 is regular if nonzero 
and dim(S.x) ≥ dim(S.y) for all semisimple y ∈ s1.

Let x ∈ s1 be fixed. The anticommutant of x in s1 is

xs1 =
{
y ∈ s1 : {x, y} = 0

}
.
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The double anticommutant of x in s1 is

x
s1s1 =

⋂
y∈xs1

ys1. (37)

Notice that x ∈ x
s1s1 and xs1 = (

xs1s1)s1. We define a Cartan subspace h1 of s1 as the 
double anticommutant of a regular semisimple element x ∈ s1. We denote by h1

reg the 
set of regular elements in h1. The Weyl group W(S, h1) is the quotient of the stabilizer 
of h1 in S by the subgroup which acts trivially on h1.

The following lemma relates our definition of Cartan subspace in s1 with the one given 
in [4].

Lemma 8. Let x ∈ s1 and let cx = {y ∈ s1 : [s0, y] ⊆ [s0, x]}. Then cx = x
s1s1.

Proof. By definition, y ∈ x
s1s1 if and only if {z, y} = 0 for all z ∈ xs1, i.e. if and 

only if xs1 ⊆ ys1. By [21, Lemma 3.5], for any y ∈ s1, we have [s0, y] = (ys1)⊥, where 
⊥ denotes the orthogonal with respect to 〈·,·〉|s1×s1 . Hence xs1 ⊆ ys1 if and only if 
[s0, y] ⊆ [s0, x]. �

Notice that the above definition of regular semisimple elements in s1 is slightly dif-
ferent from the one given in [21]. Correspondingly, our notion of Cartan subspaces is 
slightly less restrictive, and allows us to treat also the cases (1) and (2). The study of the 
density properties of semisimple elements given in Proposition 6.6 of that paper needs to 
be modified. It is carried over in this section and the main density result is Theorem 20
below. Observe however that outside the two cases (1) and (2), all our definitions agree 
with those in [21]. Most of the results in [21, Section 6] carry over for all dual pairs. 
Exceptions are the second equality in Lemma 6.9(b), and Proposition 6.10(b) and (c). 
Also, in the proof of [21, Corollary 6.21] the reference to (4.4) and (6.10.b) has to be 
replaced by (6.11.c).

The next proposition collects the results from [21] we shall need. As in [21], we exclude 
from our considerations the dual pair (O1, Sp2n) over R or C, as s1 does not contain 
any nonzero semisimple element in this case. (Indeed, for every 0 
= x ∈ s1, we have 
x2 ∈ s0 = 0, so x is nilpotent.)

Proposition 9. Suppose (S, s) corresponds to a dual pair different from (O1, Sp2n) over 
R or C. Then:

(a) There are finitely many S-conjugacy classes of Cartan subspaces in s1.
(b) Any two elements of a Cartan subspace h1 ⊆ s1 commute as endomorphisms of V.
(c) Every element of h1 is semisimple and every semisimple element of s1 is contained 

in a Cartan subspace.
(d) The Weyl group W(S, h1) is a finite group of linear automorphisms of h1.



M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335 295
Proof. (Sketch) Let x ∈ s1 and let W ⊆ V be a (Z/2Z)-graded subspace preserved by x
(i.e. x(W) ⊆ W). The element x, or the pair (x, W), is said to be decomposable if there 
are two proper non-zero (Z/2Z)-graded subspaces W1, W2 of W which are preserved by 
x and so that W = W1 ⊕ W2 (orthogonal direct sum if (S, s) is of type I). Otherwise, 
(x, W) is said to be indecomposable. For every x ∈ s1, the pair (x, V) is the direct sum 
of indecomposable elements, see [21, Theorem 5.1]. The complete list (up to conjugation 
by an element of S) of Cartan subspaces h1 ⊆ s1 and Weyl groups W(S, h1) such that h1
contains a regular semisimple indecomposable element is given in [21, Proposition 6.2]. 
In the general case, a Cartan subspace h1 ⊆ s1 induces a direct sum decomposition 
of V into indecomposable pairs (xj , Vj) with xj ∈ h1. Then h1 will be direct sum of 
Cartan subspaces in each of these indecomposable pieces. They can be read off from 
the above lists. Likewise, the Weyl group W(S, h1) can be reconstructed out of those 
of the indecomposable pieces; see [21, page following the proof of Proposition 6.2]. The 
description of each Cartan subspace as double anticommutant of a regular semisimple 
element is given in [21, pp. 487–498], based on the classification of [21, Proposition 6.2]. 
From the explicit expressions obtained from this case-by-case analysis, one also deduces 
the remaining statements. �

The special nature of the dual pairs (1) and (2) is explained in the next proposition.
Let V = V0⊕V1 be the defining module of (S, s). For a fixed semisimple x ∈ s1 we can 

decompose V = V0⊕V+, where V0 = ker(x) and V+ = xV are (Z/2Z)-graded subspaces. 
We shall denote by (S(V+), s(V+)) and (S(V0), s(V0)) be the supergroups obtained by 
restricting (S, s) to V+ and V0.

Proposition 10. Let V = V0 ⊕ V+ and x ∈ s1 regular semisimple be as above. Then 
s1(V0) 
= {0} if and only if (S, s) corresponds to one of the dual pairs in (1) or (2). In 
cases (1) and (2), we have dimD s1(V0) = 2n − (p + q − 1).

Proof. Suppose first that (G, G′) is not (Op,q, Sp2n(R)) or (Op(C), Sp2n(C)). We shall 
prove that s1(V0) = 0.

We begin by proving that s1(V0) does not contain any nonzero semisimple element. 
For this, it suffices to prove that s1(V0) does not contain any nonzero semisimple y so that 
(y, V0) is indecomposable. (This notion has been introduced in the proof of Proposition 9
above.) Indeed, by [21, Theorem 5.1], each pair (y, V0) with 0 
= y semisimple is a di-
rect sum of nonzero indecomposable elements, which are themselves nonzero semisimple 
elements in s1(V0).

We argue by contradiction. Suppose there is 0 
= y ∈ s1(V0) semisimple so that 
(y, V0) is indecomposable. Then, up to similarity, y is a non-zero element of the Cartan 
subspaces listed in [21, Proposition 6.2]. A case-by-case inspection shows that there exists 
an element in s0(V0) not commuting with y. Hence

dim s0
(
V0)y < dim s0

(
V0). (38)
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Notice that sx0 ⊆ sx
2

0 = s0(V0) ⊕ s0(V+)x2 and s0(V0) ⊆ sx0 . Hence

sx0 = s0
(
V0)⊕ (s0(V+)x2)x

. (39)

As y|V+ = 0, we have s0(V+) ⊆ s
y

0. Therefore

s
x+y

0 = sx0 ∩ s
y

0 = s0
(
V0)y ⊕ (s0(V+)x2)x

. (40)

As x|V0 = 0, the elements x and y commute. So x + y is semisimple. From (38), (39)
and (40), we get dim s

x+y

0 < dim sx0 . Using the relation dim sz0 = dim s0 − dim[s0, z], we 
therefore obtain that dim[x, s0] < dim[x + y, s0], contradicting that x is regular. Thus 
s1(V0) cannot contain any nonzero semisimple element.

Now (S(V0), s(V0)) is a supergroup coming from a dual pair. If s1(V0) 
= 0, the only 
case where s1(V0) contains no nonzero semisimple elements is when S(V0) = O1 × Sp2m
over R or C for some m ∈ N. This means that (S, s) corresponds to (Op,q, Sp2n(R)) or 
(Op(C), Sp2n(C)). This case was excluded. Hence s1(V0) = 0.

We now turn to the case where (G, G′) = (Op,q, Sp2n(R)) or (Op(C), Sp2n(C)).
Notice that the proof above also shows that if s1(V0) 
= 0 then S(V0) = O1 × Sp2m

over D = R or C, for some 1 ≤ m ≤ n. Thus s1(V0) = D2m. (The precise value of 
m as a function of the given p, q and n will be computed at the end of the proof.) 
Moreover dimD(V0 ∩ V0) = 1 and dimD(V0 ∩ V1) = 2m. Since x|V+ is injective, we have 
x(V0∩V+) ⊆ V1∩V+ and x(V1∩V+) ⊆ V0∩V+. Hence dimD(V0∩V+) = dimD(V1∩V+). 
It follows that

dimD

(
V1 ∩ V+) = dimD

(
V0 ∩ V+) = dimD V0 − dimD

(
V0 ∩ V0) = p + q − 1. (41)

(Here and in the following, we set q = 0 when D = C.) Therefore

2n = dimD V1 ≥ dimD

(
V1 ∩ V+) = p + q − 1.

This proves that s1(V0) = 0 if p + q > 2n.
Suppose now p + q < 2n. Notice that ker(x2) = ker(x) as x is semisimple. Hence 

ker(x2|V0) = ker(x|V0) = V0 ∩ V0. The element x is regular and x2|V0 belongs to a 
Cartan subalgebra of s0(V0), the Lie algebra of G = Op,q or Op(C). So dim(ker(x2|V0)) =
dim(V0 ∩ V0) = 1 if and only if p + q is odd.

Finally, if p + q < 2n and p + q is odd, then

dimD

(
V0 ∩ V1

)
= dimD V1 − dimD

(
V+ ∩ V1

)
= 2n− (p + q − 1) > 0. (42)

Thus V0 ∩ V1 
= 0 and V0 ∩ V1 
= 0, which yields s1(V0) 
= 0.
Formula (42) also implies that the constant 2m obtained before as dimD(V0 ∩ V1) is 

equal to 2n − (p + q − 1). Thus dimD s1(V0) = 2n − (p + q − 1). �
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Recall that the rank of a reductive Lie group G, denoted by rankG, is the complex 
dimension of a Cartan subalgebra of gC, the complexification of the Lie algebra of G.

Corollary 11. If x ∈ h1 is regular, then h1 = x
s1s1. Moreover,

dim[s0, x] + dim h1 + dim s1
(
V0) = dim s1. (43)

All Cartan subspaces of s1 have the same dimension. It is equal to min{rank G, rank G′}
if (G, G′) is the dual pair associated with (S, s).

Proof. The first part is an immediate consequence of Lemma 8. Indeed dimS.x =
dim[s0, x]. Hence, if h1 = ys1 and x ∈ h1 is regular, then [s0, x] = [s0, y] and cx = cy. 
For the dimension formula (43), we have h1 = s1(V+)x by [21, Proposition 6.10(a)]. 
Since ker(x|V+) = 0, [21, Theorem 4.4(a)] gives dim s1(V+)x = dim x(s1(V+)). More-
over, xs1 = s1(V0) ⊕ x(s1(V+)). By [21, Theorem 3.5], dim[s0, x] = dim s1 − dim xs1. 
This proves (43). The formula for the dimension of the Cartan subspaces is from [21, 
Theorem 4.4(c)]. �
Remark. Because of Lemmas 7 and 8, the fact that the elements of a Cartan subspace 
are semisimple can also be deduced from [4, Lemma 2.1]. Since [4] considers actions on 
complex vector spaces, this lemma can be directly applied when s1 admits a complex 
structure commuting with the group action of S. This is equivalent to the fact that V
is a vector space over C. (Recall that we are considering V as a vector space over C if 
D = H.)

When V is a vector space over R, it is necessary to consider the complexification 
(SC, sC) of the supergroup (S, s). The list of irreducible dual pairs gives the following two 
possibilities:

S = GLn(R) × GLm(R) SC = GLn(C) × GLm(C)

S = Op,q × Sp2n(R) SC = Op+q(C) × Sp2n(C)

Notice that if V is the defining module of (S, s), then the defining module of (SC, sC)
is VC. Hence, for an element x ∈ s1, to be semisimple means that x is semisimple as an 
element of (s1)C = (sC)1 ⊆ End(VC).

Let h1 = x
s1s1 be a Cartan subspace in s1. Then h1 ⊆ x(sC)1(sC)1. We can deduce 

from [4] that h1 consists of semisimple elements if we prove that x(sC)1(sC)1 is a Cartan 
subspace in (sC)1, i.e. that x is regular in (sC)1. Since SC is a complexification of the 
Lie group S, the last part of Corollary 11 shows that the (real) dimension of a Cartan 
subspace in (sC)1 is twice the dimension of a Cartan subspace of s1. Apply formula 
(43) to both (S, s) and (SC, sC). Corollary 11 also shows that dim s1(V0) is the same for 
all spaces V0 = ker(x) with x regular semisimple in s1. This constant doubles in the 
complexification. It follows that a semisimple element y ∈ (sC)1 is regular if and only if 
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dim[(sC)0, y] = 2 dim[s0, x], where x is the fixed regular semisimple element of s1. Since 
(sC)0 = (s0)C, it follows that x is regular in (sC)1.

Even if this argument allows us to deduce the semisimplicity of elements in the Cartan 
subspaces from the general results of [4], it uses many properties [21]. So it still (strongly) 
depends on the case-by-case analysis made in [21].

Recall the defining module V = V0 ⊕V1 for (S, s). Let h1 ⊆ s1 be a Cartan subspace, 
and let V0 ⊆ V be the intersection of the kernels of all the elements on h1. Equivalently, 
V0 = ker(x) if h1 = x

s1s1. Define

h̃1 = s1
(
V0)⊕ h1. (44)

By Corollary 11, h̃1 
= h1 if and only if (S, s) corresponds to a dual pair in (1) or (2).
We say that an element x ∈ s1 is almost semisimple if it is conjugate to an element 

of h̃1 for a Cartan subspace h1 ⊆ s1.
Our next main result (Theorem 20) shows that the almost semisimple elements are 

dense in s1. Notice that semisimple elements are almost semisimple by Proposition 9. We 
now study how nilpotent elements can be approximated by almost semisimple elements. 
For this, we first consider some suitable root spaces decompositions in s.

Let h1 ⊆ s1 be a Cartan subspace and let h2
1 ⊆ s0 be the linear span of all the 

anticommutants of the elements of h1. Then h2
1 is generated by the pairwise commuting 

semisimple elements x2 = 1/2{x, x} with x ∈ h1. Moreover, h2
1 is contained in some 

Cartan subalgebra of s0.

Lemma 12. There is an element s ∈ S such that θ(s.h2
1) = s.h2

1.

Proof. It follows from [21, Proposition 6.10(f)] that we may choose j, k ∈ {0, 1} so that 
h2
1|Vj

is a Cartan subalgebra of s0|Vj
and h2

1|Vk
is a Cartan subalgebra of s0|Vk∩V+ . (Here 

s0|Vj
is the Lie algebra of the isometries of Vj in the type I case and all endomorphisms of 

Vj in the type II case, and similarly for s0|Vk∩V+ .) Furthermore, by [21, Theorem 4.4(b)], 
there is a direct sum decomposition

Vk =
(
Vk ∩ V0)⊕ (Vk ∩ V+),

which is orthogonal in the type II case. By a theorem of Chevalley, [7, Corollary, p. 100], 
there is an element sk ∈ Ad(S|Vk∩V+) such that

θ|Vk

(
skh

2
1|Vk

)
= skh

2
1|Vk

.

Let ε be the linear isomorphism of Vk which is multiplication by 1 on Vk ∩ V+ and by 
−1 on Vk ∩ V0. Then conjugation by ε is an involutive automorphism σ of s0|Vk

having 
set of the σ-fixed points equal to

(s0|V )σ = s0|V ∩V0 ⊕ s0|V ∩V+ .

k k k
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Since skh
2
1|Vk

is a σθ|Vk
-stable subspace of s0|Vk∩V+ , we know from the theory of the 

symmetric Lie algebras, [17, Lemma 3, p. 337], that there is an element tk ∈ Ad(S|Vk
)

such that the Cartan involution θk = t−1
k

θ|Vk
tk commutes with σ and tk(skh2

1|Vk
) =

skh
2
1|Vk

. Hence θk(skh2
1|Vk

) = skh
2
1|Vk

. Thus,

θ
(
tkskh

2
1|Vk

)
= tkθk

(
skh

2
1|Vk

)
= tkskh

2
1|Vk

.

Again, by the theorem of Chevalley, [7, Corollary, p. 100], there is an element sj ∈
Ad(S|Vj

) such that

θ
(
sjh

2
1|Vj

)
= sjh

2
1|Vj

.

Let s ∈ S be such that the adjoint action of s on s0|Vj
coincides with sj and the adjoint 

action of s on s0|Vk
coincides with tksk. Then

θ
(
s.h2

1
)

= s.h2
1. �

(By looking at the classification of the Cartan subspaces in [21] one can see that in 
fact the element s ∈ S in the statement of Theorem 3 can be chosen so that s.h1 = h1.) 
We assume from now on that h2

1 is θ-stable. Define

a =
{
x ∈ h2

1 : θx = −x
}
. (45)

For each x ∈ a the operator adx ∈ End(s) is symmetric with respect to the form (36). 
Hence, the Spectral Theorem implies that s decomposes into an orthogonal direct sum 
of the eigenspaces for the action of a:

s =
∑
λ

sλ, where sλ =
{
y ∈ s : [x, y] = λ(x)y for all x ∈ a

}
. (46)

Each sλ is (Z/2Z)-graded. Let l = s0 denote the zero eigenspace, i.e. the centralizer of a
in s. The non-zero eigenfunctionals λ ∈ a∗ are called roots (of a in s). Thus for a root λ
we have a non-zero y ∈ s such that

[x, y] = λ(x)y (x ∈ a). (47)

Notice also that if y ∈ s is a root vector corresponding to λ ∈ a∗, then θy is a root vector 
corresponding to −λ. Furthermore, [sλ, sμ] ⊆ sλ+μ.

Let areg ⊆ a be the subset where no roots vanish. Fix an element x0 ∈ areg. We say 
that a root λ is positive, written λ > 0, if λ(x0) > 0. Set

n =
∑

sλ.

λ>0
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Then n ⊆ s is a Lie sub-superalgebra and

θn =
∑
λ>0

s−λ.

Hence (46) may be rewritten as

s = l⊕ n⊕ θn. (48)

Notice that sλ ⊥ sμ if λ > 0 and μ > 0. Indeed, if y ∈ sλ and z ∈ sμ then

λ(x0)〈y, z〉 =
〈
[x0, y], z

〉
= −

〈
y, [x0, z],

〉
= −μ(x0)〈y, z〉,

which is possible if and only if 〈y, z〉 = 0. Thus the restriction of the form 〈·,·〉 to n is 
zero. Similarly, we check that l ⊥ n and l ⊥ θn.

On the other hand, the Spectral Theorem implies that the restriction of the form (36)
to n is non-degenerate. Hence the form 〈·,·〉 provides a non-degenerate pairing between 
n and θn. Thus the restriction of the form 〈·,·〉 to θn ⊕n is non-degenerate. Similarly, the 
restriction of the form 〈·,·〉 to l is non-degenerate. Finally we notice that n is the radical 
of the form 〈·,·〉 restricted to l + n.

From the structure of the Cartan subspaces [21, Theorems 6.2, 5.1 and 4.4], we see 
that the following lemma holds.

Lemma 13. The Lie superalgebra l decomposes as

l = l0 ⊕
n∑

i=1
li ⊕

n+m∑
i=n+1

li,

where (l0)1 = 0 in the type II case and l0 is of the same type as s in the type I case. For 
1 ≤ i ≤ n, li is isomorphic to (gl1(D), gl1(D)) as a dual pair, where D = R, C or H. 
If D 
= R then m = 0. If D = R then, for n + 1 ≤ i ≤ n + m, li is isomorphic to 
(gl2(R), gl2(R)) as a dual pair. In all cases h2

1 ∩ (l0)0 (which might be zero) is elliptic 
and h2

1 ∩ (
∑n+m

i=1 (li)0) is fundamental.

Corollary 14. With the notation of (48) we have dim n0 = dim n1.

Proof. We see from (48) that it suffices to check that

dim s0 − dim l0 = dim s1 − dim l1. (49)

For this we use the classification of the irreducible real reductive dual pairs, see e.g. [15, 
p. 548]. Let V = V0 ⊕ V1 be the defining module of the pair, and set d = dimD V0 and 
d′ = dimD V1.
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Suppose s is of type II. Then

dim s0 = dimR D ·
(
d2 + d′ 2

)
,

dim s1 = dimR D · 2dd′,

dim l0 = dimR D ·
(
2n + 8m +

(
d− d′

)2)
,

dim l1 = dimR D · (2n + 8m),

and (49) follows.
Suppose s is of type I. Let ι = 1 if D 
= H and ι = 1

2 if D = H. We may choose 
ε, ε′ ∈ {0, ι2 , ι} such that ε + ε′ = ι and

dim s0 = dimR D ·
(
d′(d′ − ι)

2 + d′ε′ + d(d− ι)
2 + dε

)
,

dim s1 = dimR D · dd′,

dim l0 = dimR D ·
(

(d′ − 2n− 4m)(d′ − 2n− 4m− 1)
2 +

(
d′ − 2n− 4m

)
ε′

+ (d− 2n− 4m)(d− 2n− 4m− 1)
2 + (d− 2n− 4m)ε + 2n + 8m

)
,

dim l1 = dimR D ·
(
(d− 2n− 4m)

(
d′ − 2n− 4m

)
+ 2n + 8m

)
.

Hence, (49) follows. �
By definition, l and n are Lie superalgebras and l normalizes n. Thus,

[n0, l1] ⊆ n1, {n1, l1} ⊆ n0 and [n0, n1] ⊆ n1. (50)

Because of Corollary 14, the vector spaces n0 and n1 are isomorphic. Let T : n1 → n0
be any fixed isomorphism. Let Ax : n0 → n1 and Bx : n1 → n0 be linear maps depending 
on a variable x. Then T ◦Ax and Bx ◦ T are endomorphisms of n0 and n1, respectively. 
Define

det(Ax)n0→n1 = det(T ◦Ax)

det(Bx)n1→n0 = det
(
Bx ◦ T−1). (51)

Then det(Bx◦Ax) = det(Bx)n1→n0 det(Ax)n0→n1 . Moreover, Bx◦Ax is an automorphism 
of n0 if and only if Ax and Bx are isomorphisms. This is in turn equivalent to the condition 
that det(Ax)n0→n1 
= 0 and det(Bx)n1→n0 
= 0.

Lemma 15. Suppose x ∈ l1 is such that det(adx2)n0 
= 0. Then the map

n0 � z → exp(z).x− x ∈ n1 (52)
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is a well defined analytic diffeomorphism of n0 onto n1. Define the maps

n0 � z → [z, x] ∈ n1 (53)

n1 � y → {y, x} ∈ n0. (54)

The composition (54) ◦ (53) coincides with

n0 � z →
[
z, x2] ∈ n0. (55)

If we identify the vector spaces n0 and n1 by fixing a linear isomorphism between them, 
as above (51), then the Jacobian of the map (52) at z is equal to | det(adx)n0→n1 |, the 
absolute value of the determinant of the map (53). Also,∣∣det

(
adx2)

n0

∣∣ = ∣∣det(adx)n1→n0 det(adx)n0→n1

∣∣. (56)

Proof. We see from (50) that the maps (53) and (54) are well defined. Since the adjoint 
action is a derivation and since x2 = 1

2{x, x}, the composition (54) ◦ (53) coincides 
with (55). Hence, (56) follows.

Also, we see from (50) that for z ∈ n0 the element

exp(z).x− x = [z, x] + 1
2
[
z, [z, x]

]
+ 1

3!
[
z,
[
z, [z, x]

]]
+ · · ·

belongs to n1. Thus the map (52) is well defined.
Let z, y ∈ n0. As is well known, see e.g. [23, §1.2, p. 15],

exp(−z) exp(z + y) = I + I − exp(− ad z)
ad z

y + higher order terms in y.

Hence, the derivative of the map (52) at z coincides with the following map

n0 � y → exp(z).
[(

I − exp(− ad z)
ad z

y

)
, x

]
∈ n1. (57)

Since the map (53) is injective and since z is nilpotent, it is easy to see that the map 
(57) is injective and in fact has the determinant equal to ± det(adx)n0→n1 . Hence, the 
map (52) is everywhere locally bijective.

Suppose exp(z).x = exp(z′).x. Then exp(z).x2 = (exp(z).x)2 = (exp(z′).x)2 =
exp(z′).x2. Hence, by [9, p. 218], z = z′. Therefore the map (52) is injective.

We already know that the image of the map (52) is open. If we show that this image 
is also closed then the surjectivity will follow. As in [9, p. 218], it suffices to show 
that if exp(z).x − x is bounded then z is bounded. But if exp(z).x is bounded, then 
exp(z).x2 = (exp(z).x)2 is bounded. In turn, this implies that z is bounded, see [9, 
p. 218]. �
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Lemma 16. Any element of n1 is nilpotent. Any nilpotent element z ∈ l1 + n1 is of the 
form z = zl + zn, where both zl ∈ l1 and zn ∈ n1 are nilpotent.

Proof. Since n1 ⊆
∑

λ>0 sλ and [sλ, sμ] ⊆ sλ+μ, the endomorphism adx is nilpotent for 
every x ∈ n1. By Lemma 6, x is nilpotent.

Suppose now that z = zl + zn is nilpotent, and zl ∈ l1 and zn ∈ n1. By Lemma 6, ad z

is a nilpotent endomorphism of End(s). Let k ∈ N so that (ad z)k = 0. Let Δ denote the 
set of positive roots. Then z ∈ l + n =

∑
λ∈Δ∪{0} sλ and zn ∈ n =

∑
λ∈Δ sλ. Let μ be 

either a root or μ = 0. For a, b ∈ N we have:

(ad zn)a(sμ) ⊆
∑

λ∈μ+aΔ

sλ,

(ad z)b(sμ) ⊆
∑

λ∈μ+Δ

sλ,

(ad z)b(ad zn)a(sμ) ⊆
∑

λ∈μ+Δ+aΔ

sλ,

where we have set aΔ = {λ1 + · · ·+λa : λj ∈ Δ} and sλ = 0 if λ 
= 0 is not a root. Since 
the set of roots is finite, there is h ∈ N such that for every root μ and all integers a ≥ h

the set μ + aΔ does not contain any root. For p ∈ N we have

(ad zl)p = (ad z − ad zn)p =
∑

±(ad z)b1(ad zn)a1 . . . (ad z)bs(ad zn)as ,

where the summation is over positive integers aj , bj , 1 ≤ i ≤ s, with 
∑s

j=1(aj + bj) = p. 
Fix μ and x ∈ sμ, and look at

z = (ad z)b1(ad zn)a1 . . . (ad z)bs(ad zn)as(x).

Then z ∈
∑

λ∈μ+Δ+aΔ sμ where a = a1 + · · ·+ as. If s ≥ h then a ≥ h. So sλ = 0 for all 
λ ∈ μ + Δ + aΔ, and thus z = 0. Suppose then s < h. If a ≥ h, then, as above, z = 0. 
We can therefore assume a < h. Set b = b1 + · · · + bs. Then b = p − a > p − h. If we 
have chosen p sufficiently big (specifically, ≥ h(k + 1)), then there must be an index j
so that bj ≥ k. Otherwise b < sk, which would give hk ≥ sk > p − h. But if bj ≥ k then 
(ad z)bj = 0. We conclude that z = 0 also in this case.

This proves that ad zl is nilpotent. Because of Lemma 6, zl must be nilpotent too. �
Corollary 17. Consider a nilpotent element z ∈ s1 with the decomposition z = zl + zn
as in Lemma 16. Suppose l′1 ⊆ l1 is a subset containing zl in its closure and such that 
det(adx2)n0 
= 0 for all x ∈ l′1. Then z may be approximated by elements of the S-orbits 
passing through l′1.

Proof. Choose a small element y ∈ l1 such that zl − y ∈ l′1. Let x = zl − y. We see from 
Lemma 15 that there is an element u ∈ n0 such that
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zn = exp(u).x− x.

Hence,

(zn + zl) − exp(u).x = y

is small. �
Since our proof of the following proposition requires a significant amount of additional 

notation, we shall present it in Appendix B. (In fact what we are missing here is an analog 
of the Jacobson–Morozov theorem.)

Proposition 18. For any nilpotent element z ∈ s1 there is a Cartan subspace h1 ⊆ s1
such that, in terms of (48), z belongs to an S-orbit passing through l1 + n1. Moreover, 
l1 ⊇ h̃1.

Suppose z ∈ l1 is nilpotent. Let L ⊆ S be the subgroup with the Lie algebra l0, so that 
(L, l) is the direct product of classical Lie supergroups, as in [21, Section 2]. Then zl is 
the limit of elements in the L-orbits passing through h̃1.

Theorem 19. Every nilpotent element z ∈ s1 is a limit of almost semisimple elements. It 
is a limit of semisimple elements if and only if (S, s) is not associated with (1) or (2).

Proof. By Proposition 18, z singles out a Cartan subspace h1 ⊆ s1. Moreover, if s =
l ⊕n ⊕θn is the corresponding decomposition (48), then z ∈ S.z̃ with z̃ = z̃l+ z̃n ∈ l1⊕n1
necessarily nilpotent. Lemma 16 shows that z̃l ∈ l1 is nilpotent. So, by Proposition 18, 
there are elements ln ∈ L and xn ∈ h̃1 so that z̃l = limn→∞ ln.xn. By Proposition 18, 
h̃1 ⊂ l1. The map x → det(adx2)n0 is polynomial on l1. Since it is not identically zero 
on h1, the set h̃′1 = {x ∈ h̃1 : det(adx2)n0 
= 0} is dense in h̃1. So we can suppose that 
xn ∈ h̃′1. Corollary 17 with l′1 = h̃′1 therefore assures that z̃ is a limit of elements of the 
S-orbits passing through h̃′1. The same property holds thus for z. �

Combining Proposition 9, Theorem 19 with Jordan decomposition of an arbitrary 
element of s1 into the sum of its semisimple and nilpotent components, we obtain the 
following theorem.

Theorem 20. The set of the almost semisimple elements of s1 is dense in s1. The set of 
the semisimple elements in s1 is dense in s1 if and only if (S, s) is not associated with 
(1) or (2).

Proof. Let x = xs + xn be the Jordan decomposition of an element in x ∈ s1. Because 
of Proposition 9(c) and Theorem 19, we can assume that x is neither semisimple nor 
nilpotent. In particular xs 
= 0. Since x, xs and xn commute in End(V), they all belong 

to sx
2
s . As in the proof of Theorem 4.4(b) in [21, Section 13], let V = V0 ⊕V1 ⊕ · · · ⊕Vk
1
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be the isotypic decomposition of V with respect to xs. Hence V0 = ker(xs) and V1⊕· · ·⊕
Vk = V+ = xsV. Isotypic means that each (xs|Vj , Vj) decomposes into mutually similar 
indecomposable pieces. Let (S(Vj), s(Vj)) denote the restriction of (S, s) to Vj . Then

s
x2
s

1 = s1
(
V0)⊕ s1

(
V1)x2

s ⊕ · · · ⊕ s1
(
Vk
)x2

s . (58)

Decompose x = x0 + x1 + · · · + xk according to (58). If we prove that for j = 1, . . . , k
there is a sequence ym,j of semisimple elements so that xj = limm→∞ ym,j , then x =
limm→∞ x0 + ym,1 + · · · + ym,k will be a limit of almost semisimple elements. Notice 
that ker(xs|Vj ) = 0. Hence, by [21, Theorem 4.4(a)], each s1(V1)x2

s is a supergroup with 
corresponding dual pair isomorphic either to (Un, Un) or to (GLn(D), GLn(D)). Here the 
division algebra D may be different from the one over which V is defined. This reduces 
the proof of our theorem to the case where x = xs + xn belongs to one of these isotypic 
components. A further reduction allows us to select xs inside non-conjugate Cartan 
subalgebras h1 ⊆ s1. Indeed suppose xs = g.x′

s with g ∈ S and x′
s ∈ h1. Write xn = g.x′

n. 
Then x′

n is nilpotent and x′
nx

′
s = x′

sx
′
n. If x′

s + x′
n = lim ym with ym semisimple, then 

x = lim g.ym with g.ym semisimple. This case-by-case analysis will be carried out in 
Appendix C. �

Recall that the almost semisimple elements in s1 are the elements of the S-orbits of 
the sets

h̃1 = h1 ⊕ s1
(
V0)

when h1 ranges among the (conjugacy classes of) Cartan subspaces in h1. Here V0 denotes 
the intersection of the kernel of all elements in h1. Recall also that if x ∈ h1 is regular, 
then V0 = ker(x) and we have the decomposition V = V0 ⊕ V+ with V+ = xV. Let Sh1

denote the centralizer of h1 in S. Then

Sh1 = S
(
V0)× S

(
V+)h1 . (59)

The group Sh1 is reductive and hence unimodular. Therefore there is an invariant measure 
d(gSh1) on the quotient space S/Sh1 .

The title of this section refers to the following theorem.

Theorem 21. For a continuous compactly supported function φ : s1 → C the following 
integration formula holds,∫

s1

φ(x) dx =
∑
h1

1
|W (S, h1)|

∫
h2
1

∣∣πs0/h
2
1

(
x2)∣∣ ∫

S/Sh1

∫
s1(V0)

φ
(
g.(y + x)

)
dy d
(
gSh1

)
dx2,

where the summation is over a maximal family of mutually non-conjugate Cartan sub-
spaces h1 ⊆ s1.
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For a fixed x ∈ h1 the integral 
∫
s1(V0) φ(g.(y + x)) dy is a function of g ∈ S, invariant 

under the right translations by elements of Sh1 . Also, the integral over S/Sh1 is constant 
on the fibers of the square map x �→ x2, because the group W (S, h1) acts transitively on 
these fibers. (See [21, Corollary 6.25].)

Proof. Notice that for any y0 ∈ s1(V0) \ {0} the S(V0)-orbit through y0 is equal to 
s1(V0) \ {0}. Fix any y0 ∈ s1(V0) \ {0}, then Sh1+y0 , the centralizer of y0 + h1 in S, is a 
unimodular group. Furthermore, by (59), Sy0+h1 = S(V0)y0 × S(V+)h1 . Hence∫

S/Sh1

∫
s1(V0)

φ
(
g.(y + x)

)
dy d
(
gSh1

)
=

∫
S/Sy0+h1

φ
(
g.(y0 + x)

)
d
(
gSy0+h1

)
. (60)

Also, if the function φ is supported in the union of the orbits passing through h̃1 =
s1(V0) × h1, then∫

s1

φ(x) dx = 1
|W (S, h1)|

∫
h̃1

∫
S/Sy0+h1

φ
(
g.(y0 + x)

)
d
(
gSy0+h1

)
J (y0 + x) dy0 dx,

where J is the Jacobian, which may be computed as in the proof of [21, Corollary 6.21]. 
In particular, J (y0 + x) is equal to |πs0/h

2
1
(x2)| times the Jacobian of the square map 

h1 � x �→ x2 ∈ h2
1. Since, as we mentioned previously, the integral is constant on the 

fibers of this map, the formula follows. �
5. A semisimple orbital integral on the odd part of an ordinary classical Lie 
superalgebra

In this section we prove that the integration formula of Theorem 21 extends to 
Schwartz functions on the symplectic space W = s1. For this, we study whether the 
orbital integral of Theorem 21 is integrable on h2

1 when φ(x) = (1 + |x|)−N and N > 0
is sufficiently large. Here | · | denotes a fixed norm on the real vector space s. Recall that 
the Cartan subspace h1 ⊆ s1 is called elliptic if and only if all the eigenvalues of the h2

1
acting on s0 are imaginary.

Proposition 22. Suppose the Cartan subspace h1 ⊆ s1 is elliptic. Then for any constant 
M ≥ 0 there are positive constants C, N such that

∣∣πs0/h
2
1

(
x2)∣∣ ∫

S/Sh1

∫
s1(V0)

(
1 +
∣∣g.(x + y)

∣∣)−N
dy d
(
gSh1

)
≤ C

(
1 + |x|

)−M (x ∈ h1
reg).

Here the integral over s1(V0) is omitted if the dual reductive pair is not isomorphic to 
(1) or (2).
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Proof. We may assume that the norm | · | is chosen so that the maximum of |x2|, when 
x ∈ s1 varies through the unit sphere, is 1. Then

∣∣x2∣∣ ≤ |x|2 (x ∈ s1). (61)

Also, it is clear from the description of the Cartan subspaces in [21] that there is a 
constant 1 ≤ C < ∞ such that

|x|2 ≤ C|x2| (x ∈ h1). (62)

Thus for any non-negative constants m, N and g ∈ S,

(
1 + |x|2

)M(1 +
∣∣g.(x + y)

∣∣2)−N

≤ CM
(
1 +
∣∣x2∣∣)M(1 +

∣∣g.(x2 + y2)∣∣)−N (
x ∈ h1, y ∈ s1

(
V0)).

Notice that since the Cartan subspace h1 ⊆ s1 is elliptic, the quotient (S/Sh1)/(S/Sh
2
1) is 

compact and therefore has finite volume. Hence our integral is dominated by the identical 
integral with the x replaced by x2 and the S/Sh1 replaced by S/Sh

2
1 .

Now we apply Theorem 3 or Proposition 5 and (28) with G = S, g = s0, z = x2 for 
any x ∈ h1

reg so that Z = Sh
2
1 , z = s

h
2
1

0 , h2
1 ⊆ c and πg/z|h2

1
= πs0/h

2
1
. �

Remark. Inequalities (61) and (62) show that the estimate of Proposition 22 is as sharp 
as the estimate of Theorem 3. In case when Z = H ⊆ G is a Cartan subgroup, there is a 
characterization of the regular semisimple orbital integrals on a semisimple Lie algebra 
due to Bouaziz, [1], from which one can see that the estimate of Theorem 3 is sharp.

For N ≥ 0 define

IN (t) =
{
t−N if t ≥ 1,
1 −N ln(t) if 0 < t ≤ 1.

(63)

Then

(
IN (t)

)1/2 ≤ IN/2(t) (t > 0) (64)

and

IN (s) ≥ IN (t) (0 < s < t). (65)

Lemma 23. Suppose that the supergroup (S, s) is such that the corresponding dual pair 
is isomorphic to (GL1(D), GL1(D)), D = R, C or H. Then for each N ≥ 1 there is a 
non-negative, finite constant C such that
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∫
S/Sh1

(
1 + |s.x|2

)−N
d
(
sSh1

)
≤ CIN (|x|) (x ∈ h1

reg).

Proof. We may realize our supergroup in terms of matrices as follows,

S =
{
s =

(
g 0
0 g′

)
; g, g′ ∈ D×

}
, s1 =

{(
0 z1
z2 0

)
; z1, z2 ∈ D

}
.

Then, by the classification of Cartan subspaces, [21], we may assume that

h1 =
{
x =

(
0 z

εz 0

)
; z ∈ D̃

}
,

where R̃ = R, C̃ = C and H̃ is a copy of C in H. Moreover, ε = ±1 if D = R and ε = 1
in D 
= R. Since

(
g 0
0 g′

)(
0 z

εz 0

)(
g 0
0 g′

)−1

=
(

0 gzg′ −1

g′εzg−1 0

)
,

we see that

Sh1 =
{(

g 0
0 g

)
; g ∈ D̃

}
.

The following formula defines a norm | · | on s1:∣∣∣∣( 0 z1
z2 0

)∣∣∣∣2 = |z1|2 + |z2|2,

where |z|2 = zz, z ∈ D̃. Let

U(D) =
{
g ∈ D×; |g| = 1

}
, U(D̃) = D̃ ∩ U(D).

Then, as a homogeneous space,

S/Sh1 = D× ×
(
D×/D̃×) = D× ×

(
U(D)/U(D̃)

)
.

Hence, we may normalize all the measures involved so that∫
S/Sh1

(
1 + |s.x|2

)−N
d
(
sSh1

)

=
∫
×

∫ (
1 +
∣∣gzg′ −1∣∣2 +

∣∣g′zg−1∣∣2)−N
dg′ dg
D U(D)
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=
∞∫
0

(
1 +
(
a2 + a−2)|z|2)−N

da/a ≤ 2
N

IN
(
|z|
)
,

where the last inequality follows from (D.1). �
Lemma 24. Suppose that the supergroup (S, s) is such that the corresponding dual pair 
is isomorphic to (GL2(R), GL2(R)) and that the centralizer of h2

1 in s0 is a fundamental 
Cartan subalgebra. Then for each N > 8 there is a finite constant C such that

∣∣πs0/h
2
1

(
x2)∣∣ ∫

S/Sh1

(
1 + |s.x|2

)−N
d
(
sSh1

)
≤ C

(
1 + |x|

)−N
2 (x ∈ h1

reg).

Proof. We realize our supergroup in terms of matrices as follows,

S =
{
s =

(
g 0
0 g′

)
; g, g′ ∈ GL2(R)

}
, s1 =

{(
0 z1
z2 0

)
; z1, z2 ∈ gl2(R)

}
.

Then, by the classification of Cartan subspaces, [21], we may assume that

h1 =
{
x =

(
0 z

z 0

)
; z =

(
ξ η

−η ξ

)
, ξ, η ∈ R

}
.

For x ∈ h1 as above, we shall write ξ = Re(z) and η = Im(z). As in the proof of 
Lemma 23 we check that

Sh1 =
{(

g 0
0 g

)
; g =

(
ξ η

−η ξ

)
∈ GL2(R)

}
,

which is isomorphic to C× embedded into GL2(R), as a Lie group. Hence, as a homoge-
neous space,

S/Sh1 = GL2(R) ×
(
GL2(R)/C×) = GL2(R) ×

(
SL±

2 (R)/SO2
)
.

Define a norm | · | on s1 by∣∣∣∣( 0 z1
z2 0

)∣∣∣∣2 = tr
(
zt1z1

)
+ tr

(
zt2z2

)
.

We may normalize all the measures involved so that∫
S/Sh1

(
1 + |s.x|2

)−N
d
(
sSh1

)

=
∫

GL (R)

∫
±

(
1 +
∣∣gzg′ −1∣∣2 +

∣∣g′zg−1∣∣2)−N
dg′ dg
2 SL2 (R)
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=
∫

SL2(R)

∫
SL2(R)

∞∫
0

(
1 + a2∣∣gzg′ −1∣∣2 + a−2∣∣g′zg−1∣∣2)−N

da/a dg′ dg

≤
∫

SL2(R)

∫
SL2(R)

2
N

IN
((∣∣gzg−1∣∣∣∣g′zg−1∣∣)1/2) dg′ dg, (66)

where the inequality follows from (D.2). Notice that∣∣gzg′ −1∣∣∣∣g′zg−1∣∣ ≥ ∣∣gzg′ −1g′zg−1∣∣ = ∣∣gz2g−1∣∣.
Hence, by (65) and (64),

IN
((∣∣gzg′ −1∣∣∣∣g′zg−1∣∣)1/2) ≤ (IN(∣∣gz2g−1∣∣1/2)IN(∣∣g′z2g′ −1∣∣1/2))1/2
≤ IN/2

(∣∣gz2g−1∣∣1/2)IN/2
(∣∣g′z2g′ −1∣∣1/2).

Therefore (66) is less than or equal to

2
N

( ∫
SL2(R)

IN/2
(∣∣gz2g−1∣∣1/2) dg)2

. (67)

We perform the integration (67) in terms of Cartan decomposition (G = KAK):∫
SL2(R)

IN/2
(∣∣gz2g−1∣∣1/2) dg

=
∞∫
1

IN/2
((

2
(
Re
(
z2))2 +

(
a4 + a−4)(Im(z2))2)1/4)1

2
(
a2 − a−2) da/a

≤
∞∫
1

IN/2
(
a
∣∣Im(z2)∣∣1/2)a2 da/a ≤

∞∫
0

IN/2
(
a
∣∣Im(z2)∣∣1/2)a2 da/a

=
∣∣Im(z2)∣∣−1

∞∫
0

IN/2(a)a da, (68)

where that last integral is finite because N2 > 2. Therefore (66) is less than or equal to

2
N

( ∞∫
0

IN/2(a)a da
)2∣∣Im(z2)∣∣−2

. (69)

Notice that, by (64), in terms of (68) we have
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IN/2
((

2
(
Re
(
z2))2 +

(
a4 + a−4)(Im(z2))2)1/4)

≤
(
IN/4

((
2
(
Re
(
z2))2 +

(
a4 + a−4)(Im(z2))2)1/4))2

≤ IN/4
(
|z2|1/2

)
IN/4

((
2
(
Re
(
z2))2 +

(
a4 + a−4)(Im(z2))2)1/4)

≤ IN/4
(
|z2|1/2

)
IN/4

(
a
∣∣Im(z2)∣∣1/2).

Hence, (68) is less than or equal to

∣∣Im(z2)∣∣−1
IN/4

(∣∣z2∣∣1/2) ∞∫
0

IN/4(a)a da, (70)

where the integral is finite because N/4 > 2. Therefore (66) is less than or equal to

2
N

(
IN/4

(∣∣z2∣∣1/2))2( ∞∫
0

IN/4(a)a da
)2∣∣Im(z2)∣∣−2

. (71)

Clearly (66) is less than or equal to the minimum of (69) and (71). Thus there is a finite 
constant C such that (66) is less than or equal to

C
(
1 + |z|

)−N/2∣∣Im(z2)∣∣−2
. (72)

Since |πs0/h
2
1
(x2)| is proportional to | Im(z2)|2, we see that (72) completes the proof. �

Let L, N ⊆ S be the Lie subgroups with the Lie algebras l0, n0 respectively and let 
K ⊆ S be the maximal compact subgroup corresponding to the Cartan involution θ.

Corollary 25. For any non-negative measurable function φ : s1 → R and x ∈ h
reg
1∣∣πs0/h

2
1

(
x2)∣∣ ∫

S/Sh1

φ(s.x) d
(
sSh1

)

=
∣∣πl0/h

2
1

(
x2)∣∣∣∣det(adx)n1→n0

∣∣ ∫
L/Lh1

∫
n1

∫
K

φ
(
k.(l.x + y)

)
dk dy d

(
lLh1

)

=
∣∣πl0/h

2
1

(
x2)∣∣∣∣det

(
ad x2)

n0

∣∣ 12 ∫
L/Lh1

∫
n1

∫
K

φ
(
k.(l.x + y)

)
dk dy d

(
lLh1

)
.

Proof. Notice that S = KNL and that the Haar measure on S may be written as ds =
dk dn dl. Furthermore, Lemma 15 implies that∫

φ(n.x) dn = 1
|det(adx)n0→n1 |

∫
φ(x + y) dy.
N n1
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We see from (56) that

|πs0/h
2
1
(x2)|

|det(adx)n0→n1 |
=

|πl0/h
2
1
(x2)||det(adx2)n0 |

|det(adx)n0→n1 |
=
∣∣πl0/h

2
1

(
x2) det(adx)n1→n0

∣∣.
This implies the first equality. Since the maps (53), (54) are adjoint to each other (see 
[21, Proposition 2.18]) ∣∣det(adx)n1→n0

∣∣ = ∣∣det(adx)n0→n1

∣∣.
Hence, by (56),

∣∣det(adx)n1→n0

∣∣ = ∣∣det
(
ad x2)

n0

∣∣ 12
and the last equality follows. �

Fix a K-invariant norm | · | on the real vector space s. (For example |x|2 = −〈θx, x〉, 
x ∈ S.) The following theorem guarantees that the Weyl Harish-Chandra integration 
formula of Theorem 21 extends to Schwartz functions on W = s1.

Theorem 26. For any constant 0 ≤ M < ∞ there are constants 0 ≤ N, C < ∞ such that 
for all x ∈ h1

reg,

∣∣πs0/h
2
1

(
x2)∣∣ ∫

S/Sh1

∫
s1(V0)

(
1 +
∣∣g.(x + y)

∣∣)−N
dy d
(
gSh1

)

≤ C ·
∣∣det
(
adx2)

n0

∣∣ 12 ·
(
1 + |x|l01 |

)−M ·
n∏

i=1
IM
(
|x|li1 |

)
·

n+m∏
i=n+1

(
1 + |x|li1 |

)−M
.

Proof. This is immediate from Corollary 25, Lemmas 23, 24 and Proposition 22. �
6. Some properties of the invariant eigendistributions on the symplectic space

The group S acts on s1 via the adjoint action. Hence, we have the permutation rep-
resentation on the Schwartz space S(s1):

π(s)φ(x) = φ
(
s−1.x

) (
s ∈ S, x ∈ s1, φ ∈ S(s1)

)
(73)

with the derivative

π(z)φ(x) = d

dt
φ
(
exp(−tz).x

)∣∣
t=0 = ∂

(
−[z, x]

)
φ(x)

(
z ∈ s0, x ∈ s1, φ ∈ S(s1)

)
.

(74)
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As mentioned in the Introduction, a distribution f ∈ S∗(s1) shall be called an invariant 
eigendistribution if

π(s)f = f (s ∈ S) (75)

and

T (z)�f = γ(z)f
(
z ∈ U(s0)S

)
, (76)

where γ : U(s0)S → C is an algebra homomorphism. Then (76) is the system of equations 
explained in the Introduction. Notice that if S is connected then (75) is equivalent to

∂
(
[z, x]

)
f(x) = 0 (z ∈ s0, x ∈ s1). (77)

Thus in this case f is an invariant eigendistribution if it satisfies the two systems of 
differential equations (76) and (77).

Let us identify s1 with the dual s∗1 by

x′(x) =
〈
x, x′〉 (

x, x′ ∈ s1
)
.

This leads to an identification of the cotangent bundle to s1 with s1 × s1:

T ∗s1 = s1 × s∗1 = s1 × s1.

Lemma 27. The characteristic variety of the system of Eqs. (76) and (77) is equal to 
the set of all the pairs (x, y) ∈ s1 × s1 such that the anticommutant {x, y} = 0 and y is 
nilpotent.

Proof. The principal symbol of the differential operator (77) may be computed as follows

lim
t→∞

t−1e−it〈x,y〉∂
(
[z, x]

)
eit〈x,y〉 = i

〈
[z, x], y

〉
.

Hence, the characteristic variety of the joined system (77) consists of pairs (x, y) such 
that 〈

[z, x], y
〉

= 0 (z ∈ s0).

In other words, y is orthogonal to the space [s0, x]. By [21, Lemma 3.5] this last condition 
is equivalent to the vanishing of the anticommutant, {x, y} = 0. But formula (7.22) in [18]
implies that the characteristic variety of the system (76) consists of the pairs (x, y) such 
that y is annihilated by all the non-constant, complex valued, S-invariant polynomials 
on s1, i.e. y is nilpotent. �

An element x ∈ s1 is called regular if the semisimple part of its Jordan decomposition 
is regular. We shall denote by s1

reg ⊆ s1 the subset of all the regular elements.
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Lemma 28. The characteristic variety of the system of Eqs. (76) and (77) over the set 
of the regular elements s1reg ⊆ s1 is equal to s1

reg × {0}.

Proof. We may assume that (S, s) is a complex supergroup. Let x ∈ s1
reg and let x =

xs + xn be Jordan decomposition of x. Then, by [21, Theorems 6.10(b) and 4.4(a)], 
the supergroup (Sx2

s , s1) is isomorphic to the direct product of several copies of the 
supergroup whose underlying dual pair coincides with (GL1(C), GL1(C)), and one copy 
of (O1(C), Sp2n(C)), if xn 
= 0.

Let y ∈ s1 be nilpotent and anticommute with x. We need to show that y = 0. It will 
suffice to show that y is semisimple. Notice that y commutes with x2 = x2

s+xsxn+xnxs+
x2
n = x2

s. Hence, we may assume that the underlying dual pair is either (GL1(C), GL1(C))
or (O1(C), Sp2n(C)). In the first case the defining module V = V0 ⊕ V1, with dim V0 =
dim V1 = 1. Let v0 ∈ V0 and v1 ∈ V1. We may assume that

x(v0) = ξv1 and x(v1) = ±ξv0,

where ξ ∈ C×. Then the anticommutant of x consists of elements x′ such that

x′(v0) = ξ′v1 and x′(v1) = ∓ξ′v0,

where ξ′ ∈ C, see [21, (13.47)]. In particular x′, and hence y, is semisimple.
In the second case x is any non-zero element of s1. Recall the following formula〈

z, {x, y}
〉

=
〈
y, [z, x]

〉
(z ∈ s0).

Since the set of all the commutators [z, x] coincides with s1 (because the set of the 
non-zero elements of s1 is a single Sp2n(C)-orbit) and {x, y} = 0, we see that y is 
orthogonal to s1 and hence equal to zero. �

By combining Lemmas 27 and 28 with [12] we obtain the following corollary.

Corollary 29. The restriction of an invariant eigendistribution on s1 to s1
reg is a smooth 

function.
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Appendix A

In this appendix we verify the assumptions of [22, Corollary 5.4, p. 283] for a minimal 
non-zero nilpotent orbit in a real symplectic Lie algebra
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sp2n(R) =
{
X =

(
A B

C −At

)
; A,B = Bt, C = Ct ∈ gln(R)

}
. (A.1)

Let h be the elliptic Cartan subalgebra consisting of the matrices X = X(x1, x2, . . . , xn), 
as in (A.1), with A = 0, B diagonal with diagonal entries x1, x2, . . . , xn, and C = −B. 
Also, let k ⊆ sp2n(R) be the subset of the skew-symmetric matrices.

The set of regular elements hreg in h consists of the X such that the xj are all distinct 
and non-zero. Let h+ ⊆ hreg be the Weyl chamber defined by the condition x1 > x2 >

· · · > xn > 0. For t > 0 let

a(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 t−1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then a(t) ∈ Sp2n(R) and

a(t)Xa(t)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 t2x1 0
. . . 0

0 0 . . . 0 0 x2
. . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . xn

−t−2x1 0 . . . 0 0 0 . . . 0
0 −x2 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . −xn 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence,

lim
t→∞

t−2a(t)Xa(t)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 x1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.2)
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If x1 > 0 then (A.2) belongs to one minimal nilpotent orbit O, and if x1 < 0 it belongs 
to the other nilpotent orbit equal to −O. Let OC be the complexification of O. This is 
the unique minimal nilpotent orbit for the complex symplectic group Sp2n(C). We see 
that

O ⊆ OC ∩
(
closure of Sp2n(R).R+X

) (
X ∈ h+).

Let

J =
(

0 −I

I 0

)
.

The map Y → JY transforms elements of the symplectic Lie algebra into the elements 
the space of the symmetric matrices and intertwines the conjugation action of Sp2n(R)
on the Lie algebra with the natural action on the symmetric matrices. In particular the 
image of an Sp2n(R)-orbit of an element X ∈ h+ consists of positive definite matrices. 
Hence the image of closure of Sp2n(R).R+X consists of positive semidefinite matrices. 
Therefore

−O � closure of Sp2n(R).R+X
(
X ∈ h+).

Since OC ∩ sp2n(R) = O ∪ (−O), we see that

O = OC ∩
(
closure of Sp2n(R).R+X

) (
X ∈ h+). (A.3)

This verifies [22, Hypothesis (O), p. 280].
Let us choose a positive root system for the roots of h in gC so that πshort

sp2n(R)/h(X) =∏
1≤j<k≤n(ixk−ixj)(ixk+ixj). The Weyl group W (sp2n(R), h) consists of all the permu-

tations and the sign changes of the xj. This group acts on C[h], the space of the complex 
valued polynomials on h, in the obvious way. The representation ρOC

of W (sp2n(R), h)
attached to the orbit OC via Springer correspondence may be realized on the subspace of 
the polynomials generated by πshort

sp2n(R)/h. (One way to see it is to use Wallach’s theorem 
[25] saying that ρOC

is generated by the product of μ̂O, the Fourier transform of the in-
variant measure on O restricted to h+, times πsp2n(R)/h the product of all the roots of h in 
sp2n(R). The Fourier transform is well known and is equal to a constant multiple of the 
function chc given in (4), see for example [20, proof of Proposition 9.3]. In particular the 
restriction to h+ coincides with the reciprocal of the product of the long roots. Therefore 
μ̂O|h+πsp2n(R)/h|h+ is a non-zero constant multiple of πshort

sp2n(R)/h.) The representation ρOC

is one dimensional and its restriction to W (k, h), the subgroup of all the permutations of 
the xj , coincides with the sign representation. Therefore the latter is contained in ρOC

with multiplicity one. This verifies the assumptions of [22, Corollary 5.4].



M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335 317
Appendix B

Here we verify Proposition 18. Recall that our dual pair acts on a defining module 
V = V0 ⊕ V1, which is a finite dimensional Z/2Z-graded vector space over D = R, C
or H. For z ∈ s1, the pair (z, V) is called decomposable if there are two Z/2Z-graded 
non-zero subspaces V′, V′′ ⊆ V preserved by z (and orthogonal if the corresponding dual 
pair is of type I) such that V = V′ ⊕ V′′. Otherwise (z, V) is called indecomposable.

We shall verify Proposition 18 under the assumption that the nilpotent element z ∈ s1
is such that (z, V) is indecomposable. (We shall see at the end of this appendix that this 
implies the result for general nilpotent elements.)

For dual pairs of type I such elements are classified in [5, Theorem 5.2]. There are 
seven cases to consider (Case I.a–Case I.g below). For pairs of type II there are two cases, 
see [21, Theorem 5.5] (Case II.a and Case II.b below). (Some misprints which occur in [5, 
Theorem 5.2] have been corrected in [21, Theorem 5.4]. There is one remaining misprint 
in [21, Theorem 5.4] which we correct in what follows.) In each case we describe the 
graded vector space V, the automorphism θ (36), the Cartan subspace h1 ⊆ s1, the 
abelian Lie algebra a ⊆ h2

1 and the decomposition of z into root spaces for the action 
of a.

We begin with the dual pairs of type I. In this case there is a possibly trivial involution 
D � a → a ∈ D on the division algebra D. We shall assume that the space V0 is 
equipped with a non-degenerate hermitian (or symmetric) form ( , )0 and that V1 with a 
non-degenerate skew-hermitian (or skew-symmetric) form ( , )1. Let ( , ) = ( , )0⊕( , )1. 
Then, in particular, x ∈ End(V) belongs to s1 if and only if (xu, v) = (u, sxv) for all 
u, v ∈ V, where s(veven + vodd) = veven − vodd. Recall that the signature of a hermitian 
(or symmetric) form is the difference of the dimension of a maximal subspace where the 
form is positive definite and the dimension of a maximal subspace where the form is 
negative definite. We shall write sgn((·,·)0) = 1 if the form (·,·)0 has positive signature, 
sgn((·,·)0) = −1 if it has negative signature and sgn((·,·)0) = 0 if the signature is zero. 
In each case we’ll describe an element T ∈ S such that for a specific basis of V consisting 
of vectors vk, (Tvk, vk) > 0. Consequently the conjugation by T coincides with the 
automorphism θ (36), unless the involution D � a → a ∈ D is trivial. In that case θ
is the conjugation by T composed with the conjugation on s induced by the complex 
conjugation on V which leaves the vectors vk fixed. Set

δ(k) = (−1)k(k−1)/2 =
{

1 if k ∈ 4Z or 4Z + 1,
−1 if k ∈ 4Z + 2 or 4Z + 3.

(B.1)

Then, in particular, δ(k + 1) = (−1)kδ(k), if m is divisible by 4 then δ(m + 2 − k) =
−(−1)kδ(k), if m is even but is not divisible by 4 then δ(m − k) = (−1)k+1δ(k).

Case I.a: S = Op+1,p × Sp2p(R), O2p+1(C) × Sp2p(C), Up+1,p × Up,p or Spp+1,p × O∗
4p

m ∈ 4Z, m > 0;
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V =
m∑

k=0

Dvk, veven ∈ V0, vodd ∈ V1;

vk = zkv0 
= 0, 0 ≤ k ≤ m, zvm = 0;

(vk, vl) = 0 if l 
= m− k, (vk, vm−k) = δ(k)δ
(
m

2

)
sgn
(
(·,·)0

)
,

where, by definition, sgn
(
(·,·)0

)
= 1 if D = C

and the involution D � a → a ∈ D is trivial.

Here,

Tvk = tkvm−k, tk = (−1)kδ(k)δ
(
m

2

)
sgn
(
(·,·)0

)
, 0 ≤ k ≤ m.

The Cartan subspace h1 consists of the linear maps x defined by

xv2j = xjv2j+1, xv2j+1 = xjv2j , xvm
2

= 0,

xvm−2j = −xjvm−2j−1, xvm−2j−1 = xjvm−2j ,

if D 
= H, then xj ∈ D,

if D = H, then xj ∈ C = the centralizer of i in H, 0 ≤ 2j < m

2 .

This is the direct sum of the indecomposable Cartan subspaces which occur in [21, 
Theorem 6.2(a)].

The Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 0 ≤ k ≤ m,

ak = −am−k, 0 ≤ k <
m

2 , am
2

= 0,

a2j = a2j+1 for 0 ≤ 2j < m

2 .

For 0 ≤ k < m
2 define a linear map z(k) by

z(k)vk = vk+1, z(k)vm−k−1 = vm−k,

z(k)vj = 0, j /∈ {k,m− k − 1}.

Then z =
∑m

2 −1
k=0 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 

z(even) ∈
∑m

i=1 li1 and z(odd) ∈ n1.
For a fixed j with 0 ≤ 2j < m

2 and for t > 0 define b = b(t) ∈ S by

bv2j = tv2j , bv2j+1 = t−1v2j+1,

bvm−2j = t−1vm−2j , bvm−2j−1 = tvm−2j−1,

bvk = vk for k /∈ {2j, 2j + 1,m− 2j,m− 2j − 1}.
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Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j). Hence, zl =
∑

j z(2j) is the limit of elements of the L-orbits passing through h1.

Case I.b: S = Up,p × Up+1,p or Spp,p × O∗
2(2p+1)

m ∈ 4Z, m > 0,

D 
= R, the involution D � a → a ∈ D is not trivial;

V =
m+1∑
k=1

Dvk, veven ∈ V0, vodd ∈ V1;

vk+1 = zkv1 
= 0, 0 ≤ k ≤ m, zvm+1 = 0;

(vk, vl) = 0 if l 
= m + 2 − k, (vk, vm+2−k) = δ(k)(v1, vm+1),

(v1, vm+1) = i sgn
(
−i(·,·)1

)
δ

(
1 + m

2

)
, if D = C,

(v1, vm+1) = i, if D = H.

Here,

Tvk = tkvm+2−k, tk = (−1)kδ(k)(v1, vm+1), 1 ≤ k ≤ m + 1.

The Cartan subspace h1 consists of the linear maps x defined by

xv2j+1 = xjv2j+2, xv2j+2 = xjv2j+1, xvm+2
2

= 0,

xvm+1−2j = −xjvm−2j , xvm−2j = xjvm+1−2j ,

xj ∈ C = centralizer of i in D, 1 ≤ 2j + 1 <
m

2 .

This is the direct sum of the indecomposable Cartan subspaces which are isomorphic to 
those which occur in [21, Theorem 6.2(a)]. (One has to adjust the sesquilinear forms τ0
and τ1 listed in [21, Theorem 6.2(a)] in order to get the forms ( , )0 and ( , )1 we are 
working with here.)

The Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 1 ≤ k ≤ m + 1,

ak = −am+2−k, 1 ≤ k <
m + 2

2 , am+2
2

= 0,

a2j+1 = a2j+2 for 1 ≤ 2j + 1 <
m

2 .

For 1 ≤ k ≤ m
2 define a linear map z(k) by

z(k)vk = vk+1, z(k)vm+1−k = vm+2−k,

z(k)vj = 0, j /∈ {k,m + 1 − k}.



320 M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335
Then z =
∑m

2
k=1 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 

z(odd) ∈
∑m

i=1 li1 and z(even) ∈ n1.
For a fixed j with 1 ≤ 2j + 1 < m

2 and for t > 0 define b = b(t) ∈ S by

bv2j+1 = tv2j+1, bv2j+2 = t−1v2j+2,

bvm+1−2j = t−1vm+1−2j , bvm−2j = tvm−2j ,

bvk = vk for k /∈ {2j + 1, 2j + 2,m + 1 − 2j,m− 2j}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then lim→0 bxb
−1 =

z(2j + 1). Hence, zl =
∑

j z(2j + 1) is the limit of elements of the L-orbits passing 
through h1.

Case I.c: S = Op,p× Sp2(p+1)(R), O2p(C) × Sp2(p+1)(C), Up+1,p × Up,p or Spp+1,p × O∗
2p

m ∈ 4Z, m > 0,

D 
= H, the involution D � a → a ∈ D is trivial;

V =
m+1∑
k=1

(
Dvk + Dv′k

)
; veven, v

′
even ∈ V0; vodd, v

′
odd ∈ V1;

vj+1 = zjv1 
= 0, v′j+1 = zjv′1 
= 0, 0 ≤ j ≤ m, zvm+1 = zv′m+1 = 0;(
vk, v

′
m+2−k

)
= δ(k),

(
v′k, vm+2−k

)
= −δ(k), 1 ≤ k ≤ m + 1

and all other pairings are zero.

Here,

Tvk = tkv
′
m+2−k, T v′k = t′kvm+2−k,

tk = (−1)kδ(k), t′k = −(−1)kδ(k), 1 ≤ k ≤ m + 1.

The Cartan subspace h1 consists of the linear maps x defined by

xv2j+1 = xjv2j+2, xv2j+2 = xjv2j+1, xvm+1 = 0,

xv′m+1−2j = −xjv
′
m−2j ,

xv′m−2j = xjv
′
m+1−2j , xv′1 = 0,

xj ∈ D, 1 ≤ 2j + 1 < m + 1.

This is the direct sum of the indecomposable Cartan subspaces which are isomorphic to 
those which occur in [21, Theorem 6.2(a)]. (One has to adjust the sesquilinear forms τ0
and τ1 listed in [21, Theorem 6.2(a)] in order to get the forms ( , )0 and ( , )1 we are 
working with here.)



M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335 321
The Lie algebra a consists of the linear maps a defined by

avk = akvk, av′m+2−k = −akv
′
m+2−k, ak ∈ R, 1 ≤ k ≤ m,

avm+1 = 0, av′1 = 0,

a2j+1 = a2j+2 for 1 ≤ 2j + 1 < m + 1.

For 1 ≤ k ≤ m define a linear map z(k) by

z(k)vk = vk+1, z(k)v′m+1−k = v′m+2−k,

z(k)vj = 0, z′(k)v′m+1−j = 0, j 
= k.

Then z =
∑m

k=1 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 
z(odd) ∈

∑m
i=1 li1 and z(even) ∈ n1.

For a fixed j with 1 ≤ 2j + 1 < m + 1 and for t > 0 define b = b(t) ∈ S by

bv2j+1 = tv2j+1, bv2j+2 = t−1v2j+2,

bvm+1−2j = t−1vm+12j , bvm−2j = tvm−2j ,

bvk = vk for k /∈ {2j + 1, 2j + 2,m + 1 − 2j,m− 2j}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j + 1). Hence, zl =
∑

j z(2j + 1) is the limit of elements of the L-orbits passing 
through h1.

Case I.d: S = Up,p × Up,p−1 or Spp,p × O∗
2(2p−1)

m ∈ 2Z \ 4Z, m > 0,

D 
= R, the involution D � a → a ∈ D is not trivial;

V =
m∑

k=0

Dvk, veven ∈ V0, vodd ∈ V1;

vk = zkv0 
= 0, 0 ≤ k ≤ m, zvm = 0;

(vk, vl) = 0 if l 
= m− k, (vk, vm−k) = δ(k)ic, c = ±1.

Here,

Tvk = tkvm−k, tk = (−1)kδ(k)ic, 0 ≤ k ≤ m.

The Cartan subspace h1 consists of the linear maps x defined by
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xv2j = xjv2j+1, xv2j+1 = xjv2j , xvm
2

= 0,

xvm−2j = −xjvm−2j−1, xvm−2j−1 = xjvm−2j ,

xj ∈ C = the centralizer of i in D, 0 ≤ 2j < m− 2
2 ,

xvm
2

= xm
2

1√
2
(vm

2 −1 + ivm
2 +1), x

1√
2
(vm

2 −1 + ivm
2 +1) = xm

2
vm

2
,

xm
2
∈ 1√

2
(i− 1)R,

x
1√
2
(vm

2 −1 − ivm
2 +1) = 0.

This is the direct sum of the indecomposable Cartan subspaces which occur in [21, 
Theorem 6.2(a) and (b)].

The Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 0 ≤ k ≤ m,

ak = −am−k, 0 ≤ k <
m

2 , am
2

= 0,

a2j = a2j+1 for 0 ≤ 2j < m

2 .

For 0 ≤ k < m−2
2 define a linear map z(k) by

z(k)vk = vk+1, z(k)vm−k−1 = vm−k,

z(k)vj = 0, j /∈ {k,m− k − 1}.

Then z =
∑m−2

2
k=0 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 

z(even) ∈
∑m

i=1 li1 and z(odd) ∈ n1.
Set p = m

2 , u = −1√
2(1 + i) and for t ∈ R× define

bvp−1 = tvp−1, bvp = uvp, bvp+1 = t−1vp+1,

bvk = vk if k /∈ {p− 1, p, p + 1}.

Then b ∈ S and

bxb−1vp−1 = t−1u
xp√

2
vp, bxb−1vp = u−1 xp√

2
(
tvp−1 + t−1ivp+1

)
,

bxb−1vp+1 = −itu
xp√

2
vp.

Choose xp = −iu
√

2t. Then z(p − 1) = limt→0 bxb
−1. Thus z(p − 1) ∈ l01 is the limit of 

the semisimple elements of l01.



M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335 323
For a fixed j with 0 ≤ 2j < m−2
2 and for t > 0 define b = b(t) ∈ S by

bv2j = tv2j , bv2j+1 = t−1v2j+1,

bvm−2j = t−1vm−2j , bvm−2j−1 = tvm−2j−1,

bvk = vk for k /∈ {2j, 2j + 1,m− 2j,m− 2j − 1}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j). Hence, zl =
∑

j z(2j) is the limit of elements of the L-orbits passing through h1.

Case I.e: S = Op,p−1 × Sp2p(R), O2p−1(C) × Sp2p(C), Up,p−1 × Up,p or Spp,p−1 × O∗
4p

(This is the only case where (1) or (2) occurs. It happens when the involution D �
a → a ∈ D is trivial.)

m ∈ 2Z \ 4Z, m > 0;

V =
m+1∑
k=1

Dvk, veven ∈ V0, vodd ∈ V1;

vk = zkv1 
= 0, 0 ≤ k ≤ m, zvm+1 = 0;

(vk, vl) = 0 if l 
= m + 2 − k, (vk, vm+2−k) = δ(k)(v1, vm+1),

(v1, vm+1) = δ

(
m + 2

2

)
sgn
(
(·,·)0

)
.

Here,

Tvk = tkvm+2−k, tk = (−1)kδ(k)(v1, vm+1), 0 ≤ k ≤ m.

The Cartan subspace h1 consists of the linear maps x defined by

xv2j−1 = xjv2j , xv2j = xjv2j−1,

xvm+3−2j = −xjvm+2−2j , xvm+2−2j = xjvm+3−2j ,

xj ∈ C = the centralizer of i in D, 0 < 2j < m + 2
2 ,

if the involution D � a → a ∈ D is trivial, then xvm+2
2

= 0,

if the involution D � a → a ∈ D is not trivial, then

xvm+2
2

= xm+2
2

1√
2
(vm

2
+ ivm

2 +2), x
1√
2
(vm

2
+ ivm

2 +2) = xm+2
2

vm+2
2

,

xm+2
2

∈ 1√
2
(i− 1)R,

x
1√ (vm

2
− ivm

2 +2) = 0.

2
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This is the direct sum of the indecomposable Cartan subspaces which occur in [21, 
Theorem 6.2(a) and (b)].

The Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 1 ≤ k ≤ m + 1,

ak = −am+2−k, 1 ≤ k <
m + 2

2 , am+2
2

= 0,

a2j−1 = a2j for 0 < 2j < m + 2
2 .

For 1 ≤ k < m+2
2 define a linear map z(k) by

z(k)vk = vk+1, z(k)vm+1−k = vm+2−k,

z(k)vj = 0, j /∈ {k,m + 1 − k}.

Then z =
∑m+2

2
k=1 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 

z(odd) ∈
∑m

i=1 li1, z(
m+2

2 ) ∈ l01 and z(2j) ∈ n1 for 0 < 2j < m+2
2 .

Assume that the involution D � a → a ∈ D is not trivial. Set p = m+2
2 , u = −1√

2(1 + i)
and for t ∈ R× define

bvp−1 = tvp−1, bvp = uvp, bvp+1 = t−1vp+1,

bvk = vk if k /∈ {p− 1, p, p + 1}.

Then b ∈ S and

bxb−1vp−1 = t−1u
xp√

2
vp, bxb−1vp = u−1 xp√

2
(
tvp−1 + t−1ivp+1

)
,

bxb−1vp+1 = −itu
xp√

2
vp.

Choose xp = −iu
√

2t. Then z(p − 1) = limt→0 bxb
−1. Thus z(p − 1) ∈ l01 is the limit of 

the elements of the L-orbit passing through h1.
If the involution D � a → a ∈ D is trivial, then the only semisimple element in l01

is 0. The restriction of S to the span of vp−1, vp and vp+1 is isomorphic to O1 × Sp2(R), 
if D = R and to O1 × Sp2(C), if D = C. The complement of 0 in l01 is a single nilpotent 
orbit under the action of this group.

For a fixed j with 0 < 2j < m+2
2 and for t > 0 define b = b(t) ∈ S by

bv2j−1 = tv2j−1, bv2j = t−1v2j ,

bvm+3−2j = t−1vm+3+2j , bvm+2−2j = tvm+2−2j ,

bvk = vk for k /∈ {2j − 1, 2j,m + 3 − 2j,m + 2 − 2j}.
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Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j − 1). Hence, zl =
∑

j z(2j − 1) is the limit of elements of the L-orbits passing 
through h1.

Notice that the same holds for the nilpotent element z =
∑m+2

2
k=2 z(k), z(k) ∈ s1.

Case I.f: S = Op,p × Sp2(p+1)(R) or O2p(C) × Sp2(p+1)(C)

m ∈ 2Z \ 4Z, m ≥ 0,

D 
= H, the involution D � a → a ∈ D is trivial;

V =
m∑

k=0

(
Dvk + Dv′k

)
; veven, v

′
even ∈ V0; vodd, v

′
odd ∈ V1;

vj = zjv0 
= 0, v′j = zjv′0 
= 0, 0 ≤ j ≤ m, zvm = zv′m = 0;(
vk, v

′
m−k

)
= δ(k),

(
v′k, vm−k

)
= −δ(k), 0 ≤ k ≤ m

and all other pairings are zero.

Here,

Tvk = tkv
′
m−k, T v′k = t′kvm−k,

tk = (−1)kδ(k), t′k = −(−1)kδ(k), 0 ≤ k ≤ m.

The Cartan subspace h1 consists of the linear maps x defined by

xv2j = xjv2j+1, xv2j+1 = xjv2j , xvm = 0,

xv′m−2j = −xjv
′
m−2j−1, xv′m−2j−1 = xjv

′
m−2j , xv′0 = 0,

xj ∈ D, 0 ≤ j ≤ m

2 .

This is the direct sum of the indecomposable Cartan subspaces which are isomorphic to 
those which occur in [21, Theorem 6.2(a)]. (One has to adjust the sesquilinear forms τ0
and τ1 listed in [21, Theorem 6.2(a)] in order to get the forms ( , )0 and ( , )1 we are 
working with here.)

The Lie algebra a consists of the linear maps a defined by

avk = akvk, av′m−k = −akv
′
m−k, ak ∈ R, 0 ≤ k < m,

avm = 0, av′0 = 0,

a2j = a2j+1 for 0 ≤ 2j < m.

For 0 ≤ k < m define a linear map z(k) by



326 M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335
z(k)vk = vk+1, z(k)v′m−k−1 = v′m−k,

z(k)vj = 0, z(k)v′m−j−1 = 0, j 
= k.

Then z =
∑m−1

k=0 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 
z(even) ∈

∑m
i=1 li1 and z(odd) ∈ n1.

For a fixed j with 0 ≤ 2j ≤ m
2 and for t > 0 define b = b(t) ∈ S by

bv2j = tv2j , bv2j+1 = t−1v2j+1,

bvm−2j = t−1vm−2j , bvm−2j−1 = tvm−2j−1,

bvk = vk for k /∈ {2j, 2j + 1,m− 2j,m− 2j − 1}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j). Hence, zl =
∑

j z(2j) is the limit of elements of the L-orbits passing through h1.

Case I.g: S = Op,p × Sp2p(R), Up,p × Up,p or Spp,p × O∗
4p

m ∈ 2Z + 1;

V =
m∑

k=0

(
Dvk + Dv′k+1

)
; veven, v

′
even ∈ V0; vodd , v

′
odd ∈ V1;

vj = zjv0 
= 0, v′j+1 = zjv′1 
= 0, 0 ≤ j ≤ m, zvm = zv′m+1 = 0;(
vk, v

′
m+1−k

)
= δ(k),

(
v′k+1, vm−k

)
= δ(k + 1)δ(m), 0 ≤ k ≤ m

and all other pairings are zero.

Here,

Tvk = tkv
′
m+1−k, T v′k+1 = t′k+1vm−k,

tk = δ(k + 1), t′k+1 = δ(m + 1 − k), 0 ≤ k ≤ m.

The Cartan subspace h1 consists of the linear maps x defined by

xv2j = xjv2j+1, xv2j+1 = xjv2j ,

xv′m+1−2j = −xjv
′
m−2j , xv′m−2j = xjv

′
m+1−2j ,

if the involution D � a → a ∈ D is trivial, then xj ∈ D,

otherwise xj ∈ C ⊆ D, 0 ≤ j ≤ m

2 .

This is the direct sum of the indecomposable Cartan subspaces which are isomorphic to 
those which occur in [21, Theorem 6.2(a)]. (One has to adjust the sesquilinear forms τ0
and τ1 listed in [21, Theorem 6.2(a)] in order to get the forms ( , )0 and ( , )1 we are 
working with here.)
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The Lie algebra a consists of the linear maps a defined by

avk = akvk, av′m+1−k = −akv
′
m+1−k, ak ∈ R, 0 ≤ k ≤ m,

a2j = a2j+1 for 0 ≤ 2j < m.

For 0 ≤ k < m define a linear map z(k) by

z(k)vk = vk+1, z(k)v′m−k = v′m+1−k,

z(k)vj = 0, z(k)v′m+1−j = 0, j 
= k.

Then z =
∑m−1

k=0 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). In particular 
z(even) ∈

∑m
i=1 li1 and z(odd) ∈ n1.

For a fixed j with 0 ≤ j ≤ m
2 and for t > 0 define b = b(t) ∈ S by

bv2j = tv2j , bv2j+1 = t−1v2j+1,

bvm+1−2j = t−1vm+1−2j , bvm−2j = tvm−2j ,

bvk = vk for k /∈ {2j, 2j + 1,m + 1 − 2j,m− 2j}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j). Hence, zl =
∑

j z(2j) is the limit of elements of the L-orbits passing through h1.

Case I.“V”: S = O2 × Sp2(R)

D = R;

V = Dv1 + Dv2 + Dv3 + Dv′2;

zv1 = v2, zv2 = v3, zv3 = 0, zv′2 = 0;

(v1, v3) = 1, (v2, v2) =
(
v′2, v

′
2
)

= −1

and all the other pairings are zero.

The Cartan subspace h1 consists of the linear maps x defined by

x
1√
2
(
v2 + v′2

)
= x1(v1 + v3),

x
1√
2
(
−v2 + v′2

)
= x1(v1 − v3),

xv1 = x1
√

2v2,

xv3 = −x1
√

2v′2,

where x1 ∈ R, or equivalently,
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xv2 = x1v3, xv′2 = x1v1,

xv1 = x1v2, xv3 = −x1v
′
2.

This is the Cartan subspace which is isomorphic to the one which occurs in [21, Theo-
rem 6.2(c)].

For t > 0 define b = b(t) ∈ S by

bv1 = tv1, bv2 = v2, bv3 = t−1v3, bv′2 = v′2.

Also, let x1 = t. Then limt→0 bxb
−1 = z.

Case I.“VV”: S = O2 × Sp4 ⊇ (O1 × Sp2) × (O1 × Sp2)

D = R or C with trivial involution;

V = (Dv1 + Dv2 + Dv3) +
(
Dv′1 + Dv′2 + Dv′3

)
;

zv1 = v2, zv2 = v3, zv3 = 0, zv′1 = v′2, zv′2 = v′3, zv′3 = 0;

(v1, v3) =
(
v′1, v

′
3
)

= 1, (v2, v2) =
(
v′2, v

′
2
)

= −1

and all the other pairings are zero.

In this case there is only one, up to conjugation, Cartan subspace h1 ⊆ s1. If D = R, 
then h1 may be realized as the space consisting of linear maps x defined by

x
1√
2
(
v2 + v′2

)
= x1(v1 + v3),

x
1√
2
(
−v2 + v′2

)
= x1(v1 − v3),

xv1 = x1
√

2v2,

xv3 = −x1
√

2v′2,

where x1 ∈ R, see [21, Theorem 6.2(c)]. Equivalently,

xv2 = x1v3, xv′2 = x1v1,

xv1 = x1v2, xv3 = −x1v
′
2.

If D = C, then h1 is isomorphic to the Cartan subspace comprised of elements which 
occurs in [21, Theorem 6.2(a)]. In any case the kernel of a non-zero element of h1 is 
contained in V1. However any semisimple orbit in s1 passes through a Cartan subspace. 
Hence, the kernel of any non-zero semisimple element of s1 is contained in V1. Let x ∈ s1
and let x = xs+xn be Jordan decomposition of x, see [21]. Since xn ∈ s1 commutes with 
xs ∈ s1 we see from the above that xn = 0. Thus x is either nilpotent or semisimple. 
Since there are finitely many nilpotent orbits in s1, our given nilpotent z is the limit of 
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elements of the S-orbits passing through h1. Similar argument applies to the previous 
case too.

Next we consider the dual pairs of type II. As for the dual pairs of type I, x ∈ End(V)
belongs to s1 if and only if (xu, v) = (u, sxv) for all u, v ∈ V, where s(veven + vodd) =
veven − vodd . Also, if D 
= R, then there is a nontrivial involution on D. In any case we’ll 
describe a basis on V consisting of vectors vk. Then there is a positive definite hermitian 
(or symmetric if D = R) form η( , ) on V defined by the condition η(vk, vk) = 1. This form 
determines an involution End(V) � x → x† ∈ End(V) defined by η(xu, v) = η(u, x†v). 
Then θ(x) = −x† if x ∈ s0 and θ(x) = sx† if x ∈ s1.

Case II.a:

m ∈ Z, m > 0;

V =
m∑

k=0

Dvk, veven ∈ V0, vodd ∈ V1;

vk = zkv0 
= 0, 0 ≤ k ≤ m, zvm = 0.

If m is odd, then the Cartan subspace h1 consists of the linear maps x defined by

xv2j = xjv2j+1, xv2j+1 = xjv2j ,

if D 
= H, then xj ∈ D,

if D = H, then xj ∈ C ⊆ H, 0 ≤ 2j < m.

If m is even, then the Cartan subspace h1 consists of the linear maps x defined by

xv2j+1 = xjv2j+2, xv2j+2 = xjv2j+1, xv0 = 0,

if D 
= H, then xj ∈ D,

if D = H, then xj ∈ C ⊆ H, 0 ≤ 2j < m.

These are the direct sums of the indecomposable Cartan subspaces which occur in [21, 
Theorem 6.2(e)].

If m is odd, then the Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 0 ≤ k ≤ m,

a2j = a2j+1 for 0 ≤ 2j < m.

If m is even, then the Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 1 ≤ k ≤ m, av0 = 0,

a2j+1 = a2j+2 for 0 ≤ 2j < m.
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For 0 ≤ k < m define a linear map z(k) by

z(k)vk = vk+1,

z(k)vj = 0, j 
= k.

Then z =
∑m−1

k=0 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). If m is 
odd, then z(even) ∈

∑m
i=1 li1 and z(odd) ∈ n1. If m is odd, then z(odd) ∈

∑m
i=1 li1 and 

z(even) ∈ n1.
Suppose m is odd. For a fixed j with 0 ≤ 2j < m and for t > 0 define b = b(t) ∈ S by

bv2j = tv2j , bv2j+1 = t−1v2j+1,

bvk = vk for k /∈ {2j, 2j + 1}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j). Hence, zl =
∑

j z(2j) is the limit of elements of the L-orbits passing through h1.
Suppose m is even. For a fixed j with 0 ≤ 2j < m and for t > 0 define b = b(t) ∈ S by

bv2j+1 = tv2j+1, bv2j+2 = t−1v2j+2,

bvk = vk for k /∈ {2j + 1, 2j + 2}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j + 1). Hence, zl =
∑

j z(2j + 1) is the limit of elements of the L-orbits passing 
through h1.

Case II.b:

m ∈ Z, m > 0;

V =
m+1∑
k=1

Dvk, veven ∈ V0, vodd ∈ V1;

vk+1 = zkv1 
= 0, 0 ≤ k ≤ m, zvm+1 = 0.

If m is odd, then the Cartan subspace h1 consists of the linear maps x defined by

xv2j+1 = xjv2j+2, xv2j+2 = xjv2j+1, xvm+1 = 0,

if D 
= H, then xj ∈ D,

if D = H, then xj ∈ C ⊆ H, 0 ≤ 2j < m.

If m is even, then the Cartan subspace h1 consists of the linear maps x defined by
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xv2j+1 = xjv2j+2, xv2j+2 = xjv2j+1,

if D 
= H, then xj ∈ D,

if D = H, then xj ∈ C ⊆ H, 0 ≤ 2j < m.

These are the direct sums of the indecomposable Cartan subspaces which occur in [21, 
Theorem 6.2(e)].

If m is odd, then the Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 0 ≤ k ≤ m, avm+1 = 0,

a2j+1 = a2j+2 for 0 ≤ 2j < m.

If m is even, then the Lie algebra a consists of the linear maps a defined by

avk = akvk, ak ∈ R, 1 ≤ k ≤ m,

a2j+1 = a2j+2 for 0 ≤ 2j < m.

For 0 ≤ k < m define a linear map z(k) by

z(k)vk = vk+1,

z(k)vj = 0, j 
= k.

Then z =
∑m−1

k=0 z(k), z(k) ∈ s1 and for a ∈ a, [a, z(k)] = (ak+1 − ak)z(k). Then 
z(odd) ∈

∑m
i=1 li1 and z(even) ∈ n1.

For a fixed j with 0 ≤ 2j < m and for t > 0 define b = b(t) ∈ S by

bv2j+1 = tv2j+1, bv2j+2 = t−1v2j+2,

bvk = vk for k /∈ {2j + 1, 2j + 2}.

Also, let x = x(t) ∈ h1 be such that xj = t2 and xi = 0 for i 
= j. Then limt→0 bxb
−1 =

z(2j + 1). Hence, zl =
∑

j z(2j + 1) is the limit of elements of the L-orbits passing 
through h1.

By combining Cases I.a–II.b we see that Proposition 18 holds if (z, V) is indecompos-
able. Every nilpotent (z, V) is a finite direct sum of indecomposable nilpotents (zi, Vi), [5, 
Definition 3.14]. Suppose S is not isomorphic to an ortho-symplectic pair (Op,q×Sp2n(R)
or Op(C) × Sp2n(C)). Then each (zi, Vi) has the same property (the group S|Vi

is not 
ortho-symplectic) and the Cartan subspace h1 can be defined as the direct sum of the 
Cartan subspaces constructed for each (zi, Vi). Also the involution θ may be extended 
from each s(Vi) to s(V). Hence, Proposition 18 holds for (z, V), which is the sum of the 
(zi, Vi).
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Suppose S is an ortho-symplectic pair. Let

(z,V) = (z1,V1) ⊕ · · · ⊕ (zr,Vr) ⊕ (0,V0)

be the decomposition into irreducibles, where each zi is non-zero. As we checked in 
Cases I.c–I.g, the proposition holds for each (zi, Vi). However this does not automatically 
imply the proposition for the sum, because the sum of the individual Cartan subspaces 
constructed for the (zi, Vi) may be too small (could be zero). This problem does not 
occur if dimD Vi0 is even for each i. Thus we may assume that dimD Vi0 is odd for 
each i.

If dimD Vi0 > dimD Vi1, then we are in Case I.a, and if dimD Vi0 = dimD Vi1, then 
we are in Case I.g, the proposition holds for the sum of such (zi, Vi) with the Cartan 
subspace equal to the sum of the individual Cartan subspaces.

Thus we may assume that dimD Vi0 < dimD Vi1 for each i. Thus each (zi, Vi) is as in 
Case I.e. Here we combine Case I.e with either Case I.“VV” or Case I.“V” to construct 
the Cartan subspace and the involution θ for the sum.

Appendix C

In this appendix we conclude the proof of Theorem 20. Let (S, s) be a supergroup 
associated with a dual pair (Un, Un) or (GLn(D), GLn(D)) with D = R, C or H. Let 
x = xs + xn be the Jordan decomposition of an element x ∈ s1. We suppose that xs 
= 0
and xn 
= 0. Moreover, we may assume that xs belongs to a isotypic Cartan subalgebra 
built up from indecomposable blocks as in [21, Theorems 5.2(b) and 5.3].

S = Un × Un:
V = V0 × V1 with Vα =

∑n
k=1 Cvα,k (α ∈ Z/2Z).

xs = xs(a) =
( 0 aI
aI 0

)
with a ∈ C \ {0} and I the n × n identity matrix.

xn =
( 0 w
w∗ 0

)
with w ∈ Mn(C) and w∗ = iw̄t.

Since xnxs = xsxn, the matrix w must satisfy w∗ = w. Hence x2
n =

(
w2 0
0 w2

)
∈ s0 =

un × un. Since x2
n is nilpotent, so must be w2. But every matrix in un is diagonalizable. 

Hence w2 = 0. Taking traces, we obtain i tr(w̄tw) = tr(w2) = 0, which implies w = 0. 
This shows that in this case every element in s1 is either nilpotent or semisimple.

S = GLn(C) × GLn(C):
V and xs = xs(a) are as in the previous case.
xn =

( 0 w
w′ 0

)
with w, w′ ∈ Mn(C).

From xnxs = xsxn we obtain that w′ = w. Thus x = xs + xn =
(

0 aI+w
aI+w 0

)
. By 

the density of the semisimple matrices in Mn(C), we can find ym semisimple so that 
limm→∞ ym = aI + w. Hence x = limm→∞

(
0 ym

ym 0

)
. Notice that the latter matrix is 

semisimple. Indeed, if y ∈ Mn(C) is semisimple and gyg−1 = d is a diagonal matrix, then (
g 0
)(

0 y
)(

g−1 0
−1

)
=
( 0 d

)
is also diagonalizable.
0 g y 0 0 g d 0
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S = GLn(R) × GLn(R):
There are three cases to consider.

(I) The analogue of the case of GLn(C) ×GLn(C), with C replaced by R. One proceeds 
as above.

(II) V = V0 × V1 with Vα =
∑n

k=1 Rvα,k (α ∈ Z/2Z).
xs = xs(a) =

(
0 aI

−aI 0

)
with a ∈ R \ {0}.

xn =
( 0 w
w′ 0

)
with w, w′ ∈ Mn(R).

From xnxs = xsxn we obtain w′ = −w. Hence x = xs + xn =
(

0 aI+w
−aI−w 0

)
. 

Let ym ∈ Mn(R) be semisimple and such that limm→∞ ym = aI + w. Then x =
limm→∞

(
0 ym

−ym 0

)
. Notice that the latter matrix is semisimple. Indeed, over C, 

if gyg−1 = d is a diagonal matrix, then 
(

g 0
0 −g

)(
0 y
−y 0

)(
g−1 0
0 (−g)−1

)
=
(

0 d
−d 0

)
is 

also diagonalizable.
(III) V = V0 × V1 with Vα =

∑n
k=1(Rvα,k + Rv′α,k) (α ∈ Z/2Z).

xs = xs(a) =
( 0 A
A 0

)
where A = diag(a, . . . , a) is a block diagonal matrix with 

equal 2 × 2 diagonal blocks a =
(

β γ
−γ β

)
, β, γ ∈ R. We can assume β 
= 0 and 

γ 
= 0, otherwise we are reduced to the previous cases.
xn =

( 0 w
w′ 0

)
with w, w′ ∈ Mn(R).

From xnxs = xsxn we obtain w′A = Aw and Aw′ = wA. This implies that 
w′ = A−1wA and A2w = wA2. Notice that

a2 =
(
β2 − γ2 2βγ
−2βγ β2 − γ2

)
= I + 2βγj

where j =
(

0 1
−1 0

)
. Write w = (wrs) where each wrs is a 2 × 2 block. As A2w =

wA2, we have that Jw = wJ where J = diag(j, . . . , j). Hence Jwrs = wrsJ , i.e. 
wrs =

(
βrs γrs

−γrs βrs

)
. Therefore w commutes with A, i.e. w′ = w. The conclusion 

follows by the same argument as before.

S = GLn(H) × GLn(H):
There is only one case, and it is as (III) for GLn(R) × GLn(R).

Appendix D

Recall the function IN , (63). Here we verify the following elementary lemma.

Lemma D.1. For N > 0,

∞∫ (
1 +
(
a2 + a−2)t2)−N

da/a ≤ 2
N

IN (t) (t > 0). (D.1)

0
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Furthermore,

∞∫
0

(
1 +
(
a2b2 + a−2c2

)
t2
)−N

da/a ≤ 2
N

IN (
√
bc) (b, c > 0). (D.2)

Proof. Since the measure da/a is invariant under the substitution, a → at, t > 0, (D.2)
follows from (D.1). Since a2 + a−2 ≥ 2 > 1, the left hand side of (D.1) is dominated by

(
1 + t2

)−N/2
∞∫
0

(
1 +
(
a2 + a−2)t2)−N/2

da/a

≤
(
1 + t2

)−N/22
∞∫
1

(
1 + (at)2

)−N/2
da/a

=
(
1 + t2

)−N/22
∞∫
t

(
1 + a2)−N/2

da/a. (D.3)

If t ≥ 1 then the last expression in (D.3) is less than or equal to

t−N2
∞∫
1

(
1 + a2)−N/2

da/a ≤ t−N2
∞∫
1

a−N−1 da = 2
N

t−N .

If 0 < t < 1 then the last expression in (D.3) is dominated by

2
∞∫
t

(
1 + a2)−N/2

da/a ≤ 2
∞∫
1

(
1 + a2)−N/2

da/a + 2
1∫

t

da/a

≤ 2
N

− 2 ln(t) = 2
N

(
1 −N ln(t)

)
. �

References

[1] A. Bouaziz, Intégrales orbitales sur les algèbres de Lie réductives, Invent. Math. 115 (1) (1994) 
163–207.

[2] N. Bourbaki, Groupes et algèbres de Lie. Chapitre 1, Hermann, Paris, 1972.
[3] N. Bourbaki, Algebra II. Chapters 4–7, Elements of Mathematics, Springer-Verlag, Berlin, 2003. 

Reprint of the 1990 English edition.
[4] J. Dadok, V. Kac, Polar representations, J. Algebra 92 (2) (1985) 504–524.
[5] A. Daszkiewicz, W. Kraśkiewicz, T. Przebinda, Dual pairs and Kostant–Sekiguchi correspondence. 

II. Classification of nilpotent elements, Cent. Eur. J. Math. 3 (3) (2005) 430–474.
[6] J. Dieudonné, Éléments d’Analyse, Tome 1, Gauthier-Villars, 1981.
[7] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956) 

98–163.
[8] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957) 

87–120.

http://refhub.elsevier.com/S0022-1236(14)00415-7/bib426F75617A697A4F7262s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib426F75617A697A4F7262s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib426F757262616B6947414C436831s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib426F757262616B69416C67656272614949s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib426F757262616B69416C67656272614949s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib4461646F6B4B6163s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib4461737A4B72617350727A6562696E64614B2D5332s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib4461737A4B72617350727A6562696E64614B2D5332s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib44696575646F6E6E65456C656D656E7473s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3536s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3536s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3537446966666572656E7469616C4F70657261746F7273s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3537446966666572656E7469616C4F70657261746F7273s1


M. McKee et al. / Journal of Functional Analysis 268 (2015) 278–335 335
[9] Harish-Chandra, Fourier transform on a semisimple Lie algebra I, Amer. J. Math. 79 (1957) 193–257.
[10] Harish-Chandra, Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math. 

(2) 80 (1964) 551–593.
[11] Harish-Chandra, Harmonic analysis on real reductive groups I, The theory of constant term, 

J. Funct. Anal. 19 (1975) 104–204.
[12] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, 1983.
[13] R. Howe, θ-series and invariant theory, in: Automorphic Forms, Representations and L-functions 

(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 1, in: Proc. Sympos. 
Pure Math., vol. XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285.

[14] R. Howe, The oscillator semigroup, Proc. Sympos. Pure Math. 48 (1988) 61–132.
[15] R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989) 535–552.
[16] A. Knapp, Lie Groups: Beyond an Introduction, second edition, Birkhäuser Boston, Boston, MA, 

2002.
[17] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, 

J. Math. Soc. Japan 31 (2) (1979) 331–357.
[18] T. Przebinda, Characters, dual pairs, and unipotent representations, J. Funct. Anal. 98 (1) (1991) 

59–96.
[19] T. Przebinda, Characters, dual pairs, and unitary representations, Duke Math. J. 69 (3) (1993) 

547–592.
[20] T. Przebinda, A Cauchy Harish-Chandra integral, for a real reductive dual pair, Invent. Math. 

141 (2) (2000) 299–363.
[21] T. Przebinda, Local geometry of orbits for an ordinary classical Lie supergroup, Cent. Eur. J. Math. 

4 (3) (2006) 449–506.
[22] W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of 

Weyl groups, in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant 
Theory, Paris, 1989, in: Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 263–287.

[23] W. Rossmann, Lie Groups. An Introduction Through Linear Groups, Oxford University Press, 2002.
[24] V.S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math., vol. 576, 

Springer-Verlag, 1977.
[25] N. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representa-

tions, J. Amer. Math. Soc. 6 (4) (1993) 779–816.

http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3537466F7572696572s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D363463s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D363463s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3735s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib48432D3735s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib486F726D616E646572s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib686F77657468657461s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib686F77657468657461s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib686F77657468657461s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib486F77654F7363696C6Cs1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib486F77655472616E73s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib6B6E6170704C6965s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib6B6E6170704C6965s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib4D617473756B693739s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib4D617473756B693739s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E6461556E69706F74656E74s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E6461556E69706F74656E74s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E6461556E6974617279s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E6461556E6974617279s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E6461436175636879s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E6461436175636879s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E64614C6F63616Cs1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib50727A6562696E64614C6F63616Cs1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib526F73736D616E6E4E696C706F74656E74s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib526F73736D616E6E4E696C706F74656E74s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib526F73736D616E6E4E696C706F74656E74s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib526F73736D616E6E626F6F6Bs1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib566172616461s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib566172616461s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib57616C6C616368537072696E676572s1
http://refhub.elsevier.com/S0022-1236(14)00415-7/bib57616C6C616368537072696E676572s1

	Semisimple orbital integrals on the symplectic space for a real reductive dual pair
	1 Introduction
	2 Intertwining distributions
	3 Singular semisimple orbital integrals on a semisimple Lie algebra
	4 A Weyl Harish-Chandra formula on the odd part of an ordinary classical Lie superalgebra
	5 A semisimple orbital integral on the odd part of an ordinary classical Lie superalgebra
	6 Some properties of the invariant eigendistributions on the symplectic space
	Acknowledgment
	References


