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1. INTRoDLJCT~ON 

The purpose of this paper is to exhibit some irreducible unitary represen- 
tations of real reductive groups which are attached to nilpotent coadjoint 
orbits in a very explicit fashion. For some abstract conjectures, see [Vl, 
V3]. We work in the formalism of real reductive dual pairs [H7]. Thus 
there is a real symplectic vector space W, with a symplectic form ( , ), the 
corresponding symplectic group Sp= Sp( W), and a pair of subgroups 
G, G’ E Sp. We consider (mainly) the pairs of type I . Thus there is a 
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division algebra D over R (the reals) with an involution # and there are 
two right Q-vectors spaces V, V’ with forms ( , ), ( , )’ (one #-Hermitian 
and the other #-skew-Hermitian) so that G is isomorphic to the group of 
isometries of ( , ) and G’ to the group of isometries of ( , )‘, (see Section 2). 
Denote by G, G’ the preimages of G, G’ in the metaplectic group sp. Let 
(as in [H7, Sect. 61 or [H6]) R((?. G’, w) denote the set of infinitesimal 
equivalence classes of representations of G. t?’ which occur in Howe’s 
duality correspondence. Here w  is the oscillator representation of sp [HZ]. 
Each such representation I7 6 17’ E R(G . G’, w) determines (and is deter- 
mined by) a temperated distribution f E S*(W). We call it an initertwining 
distribution (5.1). We prove (see (6.15), (6.17)) the following 

( 1.1) THEOREM. Suppose that the pair G, G’ is in the stable range with G, 
the smaller member [H8, (2.14)] compact. Assume that the form ( , )’ is 
split and that the representation IT is trivial on the identity component of c. 
Then the pullback of the distribution character On, of IT’ to the Lie algebra 
g’ of G’ via the Cayley Transform So (3.16), when divided by a real analytic 
function chg. (5.6), coincides with a finite sum of homogeneous distributions 
on g’. The Fourier Transform (4.14) of this sum is supported on the closure 
qf a single nilpotent coadjoint orbit OL,, “g’* (2.19). 

This clearly resembles Kirillov’s character formula for irreducible unitary 
representations of nilpotent groups [K J, and Harish-Chandra’s formula 
for p-adic groups [Ha, P4]. We conjecture that (under some additional 
assumptions) ( 1.1) should hold even if G is not compact (see (6.16)). 
Theorem (1.1) was discovered in an attempt to prove the following 

(1.2) Conjecture (Howe). Suppose that the pair G, G’ is in the stable 
range with G the smaller member. Assume that 176 R(i?, o) is unitary and 
finite dimensional. Then WF(Z7’) = s,(tg’(O)). (This is the closure of a 
single nilpotent coadjoint orbit in g’* (2.19).) 

Here WF(Z7’) stands for the wave front set of the representation 17’ [Hl] 
and tns, rg are the “orbit parameter maps” (2.1). By [ Lil 1, 17’ is unitary 
(with some exceptions (see (1.3.1)) not covered by his proof, for which ZZ’ 
should be unitary too). We reduce (1.2) to a manageable conjecture (8.1) 
and prove (see (8.2)) 

(1.3) THEOREM. The statement (1.2) is true tf 

(1.3.1) (G, G’) is not one of the pairs (Sp(n, iw), 0(2n, 2n)) or 
(Sp(n, @I, 0(4n, a=)), 
(1.3.2) the form ( , )’ is split (then the covering G --f G splits over the 
Zariski identity component G, of G and I7 defines a representation x of 
G, (5.26.6)), 
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(1.3.3) the representation II is trivial, and 

(1.3.4) if D = R and if G is not compact then (l/2) dim I/’ - 
2 dim g/dim V is an even integer. 

The reason for the assumptions (1.3.1)-( 1.3.4) is to ensure that the 
corresponding intertwining distribution fc S*(W) (5.1) is a finite sum of 
homogeneous distributions ((5.9), (5.26)) so that the wave front set off is 
easily computable (5.51). It is possible to determine the Langlands-Vogan 
parameters of 17’ (1.3) and we’ll report on it elsewhere. 

I thank Roger Howe and Kashiwara Masaki for several stimulating 
discussions during the realization of this project. I am grateful to Peter 
Trombi for participating in a year-long seminar on Microlocal Analysis. 

2. THE ORBIT PARAMETER MAPS 

Here we collect some simple technical results about the structure of 
G. G/-orbits in W to be used in Section 5. For a subspace h 5 sp define a - 
quadratic map 

(2.1) zfi: w-, h*, ~&4(X) = $<a4 w> (WE w, XEII). 

Assume for the rest of this section that G, G’ is an irreducible pair of type 
I in Sp( W) [H7, Sect. 61. This means that there is a division algebra 
D( = I&!, C, W) with involution # and two right D-vector spaces V, V’ with 
non-degenerate forms ( , ), ( , )’ one #-Hermitian and the other #-skew- 
Hermitian such that G is the group of isometries of ( , ) and G’ is the group 
of isometries of ( , )‘. The symplectic space is defined by 

(2.2) W= Hom,( V’, V), (w’, w) = tr,,, w*w’, 

(w(v’), 0) = (II’, w*(u))’ (v’ E V’; v E v; w’, w E W). 

Here tr,,, stands for the reduced trace. The embeddings of G and G’ into 
Sp( W) = Sp are defined via the following action of these groups on W. 

(2.3) g(w) = gw, g’(w)= wg’-l (WE W, gEG, g’EG’). 

We shall denote by g z End,(V) and by g c End,( V’) the Lie algebras of 
G and G’, respectively. There are maps [H5, Chap. I, (7.5)] 

(2.4) ?: w+g, i’: w-+ g’, 

z”(w) = ww*, f’(w)= w*w (WE W). 
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Clearly if we identify the real vector space g with its algebraic dual g* via 
the bilinear form 

(2.5) gxg3(x, Y) --f tr,,,(v)E R - - 

then zg (2.1) will coincide with (l/4)?. Similarly zg, will coincide with 
(l/4)?‘. 

(2.6) LEMMA. Let dz&w) denote the derivative of sg at w E W. Then the 
annihilator of the image of dz,(w) in s (im dz,(w))l =-{XE s; xw = O}. 

ProoJ Since 

d?( w)(w’) = ww’* + w’w* (w, w’ E W) 

we see that for x E g 

tr,,,(x dz”(w)(w’)) = (xw, w’ 

This clearly implies the lemma. 

) + (xw’, w) =2(xw, w’ 

Q.E.D. 

(2.7) LEMMA. Let Vi he a maximal isotropic subspace of V’ and let 
W,={WEW, V;‘Ekerw}. Then T;‘(O)=G’W,. Here V: is the 
annihilator of Vi in V’ and G’ W, is the union of G’ orbits of elements of WI. 

ProoJ Some elementary linear algebra implies 

(2.8) im w* = (ker w)’ (WE W). 

Consider a w E W. Clearly 

(2.9) qw) = 0 iff ww*=O. 

Combining (2.8) and (2.9) we see that 

(2.10) (ker w)’ is an isotropic subspace of V’. 

Since, by Witt’s theorem, G’ acts transitively on the set of maximal 
isotropic subspaces of V’ the lemma follows from (2.10). Q.E.D. 

Similarly one can show that if V, is a maximal isotropic subspace of V 
andif W,l={wEW,;imw~V,} then 

(2.11) t,‘(O) n $7’ (O)=G.G’W,,. 
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Define 

(2.12) IV0 = (w E IV; dr,(w) is surjective}, 

w”) = w” f-J T; ‘(0) and wp= won w,. 

Here dzg is as in (2.6) and W, as in (2.7). Lemma (2.7) implies that 

(2.13) Woo = G’ WY. 

It is obvious that 

(2.14) Woo is not empty if dim. I/< dim. Vi. 

The condition (2.14) means that the pair G, G’ is in the stable range with 
G the smaller member [HS]. 

(2.15) Remark. If G is compact then Woo is non-empty iff 

(2.15.1) n<m+ 1 for GgO(n), G’rSp(m, Iw), 

(2.15.2) n<q for GrU(n), G’rU(p,q), q<p, 

(2.15.3) n <m/2 for G g Sp(n). G’ z 0*(2m). 

Indeed, by the assumption, the form ( , ) is anisotropic. Therefore for each 
w E W we have a direct sum decomposition 

V= im w@ (im w)‘. 

The restriction of ( , ) to (im w)’ is nondegenerate and the corresponding 
Lie algebra of isometries is isomorphic to the Lie algebra (im T&W))' (2.6). 
In particular (imz,( w))’ depends only on the rank of w. An easy case by 
case verification using (2.13) completes the proof of (2.15). 

(2.16) LEMMA. Suppose that G is compact or that the pair G, G’ is in the 
stable range with G the smaller member. Then the set T; ‘(0) is a finite union 
of G . G’ orbits and containes a unique open dense orbit O,,, . Moreover if 
Woo is not empty then O,,,C_ Woo. 

Proof: By the definition of the space W, (2.7) we have an identification 

W, z Horn& V/V;‘, I’). 

The orbit decomposition of this space under the obvious action 
of GL( V’/V;‘) x G is well known. In particular [H5, Chap. I, 
Proposition 8.11 implies that 

(2.17) any two elements of W, of maximal rank are in one 
GL( V’/V;‘) x G orbit. 

580/98.1-5 
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Pick wmax in W, of maximal rank and define 

(2.18) 0 max = G . G’w,,, 

BY (2.17), o,,, does not depend on the choice of w,,,. The lemma follows 
from (2.7) and [H5, Chap. I, Proposition 8.11. Q.E.D. 

Finally we calculate the dimension of O,,, and the dimension of the 
image of O,,, under the map rg (2.1). 

(2.19) LEMMA. Suppose that the pair G, G’ is in the stable range with G 
the smaller member. Let Ok,, = ~~~(0~~~). Then 

(2.19.1) O,,, = G’w,,, (wmaX as in (2.18)), 

(2.19.2) dim O,,, = dim W-dim g, and 

(2.19.3) dim Oh,, =dim W-2dimg. 

Here, and in the rest of this paper, dim = dim.. 

ProoJ The statement (2.19.1) follows by the argument used in the 
proof of (2.16). Since by (2.16), O,,, is dense in Woo and since rg, when 
restricted to W”, is a submersion a well known fact [D, 16.8.8.11 implies 
(2.19.2). Define 

gb= {J-g’; cx, t”‘(wm,,)l =o>, g; = {x~g’;x(wmax)=O). 

Clearly g; is a Lie subalgebra of & and 

(2.20) dim O,,, - dim Ok,, = dim(&/g;). 

Consider the pullback of the form ( , ) to V’ by wmax: 

(4 ~Lnax = (W,,,(~), Wnl,,(~)) (u, u E V’). 

One checks easily that each element x E &, is skew-symmetric with respect 
to ( 2 Lx. Let ( 3 Lx be the corresponding form on V’/ker w,,,. This 
form ( 2 Lax is nondegenerate and of the same type as ( , ). Therefore there 
is an injection 

(2.21) &@I -+ g 

Since g’/& map surjectively onto End,( V’/ker w,,~), (2.21) is a surjection. 
Conse$ently 

dim( gb/& ) = dim g 

and (2.19.3) follows from (2.19.2) and (2.20). Q.E.D. 
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3. THE CAYLEY TRANSFORM 

Let D = R, C, or W and let # be an involution of D as in Section 2. Let 
V be a finite dimensional right D-vector space. For x E End, V such that 
x - 1 is invertible define the Cayley Transform 

(3.1) c(x)=(x+l)(x-l))l. 

Then c is a rational map on End, V and 

(3.2) c(c(x)) =x, c(0) = -1, c(gxg-‘) = gc(x) g-’ (gEGLan(V). 

Let ( , ) be a nondegenerate #-Hermitian or #-skew-Hermitian form on V 
and let G c End, V be the group of isometries of ( , ) with the Lie algebra 
g c End, I/. One checks easily [H5, Chap. I, Proposition 7.31 that 

(3.3) c(g) c G and c(G) E g 

Suppose now that G is a member of a reductive dual pair G, G’ as in 
Section 2. Let $J denote the metaplectic group covering Sp= Sp(W). 
Denote by c the preimage of G in $. Let us fix once and for all an element 

(3.4) (-1)-E& in the preimage of -1~s~. 

(3.5) LEMMA. Assume that the group G is compact. Then the domain of 
c (3.1) contains the Lie algebra g. Moreover there is a unique smooth map 
c”: g -+ C? such that Z(0) = ( - 1) “-(3.4) and the following diagram commutes 

Here the vertical arrow indicates the covering map. 

ProoJ: Since G is compact the spectrum of x ~g is imaginary and 
therefore x - 1 is invertible. The second part of the lemma follows from the 
monodromy principle [D, 16.28.81 because g is simple connected and c is 
smooth. Q.E.D. 

(3.6) Remerk. In general, with G not necessarily compact, the diagram 
(3.5) exists with g replaced by a Zariski open neighborhood of zero. We 
shall refer to this neighborhood as to the domain of c”. We shall always 
assume that F(O) = (- 1)“. For more explanation see (4.8). 
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There is an involution x --f x+ on End, V defined by 

(3.7) (x(u), 0) = (4 x+(zJ)) (u, u E V). 

Let iF be the field of #-fixed points in D. Then IF = R’ or C and the algebra 
g is a vector space over [F. The group GL,( V) acts on End,(V) by 

(3.8) x-+ gxg+ (xEEnd,(V), gEGL,(V)). 

This action preserves the [F-subspace g E End n( V). 

(3.9) LEMMA. The determinant of the linear transformation (3.8) of the 
vector space g over [F is equal to (det, g)‘, where r = 2 sim, g/dim, V. Here 
we view V asa vector space over IF by restricting scalars andhet, g indicates 
the determinant of g viewed as an element of End,(V). 

Prooj The determinant in question is an iF x valued character of the 
group GL,( V). Therefore it has to be of the form g --) (det, g)’ for some r. 
In order to find r we take a E IF x and g = a. (identity on V). Then for x E g, 

gxg + = a*x and det IF g = a”‘, where m = dim, V. 

This clearly implies the lemma. Q.E.D. 

Now we shall calculate the pullback of the Haar measure on G to g via 
c” (3.6). As is well known there is a rational function whose absolute ialue 
j(x) is defined for x in the domain of c” and satisfies 

(3.10) i, ‘y(g) dg = j yoc”(x) j(x) dx 
n 

for any continuous function Y with compact support contained in the 
image of c”. 

(3.11 ) LEMMA. One can normalize the Lebesgue measure on g so that 
j(x) = jdet,(l -x)/-~, where r is as in (3.9). 

ProoJ For x and y in the domain of 2 with y sufficiently close to zero 
and x + y invertible we have the formula 

(3.12) F- ‘(qx)qy))=c(c(x)c(y))=(y- 1)(x+ y)-‘(x- l)+ 1, 

where the last equality is taken from [H2, (10.2.3)]. By fixing y in (3.12) 
we obtain a function of x. Let h denote the inverse of this function. 
A straightforward calculation using (3.2) shows that 

h(x)= -y--y+ 1)(x-y)-l(y- 1). 
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Let Y be as in (3.10) and let $ = Yo 2. 
The invariance of the Haar measure on G implies 

j^p(jl(x)j(x)dx=l $~rvl(X)j(X)dX. 
E 

In particular if y(x) denotes the Jacobian of h at x then 

(3.13) j(x) =j(Nx)) IY(x)l. 

We may normalize the Lebesgue measure on g so that j(0) = 1. Since 
h(O) = -ye-’ (assuming that y is invertible) (3.13) implies that 

A-y-‘) = I$(O)l -‘. 

Thus our problem is to calculate f(O). The derivative of h at zero coincides 
with the map 

(3.14) g3x+(l+y-‘)x(l-y-‘)Eg. 

Putg=l+y-‘.ThengEEnd.I/andg+=l-y~-’,(3.7).Wemayassume 
that g is invertible. Then (3.14) coincides with (3.8) and the lemma follows 
from (3.9). Q.E.D. 

We shall also need another version of the Cayley Transform, namely 

(3.15) cp (x) = -c(x) (x E g in the domaini of c). 

The point is that, by (3.2) c ~ (0) = 1. For x in the domain of Z (3.6) define 

(3.16) ?~(x)=c”(x)((-l)-)-‘. 

Here (- l)- is as in (3.4) to that E_(O) is the identity of the group 6. The 
invariance of the Haar measure on G implies that (3.10)-(3.11) hold with 
i; replaced by ?.- and the same function j(x). 

4. THE STONE-VON NEUMANN THEOREM 

For the reader’s convenience we recall some well known results here. 
Our main references are [H2, H43. The Schwartz space of W, S(W) has a 
structure of associative algebra with multiplication 

(4.1) 41 h 42(wT) = j$m) d,(w’- WI XMW, w’>) dw, 

where til, &E S(W), w’ E W, and x(x) = exp(2rrix) for x E R. 
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We embed S(W) into the space S*(W) of tempered distributions on W 
by 

(4.2) f(dJ I= j,m d(w) dw (JI 4 E S( w ). 

Here dw stands for a (convenient choice of) a Lebesgue measure on W. 
The symplectic group ,$I( W) acts on S(W) by algebra automorphisms as 

follows. 

(4.3) o,,,(g) O(w) = 4(g-‘(w)) (WE w,gESP(w),4ES(w)). 

By dualizing (4.3) we obtain an Sp( W) action on S*(W) 

(4.4) ~l,l(g)f(~)=f(~l,l(g~‘)~) kESP(W), 4ES(wL./-ES*(w). 

The formula (4.2) implies that the action (4.4) is an extension of the action 
(4.3) from S(W) to S*(W). Let w  be the oscillator representation of the 
group 5’p( W) attached to the character x (4.1). Let us choose realization of 
w  on a Hilbert space &‘. Denote by 2” the space of smooth vectors in 
Z and by A?~* the linear topological dual of 2”. The symbols B(X), 
H.S.(Z), Hom(X”, Z’“*) will stand for the spaces of bounded operators 
on X’, Hilbert-Schmidt operators on X, and continuous linear maps from 
X” to Zco*. We combine the Stone-von Neumann theorem [H4] with 
a result of Howe [H2, 16.31 in the following 

(4.5 ) THEOREM. There is an algebra homomorphism 

p:S(W)-,B(X) 

which extends to a surjective isometry 

p : L2( W) -+ H.S.(X) 

and even further to a liner bijection 

p: S*(W) + Hom(.%“, Yao*) 

which has the intertwining property 

(4.6) w(g) P(f) (a?-’ =P(%,lk)f), 

where f E S*(W) and g’ E sp( W) is in the preimage of g E Sp( W). Moreover, 
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for x ~sp( W) in the domain of the Cayley Transform Z, p-‘o(Z(x)) is a 
function-& W. It is possible to chose Z so that 

(4.7) p-‘o~c”(x)(w)=ch(x)~(~(x(w), w)) (WE w, 

where ch(x) = z Idet( 1 - x)1 ‘I2 and z E @ is a constant. 

(4.8) Remark. The choice of the function ch in (4.7) determines a real 
analytic lifting 

(4.8.1) Lsp-+Sp - 

of the Cayley Transform c: sp + Sp (3.1). Conversely given a c” (4.8.1) the 
function ch is the pullback f the distribution character of the oscillator 
representation o to sp via E. Let G be a member of reductive dual pair in 
Sp as in (2.2), (2.3)-Then 2; injects into sp and (4.8.1) determines the 
lifting Z: g + G (3.6). The constant z (4.7) will play no significant role in 
our calculations. A choice of z is equivalent to a choice of ( - 1) * (3.4). 

Let 6 E S*(W) be the Dirac delta at the origin. Then p(6) is the identity 
operator on 2. Fix a positive constant s such that in terms of the 
oscillatory integrals [Ho, (7.8.5)] 

(4.9) 6=shs. 

In [H2], s = 2-” with 2n = dim W. Define the symplectic Fourier Trans- 
form on S(W) [H2, Sect. 21 

(4.10) I=db (bES(W) 

and its extension to S*(W) by dualization 

(4.11) m = f(3) (.fE s*c WI). 

Since (( - 1) ” )“) = 1 (see (3.4)), the formula (4.7) implies that the constant 
z (4.7) satisfies 

Therefore z4 = s4. Put [ = sz-‘. Then c4 = 1 and 

(4.12) fh Pp14(-l)-)=iF (fE s*t WI. 

For future reference we recall here the definition of the Fourier Transform 
of a tempered distribution. Let U be a real vector space of finite dimension. 
Denote by U * the algebraic dual of U. Let 

(4.13) s(II/) = J NO x(5(x)) d4 (ljES(U*),XEU). 
u 
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Here d5 stands for a Lebesgue measure on U. The choice of this measure 
will play no role in our calculations. The formula (4.13) defines a con- 
tinuous map 

Denote by 

(4.14) 

the adjoint map. 

9: S( lJ*) --f S(U). 

8*: s*(u) + s*(u*) 

5. INTERTWINING DISTRIBUTIONS 

Let G, G’ be a real reductive dual pair in Sp( W) and let 
27 6 17’ E R((?. G’, 0). Here w  is as in (4.5). A smooth version of the 
representation 17 6 Z7’ may be realized on a subspace of Zco* [Pl, 
Proposition 1.2.191. Therefore (4.5) implies that there is f~ S*( W) such 
that 

(5.1) p(f) intertwines ~~1~. c, and I7 0 17’. 

Moreover by [H6, Theorem l] this f (5.1) is determined up to a non-zero 
scalar multiple (which we shall ignore). In particular since ( - 1) - (3.4) is 
in the center of G. G’ the formulas (4.12) and (4.9) imply that 

The title of this section refers to the distributions f (5.1). 

(5.3) EXAMPLE. Let G’ = Sp( W). Then G z 0( 1) and, as is well known, 
w  decomposes into a direct sum of two irreducible representations of G’. 
Call them o, and c.- We may normalize the corresponding intertwining 
distributions f, and f- so that 

(5.3.1) f, + f.- =s. 

This two distributions can’t satisfy (5.2) with the same sign because they 
correspond to two different representations of G. Chose the notation so 
that 7, = f, and y- -f-. Then (5.3.1) and (4.9) imply 

(5.3.2) f, -f.. =iY=s. 

From (5.3.1) and (5.3.2) we find 

(5.3.3) f, = gs + s) and f _ = gs - s). 
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The simplicity of the formulas (5.3.3) is remarkable. In particular f, and 
fP are finite sums of homogeneous distributions ([HG, 3.21, (B.3)) of 
distinct degrees. The intention of this section is to find out for which 
intertwining distributions this phenomenon persists. Surprisingly it does 
if one of the corresponding representations (n or n’) is most likely to be 
unipotent ini the sense of Barbasch and Vogan [Vl]. 

(5.4) LEMMA. Let G, G’ be an irreducible pair of type I and let 
II @ II’ E R(G. G’, 0). Suppose that 

(5.4.1) G is compact, or 

(5.4.2) the pair G, G’ is in the stable range with G the smaller member, 
the representation II is unitary and finite dimensional. We exclude the pairs 
GE Sp(n, [w), G’ E 0(2n, 2n), and GE Sp(n, C), G’ z 0(4n, C). 

Then the intertwining distribution corresponding to n @ ZZ’ (5.1) is given 
by the formula 

(5.4.3) f=jGe,(W14d& 

where 0, is the distribution character of Z7. 

Proof: Assume that G is compact. Then, as is well known [W, 1.4.61, 
the projection onto the I7-isotypic component of Y? (4.5) 

P,= 
i 
G dim n.@,(g) o(g) dg. 

Applying p -’ (4.5) to both sides of the above equation and dividing by 
dim 17 we get (5.4.3). Suppose that (5.4.2) holds. Then [Lil, Corollary 3.31 
(see also (A.1 )) implies that the integral 

I &n(g) o(g) & c 

is a well defined operator in Hom(Z’““, X”“*) which intertwines mm1 c.c, 
with n 8 17’. Again by applying p ~ ’ to this integral we get (5.4.3).Q.E.D. 

The main result of [Lil ] implies that the representation Z7’ (5.4) is 
unitary. 

We shall study the integral (5.4.3) via a change of variables provided by 
the Cayley Transform (3.1). Therefore we define 

(5.5) f=j @n(g) p- ‘4g) & 
imi 
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It follows from (A.l) (and from [H4, Theorem 3.541) that (5.5) does 
indeed define a tempered distribution on W. We would like to replace g by 
F(x) in (5.5). In order to do this we need some additional notation. The 
formula (2.3) induces an embedding of the Lie algebra g into sp( W). Using 
this embedding we can pull back the function ch (4.7) to g. WTdenote this 
new function by chg. If follows directly from (2.2) and (4.7) that 

(5.6) ch,(x) = z Idet,(l - x)Id’(‘/*) (x E g, d’ = dim. V’), 

where z is the same constant as in (4.7), and det,( 1 -x) stands for the 
determinant of 1 -x viewed as an element of End,(V). Next for 
17~ R(6, co), define 

(5.7) a(x) = ch,(x) 6,(?(x)) j(x) (x E g in the domain of c”). 

Here j(x) is as in (3.11). The formula (4.7) implies that the distribution 7 
(5.5) is formally given by the integral 

(5.8) .h, = 1 4x) x(QW-)) dx (w E WI. 
n 

The support of the function a(x) is too large for this to be an oscillatory 
integral [Ho, Theorem 7.8.21. However, using (A.l) we’ll show that (5.8) 
is a limit of oscillatory integrals. We are most interested in the cases where 
a(x) (5.7) is a polynomial function. Then (5.8) indicates that 7 should be 
a finite sum of homogeneous distributions. We prove this in the following 

(5.9) THEOREM. Let G, G’ be an irreducible dual pair of type I in the 
stable range with G the smaller member. Suppose that the assumptions of 
(5.4) are satisfied and that the function (5.7) is a polynomial with 
homogeneous decomposition 

(5.9.1) a=Ca,, a,-homogeneous of degree i, 

O<i<fdim W-dim g. 

Then the distribution (5.5) is a finite sum of homogeneous distributions 

(5.9.2) 

where the summation is over the i’s with a,#0 and 

(5.9.3) Ti is homogeneous of degree di = -2i - 2 dim g. 
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Moreover each yi (5.9.2) is o,, 1( G . @)-invariant and 

(5.9.4) supp y= $1(O). 

Proof. Clearly r, = {x E g; ker x = (0) } is an open cone in g Choose 
an open cone r in g with the closure is~r,u (0). Let 

(5.10) Y(x)= :, 
{ 

if XE~- 
if x E g\r. 

By (A.l) the following integral defines a tempered distribution on W. 

(5.11) 

On the other hand the function y a (5.7) defines a tempered distribution 
on g (by integration). By [Ho, Lemma 8.1.71 the Fourier Transform of 
this distribution (4.14) satisfies 

(5.12) WF(Y-*(y . a)) ‘g* x i=. 

Here WF(u) stands for the wave front set of a distribution u [Ho, 
Definition 81.21. We shall denote by WF,(u) the fiber of WF(v) over 
5 E g*. It follows from (5.12) and (2.6) that 

(5.13) (im dT,(w))’ n WFS(F*(ya)) = 0 

for WE W\{O} and [Eg*. 

Therefore [Ho, Theorem 8.2.41 implies that there is a well defined pullback 
of the distribution F*(ya) to W by rE. This pullback is denoted by 
tt(@*(ya)). In fact the distribution (5.11) 

(5.14) f, = REV--*). 

Indeed, we may chose a sequence CI, of continuous compactly supported 
functions on g so that 

and 
0 G %(X) G Y(X) (x E g), 

lim a,,(x) = y(x) almost everywhere on g. 
I, + cc 

Then (A. 1) implies that 

(5.15) f, = lim 1 cr,(??‘(g)) Gfl(g) p-lo(g) dg in S*(W). 
n-m G 
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Each distribution on the right hand side of (5.15) is a smooth function 

(5.16) Wa w -+ 
s 

IX,(X) a(x) x(z,(w)(x)) dx E @. 
n 

The function (5.16) is the pullback of F*(a,a) (4.14) by 7,. A straight- 
forward calculation shows that 

(5.17) F*(ya)= lim F*(a,a) in o;* x I=@*) n-cc 
(for notation see [Ho, Definition 8.2.21). 

Combining [Ho, Theorem 8.2.41 with (5.15)(5.17) we get (5.14). 
Sinice (5.13) holds with a replaced by ai (5.9.1) we may define a 

distribution on W\ { 0) 

(5.18) J,,i= z,*(cF*(Yui)). 

The map rK is quadratic (z,( tw) = t2r,(~), t E R, w  E W). Therefore a 
straightforward calculation implies that jY,,; (5.18) is homogeneous of 
degree di (5.9.3). Since by (5.9.1), di > -dim W, each fY,i extends uniquely 
to a homogeneous distribution on W of the same degree [Ho, 
Theorem 3.2.31. Clearly 

(5.19) f,=Cs;+ 

We may choose a sequence of open cones r,, E g with F,, c r, u { 0} and 
such that un r, = rg. Let yn be the characteristic function of r, as in 
(5.10). Then (A.l) implies that the distribution (5.5) 

(5.20) f = Jirnm f,, in S*( W). 

If follows from (5.20), (B.4), and from the decomposition (5.19) with y 
replaced by y, that 

defines a distribution on W\(O), h omogeneous of degree dj (5.9.3). By an 
argument used previously, this distribution extends uniquely to a 
homogeneous distribution on W of the same degree. Moreover it is clear 
from the above construction that z is o, ,(G . G’)-invariant. 

The restriction of y, to W” (2.12) coincides with the pullback of the 
Dirac delta at 0 E g* to W” via sg [Ho, Theorem 6.1.21. In particular this 
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restriction is a wr, r(G . G/)-invariant measure with support equal to Woo 
00 (2.12). It follows from (2.16) that r;‘(O)= W . Therefore 

(5.22) supp so = r,‘(O). 

The statement (5.9.4) follows from (5.22) and (B.4). Q.E.D. 

(5.23) Conjecture. The distribution To is a measure. 

We’ll provide some additional evidence for this conjecture in the next 
section. Now we address two questions. 

(5.24) When is the assumption (5.9.1) satisfied? 

(5.25) How to recover the intertwining distribution f (5.1) from 7 (5.5)? 

We do not answer any of them completely. For the first one we’ll satisfy 
ourselves with the following 

(5.26) LEMMA. The condition (5.9.1) holds under assumption (5.4.2) If 

(5.26.1) O,o F is a constant function, 

(5.26.2) the form ( , )’ is split, and 

(5.26.3) if D = R and if G is not compact then d’/2- Y is even (r as 
in (3.9)). 

Proof. Let x ~g. Then the subspace W, (2.7) is isotropic for the sym- 
metric bilinear form 

(5.26.4) wx w3 (w, w’) -+ (x(w), w’) + (x(w), w’) E R. 

The assumption (5.26.2) implies that dim W= 2 dim W,. Therefore if the 
form (5.26.4) is nondegenerate then it has signature zero. Thus it follows 
from [H2, (8.1)(8.2)] (see also [Ho, (3.4.6) and Theorem 7.6.11) and 
form [H2, Sects. 16 and 171 that one may choose the constant z (4.7) so 
that the map 

(5.26.5) Gsc(x)-tc”(x)~~ (x E g in the domain of c) 

extends to a group isomorphism onto a subgroup of G of index 2. By 
(5.26.1), 0, is constant on this subgroup. Therefore the function a (5.7) is 
a constant multiple of [det,( 1 - x)lk, where k = d’/2 - r, d’ = dim. V’, 
and r is as in (3.9). This is a polynomial function by (5.6) and (5.26.3). It 
remains to check that 

O<k.dim. V<$dim W-dim g. 
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The first inequality may be verified by a case by case analysis and the 
second one as follows (for notation see (3.9)): 

(d’/2-r)dim, V=idim W-2dim, g.dim. D/dim, D 

<idim W-dim g. Q.E.D. 

(5.26.6) Remark. The above proof shows that there is an isomorphism 
(? g { f 1 } x G. The representation ZZ coincides with the nontrivial charac- 
ter of ( f 1 } tensored with a representation rt of G. The condition (5.26.1) 
means that rc is trivial on the Zariski identity component of G. In particular 
if G g 0( p, q) then 7c is either the trivial or the “determinant” representa- 
tion of G. There are two other representations of 0( p, q) (pq # 0) trivial on 
the identity component (with respect to the usual topology) which we do 
not consider here. 

Now we discuss the question (5.25). Since im i: = im c”- . ( - 1) - (3.16), 
the symplectic Fourier Transform of the distribution (5.5) 

(5.27) s^= i,, const 67(g) P-wd 45 

Let i E L?p be the element different than the identity of sp in the preimage 
of 1 E Sp. Then obviously 

(5.28) T= const j-F- @As)r’dg)& 

Let i E sp be the element different than the identity of sp in the preimage 
of 1 E Sp. Then obviously 

(5.28) imF_ni.im?-=fa. 

Denote by G, the Zariski component of the identity of G. Let G, be the 
preimage of G1 in c. Since im c- is of full measure in G, , (5.28) implies 

(5.29) im c”- u i .im c”-- is of full measure in G,. 

Since w(i) = -identity, 
- - - 
@At?. 1) 4g 1) = @n(g) N&T) (&YE (3. 

Combining (5.27)-( 5.30) we conclude that 

(5.31) 
T= I,, 

const @n(g) p-‘Ng) & 
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In particular (5.2) and (5.31) imply 

(5.32) LEMMA. Under the assumptions of (5.4) the intertwining distribu- 
tion f =constyif G=G,. 

It follows from the classification of real reductive dual pairs [H9] that 
(if G, G’ is of type I) G # Gi, implies that G is an orthogonal group (over 
R or C). Then 

(5.33) GrG,x{klj if dim. I/ is odd (D = R or C). 

In particular (4.12) (5.31), and (5.33) imply 

(5.34) LEMMA. Under the assumptions of (5.4) the intertwining distribu- 
tion f = const(7 Jr 7 ), if G, #G,, and dim. V is odd. 

he remaining case, when G is orthogonal with dim. V even, is more 
complicated. 

Let us close an orthogonal direct sum decomposition of the formed space 

(5.35) v=v,o~z,(~)=(,)~o(,)* with dim. V, = 1. 

Thus the symplectic space (2.2) 

(5.36) w= W,@ w,, < > >= ( > >I0 <, )2, 

where w  E W belongs to Wi iff im w  z Vi and the symplectic form ( , )i is 
defined as in (2.2) with respect to the pair of forms ( , )‘, ( , )i (i= 1,2). 
Corresponding to ( , )i we have a symplectic Fourier Transform on 
S*( W,) defined as in (4.11). By tensoring it with the identity map on 
S*( W,) we obtain a partial symplectic Fourier Transform on S*(W). We 
shall denote it by F (FE S*(W)). Explicitly if FE L’( W) then for w; E W, 
and W;E W2 

(5.37) F(w; + w;) = s, 
s F(~,+w;)x(~(w,,w;)~)~w,. 
WI 

Here s, is a constant defined by (4.9) for W,. As in (5.34) we obtain the 
following 

(5.38) LEMMA. Under the assumptions of (5.4) if G # G1 and dim. V is 
even the intertwining distribution f = const(jf + 7). 

We turn now to a heuristic investigation of the distribution f (5.38). 
We’ll work under the assumptions of (5.26). Then a(x) (5.8) is a polyno- 
mial. 
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Let g, be the Lie subalgebra of g consisting of elements preserving I’, 
(5.35).-Denote by g, the orthogonal complement (with respect to the 
Killing form-see (25)) of gz in g. Thus g = gi2 0 g2. 

We can decompose the polynomial function a(x) (5.7) into a sum of 
terms homogeneous with respect to the dilatations on g, and on g2: 

(5.39) 4x) = 1 Q,k(X), where x=x,+x2,x1~g,,x2~g2, 
i,k 

ajj&,x, + &X2) = 1: t&(x, + x2) (t, 9 t, > 0). 

For ajk as ini (5.39) define (formally) 

(5.40) J)ktw) = j ajk(w) X(z,(w)(x)) dx tw E w). 
x 

Then 

(5.41) .r=cJ),> 
Ikl 

where the summation is over ajk # 0. 

As in (2.2) we have the map 

(5.42) Hom,( I”, Vi) 3 w  + !-VT/E Hom.( Vi, V’) (i= 1, 2). 

Since dim, V, = 1, w, wf’= 0 for any w1 EHomn(V’, Vi). In terms of 
(5.36) and (5.42) 

(5.43) (w1+wJ(wl+w2)*=(w1w2*2+w2w1*1)+w2w2*2 

(wie Wi, i= 1,2). 

The first term on the right hand side of the equation (5.43) belongs to gi 
and the second one to g2. If we identify g*, g:, g: with g, gr, g2 via (2.5) 
respectively then 

(5.44) z&.,(w, + w2) = $(Wl w:2+ w,w:‘), 

sgz(wl + w2) = iw2w2*2 

T&-(Wl + w2) = ty,(w, + w2) + ~gz(w2) (wie W,, i= 1,2). 

The definition (5.40) and the relations (5.44) indicate that for W,E W, and 
for ti>O (i= 1, 2), 

(5.45) &(tl w, + t,w,) = t$t$$&j + w,), 

d;= -dimg,-,j,d,!;,= -dimg,-2dimg,-j--k. 
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Notice that ker(x, +x,) = (0) (x, E g,, x2eg2) iff for any tI, t, >O, ker 
(t,x, + t,x,) =O. Thus the cone rg used in the proof of (5.9) is invariant 
under the double dilatations 

(5.46) g&3(x,, x2) + (t,x,, bG)qTl ogz (f, > t, > 0). 
One may approximate the cone of I-, by cones r (5.10) which are also 
invariant under (5.46). Then (5.14) implies that the decomposition (5.41) 
really does hold on W\(O) and that the distributions jllk have the 
homogenity properties indicated in (5.45). Since, by (5.26), d/ + d,!‘k > 
-dim W each & extends to a distribution on W, homogeneous of degree 

d,’ + dAk. In fact, the distribution (5.9.3) 

(5.47) Yi=ECkr where the summation is over these indecies j, for 

which di = d,’ + d,i. 

Therefore the intertwining distribution (5.38) 

(5.48) 

where the summation is over alk # 0 (5.39) and the choice of sign does not 
depend on j, k. 

By chasing through the proof of (5.26) we see that (with the notation 
(5.45)) 

(5.49) d; > -dim W, , dik > dim W,, 

(so that d/ + dj, > 1 -dim W) and 

-dim W,-d,‘+d&< -2dimg. 

Thus [Ho, Theorem 3.2.31 implies that each ~~~ S*( W) has the 
homogenity properties indicated in (5.45). Consequently the distribution 

(5.50) f (5.48) is a finite sum of homogeneous distributions where the 
only homogeneous term of degree d,, = 2 dim g (5.9.3) is &. 

Since for any Lie algebra g under consideration (3.3) 

det,(l -x)=det,(l +x) (xq) 

a straightforward argument (extending the proof of (5.26)) shows that the 
statement (5.50) remains valid for f as in (5.34) under the assumptions of 
(5.26). 

Thus (5.50) (5.34) (5.32), (5.26) (5.9), and (B.4) imply the following 

580/98/l-6 
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(5.51) COROLLARY. Suppose that G, G’, and IIE R(c’, o) satisfy the 
assumptions of (5.4.2) and (5.26). Let f be the corresponding intertwining 
distribution (5.1). Then f is a finite sum of homogeneous distributions and 

U WE w WF,,f 3 z;‘(O). Here we identifv W* with W via ( , ). 

6. HOLOMORPHIC REPRESENTATIONS 

In this section G, G’ is an irreducible dual pair of type I (as in 
(2.1)-(2.3)) with G compact. We’ll derive an explicit formula for the 
distribution character O,, of the representation I7’ (5.1) in terms of the 
corresponding intertwining distribution jY 

(6.1) LEMMA. The pullback by 5g, 

is a well defined continuous map. In particular, by dualizing we obtain a push- 
forward of tempered distributions 

Tg” : s*(w) + s*(g’*), 

Q*(f)W=fWQ (fe s*t W), $ E s(g’*)). 

Proof: Since G is compact it centralizes a positive compatible complex 
structure f on W. Thus f E g’ and the quadratic form 

w3 w--t (Y(w), w) E IL! 

is positive definite. Let 1 1 be a norm on the real vector space g’ such that 
[yj= 1. Define a norm 1 1 on W by 

Id2 = ~~~baf)(= W(W)> w>) (WE W). 

For a fixed w  E W 

b,Wl =suP{I~,4w)(x)l~ XE g', 1x1 = 1) 

is the norm of the functional z,(w). Clearly 

(6.2) b,4w)l 2 lw12 (WE W). 

Let $ E S( g’*) and let n be a positive integer. Then (6.2) implies 

(6.3) lM2”I~~~g’(w)l d bg(W I$(qw))l 
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and the right hand side of (6.3) is bounded independently of w  E W. The 
chain rule combined with (6.3) completed the proof. Q.E.D. 

We may compose the push-forward rB,, (6.1) with the Fourier Transform 
%*: S*(g’*) -+ S*(g’) (4.14) to obtain a continuous linear map 

(6.4) %“I* 0 zgr* : s*( W) + s*( 8’). 

Explicitly, for an absolutely integrable function f on W, 

(6.5) %-*oz g”(f)(X) = jwfW x(gw)w dw (x E g). _ 

Let I7 6 17’ E R(c .i?‘, w). Denote by ? 0,. the pullback of O,, by i; 
(3.16). This means [Ho, Theorem 6.1.21 that 

(6.6) 2% O,Jll/) = O,,(Y), where Ye CF(G’) 

is supported in the image of ?. and 

$4x)= Y-(x))@) (see (3.11)forj(x)). 

(6.7) THEOREM. Suppose G, G’ is an irreducible dual pair with G 
compact. Let 17 @ II’ E R((?. G’, CO) and let f E S*(W) be the corresponding 
intertwining distribution (5.1). Then 

(6.7.1) 
1 

- t? O,, = const, %* 0 r,,.(y) 
ch,. 

in the sense that the left hand side, originally defined on the domain of Z _, 
extends to a tempered distribution on g’ equal to the one on the right hand 
side. Notice that, by (5.2), we can replice f̂  by f in (6.7.1). 

The characters (6.7.1) have been studied by Hecht from a different view 
point [He]. 

Proof. Let us normalize f so that p(f) is a projection on the Gisotypic 
component of the Hilbert space X’ (4.5). We calculate using the formulas 
(6.6), (3.16), and (4.12), respectively, 

dimI7.2+@,($)=tr !P(g)w(g)p(f)dg 
> 

= tr c~x)~C”(X))~((--~)-)~‘P(~)~X 
> 

= const tr 
s $(x) QJ(@)) df^) dx. 
5’ 
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This combined with (4.7) and [H4, Theorem 3.5.43 shows that 

E* On,(*) = const, 
1. g, Il/(x)p- 1 0 w(Z(x)) tj y(O) dx 

=const,~(B(ch,$)+. 

A straightforward calculation verifies the following 

Q.E.D. 

(6.8) LEMMA. If f E S*( W) is homogeneous of degree dE a3 (B.3) then 
z,,,(f) is homogeneous of degree (1/2)d+ (1/2)dim W-dimg’. 

In particular the distribution r,,*(&) (where & is as in (5.9.2)) is 
homogeneous of degree (l/2) dimm Ok,, - dim g’. Therefore the proof of 
[B-Vl, Corollary 3.93 implies that 

(6.9) r&&TO) is a constant multiple of the orbital integral on g’ [R, 
Theorem l] defined by the orbit Oh,, (2.19). 

Clearly (6.9) provides some evidence for the conjecture (5.23). 
Recall [Hl] that there is a notion of the wave front set of a unitary 

representation of a Lie group. In particular [Hl, Theorem 1.81 shows that 
for 17’ unitary 

(6.10) WF(II’) = WF,(O,.) (= WF,(F On,)). 

Here WF,(O,.) is the fiber of WF(Ons) over the identity 1 E G’. 

(6.11) THEOREM. Let G, G’ be an irreducible dual pair with G compact 
and let 17 6 17’ E R(c?. G’, 0). Then WF(I7’) = zgz(z; ‘(0)). 

Proof: Theorem (6.7) and [Ho, Lemma 8.1.71 imply that 

(6.12) WF,(F” O,,) c Tg’( W). 

Denote by Jf’ the nilpotent cone in g’*. As is well known [HI, Proposi- 
tion 2.41 WF(Z7’) c M’, and (2.4) implies that 

(6.13) 1’(o) is nilpotent iff f(w) is nilpotent (w E W). 

Combining (6.12), (6.13) with the fact that the only nilpotent element of g 
is zero we see that 

(6.14) WF(I7) c T&‘(O)). - 

On the other hand the Gelfand-Kirillov dimension [Vl] of I7 is known 
([HlO], (C.l)) and is equal to the dimension of the variety on the right 
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hand side of the inclusion (6.14). Therefore [B-Vl, Theorem 4.81 and 
[B-V2, Proposition 41 imply that (6.14) is an equality. Q.E.D. 

(6.15) COROLLARY. Under the assumptions of (6.11) g 

(6.15.1) the intertwining distribution f is a finite sum of homogeneous 
distributions, then 

(6.15.2) (l/ch,.) . c”T 0,s extends to a finite sum of homogeneous 
distributions on g’ atid the support of the Fourier Transform of this sum coin- 
cides with z,,(Ti’(O))-which is the closure of one nilpotent orbit Ob,, (2.9). 

(6.16) Conjecture. The statement (6.15.2) holds under the assumptions 
of (5.4.2) and (5.26)-with G not necessarily compact. 

(6.17) Remark. It follows from (5.51) and (6.15) that (6.16) is true for 
G compact. In this case the assumptions of (6.16) are satisfied if the 
representation ZZ is trivial on the identity component of G. The main 
obstacle for a rapid proof of (6.16) is that the set (2.11) is not empty if G 
is not compact. 

7. THE WEYL ALGEBRA AND ASSOCIATED VARIETIES 

Consider a real reductive dual pair G, G’ z Sp( W). The enveloping 
algebra e(g) of the complexilication g of g carries a natural filtration by 
vector-subspaces [B] 

The corresponding graded algebra 

is isomorphic to the ring Y(g*) of polynomial functions on the dual vector 
space g* of g. Given an ideal IE @i(g), the graded ideal 

in gr a(g), defines a set of common zeros in g* which is called the 
associated variety Y”(gr I) of I [B, 2.11. The goal of this section is to prove 
the following 

(7.1) THEOREM. Suppose that II7 6 ITER(~.G’, co). Let In(Zn,) denote 
the annihilator of the Harish-Chandra module of II (ZZ’) in @(g) (@(g’)). 



84 TOMASZ PRZEBINDA 

Let f E S*( W) be the corresponding intertwining distribution as in (5.1). 
Then 

Here we denote by zg the extension of the polynomial map zg : W + g* (2.1) 
to the complexlfication W of W, i.e., zg : W --+ g* (the same-refers to zgS). 

Let %‘” denote the subspace of S*(W) consisting of all distributions with 
support contained in (0). This subspace is an algebra with twisted 
convolution 4 [H4, (2.2.5)] so that 

(7.3) (w’tlw)h4=w’h(wtl4) (w’, w  E ^Iy-, 4 E S( WI, 

w  h d(w’) = w(4,,), 

dJw) = dw’ -WI x(l(w, w’>) (w, W’E W). 

There is an embedding 

(7.4) a: w-e-, 

a,(4) = ~~~ t-wtw) -4ww (WE w, dES(W) 

which satisfies the Cannonical Commutation Relations [H2, (22.1.1)] 

(7.5) [a,, a,,] = 27ti(w, w’)S (w, W’E W). 

The symplectic form ( , ) and the map a (7.4) extend to W so that (7.5) 
holds for w, w’ E W. As is well known, the map a extends to an 
isomorphism from the quotient of the tensor algebra of W by the ideal 
generated by elements 

wow’-w’@w-2zi(w,w’) (w, W’E W) 

onto ?Y. In other words, -1y- is the Weyl algebra associated to the form 
2zi( , ) on W. Let w0 = C=6 and let for n B 1 

(7.6) “w^, be the subspace of w  spanned by 6 and the monomials 
a,, 4 a,* tl ... h awm, with ldmdn, WHEW, i=1,2 ,..., m. 

Since a(W) generates “FV we have an exhaustive filtration 
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Using the obvious identification 

(7.8) crm 

we get an isomorphism from the graded algebra 

(7.9) 

onto P(W), polynomial functions on W, by 

(7.10) gr(w)(w)= [...[[w, c?,]c?,] . ..a.] (WE”W ,̂\“llm-l,WEW). 

n timer 

The oscillator representation o when composed with p-l (4.5) maps 
%,Jsp) into %$,,, 12 > 0. In particular there is a homomorphism of graded 
algebras 

(7.11) gr p-‘0: gr oll(sp) -+ gr w. 

(7.12) LEMMA. Under the identification (7.10) 

gr p.-lo(x)(w) = 2ni(x(w), w) (XESP, WEW). 

Proof. The formulas (4.6) and (7.5) imply 

gr P.- ‘w(x)(w) = Cb ‘4x), a,1 a,1 

= Ca.Y,w,~ a,] =27C(x(w), w)& Q.E.D. 

The map (2.1) extends to 

T,,: W-h* (h = the complexification of h) 

and defines the pullback 

(7.13) 9(h*) 3 a + a0 (87ciz,,) E P(W). 

(7.14) LEMMA. For any Lie subalgebra 4 asp the following diagram - 
commutes 

gr q!(h) -% cF’(h*). 
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Proof: Since all the maps in this diagram are algebra homomorphisms 
it will suffice to check the commutativity on the generators of gr 4!(h). Let 
x E h and let w  E W. Then by (7.12) 

gr p P1o(x)(w) = 27ri(x(w), w) = 87cir,(w)(x). Q.E.D. 

Denote by 

(7.15) Diff(W) the algebra of polynomial coefficient differential operators 
on W. 

This algebra has the usual filtration by the degree of the differential 
operator and if we identify W with its dual W* by 

(7.16) W3W’(W3W”27c(w,w’)EC) 

then there is an isomorphism [Ho, (8.3.2)‘] 

(7.17) gr Diff(W) --, .P(W x W) 

grP(w,yw2)=t\\ t-“~(-t(w,,..))P~(t(w,-))I,,. 

Here m is the degree of the differential operator P. For example, if 
P = d, 4, w  E IV, then a straightforward calculation shows that 

(7.18) da, h NW, w2) = 271i(w, w2 >. 

There is an injection 

(7.19) %‘” + Diff( W), defined by a, -+ d, 4 (W E W). 

Define an injection 

(7.20) 9yW)3p+qELTyWXW), 

q(w, w2) = P(W2) (w, w* E W). 

It follows easily from (7.16)-(7.20) and (7.9) that the following diagram 
commutes 

(7.21) w  m Diff(W) - gr Diff( W) 

I 

(7.17) 

gr -Ilr B P(W) 
I 

(7.20)) 9qw x W). 

In fact if h is any Lie subalgebra of sp( IV), then a simple calculation shows - 
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that the symbol (7.17) of the differential operator pP’o(x)tz (x~&(h)) 
coincides with the polynomial function 

(7.22) W x W 3 (w, w2) + gr x(8nir,(w,)) E C. 

Here gr x E 9(h*) as in (7.14). After these general preliminaries about the 
Weyl algebra we come back to our reductive dual pair G, G’ (7.1). 

(7.23) LEMMA. Let b = g + g’ or b = g’. Denote by IS e(h) the kernel of 

4 “71Chj. Then “Y-(gr I) = T,,(W). 

Proof. Consider the case !I = g’. The other one is analogous. By [H 11, 
Theorem 71 we have the following short exact sequence 

(7.24) O+I+~(g’)~ $fc‘+o. 

Here l(lrG is the algebra of G-invariants in -Iy- and G acts of YV by conjuga- 
tion [H2, (13.1.3)]. Since the maps gr: %(g’)+gr %(g’) and gr: “IF’-+ 
gr(?V)G = (gr YV)’ are isomorphisms of vector spaces we obtain from 
(7.24) the following short exact sequence 

(7.25) 0 + gr Z-b gr %(g’) * gr YP”’ + 0. 

Thus, by (7.14), Y(gr I) coincides with the Zariski closure of r,(W). But 
this set is Zariski closed (see (D.3)). Q.E.D. 

(7.26) LEMMA. Suppose that 17 @ I7’ E R(c?. c?‘, co). Let f  E S*(W) be 
the corresponding intertwining distribution (5.1). Denote by b either g + g’ 
or g. Let A(h,f)= {wEp-‘o(~(h))lw~f=O}~~. Then Y(gr?,)= 

T,W(gr A@, f))) and “Y-&r I,@ ns) = Tg+g4-fkr A(g + g’, .I”))). 

Here I,@ I-I, is the annihilator of ZZ 6 ZZ’ in @(g + g’). 

ProoJ Consider x~%(g+g’) (x~%(g)). Then by (5.1), XEZ,~ ,r, 
(xeZn) iff o(x) p(f) = 0. This condition means that p-lo(x) b f= 0. It 

follows from (7.23) that V(gr I,@ nz) c z,+,.(W) (V(gr In) c T,(W)). 
Now it is clear that (7.14) implies the lemma. Q.E.D. 

Proof of (7.1). The first inclusion in (7.2) follows immediately from 
(7.26) (7.22), and [Ho, Theorem 8.1.81. Since, with the notation of (7.26), 
4g + g’, f) zA(g, f) we have 

Consequently 

(7.27) 

“f&r A(g + fit’, f)) c “Y-b A(g, f)). 

v(gr In6 ns) ~~,+,.(~;‘(~kr In))). 
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If g+g’g’g@g’ then “Y(gr I,,,.)zV(gr I,) x V(grZ,,) and z~+~z 
tg x rb. Thus (7.27) implies the second inclusion in (7.2). If g + g’ g g0 g’ 
then g n g’ is the center of g and of g’ so that similarly one gets the same 
conclusion. Q.E.D. 

8. THE WAVE FRONT SET OF A UNIPOTENT REPRESENTATION 

(8.1) Conjecture. Under the assumption (5.4.2) 

u WF,, f 2 z,‘(O). 
WE w 

Corollary (5.51) is a partial solution of this conjecture and the complete 
proof does not seem to be that far out to reach. Writing it down, however, 
could take some space-time and some case by case analysis which we 
would like to avoid here. 

In this section we consider the pairs G, G’ and the representations 
ZI 6 Z7’ E R(c. G’, o) for which (8.1) (and (5.4.2)) is valid. 

(8.2) THEOREM. Under the above assumption WF(17’) = TJT;Y’(O)). 

Proof: By (8.1) and (7.1) we have the inclusions 

zgr(z;‘(0)) E V(gr Ins) E r,(r;‘(O)). - 

By (2.19) the dimension of the dense G/-orbit in zg(r;‘(0)) is 
dim W- 2 dim g. A straightforward calculation using (D:2) and the 
argument of the-proof of (2.19) implies that r,Jt;‘(O)) is the closure of one 
G/-orbit (G’= the complexilication of the algebraic group G’), whose 
dimension (over C) is dim, W - 2 dim, g. This clearly shows that 

(8.3) V(gr In,) = z,(r;‘(O)). 

Let 5 E WF(Z7’). The 4 E g’* corresponds to an element x E g’ via (2.5), and 
by (8.3), x2 = 0. Therefore there is a maximal isotropic subspace Vi s I” 
such that im x E Vi. Let Pi be the maximal parabolic subgroup of G’ 
preserving Vi. Then x belongs to the center & of the Lie algebra of the 
unipotent radical of P’, . Choose another maximal isotropic subspace 
I’; E I/’ such that I/’ = V;’ @ Vi. Let & be the Lie algebra of the center 
N; of the unipotent radical of the maximal parabolic subgroup of G’ 
preserving Vi. Let r: g’* --t ni* be the restriction map. Then by [H 1, 
Proposition 1.51 - 

WF(Z7’( ,;) 2 (WF(17’)). 
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Howe’s theory of rank [Li2, Theorem 4.71 implies that 

f+w%v;) = %;W,) (W, as in (2.7)). 

Thus r(5) E z!;( W,). Since n’, and & are paired nondegenerately via the 
form (2.5) this implies that XE z”‘( W,) (?’ as in (2.4)). Consequently 
(by 2.7)) 

so that 

5 E Ad*G’&( II’,)) = z,(G’W,) = z&;‘(O)), 

(8.4) WF(zz')c 7,,(7,'(0)). 

Since dim IYF(ZZ’) = dim, “Y(gr Z,.) [B-Vl, Theorem 4.11, we see that 
(8.3) and (8.4) imply the theorem. Q.E.D. 

APPENDIX A: AN ESTIMATE OF JIAN SHU LI 

Here we show that the proof of Theorem 3.2 in [Lil ] verifies the 
following 

(A.l) THEOREM. Suppose that G, G’ is as in (5.4.2). Then for any 
q4 E S( W) the function 

6 3 g + W&d ~(4)) E d= 

belongs to L’(c), and the integral of this function defines a tempered 
distribution on W. 

Proof. Let V, be a maximal isotropic subspace of V (2.2). Define X, = 
{u’ E W( im w  E I’, }. Then X, is an isotropic subspace of W. Pick a 
maximal isotropic subspace X of W and a complement X, of X, in X so 
that X= X, + X, is a direct sum. We realize the oscillator representation o 
(4.5) on the Hilbert space 2 = L*(X) as in [H4]. Then by [H4, Theorem 
1.4.11, for each 4 E S(W), p(d) is an integral operator with kernel K, in the 
Schwartz space S( X x X). Moreover the map 

(A.21 S(W)~#+K,ES(XXX) 

is a linear topological isomorphism and 

tr ~(4) = jx f&(x, xl dx. 
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Let A be a maximal split torus in G which preserves the subspace V,. 
Choose a Cartan decomposition of G 

and the corresponding decomposition of the Haar measure on c 

(A.3) dg = y(a) dk, da dk, 

as in, for example, [W, 2.4.21. The formula (17) in [H8] together with 
(A.2) imply 

(A.4) tr(o(a) P(4)) = a(a) jx, jx2 &,(a-‘x, + x2, x, +x2) dx, dx2, 

where a E A and 4 E S(W). 
Here CI is a function on A which, by the proof of Theorem 3.2 in [Li] 

satisfies 

(A.5) 5 y(a) IdaN da < ~0. 
A+ 

Let us introduce a scalar product on the real vector space X such that X, 
is orthogonal to X,. Denote by 1 ( the corresponding norm on X. Choose 
positive constants N,, N, such that 

s (1+ IxjpNidx.< co J J 
(j= 1, 2). 

xi 

Define a seminorm q on S( W) by 

q(4)= sup (1 + Ix’1 + (XI)N’+Nz I&(x’, x)1 
X,X’EX 

(4 E SC WI 

Then for any xi, x, E X, and any 4 E S(W) 

f&,(x’, + x2 > XI + ~2) dx, 

<q(&jxA (l+ Ix21)-N2dx2.(1 + /x,I)-Ni. 
7 

Therefore by (A.4) and (A.5) 

64.6) (4 E SC v ). 
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It follows from [H7, (11.4)] and [Wa, 4.1.11 that the function 

~xS(W)xR3(k,,~,k*)jp~‘(o(k,)p(~)w(kZ))ES(W) 
is continuous. Since k is compact there is a seminorm q’ on S( IV) such that 

qW’(4kl) p(4) dk,)) d const 4’(d). 

Therefore (A.3) and (A.6) imply the estimate 

= JJ I Itr(da) dk,) ~(4) 4kd)I Aa) dkl da 6 ,? A+ i? 

6 const q’(d). Q.E.D. 

APPENDIX B: HOMOGENEOUS DISTRIBUTIONS 

Let U be an open conical subset of a real vector space of dimension 
n<co. For t>O and DECO?. Put 

(B.1) dJx)= tPq4(trlx) (x E U). 

Dualizing (B. 1) define 

(J3.2) u,(d) = 44,) (UED’(U), (tJEC‘Y(U)). 

A distribution u E D’(U) is called homogeneous of degree d E @ iff 

(B.3) u, = PM (t > 0). 

(B.4) LEMMA. Let d,, d,, . . . . d, be distinct complex numbers. Denote by 
Ej the space of all distributions on U homogeneous of degree d,, 1 < i< r. Let 

(B.4.1) E=E,+E,+ ... +E,sD’(U) 

be equipped with the relative topology. Then the sum (B.4.1) is direct and the 
corresponding projections 

Pi: E+Ei (l<i<r) 

are continuous. 
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Proof: Since the functions 

[1,2]3r+t4EC (1 <i<r) 

are lineary independent we may choose some linear combinations of them 
p,(t), p2(t), . . . . p2(f) so that 

s 2 

pi(t) t4 dt = 6, (Kronecker delta) (1 d i, j 6 r). 
1 

Therefore it follows from (B.3) that 

P,(u) = j12 pj(t)u, dl (uEF, 1 Gjjr). Q.E.D. 

APPENDIX C: THE GELFAND-KIRYLLOV DIMENSION OF A 
HOLOMORPHIC REPRESENTATION 

Here we assume that G, G’ is an irreducible dual pair with G compact. 
Our goal is to prove the following known 

(C.l) THEOREM. Let 17’ E R(c’, 0). Then 2 Dim 17’ = dim rJr;‘(O)). 
(For the notation “Dim 17” see [VZ, Proposition 5.51.) 

In the view of the inclusion (6.14) and [B-VI, Theorem 4.81 it will 
suftice to show the inequality 

(C.2) 2Dim Z7’> dim rg,(rg ‘(0)). 

Let f be a compatible positive complex structure on W centralized by G. 
Denote K’ the centralizer of f in G’. Then K’ is a maximal compact 
subgroup of G’ and we get a Cartan decomposition 

(C.3) g’=_k’+p’. 

We shall work in the Harish-Chandra module of the Fock model of w (4.5) 
adapted to f [Pl, (1.4.5)]. This module coincides with the space 

(C.4) 9J = 9( W) of polynomial functions on W where W is viewed as a 
complex vector space (iw = I( W), w E W). The complexilication p’ 
of p’ (C.3) has a direct sum decomposition 

(C.5) p’=pt+ +p’ 

with the property that w(p’+) is spaned by certain quadratic polynomials 
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(viewed as multiplication operators). In the notation of [H6], o(p’+)= 
g’(‘,‘). The p’+ (C.5) is a commutative Lie subalgebra of g’. Denote by A 
the image of the universal enveloping algebra %(p’+) under w  and by I the 
kernel of o\%,~,+,. Thus we have a short exact sequence. 

(C.6) O-,I+“&(p’+)~ A-0. 

Denote by Yn the ZZ-isotypic component of 9 (C.4) and by H(G)n the 
subspace of gfl spanned by the non-zero polynomials of lowest possible 
degree in Yfl (see [H6; Pl, (5.18)]). Then, as is well known [H6, (3.9)] 

(C.7) P&r = AH(G),. 

Since w(k + p’) normalizes H(G)n the P-B-W theorem implies that 

((33) 4%,k’)) ff(G)n = ~WP’+ 1) WG)n 

(see (7.9) for “21,1). By combining (C.7) (C.8) with [V2, Theorem 1.11 we 
see that 

(C.9) Dim Z7’ = Dim A, 

where Dim A is the Gelfand-Kiryllov dimension of the algebra A [B-K]. 
This dimension coincides with the dimension of the variety 

(C.10) +Y(gr I) of the homogeneous ideal gr Z (C.6) in the dual p’,*. 

Lema (7.14) implies that 

(C.11) ^Y(gr I) 2 rp,(W). 

It remains to show that 

(C.12) 2 dim, r,;(W) = dim, r,,(r,‘(O)) 

which may be verified by a calculation similar to the one used in the proof 
of (2.9). 

APPENDIX D: COMPLEX PAIRS 

Let G, G’ be a real reductive dual pair in Sp( W). Then the complexified 
Lie algebras g, g’ form a complex dual pair of Lie algebras in sp. Suppose 
that h, h’ is another complex dual pair in sp and that h is isomorphic to g 
and h’ to g’. Then (as follows from the classification of such pairs [H7]) 
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there is g E Sp(W) such that Ad g(g) = h and Ad g(g’) = h’. As in (2.1) we 
have a quadratic map 

(D.1) Tg: w + g*, z&w)(x) = 4(x(w), w), x E g, w E w. 

Clearly this is the extension of the map (2.1) zg: W +g*. All together we 
have the following commuting diagram 

CD.21 

where the unmarked arrow maps w E W to g(w) E W. 

(D.3) LEMMA. The set z,(W) G g* is an affine algebraic variety. 

ProoJ The pair g, g’ may be reducible [H7]. Then we have the 
orthogonal direct sum decompositions 

W=W,@W,@ . . ..g=g.@g,@ . . ..g’=g.@g;@ ... 

such that g,, gi is an irreducible pair in sp(W). Notice that 

where rg,: Wi+g,* is defined by (D.l) on Wi (i= 1, 2 ,... ). 
Thus we may assume that our pair g, g’ is irreducible. By (D.2) there are 

two cases to consider: 

(D.3.1) g(g’) is the Lie algebra of isometries of a complex vector 
space V(V’) with a nondegenerate symmetric form ( , ) (antisymmetric 
form ( , )‘), and W = Horn&V’, V); or 

(D.3.2) g = End,(U) (g’= Endo( where U(U’) is a complex 
vector space and 

W = Horn&U, U’) @ Hom,(U’, U). 

In the situation (D.3.1) there is a linear isomorphism 

(D.3.3) g 3 x + p(x) E B(V), /?(x)(u, v) = (x(u), v) (u, v E V) onto the 
space B(V) of antisymmetric forms on V. If we identify g* with g as in (2.5) 
then 42, will coincide with the map 

z”(w) = ww* (w E w, 
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where the “*” is defined as in (2.2). Thus z,(W) as a subset of End,(V) is 
mapped, via a linear isomorphism, onto 10 7(W) c B(W). This set fi 0 z”(W) 
coincides with the variety of all antisymmetric forms on V of rank at most 
dim, V’. Thus z,(W) (and similarly z,.(W)) is Zariski closed and 
irreducible. 

The case (D.3.4) is simpler. Hence, by similar procedure, ~~ may be 
identified with a map 

(D.3.4) Hom,(U,U’)@Hom,(U’, U)SW,@W~-+W~W,E~. 

Thus z,(W) is the variety of linear endomorphisms of V of rank at most 
dim, V’. Q.E.D. 
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