What is Howe correspondence?

Tomasz Przebinda

University of Oklahoma, Norman, OK, USA

Thematic lectures

IIT Guwahati, December 18-21, 2023

Lecture 1:
 The Weil representation of the metaplectic group

- The Schrödinger model
- The Robinson-Rawnsley model (on the Bargmann-Segal space)

O_{2} commutes with the Fourier transform

Fourier transform: $\quad \mathcal{F} v(x):=\int_{\mathbb{R}^{2}} e^{2 \pi i x \cdot x^{\prime}} v\left(x^{\prime}\right) d x^{\prime} \quad\left(v \in \mathcal{S}\left(\mathbb{R}^{2}\right)\right)$
O_{2}-action on $\mathrm{L}^{2}\left(\mathbb{R}^{2}\right): \quad \omega(g) v(x):=v\left(g^{-1} x\right) \quad\left(g \in \mathrm{O}_{2}\right)$
They commute: $\quad \mathcal{F} \omega(g)=\omega(g) \mathcal{F} \quad\left(g \in \mathrm{O}_{2}\right)$
Isotypic decomposition: $\quad \mathrm{L}^{2}\left(\mathbb{R}^{2}\right)=\sum_{\rho \neq \operatorname{det}} \mathrm{L}^{2}\left(\mathbb{R}^{2}\right)_{\rho}$
Each $\left.\mathcal{F}\right|_{L^{2}\left(\mathbb{R}^{2}\right)_{\rho}}$ is described as an integral kernel operator in "Harmonic Analysis on Euclidean Spaces" by E. Stein and G. Weiss, 1971.

Hermite functions on \mathbb{R}^{2}

$v_{\beta}(x):=P_{\beta_{1}}\left(x_{1}\right) P_{\beta_{2}}\left(x_{2}\right) e^{-\frac{\pi}{2}\left(x_{1}^{2}+x_{2}^{2}\right)}, \quad \beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$
Eigenvectors for $\mathcal{F}: \quad \mathcal{F} v_{\beta}=\left(e^{i \frac{\pi}{2}}\right)^{|\beta|} v_{\beta}, \quad$ where $\quad|\beta|=\beta_{1}+\beta_{2}$
Then $\mathcal{S}\left(\mathbb{R}^{2}\right)=\sum_{d=0}^{\infty} \mathcal{S}\left(\mathbb{R}^{2}\right)_{d}, \quad$ where $\quad \mathcal{S}\left(\mathbb{R}^{2}\right)_{d}:=\sum_{|\beta|=d} \mathbb{C} v_{\beta}$.
Hence, the diagonalization

$$
\mathcal{F}=\sum_{d=0}^{\infty}\left(e^{i \frac{\pi}{2}}\right)^{d} I_{\mathcal{S}\left(\mathbb{R}^{2}\right)_{d}}
$$

\mathcal{F} is part of a one-parameter family of operators
$\mathcal{F}_{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)}:=\sum_{d=0}^{\infty}\left(e^{i \theta}\right)^{d} I_{\mathcal{S}\left(\mathbb{R}^{2}\right)_{d}}, \quad$ e.g. $\quad \mathcal{F}_{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)}=\mathcal{F}$.
These operators commute with the SO_{2}-action.
O_{2} also commutes with dilations and Gaussian multipliers dilations: $\left.\omega\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)\right) v(x):=a^{-\frac{1}{2}} v\left(a^{-1} x\right)$
Gaussian multipliers: $\omega\left(\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)\right) v(x):=e^{i \pi n\left(x_{1}^{2}+x_{2}^{2}\right)} v(x)$.
Altogether, O_{2} commutes with the actions of the groups

$$
\begin{aligned}
& \mathrm{K}=\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) ; \theta \in \mathbb{R}\right\}, \\
& \mathrm{A}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) ; a>0\right\}, \\
& \mathrm{N}=\left\{\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) ; n \in \mathbb{R}\right\},
\end{aligned}
$$

O_{2} also commutes with dilations and Gaussian multipliers dilations: $\left.\omega\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)\right) v(x):=a^{-\frac{1}{2}} v\left(a^{-1} x\right)$
Gaussian multipliers: $\omega\left(\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)\right) v(x):=e^{i \pi n\left(x_{1}^{2}+x_{2}^{2}\right)} v(x)$.
Altogether, O_{2} commutes with the actions of the groups

$$
\begin{aligned}
& \mathrm{K}=\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) ; \theta \in \mathbb{R}\right\}, \\
& \mathrm{A}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) ; a>0\right\}, \\
& \mathrm{N}=\left\{\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) ; n \in \mathbb{R}\right\},
\end{aligned}
$$

On the OTHER hand, there is an isomorphism of manifolds: $\mathrm{K} \times \mathrm{A} \times \mathrm{N} \simeq \mathrm{SL}_{2}(\mathbb{R})$.
O_{2} also commutes with dilations and Gaussian multipliers dilations: $\left.\omega\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)\right) v(x):=a^{-\frac{1}{2}} v\left(a^{-1} x\right)$
Gaussian multipliers: $\omega\left(\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)\right) v(x):=e^{i \pi n\left(x_{1}^{2}+x_{2}^{2}\right)} v(x)$.
Altogether, O_{2} commutes with the actions of the groups

$$
\begin{aligned}
& \mathrm{K}=\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) ; \theta \in \mathbb{R}\right\}, \\
& \mathrm{A}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) ; a>0\right\}, \\
& \mathrm{N}=\left\{\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) ; n \in \mathbb{R}\right\},
\end{aligned}
$$

On the OTHER hand, there is an isomorphism of manifolds: $\mathrm{K} \times \mathrm{A} \times \mathrm{N} \simeq \mathrm{SL}_{2}(\mathbb{R})$.

Is there anything behind this?

Chomolungma

Gaussians and Weil factors on \mathbb{R}

Let $d x$ denote the usual Lebesgue measure on \mathbb{R}.
Let $\chi(r):=e^{2 \pi i r}, r \in \mathbb{R}$, and define

$$
\gamma(a):=\lim _{b \rightarrow 0+} \int_{\mathbb{R}} \chi\left(\frac{1}{2}(a+i b) x^{2}\right) d x=|a|^{-\frac{1}{2}} \gamma_{W}(a)
$$

where

$$
\gamma_{W}(a):=e^{\frac{\pi i}{4} \operatorname{sgn}(a)} \quad(a \in \mathbb{R} \backslash\{0\})
$$

is the Weil factor.

Gaussians and Weil factors on \mathbb{R}

Let $d x$ denote the usual Lebesgue measure on \mathbb{R}.
Let $\chi(r):=e^{2 \pi i r}, r \in \mathbb{R}$, and define

$$
\gamma(a):=\lim _{b \rightarrow 0+} \int_{\mathbb{R}} \chi\left(\frac{1}{2}(a+i b) x^{2}\right) d x=|a|^{-\frac{1}{2}} \gamma_{w}(a),
$$

where

$$
\gamma_{W}(a):=e^{\frac{\pi i}{4} \operatorname{sgn}(a)} \quad(a \in \mathbb{R} \backslash\{0\})
$$

is the Weil factor.

Gaussians and Weil factors on a vector space

U finite dimensional vector space over \mathbb{R} with Lebesgue measure μ_{U}; q a nondegenerate quadratic form on U .
Define

$$
\begin{aligned}
\gamma(q) & :=\lim _{p \rightarrow 0} \int_{U} \chi\left(\frac{1}{2}(q+i p)(u)\right) d \mu_{U}(u), \\
\gamma w(q) & :=\frac{\gamma(q)}{|\gamma(q)|}=\chi\left(\frac{1}{4} \operatorname{sgn}(q)\right) .
\end{aligned}
$$

Back to Lie groups

(W, $\langle\cdot, \cdot\rangle$) a symplectic space;
Symplectic group:
$\mathrm{Sp}=\mathrm{Sp}(\mathrm{W})=\left\{g \in \operatorname{End}(\mathrm{~W}) ;\left\langle g w, g w^{\prime}\right\rangle=\left\langle w, w^{\prime}\right\rangle, \forall w, w^{\prime} \in \mathrm{W}\right\}$.
Symplectic Lie algebra:
$\mathfrak{s p}=\mathfrak{s p}(\mathrm{W})=\left\{x \in \operatorname{End}(\mathrm{~W}) ;\left\langle x w, w^{\prime}\right\rangle=-\left\langle w, x w^{\prime}\right\rangle, \forall w, w^{\prime} \in \mathrm{W}\right\}$.

Back to Lie groups

(W, $\langle\cdot, \cdot\rangle$) a symplectic space;
Symplectic group:
$\mathrm{Sp}=\operatorname{Sp}(\mathrm{W})=\left\{g \in \operatorname{End}(\mathrm{~W}) ;\left\langle g w, g w^{\prime}\right\rangle=\left\langle w, w^{\prime}\right\rangle, \forall w, w^{\prime} \in \mathrm{W}\right\}$.
Symplectic Lie algebra:
$\mathfrak{s p}=\mathfrak{s p}(\mathrm{W})=\left\{x \in \operatorname{End}(\mathrm{~W}) ;\left\langle x w, w^{\prime}\right\rangle=-\left\langle w, x w^{\prime}\right\rangle, \forall w, w^{\prime} \in \mathrm{W}\right\}$.

Determinants

Pick $J \in \mathfrak{s p}$ such that $J^{2}=-I$ and let $B(\cdot, \cdot):=\langle J \cdot, \cdot\rangle>0$.
Define
$\operatorname{det}(g-1: \mathrm{W} / \operatorname{Ker}(g-1) \rightarrow(g-1) \mathrm{W}):=\operatorname{det}\left(\left\langle(g-1) w_{i}, w_{j}\right\rangle_{1 \leq i, j \leq m}\right)$,
where w_{1}, \ldots, w_{m} is any B-orthonormal basis of $\operatorname{Ker}(g-1)^{\perp_{B}} \subseteq \mathrm{~W}$.

The Metaplectic Group

$$
\gamma(a):=|a|^{-\frac{1}{2}} e^{\frac{\pi i}{4} \operatorname{sgn}(a)} \quad\left(a \in \mathbb{R}^{\times}\right)
$$

For $g, g_{1}, g_{2} \in S p$, let

$$
\Theta^{2}(g):=\gamma(1)^{2 \operatorname{dim}(g-1) \mathrm{W}-2}[\gamma(\operatorname{det}(g-1: \mathbf{W} / \operatorname{Ker}(g-1) \rightarrow(g-1) \mathrm{W}))]^{2}
$$

$$
C\left(g_{1}, g_{2}\right):=\sqrt{\left|\frac{\Theta^{2}\left(g_{1} g_{2}\right)}{\Theta^{2}\left(g_{1}\right) \Theta^{2}\left(g_{2}\right)}\right|} \gamma_{w}\left(q_{g_{1}, g_{2}}\right),
$$

where

$$
q_{g_{1}, g_{2}}\left(u^{\prime}, u^{\prime \prime}\right):=\frac{1}{2}\left\langle\left(g_{1}+1\right)\left(g_{1}-1\right)^{-1} u^{\prime}, u^{\prime \prime}\right\rangle
$$

$$
+\frac{1}{2}\left\langle\left(g_{2}+1\right)\left(g_{2}-1\right)^{-1} u^{\prime}, u^{\prime \prime}\right\rangle
$$

$$
\left(u^{\prime}, u^{\prime \prime} \in\left(g_{1}-1\right) \mathrm{W} \cap\left(g_{2}-1\right) \mathrm{W}\right) .
$$

The Metaplectic Group

$$
\begin{aligned}
& \widetilde{\mathrm{Sp}}:=\left\{\tilde{g}=(g, \xi) \in \mathrm{Sp} \times \mathbb{C}, \xi^{2}=\Theta^{2}(g)\right\} \\
& \left(g_{1}, \xi_{1}\right)\left(g_{2}, \xi_{2}\right):=\left(g_{1} g_{2}, \xi_{1} \xi_{2} C\left(g_{1}, g_{2}\right)\right) .
\end{aligned}
$$

Normalization of Haar measures on vector spaces

Recall the positive definite form $B(\cdot, \cdot)=\langle J \cdot, \cdot\rangle$.
For any subspace $\mathrm{U} \subseteq \mathrm{W}$ we normalize the Haar measure μ_{U} on U so that the volume of the unit cube with respect to form B is 1 .

If $\mathrm{V} \subseteq \mathrm{U}$ is a subspace, then B induces a positive definite form on the quotient U / V and hence a normalized Haar measure $\mu_{\mathrm{U} / \mathrm{V}}$ so that the volume of the unit cube is 1 .

The Weil representation of $\widetilde{S p}$ (Schrödinger model)

 $\mathrm{W}=\mathrm{X} \oplus \mathrm{Y}$ a complete polarization. We shall assume that $J \mathrm{X}=\mathrm{Y}$. Op : $\mathcal{S}^{\prime}(\mathrm{X} \times \mathrm{X}) \rightarrow \operatorname{Hom}\left(\mathcal{S}(\mathrm{X}), \mathcal{S}^{\prime}(\mathrm{X})\right)$$$
\operatorname{Op}(K) v(x)=\int_{\mathrm{X}} K\left(x, x^{\prime}\right) v\left(x^{\prime}\right) d \mu_{X}\left(x^{\prime}\right)
$$

Weyl transform $\mathcal{K}: \mathcal{S}^{\prime}(\mathrm{W}) \rightarrow \mathcal{S}^{\prime}(\mathrm{X} \times \mathrm{X})$

$$
\mathcal{K}(f)\left(x, x^{\prime}\right)=\int_{Y} f\left(x-x^{\prime}+y\right) \chi\left(\frac{1}{2}\left\langle y, x+x^{\prime}\right\rangle\right) d \mu_{Y}(y)
$$

An imaginary Gaussian on the subspace $(g-1) \mathrm{W}$ of W :

$$
\chi_{c(g)}(u)=\chi(\underbrace{\frac{1}{4}}_{c(g)}\langle\underbrace{(g+1)(g-1)^{-1}}_{\sim} u, u\rangle) \quad(u=(g-1) w, w \in \mathrm{~W}) .
$$

For $\tilde{g}=(g, \xi) \in \widetilde{\text { Sp }}$ define

$$
\Theta(\tilde{g})=\xi, \quad T(\tilde{g})=\Theta(\tilde{g}) \chi_{c(g)} \mu_{(g-1) \mathrm{W},} \quad \omega(\tilde{g})=\mathrm{Op} \circ \mathcal{K} \circ T(\tilde{g})
$$

Then $T: \widetilde{\mathrm{Sp}} \rightarrow \mathcal{S}^{\prime}(\mathrm{W})$ is an injective homeomorphism.
$\left(\omega, L^{2}(X)\right)$ is the Weil representation of $\widetilde{\mathrm{Sp}}$ attached to the character χ.

The Weil representation of $\mathrm{H}(\mathrm{W})$ (Schrödinger model)

 The Heisenberg group:$$
\begin{aligned}
& \mathrm{H}(\mathrm{~W})=\mathrm{W} \times \mathbb{R} \\
& (w, r)\left(w^{\prime}, r^{\prime}\right):=\left(w+w^{\prime}, r+r^{\prime}+\frac{1}{2}\left\langle w, w^{\prime}\right\rangle\right) .
\end{aligned}
$$

Set

$$
T(w, r)=\chi(r) \delta_{w} \quad((w, r) \in \mathrm{H}(\mathrm{~W})) .
$$

Then

$$
T: \mathrm{H}(\mathrm{~W}) \rightarrow \mathcal{S}^{\prime}(\mathrm{W})
$$

is an injective homeomorphism.
Set $\omega:=\mathrm{Op} \circ \mathcal{K} \circ T$.
$\left(\omega, L^{2}(X)\right)$ is the Weil representation of $\mathrm{H}(\mathrm{W})$ with central character χ. Explicitly, for $v \in \mathrm{~L}^{2}(\mathrm{X})$ and $x \in \mathrm{X}$,

$$
\begin{aligned}
& \omega\left(x_{0}, r\right) v(x)=\chi(r) v\left(x-x_{0}\right) \quad\left(x_{0} \in \mathrm{X}, r \in \mathbb{R}\right), \\
& \omega\left(y_{0}, r\right) v(x)=\chi(r) \chi\left(\left\langle y_{0}, x\right\rangle\right) v(x) \quad\left(y_{0} \in \mathrm{Y}, r \in \mathbb{R}\right) .
\end{aligned}
$$

Weil representation of $\widetilde{S p} \ltimes \mathrm{H}(W)$ (Schrödinger model)

Twisted convolution \mathfrak{h} :

$$
\psi \not \emptyset \phi(w)=\int_{\mathrm{W}} \psi(u) \phi(w-u) \chi\left(\frac{1}{2}\langle u, w\rangle\right) d \mu_{\mathrm{W}}(u) \quad(w \in \mathrm{~W}) .
$$

Since the metaplectic group acts on the Heisenberg group via automorphisms

$$
\tilde{g}(w, r)=(g w, r) \quad(\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{~W}),(w, r) \in \mathrm{H}(\mathrm{~W})),
$$

we have the semidirect product $\widetilde{\mathrm{Sp}}(\mathrm{W}) \ltimes \mathrm{H}(\mathrm{W})$, which we embed into the space of the tempered distributions by

$$
T(\tilde{g},(w, r))=T(\tilde{g}) \natural T(w, r) \quad(\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{~W}),(w, r) \in \mathrm{H}(\mathrm{~W})) .
$$

Theorem

Let $\omega=\mathrm{Op} \circ \mathcal{K} \circ T$. Then

$$
\omega: \widetilde{\mathrm{Sp}}(\mathrm{~W}) \ltimes \mathrm{H}(\mathrm{~W}) \rightarrow \mathrm{U}\left(\mathrm{~L}^{2}(\mathrm{X})\right)
$$

is an injective group homomorphism. For each $v \in \mathrm{~L}^{2}(\mathrm{X})$, the map

$$
\widetilde{\mathrm{Sp}}(\mathrm{~W}) \ltimes \mathrm{H}(\mathrm{~W}) \ni \tilde{g} \rightarrow \omega(\tilde{g}) v \in \mathrm{~L}^{2}(\mathrm{X})
$$

is continuous. Hence $\left(\omega, \mathrm{L}^{2}(\mathrm{X})\right)$ is a unitary representation of $\widetilde{\mathrm{Sp}}(\mathrm{W}) \ltimes \mathrm{H}(\mathrm{W})$.

Moreover,

$$
\omega(\tilde{g}) \omega(w, r) \omega\left(\tilde{g}^{-1}\right)=\omega(g w, r) \quad(\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{~W}),(w, r) \in \mathrm{H}(\mathrm{~W})) .
$$

The action of ω extends to $\mathcal{S}^{\prime}(\mathrm{X})$ and the above formula holds with $\mathrm{L}^{2}(\mathrm{X})$ replaced by $\mathcal{S}^{\prime}(\mathrm{X})$. In particular, $\omega(\mathrm{Sp}(\mathrm{W})$) normalizes $d \omega(\mathfrak{h}(\mathrm{~W}))$.

The Robinson-Rawnsley model (on the Bargmann-Segal space)

The formula

$$
\begin{aligned}
& \operatorname{det}^{-1 / 2}\left(\frac{1}{2 i}(x+i y)\right):=\int_{\mathrm{W}} \chi\left(\frac{1}{4}\langle(x+i y) w, w\rangle\right) d w \\
& \quad(x, y \in \mathfrak{s p}(\mathrm{~W}),\langle y \cdot, \cdot\rangle>0)
\end{aligned}
$$

defines the reciprocal of the unique holomorphic square root of the determinant of $\frac{1}{2 i}(x+i y)$ which is positive for $x=0$. In particular

$$
\lim _{y \rightarrow 0} \operatorname{det}^{-1 / 2}\left(\frac{1}{2 \prime}(x+i y)\right)=\gamma\left(q_{x}\right), \text { where } \quad q_{x}(w)=\frac{1}{2}\langle x w, w\rangle .
$$

For $g \in \operatorname{Sp}(W)$ set

$$
C(g):=\frac{1}{2}\left(g+J g J^{-1}\right), \quad A(g):=\frac{1}{2}\left(g-J g J^{-1}\right) .
$$

$C(g)$ commutes with J and hence preserves the eigenspaces $\mathrm{W}_{\mathbb{C}, J= \pm i} \subseteq \mathrm{~W}_{\mathbb{C}}$.

Lemma

For any $\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{W}), C(g)$ is invertible and

$$
\left(\Theta(\tilde{g}) \operatorname{det}^{-1 / 2}\left(\frac{1}{2 i}(x+i y)\right)\right)^{2}=\left(\operatorname{det}\left(C(g) \mid w_{\mathrm{C}, J=-i}\right)^{-1}\right.
$$

Hence define

$$
\operatorname{det}\left(C(\tilde{g}) \mid w_{\mathrm{c}, J=-i}\right)^{-1 / 2}=\Theta(\tilde{g}) \operatorname{det}^{-1 / 2}\left(\frac{1}{2 i}(x+i y)\right) .
$$

View the real space W as a complex vector space where $-J$ plays the role of the multiplication by $\sqrt{-1}$.
Then $(\cdot, \cdot): \mathrm{W} \times \mathrm{W} \rightarrow \mathbb{C}$ given by

$$
\left(w, w^{\prime}\right):=\left\langle J w, w^{\prime}\right\rangle-i\left\langle w, w^{\prime}\right\rangle
$$

defines a positive definite hermitian form on W .

Let \mathcal{H} denote the Bargmann-Segal space, i.e. the Hilbert space of holomorphic functions $h: \mathrm{W} \rightarrow \mathbb{C}$ such that

$$
\int_{\mathrm{W}}|h(w)|^{2} e^{-\pi(w, w)} d w<\infty
$$

For $\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{W})$ and $h \in \mathcal{H}$ set

$$
\begin{aligned}
& \omega_{R R}(\tilde{g}) h(w)=\operatorname{det}\left(C(\tilde{g}) \mid w_{\mathbb{C}, J=-i}\right)^{-1 / 2} \int_{\mathrm{W}} h(u) e^{-\frac{\pi}{2}\left(w, C\left(g^{-1}\right)^{-1} A\left(g^{-1}\right) w\right)} \\
& \times e^{-\frac{\pi}{2}\left(C(g)^{-1} A(g) u, u\right)} e^{\pi\left(C(g)^{-1} w, u\right)} e^{-\pi(u, u)} d u
\end{aligned}
$$

In particular, if $g=J g J^{-1}$ then

$$
\omega_{R R}(\tilde{g}) h(w)=\operatorname{det}\left(\left.\tilde{g}\right|_{\mathrm{w}_{\mathbb{C}, J=-i}}\right)^{-1 / 2} h\left(g^{-1} w\right)
$$

Theorem

The two unitary representations $\left(\omega, \mathrm{L}^{2}(\mathrm{X})\right)$ and $\left(\omega_{R R}, \mathcal{H}\right)$ of $\widetilde{\mathrm{Sp}}(\mathrm{W})$ are unitarily equivalent.

Notation: We shall write ω for $\omega_{R R}$ if there is no risk of confusion.

References

A．－M．Aubert and T．Przebinda：A reverse engineering approach to the Weil Representation．CEJM， 12 （2014）， 1200－1285
（1．HÖrmander：The Analysis of Linear Partial Differential Operators I．Springer Verlag，（1983）

R．Rowe：Quantum mechanics and partial differential equations， J．Funct．Anal． 38 （1980），188－254．

囦 P．L．Robinson and J．H．Rawnsley：The metaplectic representation， Mp^{C}－structures and geometric quantization， Memoirs of the AMS 410 （1989）．

围 E．M．Stein and G．Weiss：Introduction to Fourier Analysis on Euclidean Spaces，Princeton University Press，（1971）
目 WEIL，ANDRÉ Sur certains groupes d＇opérateurs unitaires，Acta Math．，111，（1964），143－211

Lecture 2:

- The Fock model of the Weil representation
- Basic invariants: matrix coefficients, character and wave front set
- Reducibility of the Weil representation
- Real reductive dual pairs

Some historical remarks

- John von Neumann (1926): two hermitian operators P and Q acting irreducibly on an infinite dimensional Hilbert space \mathcal{H} and satisfying the canonical commutation relations

$$
P Q-Q P=\frac{1}{2 \pi i} \mathrm{id}
$$

are determined up to a "rotation in \mathcal{H} ".
In contemporary terms, up to a unitary equivalence, there is only one infinite dimensional irreducible unitary representation ω of the Heisenberg group $H(\mathrm{~W})$ with a fixed central character.

Therefore composing ω with an automorphism of $H(\mathrm{~W})$ fixing the center gives an isomorphic representation. Sp acts on $H(\mathbb{W})$ by $g \cdot(w, r)=(g w, r)$. Hence there is a unitary projective representation $\omega_{p r}$ of Sp such that

$$
\omega(g w, r)=\omega_{p r}(g) \omega(w, r) \omega_{p r}\left(g^{-1}\right)=\quad(g \in \mathrm{Sp},(w, r) \in \mathrm{H}(\mathrm{~W})) .
$$

- David Shale (a student of Irving Segal) (1962): this unitary operator may be chosen up to a sign \pm. Hence he obtained a unitary representation of the connected double cover of the symplectic group, which realizes the automorphism via conjugation.
- Ranga Rao (1993) gave an explicit formula for the action of every element of the metaplectic group.
- Teruji Thomas (a student of Vladimir Drinfeld) (2008) computed the Weyl symbols of the operators $\omega(\tilde{g})$.
- Anne-Marie Aubert and T.P. (2014): starting with Thomas' Weyl symbol, define the operator $\omega(\tilde{g})$ explicitly and prove in the Schrödinger model that $\omega\left(\tilde{g}_{1}\right) \omega\left(\tilde{g}_{2}\right)=\omega\left(\tilde{g}_{1} \tilde{g}_{2}\right)$, without the Stone von Neumann theorem. We eliminate the ± 1 ambiguity using the distribution character Θ of ω.
- What we refer to as the Robinson-Rawnsley model is a slight variation of the classical Bargmann-Segal (-Itzykson) model. In our Robinson-Rawnsley model, the sign ambiguity is eliminated, again using Θ.

In Lecture 1 we presented the two models of ω, as in the last two items.

Recap of a part of Lecture 1

- Symplectic space $(\mathrm{W},\langle\cdot, \cdot\rangle)$ with the complexification $\mathrm{W}_{\mathbb{C}}$,
- $J \in \mathfrak{s p} \cap \mathrm{Sp}, J^{2}=-1, \mathrm{~W}_{\mathbb{C}, J=-i}$-i-eigenspace for J,
- \mathcal{H} is the Bargmann-Segal space of holomorphic functions $h: W \rightarrow \mathbb{C}$ such that

$$
\int_{\mathrm{W}}|h(w)|^{2} e^{-\pi(w, w)} d w<\infty
$$

- In our Robinson-Rawnsley model of the Weil representation ω the metaplectic group $\widetilde{\mathrm{Sp}}(\mathrm{W})$ acts on \mathcal{H}.
In particular, if $g=J g J^{-1}$ then

$$
\omega(\tilde{g}) h(w)=\operatorname{det}\left(\left.\tilde{g}\right|_{w_{\mathbb{C}, J=-i}}\right)^{-1 / 2} h\left(g^{-1} w\right)
$$

- An explicit $\widetilde{\mathrm{Sp}} \ltimes \mathrm{H}(\mathrm{W})$-intertwining isometry between our Robinson-Rawnsley and Schrödinger models is

$$
\mathcal{H} \ni h \rightarrow \mathrm{Op} \circ \mathcal{K}\left(h_{\chi_{i J}}\right) v_{0} \in \mathrm{~L}^{2}(\mathrm{X})
$$

where

$$
v_{0}(x)=2^{\frac{1}{4} \operatorname{dim} x} e^{-\pi(x, x)} \quad(x \in X)
$$

The derived representation $d \omega$ of our Robinson-Rawnsley results in the Fock model.

The Fock model

The space $\mathcal{P}\left(\mathrm{W}_{\mathbb{C}, J=-i}\right)$ of polynomial functions on $\mathrm{W}_{\mathbb{C}, J=-i}$ is dense in \mathcal{H}. Pick a basis $e_{1}^{+}, e_{2}^{+}, \ldots, e_{n}^{+}$of $\mathrm{W}_{\mathbb{C}, J=i}$ and a basis $e_{1}^{-}, e_{2}^{-}, \ldots, e_{n}^{-}$of $\mathrm{W}_{\mathbb{C}, J=-i}$ such that

$$
2 \pi i\left\langle e_{j}^{+}, e_{k}^{-}\right\rangle=\delta_{j, k}
$$

Identify

$$
\mathrm{W}_{\mathbb{C}, J=-i} \ni z_{1} e_{1}^{-}+\ldots+z_{n} e_{n}^{-} \rightarrow\left(z_{1}, \ldots, z_{n}\right)^{t} \in \mathbb{C}^{n}
$$

Then $\mathcal{P}\left(\mathrm{W}_{\mathbb{C}, J=-i}\right)$ is identified with $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.
For $g \in \operatorname{Sp}(\mathrm{~W})^{J}$, denote by $[g] \in M_{n}(\mathbb{C})$ the matrix of $\left.g\right|_{\mathrm{w}_{\mathbb{C}, J=-i}}$ with respect to the ordered basis $e_{1}^{-}, e_{2}^{-}, \ldots, e_{n}^{-}$. Then

$$
\left(\operatorname{det}\left(\tilde{g} \mid \mathrm{w}_{\mathbb{C}, J=-i}\right)^{-1 / 2}\right)^{2}=\operatorname{det}([g])^{-1}
$$

Therefore we set

$$
\operatorname{det}^{-1 / 2}([g])=\operatorname{det}\left(\tilde{g} \mid \mathrm{W}_{\mathbb{C}, J=-i}\right)^{-1 / 2}
$$

For $1 \leq j, k \leq n$ define the following elements of $\mathfrak{s p}(\mathrm{W})_{\mathbb{C}}$:

$$
\begin{aligned}
& E_{j, k}^{+}: e_{j}^{-} \rightarrow e_{k}^{+}, e_{k}^{-} \rightarrow e_{j}^{+}, e_{I}^{-} \rightarrow 0(I \notin\{j, k\}) \\
& E_{j, k}^{-}: e_{j}^{+} \rightarrow e_{k}^{-}, e_{k}^{+} \rightarrow e_{j}^{-}, e_{l}^{+} \rightarrow 0(I \notin\{j, k\}) .
\end{aligned}
$$

Then by taking derivatives of ω, we obtain the following formulas

$$
\begin{aligned}
& d \omega\left(E_{j, j}^{+}\right)=\frac{1}{2} z_{j}^{2} \\
& d \omega\left(E_{j, k}^{+}\right)=z_{j} z_{k} \quad j \neq k \\
& d \omega\left(E_{j, j}^{-}\right)=-\frac{1}{2} \partial_{z_{j}}^{2} \\
& d \omega\left(E_{j, k}^{-}\right)=-\partial_{z_{j}} \partial_{z_{k}} \quad j \neq k
\end{aligned}
$$

Furthermore, for $\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{W})^{J}$,

$$
\omega(\tilde{g}) p(z)=\operatorname{det}^{-1 / 2}([g]) p\left([g]^{-1} z\right) \quad\left(p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right], z \in \mathbb{C}^{n}\right)
$$

This is the Fock model.

The matrix coefficients of ω

$$
\begin{aligned}
& \text { For } \tilde{g}=(g, \xi) \in \widetilde{S p} \\
& \Theta(\tilde{g})=\xi, \\
& T(\tilde{g})=\Theta(\tilde{g}) \chi_{c(g)} \mu_{(g-1)} \mathrm{w}
\end{aligned}
$$

Set

$$
\chi_{x}(w):=\chi\left(\frac{1}{4}\langle x w, w\rangle\right) \quad\left(x \in \mathfrak{s p}(\mathrm{~W})_{\mathbb{C}}, w \in \mathrm{~W}\right) .
$$

(This function was used before for $x=c(g)$.)
The scalar function

$$
\Omega(\tilde{g}):=T(\tilde{g})\left(\chi_{i J}\right) \quad(\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{~W}))
$$

is $\operatorname{det}^{-1 / 2}$-spherical in the sense that

$$
\begin{aligned}
& \Omega\left(\tilde{k} \tilde{g} \tilde{k^{\prime}}\right)=\operatorname{det}\left(\tilde{k} \mid \mathrm{w}_{\mathrm{C}, J=-i}\right)^{-1 / 2} \Omega(\tilde{g}) \operatorname{det}\left(\tilde{k^{\prime}} \mid \mathrm{w}_{\mathrm{C}, J=-i}\right)^{-1 / 2} \\
&\left(\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{~W}), \tilde{k}, \tilde{k^{\prime}} \in \widetilde{\mathrm{Sp}}(\mathrm{~W})^{J}\right) .
\end{aligned}
$$

There is a seminorm q on $\mathcal{S}(\mathrm{X}) \hat{\otimes} \mathcal{S}(\mathrm{X})$ such that for any $v_{1}, v_{2} \in \mathcal{S}(\mathrm{X})$,

$$
\left|\left(\omega(\tilde{g}) v_{1}, v_{2}\right)\right| \leq q\left(v_{1} \otimes v_{2}\right)|\Omega(\tilde{g})| \quad(\tilde{g} \in \widetilde{\mathrm{Sp}}(\mathrm{~W})) .
$$

Let e_{1}, \ldots, e_{n} be a basis of X. Set $f_{j}=J e_{j}$. Assume that

$$
\left\langle\boldsymbol{e}_{j}, f_{k}\right\rangle=\delta_{j, k} .
$$

For positive numbers a_{1}, \ldots, a_{n} define $a \in \operatorname{End}(W)$ by

$$
a e_{j}=a_{j} e_{j}, \quad a f_{j}=a_{j}^{-1} f_{j}
$$

Then $a \in \operatorname{Sp}(\mathrm{~W})$ and the set A of all such elements forms the connected identity component of a maximally split Cartan subgroup of $\mathrm{Sp}(\mathrm{W})$. In these terms

$$
\Omega(\tilde{a})= \pm \prod_{j=1}^{n}\left(\frac{2}{a_{j}+a_{j}^{-1}}\right)^{1 / 2}
$$

Therefore by the " $\widetilde{K} \widetilde{A} \widetilde{K}$ " decomposition

$$
\int_{\widetilde{\mathrm{Sp}}(\mathrm{~W})}|\Omega(\tilde{g})|^{p} d \tilde{g}<\infty
$$

if and only if $p>4 n$.

The distribution character of ω

Theorem
For any $f \in C_{c}^{\infty}(\widetilde{\mathrm{Sp}}(\mathrm{W}))$, the operator

$$
\omega(f)=\int_{\widetilde{S p}(W)} f(\tilde{g}) \omega(\tilde{g}) d \tilde{g}
$$

is of trace class and

$$
\operatorname{tr} \omega(f)=\int_{\widetilde{\mathrm{Sp}}(\mathrm{~W})} f(\tilde{g}) \Theta(\tilde{g}) d \tilde{g}
$$

where the integral is absolutely convergent.
Thus the function Θ introduced in the construction of the metaplectic group and the Weil representation is the distribution character of ω.

Let

$$
\mathfrak{s p}^{c}(\mathrm{~W}):=\{x \in \mathfrak{s p}(\mathrm{~W}) ; \operatorname{det}(x-1) \neq 0\} .
$$

This is the domain of the Cayley transform $c(x)=(x+1)(x-1)^{-1}$ in $\mathfrak{s p}(\mathrm{W})$.

Similarly we have $\mathrm{Sp}^{c}(\mathrm{~W})$ and $\mathrm{Sp}^{c}(\mathrm{~W})$.
Fix a real analytic lift $\tilde{c}: \mathfrak{s p}^{c}(\mathrm{~W}) \rightarrow \mathrm{Sp}^{c}(\mathrm{~W})$ of $c: \mathfrak{s p}^{c}(\mathrm{~W}) \rightarrow \mathrm{Sp}^{c}(\mathrm{~W})$ and let $\tilde{c}_{-}(x)=\tilde{c}(x) \tilde{c}(0)^{-1}$. Then $\tilde{c}_{-}(0)$ is the identity of the metaplectic group.

Theorem

$$
\Theta\left(\tilde{c}_{-}(x)\right)=\Theta\left(\tilde{c}(0)^{-1}\right) \Theta(\tilde{c}(x)) \int_{\mathrm{W}} \chi_{x}(w) d w \quad\left(x \in \mathfrak{s p}^{c}(\mathrm{~W})\right)
$$

The wave front set of a distribution

Let V be a finite dimensional \mathbb{R}-vector space. Recall the Fourier transform

$$
\mathcal{F}(\phi)\left(v^{*}\right)=\int_{\mathrm{V}} \phi(v) \chi\left(-v^{*}(v)\right) d \mu \mathrm{~V}(v) \quad\left(\phi \in C_{c}^{\infty}(\mathrm{V}), v^{*} \in \mathrm{~V}^{*}\right)
$$

The wave front set of a distribution u on V at a point $v \in V$, denoted $W F_{v}(u)$, is the complement of the set of all pairs $\left(v, v^{*}\right), v^{*} \in \mathrm{~V}^{*}$, for which there is a $\phi \in C_{c}^{\infty}(V)$ with $\phi(v) \neq 0$ and an open cone $\Gamma \subseteq V^{*}$ containing v^{*} such that

$$
\left|\mathcal{F}(\phi u)\left(v_{1}^{*}\right)\right| \leq C_{N}\left(1+\left|v_{1}^{*}\right|\right)^{-N} \quad\left(v_{1}^{*} \in \Gamma, N=0,1,2, \ldots\right) .
$$

This notion behaves well under diffeomorphisms. So for any distribution u on a manifold M, one defines $W F(u) \subseteq T^{*} M$ using charts.

For an admissible representation ρ of a real reductive Lie group with distribution character Θ_{ρ}, define the wave front set of ρ as $W F(\rho)=W F_{1}\left(\Theta_{\rho}\right)$.

The wave front set of ω

Define the unnormalized moment map

$$
\tau_{\text {sp }}: \mathrm{W} \rightarrow \mathfrak{s p}^{*}(\mathrm{~W}), \quad \tau_{\text {sp }}(w)(x)=\langle x w, w\rangle \quad(x \in \mathfrak{s p}(\mathrm{~W}), w \in \mathrm{~W}) .
$$

Then the integral

$$
\int_{\mathrm{W}} \psi\left(\frac{1}{4} \tau_{\mathfrak{s p}}(w)\right) d w \quad\left(\psi \in \mathcal{S}\left(\mathfrak{s p}^{*}(\mathrm{~W})\right)\right)
$$

defines an invariant measure $\mu_{\mathcal{O}}$ on the minimal nilpotent coadjoint orbit $\mathcal{O}=\tau_{\text {sp }}(\mathrm{W} \backslash 0)$.

$$
\int_{\mathrm{W}} \chi_{x}(w) d w=\int_{\mathrm{W}} \chi\left(\frac{1}{4} \tau_{\text {sp }}(w)(x)\right) d w=\int_{\mathcal{O}} \chi(\xi(x)) \mu_{\mathcal{O}}(\xi)
$$

is a Fourier transform of $\mu_{\mathcal{O}}$.

Recall that

$$
\Theta\left(\tilde{c}_{-}(x)\right)=\Theta\left(\tilde{c}(0)^{-1}\right) \Theta(\tilde{c}(x)) \int_{\mathrm{W}} \chi_{x}(w) d w \quad\left(x \in \mathfrak{s p}^{c}(\mathrm{~W})\right)
$$

This shows that modulo the lift via Cayley transform and multiplication by a real analytic function, the character Θ is a Fourier transform of $\mu_{\mathcal{O}}$. In particular

$$
W F_{1}(\Theta)=\tau_{\mathfrak{s p}}(\mathrm{W})
$$

One can show that as a subset of the cotangent bundle $\widetilde{\mathrm{Sp}}(\mathrm{W}) \times \mathfrak{s p}^{*}(\mathrm{~W})$,

$$
W F(\Theta)=\left\{(\tilde{g}, \xi) ; \xi \in W F_{1}(\Theta), A d_{g}^{*}(\xi)=\xi, \tilde{g} \in \operatorname{supp}(\Theta)\right\}
$$

Question: does the above formula hold for the character of any admissible representation of any real reductive group?

Reducibility of ω

Let $Z=\{ \pm 1\}$ denote the center of Sp.
The preimage $\widetilde{Z} \subseteq \widetilde{\mathrm{Sp}}(\mathrm{W})$ is the center of $\widetilde{\mathrm{Sp}}$. It acts on $\mathrm{L}^{2}(\mathrm{X})$ as follows

$$
\omega(\tilde{z}) v(x)=\frac{\Theta(\tilde{z})}{|\Theta(\tilde{z})|} v\left(z^{-1} x\right) .
$$

Set

$$
\rho_{+}(\tilde{z})=\frac{\Theta(\tilde{z})}{|\Theta(\tilde{z})|}
$$

and

$$
\rho_{-}(\tilde{z})=\left\{\begin{array}{r}
\rho_{+}(\tilde{z}) \text { if } z=1, \\
-\rho_{+}(\tilde{z}) \text { if } z=-1
\end{array}\right.
$$

Then both ρ_{+}and ρ_{-}are unitary characters of \widetilde{Z} and we have the \widetilde{Z} isotypic decomposition of ω

$$
\mathrm{L}^{2}(\mathrm{X})=\mathrm{L}^{2}(\mathrm{X})_{\rho_{+}} \oplus \mathrm{L}^{2}(\mathrm{X})_{\rho_{-}}
$$

where $L^{2}(X)_{\rho_{+}}$consists of even functions and $\mathrm{L}^{2}(\mathrm{X})_{\rho_{-}}$of odd functions.

Since $\{0\}$ and $W \backslash\{0\}$ are the only Sp-orbits in W,

$$
\mathcal{S}^{\prime}(\mathrm{W})^{\mathrm{Sp}}=\mathbb{C} \delta \oplus \mathbb{C} \mu_{\mathrm{W}}
$$

Hence, via the isomorphism $\mathrm{Op} \circ \mathcal{K}$,

$$
\operatorname{dim} \operatorname{Hom}\left(\mathcal{S}(\mathrm{X}), \mathcal{S}^{\prime}(\mathrm{X})\right)^{\omega(\widetilde{\mathrm{Sp}}(\mathrm{~W}))}=2
$$

Therefore

$$
\operatorname{dim} \operatorname{End}\left(\mathrm{L}^{2}(\mathrm{X})\right)^{\omega(\widetilde{\mathrm{Sp}}(\mathrm{~W}))} \leq 2
$$

Thus the spaces $\mathrm{L}^{2}(\mathrm{X})_{\rho_{ \pm}}$are irreducible under the action of $\widetilde{\mathrm{Sp}}$. Denote the resulting representations of $\widetilde{\mathrm{Sp}}$ by $\rho_{ \pm}^{\prime}$. Hence as a representation of $\widetilde{Z} \times \widetilde{\mathrm{Sp}}(\mathrm{W})$,

$$
\mathrm{L}^{2}(\mathrm{X})=\mathrm{L}^{2}(\mathrm{X})_{\rho_{+} \otimes \rho_{+}^{\prime}} \oplus \mathrm{L}^{2}(\mathrm{X})_{\rho_{-} \otimes \rho_{-}^{\prime}}
$$

This is the decomposition of ω into the sum of two irreducibles.

We just obtained the decomposition

$$
\mathrm{L}^{2}(\mathrm{X})=\mathrm{L}^{2}(\mathrm{X})_{\rho_{+} \otimes \rho_{+}^{\prime}} \oplus \mathrm{L}^{2}(\mathrm{X})_{\rho_{-} \otimes \rho_{-}^{\prime}}
$$

The relation

$$
\left\{\begin{array}{l}
\rho_{+} \longleftrightarrow \rho_{+}^{\prime} \\
\rho_{-} \longleftrightarrow \rho_{-}^{\prime}
\end{array}\right.
$$

is our first example of Howe correspondence $\rho \leftrightarrow \rho^{\prime}$ between some irreducible representations of $\widetilde{\mathrm{Z}}=\widetilde{\mathrm{O}_{1}}$ and $\widetilde{\mathrm{Sp}}=\widetilde{\mathrm{Sp}_{2 n}}(\mathbb{R})$.

The groups Z and Sp are mutual centralizers in Sp and they act reductively on W.
This makes them an example of a real reductive dual pair, as we are going to see next.

Dual Pairs

Two subgroups $G, G^{\prime} \subseteq \operatorname{Sp}(\mathrm{W})$ form a dual pair if they act reductively on W and they are mutual centralizers in $\mathrm{Sp}(\mathrm{W})$. The dual pair (G, G^{\prime}) is called irreducible if there is no non-trivial direct sum orthogonal decomposition of W preserved by both G and G^{\prime}.
Below we list the irreducible pairs, up to isomorphism.

$\mathrm{G}, \mathrm{G}^{\prime}$
$\mathrm{GL}(\mathbb{D}), \mathrm{GL}_{m}(\mathbb{D})$
$\mathrm{O}_{p, q}, \mathrm{Sp}_{2 n}(\mathbb{R})$
$\mathrm{O}_{p}(\mathbb{C}), \mathrm{SP}_{2 n}(\mathbb{C})$
$\mathrm{U}_{p, q}, \mathrm{U}_{r, s}$
$\mathrm{O}_{2 n}^{*}, \mathrm{Sp}_{p, q}$

Here $\mathbb{D}=\mathbb{R}$ or \mathbb{C} or the quaternions \mathbb{H}.
The preimages $\widetilde{\mathrm{G}}, \widetilde{\mathrm{G}}^{\prime} \subseteq \widetilde{\mathrm{Sp}}(\mathrm{W})$ are also mutual centralizers in $\widetilde{\mathrm{Sp}}(\mathrm{W})$.

References

R. Howe: Transcending Classical Invariant Theory, J. Amer. Math. Soc. 2, (1989), 535-552
目 L. HÖrmander: The Analysis of Linear Partial Differential Operators I. Springer Verlag, (1983)
R. Howe: Quantum mechanics and partial differential equations, J. Funct. Anal. 38 (1980), 188-254.
T. Przebinda: Characters, dual pairs, and unipotent representations, J. Funct. Anal., 98, (1991), 59-96.
T. Przebinda: Characters, dual pairs, and unitary representations, Duke Math. J., 69, (1993), 547-592.

Lecture 3:

- The First Fundamental Theorem of the Classical Invariant Theory
- Howe's Double Commutant Theorem
- Dual pairs with one member compact
- A dual pair as a supergroup
- The Capelli homomorphism

The unnormalized moment maps

Let $\mathrm{G}, \mathrm{G}^{\prime} \subseteq \mathrm{Sp}=\mathrm{Sp}(\mathrm{W})$ be a dual pair with Lie algebras $\mathfrak{g}, \mathfrak{g}^{\prime}$.

Example:

$$
\begin{aligned}
& \mathrm{W}=\mathrm{M}_{m, 2 n}(\mathbb{R}), \quad J=\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right), \quad\left\langle w^{\prime}, w\right\rangle=\operatorname{tr}\left(w^{\prime} J w^{t}\right), \\
& g(w)=g w, \quad g^{\prime}(w)=w g^{\prime-1}
\end{aligned}
$$

This way $\mathrm{G}=\mathrm{O}_{m}, \mathrm{G}^{\prime}=\mathrm{Sp}_{2 n}(\mathbb{R})$ are a dual pair inside $\mathrm{Sp}(\mathrm{W})$.
Unnormalized moment maps:

$$
\begin{aligned}
& \tau_{\mathfrak{g}}: W \rightarrow \mathfrak{g}^{*}, \tau_{\mathfrak{g}}(w)(x)=\langle x w, w\rangle, \\
& \tau_{\mathfrak{g}^{\prime}}: W \rightarrow \mathfrak{g}^{\prime *}, \tau_{\mathfrak{g}^{\prime}}(w)\left(x^{\prime}\right)=\left\langle x^{\prime} w, w\right\rangle \quad\left(x \in \mathfrak{g}, x^{\prime} \in \mathfrak{g}^{\prime}, w \in \mathrm{~W}\right) .
\end{aligned}
$$

They intertwine the group action on the symplectic space with the coadjoint action on the dual of the Lie algebra,

$$
\begin{aligned}
& \tau_{\mathfrak{g}}(g w)(x)=\tau_{\mathfrak{g}}(w)\left(g^{-1} x g\right), \\
& \tau_{\mathfrak{g}}\left(g^{\prime} w\right)(x)=\tau_{\mathfrak{g}}(w)\left(g^{\prime-1} x g^{\prime}\right) \quad\left(g \in \mathrm{G}, g^{\prime} \in \mathrm{G}^{\prime}, w \in \mathrm{~W}\right) .
\end{aligned}
$$

The First Fundamental Theorem of the Classical Invariant Theory (FFTCIT)

For a finite dimensional vector space V over \mathbb{R} or \mathbb{C}, let $\mathcal{P}(\mathrm{V})$ denote the space of the complex valued polynomial functions.

Theorem
Let $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$ be a dual pair with G compact. Then

$$
\begin{aligned}
& \text { (a) } \quad \mathcal{P}(\mathrm{W})^{\mathrm{G}}=\mathcal{P}\left(\mathfrak{g}^{\prime *}\right) \circ \tau_{\mathfrak{g}^{\prime}}, \\
& (b) \\
& C^{\infty}(\mathrm{W})^{\mathrm{G}}=C^{\infty}\left(\mathfrak{g}^{\prime *}\right) \circ \tau_{\mathfrak{g}^{\prime}}, \\
& (c) \\
& \mathcal{S}(\mathrm{W})^{\mathrm{G}}=\mathcal{S}\left(\mathfrak{g}^{\prime *}\right) \circ \tau_{\mathfrak{g}^{\prime}}, .
\end{aligned}
$$

(a) Howe;
(b) Howe + Schwartz;
(c) Howe + Astengo, Di Blasio, Ricci.

Howe's Double Commutant Theorem

Let $\mathcal{U}(\mathfrak{e})$ denote the universal enveloping algebra of \mathfrak{e}.

Theorem

For any dual pair (G, G'),

$$
d \omega(\mathcal{U}(\mathfrak{h}(\mathrm{~W})))^{\omega(\widetilde{\mathfrak{G}})}=d \omega\left(\mathcal{U}\left(\mathfrak{g}^{\prime}\right)\right) .
$$

Since the action by conjugation factors to G the above formula may be rewritten as

$$
d \omega(\mathcal{U}(\mathfrak{h}(\mathrm{~W})))^{\mathrm{G}}=d \omega\left(\mathcal{U}\left(\mathfrak{g}^{\prime}\right)\right) .
$$

In particular, applying this equation to the dual pair (Z, Sp), we see that

$$
d \omega(\mathcal{U}(\mathfrak{h}(\mathrm{~W})))^{Z}=d \omega(\mathcal{U}(\mathfrak{s p}(\mathrm{~W}))) .
$$

Since $Z \subseteq G$, by taking G invariants on both sides, we get

$$
d \omega(\mathcal{U}(\mathfrak{s p}(\mathrm{~W})))^{\mathrm{G}}=d \omega\left(\mathcal{U}\left(\mathfrak{g}^{\prime}\right)\right) .
$$

Howe Correspondence for dual pairs $\left(G, G^{\prime}\right)$ with G compact
We realize ω in the Fock model acting on the space $\mathcal{P}=\mathcal{P}\left(\mathrm{W}_{\mathbb{C}, J=-i}\right)$. Assume that $\mathrm{G} \subseteq \mathrm{Sp}(\mathrm{W})^{J}$.
For $\rho \in \widehat{\widetilde{\mathrm{G}}}$, let \mathcal{P}_{ρ} denote the ρ-isotypic component.
Denote by $\mathcal{R}(\mathrm{G}, \omega) \subseteq \widehat{\widetilde{\mathrm{G}}}$ the subset of the ρ such that $\mathcal{P}_{\rho} \neq 0$.

Theorem

For each $\rho \in \mathcal{R}(\mathrm{G}, \omega)$, the space \mathcal{P}_{ρ} is irreducible under the joint action of $\widetilde{\mathrm{G}}$ and \mathfrak{g}^{\prime}. Thus there is an irreducible representation d ρ^{\prime} of \mathfrak{g}^{\prime} such that

$$
\mathcal{P}_{\rho}=\mathcal{P}_{\rho \otimes d \rho^{\prime}}
$$

as a $\widetilde{\mathrm{G}} \times \mathfrak{g}^{\prime}$ module. If ρ_{1} is not isomorphic to ρ_{2} then $d \rho_{1}^{\prime}$ is not isomorphic to d_{2}^{\prime}. Furthermore

$$
\mathcal{P}=\bigoplus_{\rho \in \mathcal{R}(\mathrm{G}, \omega)} \mathcal{P}_{\rho \otimes d \rho^{\prime}}
$$

By taking closures we obtain irreducible unitary representations ρ^{\prime} of G^{\prime} such that

$$
\mathcal{H}=\sum_{\rho \in \mathcal{R}(\mathrm{G}, \omega)} \mathcal{H}_{\rho \otimes \rho^{\prime}},
$$

where the sum denotes direct orthogonal sum of Hilbert spaces.
In the next few slides we'll see how to determine $R(G, \omega)$ and the correspondence $\rho \longleftrightarrow \rho^{\prime}$.

The above decomposition in the Schrödinger model looks as follows,

$$
\mathrm{L}^{2}(\mathrm{X})=\sum_{\rho \in \mathcal{R}(\mathrm{G}, \omega)} \mathrm{L}^{2}(\mathrm{X})_{\rho \otimes \rho^{\prime}}
$$

Harmonic polynomials

Conjugation by J is a Cartan involution on \mathfrak{g}^{\prime}. Let

$$
\mathfrak{g}^{\prime}=\mathfrak{k}^{\prime} \oplus \mathfrak{p}^{\prime}
$$

be the corresponding Cartan decomposition. Set

$$
\mathfrak{p}_{\mathbb{C}}^{\prime}=\left\{Z \in \mathfrak{p}_{\mathbb{C}}^{\prime} ;[J, Z]= \pm 2 Z\right\}
$$

Then we have the Harish-Chandra decomposition

$$
\mathfrak{g}_{\mathbb{C}}^{\prime}=\mathfrak{p}_{\mathbb{C}}^{\prime}+\oplus \mathfrak{k}_{\mathbb{C}}^{\prime} \oplus \mathfrak{p}_{\mathbb{C}}^{\prime-}
$$

Set

$$
\operatorname{Harm}(\mathrm{G})=\left\{p \in \mathcal{P} ; d \omega\left(\mathfrak{p}_{\mathbb{C}}^{\prime-}\right) p=0\right\}
$$

This space is \widetilde{G} invariant. For $\rho \in \mathcal{R}(\mathrm{G}, \omega)$, let $\operatorname{Harm}(\mathrm{G})_{\rho}$ be the ρ isotypic component.

Theorem

The space $\operatorname{Harm}(\mathrm{G})_{\rho}$ is irreducible under the joint action of $\widetilde{\mathrm{G}}$ and $\widetilde{\mathrm{K}}^{\prime}$. As a representation of $\widetilde{\mathrm{G}} \times \widetilde{\mathrm{K}}^{\prime}$ it is of type $\rho \otimes \sigma^{\prime}$, where σ^{\prime} is an irreducible representation of $\widetilde{\mathrm{K}}^{\prime}$. Thus

$$
\operatorname{Harm}(\mathrm{G})_{\rho}=\operatorname{Harm}(\mathrm{G})_{\rho \otimes \sigma^{\prime}} .
$$

The subspace $\operatorname{Harm}(\mathrm{G})_{\rho} \subseteq \mathcal{P}_{\rho}$ consists of the polynomials of lowest degree. The map

$$
\mathcal{R}(\mathrm{G}, \omega) \ni \rho \rightarrow \sigma^{\prime} \in \mathcal{R}\left(\mathrm{K}^{\prime}, \omega\right)
$$

is injective. As a space of polynomials

$$
\mathcal{P}_{\rho \otimes \rho^{\prime}}=\mathcal{P}_{\rho}=\mathcal{P}^{\mathrm{G}} \cdot \operatorname{Harm}(\mathrm{G})_{\rho} .
$$

Denote by $\operatorname{deg}\left(\sigma^{\prime}\right)$ the degree of the polynomials where $\operatorname{Harm}(\mathrm{G})_{\rho \otimes \sigma^{\prime}}$ occurs.

Example: $\mathrm{G}=\mathrm{O}_{2}, \mathrm{G}^{\prime}=\mathrm{Sp}_{2}(\mathbb{R})=\mathrm{SL}_{2}(\mathbb{R})$

$\mathcal{P}=\mathbb{C}\left[z_{1}, z_{2}\right]$
$\omega(g) h\left(z_{1}, z_{2}\right)=h\left(\left(z_{1}, z_{2}\right) g\right) \quad(g \in G, h \in \mathcal{P})$
$\omega\left(k_{\theta}\right) h\left(z_{1}, z_{2}\right)=e^{-i \theta} h\left(e^{i \theta} z_{1}, e^{i \theta} z_{2}\right) \quad\left(k_{\theta}=\left(\begin{array}{c}\cos \theta \\ -\sin \theta\end{array} \begin{array}{c}\sin \theta \\ \cos \theta\end{array}\right) \in \mathrm{SO}_{2} \subseteq \mathrm{G}^{\prime}\right)$
$d \omega\left(\mathfrak{p}_{\mathbb{C}}^{\prime-}\right)=\mathbb{C}\left(\partial_{z_{1}}^{2}+\partial_{z_{2}}^{2}\right), \quad d \omega\left(\mathfrak{p}_{\mathbb{C}}^{\prime+}\right)=\mathbb{C}\left(z_{1}^{2}+z_{2}^{2}\right)$
For $k=0,1,2,3, \ldots$, let ρ_{k} be the irreducible representation of G acting on $\mathbb{C}\left(z_{1}+i z_{2}\right)^{k}+\mathbb{C}\left(z_{1}-i z_{2}\right)^{k}$ by the above formula. Then ρ_{0} is the trivial representation of G .
$\operatorname{Harm}(\mathrm{G})_{\rho_{0}}=\mathbb{C}, \quad \operatorname{Harm}(\mathrm{G})_{\rho_{k}}=\mathbb{C}\left(z_{1}+i z_{2}\right)^{k}+\mathbb{C}\left(z_{1}-i z_{2}\right)^{k}$

$$
\begin{aligned}
& \mathcal{P}_{\rho_{0}}=\mathcal{P}^{\mathrm{G}}=\mathbb{C}\left[z_{1}^{2}+z_{2}^{2}\right], \\
& \mathcal{P}_{\rho_{k}}=\mathbb{C}\left[z_{1}^{2}+z_{2}^{2}\right]\left(\mathbb{C}\left(z_{1}+i z_{2}\right)^{k}+\mathbb{C}\left(z_{1}-i z_{2}\right)^{k}\right), \quad k=1,2,3, \ldots
\end{aligned}
$$

$\sigma_{k}^{\prime}\left(k_{\theta}\right)=e^{-i k \theta}$
The harmonic correspondence is $\rho_{k} \longleftrightarrow \sigma_{k+1}^{\prime}$ and $\operatorname{deg}\left(\sigma_{k+1}^{\prime}\right)=k$

Decay of matrix coefficients

Let $\mathfrak{t}^{\prime} \subseteq \mathfrak{k}^{\prime}$ be a Cartan subalgebra. Fix a Borel subalgebras $\mathfrak{b}^{\prime} \subseteq \mathfrak{k}_{\mathbb{C}}^{\prime}$ containing \mathfrak{t}^{\prime}. Then $\mathfrak{b}^{\prime} \oplus \mathfrak{p}_{\mathbb{C}}^{\prime-}$ is Borel subalgebra of $\mathfrak{g}_{\mathbb{C}}^{\prime}$. In these terms $d \rho^{\prime}$ is a highest weight representation with highest weight $\lambda_{\rho^{\prime}} \in \mathfrak{t}_{\mathbb{C}}^{\prime *}$.
There is a maximally split Cartan subalgebra of \mathfrak{g}^{\prime} with the split part \mathfrak{a}^{\prime} and a Cayley transform

$$
C: \mathfrak{a}^{\prime} \rightarrow i t^{\prime}
$$

Example:

For the Lie algebra $\mathfrak{s p}_{2}(\mathbb{R})$

$$
C:\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \rightarrow i\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

up to a sign.

Denote by $W\left(\mathfrak{a}^{\prime}\right)$ the Weyl group of \mathfrak{a}^{\prime}.
The following theorem describes the decay of matrix coefficients of ρ^{\prime}, which are generally better than those coming from ω.

Theorem

There is a seminorm q on $\mathcal{S}(\mathrm{X}) \times \mathcal{S}(\mathrm{X})$ such that

$$
|(\omega(\exp (x)) u, v)| \leq q(u, v) \min _{s \in W\left(\mathfrak{a}^{\prime}\right)} e^{-\left|\lambda_{\rho^{\prime}}(C(s x))\right|} \quad\left(x \in \mathfrak{a}^{\prime}\right)
$$

The distribution character and the wave front set of ρ^{\prime}

Denote by Θ_{ρ} the character of ρ and similarly for ρ^{\prime}. Set

$$
f_{\rho \otimes \rho^{\prime}}=\int_{\widetilde{\mathrm{G}}} \Theta_{\rho}\left(\tilde{g}^{-1}\right) T(\tilde{g}) d \tilde{g}
$$

This is a tempered distribution on W and $\mathrm{Op} \circ \mathcal{K}\left(f_{\rho \otimes \rho^{\prime}}\right)$ is the orthogonal projection onto $\mathrm{L}^{2}(\mathrm{X})_{\rho \otimes \rho^{\prime}}$, assuming the mass of $\widetilde{\mathrm{G}}$ is 1 . Then, in terms of distributions

$$
\Theta_{\rho^{\prime}}\left(\tilde{c}_{-}(x)\right)=\Theta\left(\tilde{c}(0)^{-1}\right) \Theta(\tilde{c}(x)) \int_{\mathrm{W}} \chi_{x}(w) f_{\rho \otimes \rho^{\prime}}(w) d w, x \in \mathfrak{s p}^{c}(\mathrm{~W})
$$

Consequently

$$
W F\left(\rho^{\prime}\right)=\tau_{\mathfrak{g}^{\prime}}\left(\tau_{\mathfrak{g}}^{-1}(0)\right)
$$

A dual pair as a supergroup

Fix two right vector spaces $\mathrm{V}_{\overline{0}}$ and $\mathrm{V}_{\overline{1}}$ over $\mathbb{D}=\mathbb{R}, \mathbb{C}, \mathbb{H}$. Set $\mathrm{V}=\mathrm{V}_{\overline{0}} \oplus \mathrm{~V}_{\overline{1}}$ and define an element $\mathrm{S} \in \operatorname{End}(\mathrm{V})$ by

$$
\mathrm{S}\left(v_{0}+v_{1}\right)=v_{0}-v_{1} \quad\left(v_{0} \in \mathrm{~V}_{\overline{0}}, v_{1} \in \mathrm{~V}_{\overline{1}}\right)
$$

Let

$$
\begin{aligned}
& \operatorname{End}(\mathrm{V})_{\overline{0}}=\{x \in \operatorname{End}(\mathrm{~V}) ; \mathrm{S} x=x \mathrm{~S}\} \\
& \operatorname{End}(\mathrm{V})_{\overline{1}}=\{x \in \operatorname{End}(\mathrm{~V}) ; \mathrm{S} x=-x \mathrm{~S}\} \\
& \mathrm{GL}(\mathrm{~V})_{\overline{0}}=\operatorname{End}(\mathrm{V})_{\overline{0}} \cap \mathrm{GL}(\mathrm{~V})
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline \star & \\
\hline & \mathrm{v}_{\overline{0}} \\
\hline & * \\
\hline
\end{array}
$$

The anticommutant

$$
\operatorname{End}(\mathrm{V})_{\overline{1}} \times \operatorname{End}(\mathrm{V})_{\overline{1}} \ni x, y \rightarrow\{x, y\}=x y+y x \in \operatorname{End}(\mathrm{~V})_{\overline{0}} .
$$

For $x, y \in \operatorname{End}(\mathrm{~V})$. Set

$$
\langle x, y\rangle=\operatorname{tr}_{\mathbb{D} / \mathbb{R}}(\mathrm{S} x y) .
$$

The restriction of $\langle\cdot, \cdot\rangle$ to $\operatorname{End}(\mathrm{V})_{\bar{\top}}$ is a nondegenerate symplectic form. The adjoint action Ad: $\mathrm{GL}(\mathrm{V})_{\overline{0}} \rightarrow \operatorname{Sp}\left(\operatorname{End}(\mathrm{~V})_{\overline{1}}\right)$ maps the groups

$$
\mathrm{G}_{0}=\left\{g \in \mathrm{GL}(\mathrm{~V})_{\overline{0}} ;\left.g\right|_{\mathrm{v}_{\overline{1}}}=1\right\}, \quad \mathrm{G}_{1}=\left\{g \in \mathrm{GL}(\mathrm{~V})_{\overline{0}} ;\left.g\right|_{\mathrm{v}_{\overline{0}}}=1\right\}
$$

onto a dual pair $\left(G_{0}, G_{1}\right)$ with G_{0} isomorphic to $G L\left(V_{\overline{0}}\right)$ and G_{1} isomorphic to $\mathrm{GL}\left(\mathrm{V}_{\overline{1}}\right)$.

Suppose $(\cdot, \cdot)_{0}$ is a non-degenerate hermitian form on $\mathrm{V}_{\overline{0}}$ and $(\cdot, \cdot)_{1}$ is a non-degenerate skew-hermitian form on $\mathrm{V}_{\overline{\mathrm{F}}}$. Denote by (\cdot, \cdot) the direct sum of the two forms. Let

$$
\begin{aligned}
& \mathfrak{s}_{0}=\left\{x \in \operatorname{End}(\mathrm{~V})_{\overline{0}} ;(x u, v)=-(u, x v), u, v \in \mathrm{~V}\right\} \quad \\
& \mathfrak{s}_{\overline{1}}=\left\{x \in \operatorname{End}(\mathrm{~V})_{\overline{1}} ;(x u, v)=(u, \mathrm{~S} x v), u, v \in \mathrm{~V}\right\} \quad \approx \\
& \mathfrak{s}^{\prime}=\mathfrak{s}_{\overline{0}} \oplus \mathfrak{s}_{\overline{1}}, \\
& \mathrm{~S}=\left\{s \in \mathrm{GL}(\mathrm{~V})_{\overline{0}} ;(s u, s v)=(u, v), u, v \in \mathrm{~V}\right\} .
\end{aligned}
$$

The adjoint action $\mathrm{Ad}: \mathrm{S} \rightarrow \mathrm{Sp}\left(\mathfrak{s}_{-1}\right)$ maps the groups

$$
\mathrm{G}_{0}=\left\{g \in \mathrm{~S} ;\left.g\right|_{\mathrm{v}_{\overline{1}}}=1\right\}, \quad \mathrm{G}_{1}=\left\{g \in \mathrm{~S} ;\left.g\right|_{\mathrm{v}_{\overline{0}}}=1\right\}
$$

onto a dual pair $\left(G_{0}, G_{1}\right)$ where G_{0} is isomorphic to the isometry groups $G\left((\cdot, \cdot)_{0}\right)$ and G_{1} to the isometry group $G\left((\cdot, \cdot)_{1}\right)$.

For the previous dual pair we shall also write $\mathrm{S}=\mathrm{GL}(\mathrm{V})_{\overline{0}}$ and $\mathfrak{s}_{\overline{1}}=\operatorname{End}(\mathrm{V})_{\bar{\top}}$. Then for any dual pair we have the unnormalized moment maps

$$
\mathfrak{s}_{\overline{1}} \ni w \rightarrow w^{2}\left|v_{\overline{0}} \in \mathfrak{g}_{0}, \quad \mathfrak{s}_{\overline{1}} \ni w \rightarrow w^{2}\right| v_{\bar{T}} \in \mathfrak{g}_{1} .
$$

In all case the restriction

$$
\left.\mathfrak{s}_{\overline{1}} \ni w \rightarrow w\right|_{\bar{v}_{\overline{1}}} \in \operatorname{Hom}\left(\mathrm{~V}_{\overline{1}}, \mathrm{~V}_{\overline{0}}\right)
$$

is a linear isomorphism.

Cartan subspaces in \mathfrak{s}_{\uparrow}

An element $x \in \mathfrak{s}$ is called semisimple (resp., nilpotent) if x is semisimple (resp., nilpotent) as an endomorphism of V. We say that a semisimple element $x \in \mathfrak{s}_{\overline{1}}$ is regular if it is nonzero and $\operatorname{dim}(S . x) \geq \operatorname{dim}(S . y)$ for all semisimple $y \in \mathfrak{s}_{1}$. The anticommutant and the double anticommutant of x in $\mathfrak{s}_{\overline{1}}$ are

$$
\begin{aligned}
x_{\mathfrak{s}_{\overline{1}}} & =\left\{y \in \mathfrak{s}_{\overline{1}}:\{x, y\}=0\right\} \\
{ }^{x_{\mathfrak{s}_{\mathfrak{s}_{-1}}}}= & \bigcap_{y \in \in_{\mathfrak{s}_{\overline{1}}}} y_{\mathfrak{s}_{\overline{1}}}
\end{aligned}
$$

respectively. A Cartan subspace $\mathfrak{h}_{\overline{1}}$ of $\mathfrak{s}_{\overline{1}}$ is defined as the double anticommutant of a regular semisimple element $x \in \mathfrak{s}_{\overline{1}}$.
There are finitely many conjugacy classes of Cartan subspaces in \mathfrak{s}_{1}.
Every semisimple element of \mathfrak{s}_{-1} belongs to the G-orbit through an element of a Cartan subspace. The set of regular semisimple elements is dense in \mathfrak{s}_{1}. Any two elements of a Cartan subspace $\mathfrak{h}_{\overline{1}} \subseteq \mathfrak{s}_{\overline{1}}$ commute as endomorphisms of V

Let $\mathfrak{h}_{\frac{1}{1}}^{2} \subseteq \mathfrak{s}_{0}$ be the subspace spanned by all the squares $w^{2}, w \in \mathfrak{h}_{\overline{1}}$. If the rank of \mathfrak{g}_{0} is smaller or equal to the rank of \mathfrak{g}_{1} then the space $\left.\mathfrak{h}=\mathfrak{h} \frac{2}{1} \right\rvert\, v_{\overline{0}}$ is a Cartan subalgebra of \mathfrak{g}_{0}. Similarly, If the rank of \mathfrak{g}_{1} is smaller or equal to the rank of \mathfrak{g}_{0} then the space $\left.\mathfrak{h}=\mathfrak{h}_{\frac{2}{1}}^{2} \right\rvert\, \nabla_{\bar{\top}}$ is a Cartan subalgebra of \mathfrak{g}_{1}. In general the relation

$$
\left\{\left(w^{2}\left|v_{\overline{0}}, w^{2}\right| v_{\overline{1}}\right): w \in \mathfrak{h}_{\overline{1}}\right\}
$$

extends to a linear bijection

$$
\mathfrak{h} \frac{2}{\bar{T}}\left|v_{\overline{0}} \longleftrightarrow \mathfrak{h} \frac{2}{T}\right| v_{\bar{\top}} .
$$

We shall identify these two spaces, thus getting an embedding of a Cartan subalgebra of the Lie algebra of the smaller or equal rank (\mathfrak{g}_{0} or \mathfrak{g}_{1}) into the Lie algebra of the greater or equal rank (\mathfrak{g}_{1} or \mathfrak{g}_{0}).

The Capelli homomorphism

 Howe's Double Commutant Theorem says that$$
d \omega(\mathcal{U}(\mathfrak{s p}(\mathrm{~W})))^{\mathrm{G}}=d \omega\left(\mathcal{U}\left(\mathfrak{g}^{\prime}\right)\right) \text { and } \quad d \omega(\mathcal{U}(\mathfrak{s p}(\mathrm{~W})))^{\mathrm{G}^{\prime}}=d \omega(\mathcal{U}(\mathfrak{g})) .
$$

Hence we have the surjective algebra homomorphisms

$$
\mathcal{U}(\mathfrak{g})^{\mathrm{G}} \longrightarrow d \omega(\mathcal{U}(\mathfrak{s p}(\mathrm{~W})))^{\mathrm{GG}^{\prime}} \longleftarrow \mathcal{U}\left(\mathfrak{g}^{\prime}\right)^{\mathrm{G}^{\prime}}
$$

Theorem

If the rank of \mathfrak{g}^{\prime} is smaller or equal to the rank of \mathfrak{g}, then the map

$$
\mathcal{U}\left(\mathfrak{g}^{\prime}\right)^{\mathrm{G}^{\prime}} \longrightarrow d \omega(\mathcal{U}(\mathfrak{s p}(\mathrm{~W})))^{\mathrm{GG}^{\prime}}
$$

is injective.
Hence the above defines a surjective algebra homomorphism

$$
\mathcal{C}: \mathcal{U}(\mathfrak{g})^{\mathrm{G}} \longrightarrow \mathcal{U}\left(\mathfrak{g}^{\prime}\right)^{\mathrm{G}^{\prime}}
$$

Given a Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ we have the Harish-Chandra isomorphism

$$
\gamma_{g / \mathfrak{h}}: \mathcal{U}(\mathfrak{g})^{\mathrm{G}} \rightarrow \mathcal{U}(\mathfrak{h})^{W(\mathrm{G}, \mathfrak{h c})} .
$$

where $W\left(G_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}}\right)$ is the corresponding Weyl group. Similarly there is the Harish-Chandra isomorphism

$$
\gamma_{g^{\prime} / \mathfrak{h}^{\prime}}: \mathcal{U}\left(\mathfrak{g}^{\prime}\right)^{G^{\prime}} \rightarrow \mathcal{U}\left(\mathfrak{h}^{\prime}\right)^{W\left(G_{\mathbb{C}}^{\prime}, \mathfrak{b}^{\prime}\right)} .
$$

Assume the rank of \mathfrak{g}^{\prime} is smaller or equal to the rank of \mathfrak{g}. then by viewing the dual pair as a supergroup we obtain an embedding

$$
\mathfrak{h}^{\prime} \subseteq \mathfrak{g} .
$$

If the vector space V is the defining module for G , then

$$
V=V_{1} \oplus V_{0},
$$

where V_{0} is the intersection of the kernels of all the elements of $x \in \mathfrak{h}^{\prime}$, $\mathfrak{h}^{\prime} \subseteq \mathfrak{g} \subseteq \operatorname{End}(\mathrm{V})$.

Let $\mathfrak{z} \subseteq \mathfrak{g}$ denote the centralizer of \mathfrak{h}^{\prime}. Then

$$
\mathfrak{z}=\mathfrak{h}^{\prime} \oplus \mathfrak{z}^{\prime \prime}
$$

where $\mathfrak{z}^{\prime \prime}=\mathfrak{z} \mid \mathrm{v}_{1}$. Denote by $\mathfrak{h}^{\prime \prime} \subseteq \mathfrak{z}^{\prime \prime}$ a Cartan subalgebra. Then

$$
\mathfrak{h}=\mathfrak{h}^{\prime} \oplus \mathfrak{h}^{\prime \prime}
$$

is a Cartan subalgebra of \mathfrak{g} contained in \mathfrak{z}. Let Z be the centralizer of \mathfrak{h}^{\prime} in G. Set $Z^{\prime \prime}=\left.Z\right|_{V_{1}}$.

Theorem

Suppose ($\mathrm{G}, \mathrm{G}^{\prime}$) is not a complex dual pair, with rank of G^{\prime} smaller or equal than the rank of G . If G^{\prime} is isomorphic to $\mathrm{O}_{p, q}$ with $p+q$ odd then $\mathrm{Z}^{\prime \prime}$ is isomorphic to a real symplectic group. Denote by

$$
\epsilon_{\mathfrak{z}^{\prime \prime}}: \mathcal{U}\left(\mathfrak{z}^{\prime \prime}\right)^{\mathrm{Z}^{\prime \prime}} \longrightarrow \mathbb{C}
$$

the infinitesimal character of the Weil representation of \widetilde{Z}. for all other dual pairs, let $\epsilon_{\mathfrak{z}^{\prime \prime}}$ be the infinitesimal character of the trivial representation. Then the Capelli homomorphism \mathcal{C} coincides with the composition of the following maps

$$
\begin{aligned}
& \mathcal{U}(\mathfrak{g})^{\mathrm{G}} \underset{\gamma_{\mathfrak{z} / \mathfrak{h}}^{-1} \rightarrow \gamma_{\mathfrak{g} / \mathfrak{h}}}{\longrightarrow} \mathcal{U}(\mathfrak{z})^{\mathrm{Z}}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\substack{\gamma_{\mathfrak{g}^{\prime} / \mathfrak{h}^{\prime}}}}{\longrightarrow} \mathcal{U}\left(\mathfrak{g}^{\prime}\right)^{\mathrm{G}^{\prime}} .
\end{aligned}
$$

References

F. Astengo and B. Di Blasio and F. Ricci: Gelfand pairs on the Heisenberg group and Schwartz functions, J. Funct. Anal. 256, (2009), 1565-1587
R. Rowe: Remarks on Classical Invariant Theory, Trans. Amer. Math. Soc., 313 (1989), 539-570.

圊 M. Kashiwara and M. Vergne: On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math., 44, (978), 1-47
T. J. MATHER: Differentiable invariants. Topology, 16, (1977), 145-155
T. Przebinda: Characters, dual pairs, and unipotent representations, J. Funct. Anal., 98, (1991), 59-96.
T. G. SchWARZ: Smooth functions invariant under the action of a compact Lie group, Topology, 14, (1974), 63-68
T. Przebinda: Local Geometry of Orbits for an Ordinary Classical Lie Supergroup, Central Eur. J. Math., 4, (2006), 449-506
T. Priebinda: The duality correspondence of infinitesimal characters, Coll. Math, 70, (1996), 93-102
T. Przebinda: A Capelli Harish-Chandra Homomorphism, Trans.Amer.Math.Soc., 3, (2004), 1121-1154

Lecture 4:

- Correspondence of simultaneous harmonics
- Howe correspondence for a general dual pair
- Open problems

Group representations and Harish-Chandra modules

Following Harish-Chandra's "Representations of a semisimple Lie group on a Banach space. I." 1951.
G - a real reductive group, $K \subseteq G$ - a maximal compact subgroup. A complex vector space V is called a (\mathfrak{g}, K)-module provided:

- both \mathfrak{g} and K act on it so that

$$
k \cdot x \cdot v=\operatorname{Ad}(k) x \cdot k \cdot v \quad(k \in \mathrm{~K}, x \in \mathfrak{g}, v \in \mathrm{~V}) ;
$$

- if $v \in \mathrm{~V}$ then $\mathrm{K} \cdot v$ spans a finite dimensional subspace of V ;
- the derivative of the action of K coincides with the action of \mathfrak{k} given by the inclusion $\mathfrak{k} \subseteq \mathfrak{g}$.

U - a Banach space on which G acts. Let $\mathrm{U}^{a n} \subseteq \mathrm{U}$ be the space of the analytic vectors.
For $\pi \in \hat{\mathrm{K}}$ let $\mathrm{U}(\pi) \subseteq \mathrm{U}$ be the subspace of vectors v with the following property:
there is a finite dimensional subspace $U(v) \subseteq U$ containing v which is semisimple under the action of K and so that each K-irreducible component of $\mathrm{U}(v)$ is isomorphic to π.
Set $\mathrm{U}_{\pi}=\mathrm{U}^{\mathrm{an}} \cap \mathrm{U}(\pi)$ and let

$$
\mathrm{U}_{\mathrm{K}}=\sum_{\pi \in \hat{\mathrm{K}}} \mathrm{U}_{\pi}
$$

denote the subspace of the K-finite vectors.
Theorem
The space U_{K} is a $(\mathfrak{g}, \mathrm{K})$-module and is dense in U .
$\mathrm{U}\left(\right.$ or $\left.\mathrm{U}_{\mathrm{K}}\right)$ is called admissible if $\mathrm{U}_{\pi}<\infty$ for each $\pi \in \hat{\mathrm{K}}$.

Theorem

Suppose U_{K} is admissible and finitely generated. Then the map

$$
\mathrm{U} \supseteq \mathrm{X} \rightarrow \mathrm{X}_{\mathrm{K}} \subseteq \mathrm{U}_{\mathrm{K}}
$$

is a bijection between closed G-invariant subspaces and
(\mathfrak{g}, K)-submodules.

Theorem

U is an irreducible unitary representation of G if and only if U_{K} is an irreducible unitarizable (\mathfrak{g}, K)-module.
Two irreducible unitary representations of G are equivalent if and only if the their $(\mathfrak{g}, \mathrm{K})$-modules are equivalent.

Two group representations are called infinitesimally equivalent if and only if their $(\mathfrak{g}, \mathrm{K})$-modules are isomorphic. One calls U_{K} the Harish-Chandra module of U.

The correspondence of simultaneous harmonics

Let ($\mathrm{G}, \mathrm{G}^{\prime}$) be a dual pair with each member normalized by J . Then $K=G^{J}$ and $K^{\prime}=G^{\prime J}$ are maximal compact subgroups.
Let $\mathrm{M} \subseteq \mathrm{Sp}(\mathrm{W})$ be the centralizer of K^{\prime} and let $\mathrm{M}^{\prime} \subseteq \mathrm{Sp}(\mathrm{W})$ be the centralizer of K.
Then $\mathrm{M}^{J} \subseteq \mathrm{M}$ and $\mathrm{M}^{J} \subseteq \mathrm{M}^{\prime}$ are maximal compact subgroups and $\left(\mathrm{M}^{J}, \mathrm{M}^{\prime J}\right)$ happens to be a dual pair.

All together we obtain the following dual pairs

$$
\begin{array}{cccc}
\left(\mathrm{G}, \mathrm{G}^{\prime}\right), & \left(\mathrm{K}, \mathrm{M}^{\prime}\right), & \left(\mathrm{M}, \mathrm{~K}^{\prime}\right), & \left(\mathrm{M}^{J}, \mathrm{M}^{\prime J}\right) . \\
\text { (arbitrary, arbitrary) } & \text { (compact, arbitrary) } & \text { (arbitrary, compact) } & \text { (compact, compact) }
\end{array}
$$

Theorem

Let $\pi \in \mathcal{R}\left(\mathrm{M}^{J}, \omega\right)$ correspond to $\pi^{\prime} \in \mathcal{R}\left(\mathrm{M}^{\prime J}, \omega\right)$. Let d denote the degree of $\pi \otimes \pi^{\prime}$. Assume that

$$
\mathcal{P}_{\pi \otimes \pi^{\prime}} \cap \operatorname{Harm}(\mathrm{K}) \neq 0 \neq \mathcal{P}_{\pi \otimes \pi^{\prime}} \cap \operatorname{Harm}\left(\mathrm{K}^{\prime}\right) .
$$

Then there are unique representations $\sigma \in \mathcal{R}(\mathrm{K}, \omega)$ and $\sigma^{\prime} \in \mathcal{R}\left(\mathrm{K}^{\prime}, \omega\right)$ such that

$$
\mathcal{P}_{\pi \otimes \pi^{\prime}}=\operatorname{Harm}(\mathrm{K})_{\sigma} \cap \operatorname{Harm}\left(\mathrm{K}^{\prime}\right)_{\sigma^{\prime}} \oplus \sum \mathcal{R}
$$

where \mathcal{R} is a direct sum of representations of $\widetilde{\mathrm{K}} \times \widetilde{\mathrm{K}^{\prime}}$ of types $\sigma_{0} \otimes \sigma_{0}^{\prime}$, where $\operatorname{deg}\left(\sigma_{0}\right)<d$ or $\operatorname{deg}\left(\sigma_{0}^{\prime}\right)<d$. Furthermore the space

$$
\operatorname{Harm}(\mathrm{K})_{\sigma} \cap \operatorname{Harm}\left(\mathrm{K}^{\prime}\right)_{\sigma^{\prime}}
$$

is irreducible of type $\sigma \otimes \sigma^{\prime}$. The map $\sigma \rightarrow \pi^{\prime}$ coincides with the lowest degree correspondence for the dual pair ($\mathrm{K}, \mathrm{M}^{\prime}$) and $\sigma^{\prime} \rightarrow \pi$ with the lowest degree correspondence for the dual pair $\left(\mathrm{K}^{\prime}, \mathrm{M}\right)$.

Howe correspondence for an arbitrary dual pair

Recall the metaplectic group $\widetilde{\mathrm{Sp}}$, with maximal compact subgroup $\widetilde{\mathrm{U}}=\widetilde{\mathrm{Sp}}{ }^{\mathrm{J}}$. Then \mathcal{P} is the Harish-Chandra module (i.e. (sp, $\widetilde{\mathrm{U}}$)-module) of ω. Consider:

- an irreducible dual pair ($\left.\widetilde{\mathrm{G}}, \widetilde{\mathrm{G}^{\prime}}\right)$ in $\widetilde{\mathrm{Sp}}$ with maximal compact subgroups $\widetilde{\mathrm{K}} \subseteq \widetilde{\mathrm{G}} \cap \widetilde{\mathrm{U}}$ and $\widetilde{\mathrm{K}^{\prime}} \subseteq \widetilde{\mathrm{G}^{\prime}} \cap \widetilde{\mathrm{U}}$;
- an irreducible $(\mathfrak{g}, \widetilde{\mathrm{K}})$-module ρ that occurs as a quotient $\rho=\mathcal{P} / \mathcal{N}$ of \mathcal{P} by a $(\mathfrak{g}, \widetilde{K})$ invariant subspace $\mathcal{N} \subseteq \mathcal{P}$;
- the intersection \mathcal{N}_{ρ} of all subspaces \mathcal{N} such that $\rho=\mathcal{P} / \mathcal{N}$.

Theorem (Howe 1989)

There is a quasisimple ($\mathfrak{g}^{\prime}, \widetilde{\mathrm{K}}^{\prime}$)-module ρ_{1}^{\prime} of finite length such that $\mathcal{P} / \mathcal{N}_{\rho}=\rho \otimes \rho_{1}^{\prime}$ as a $(\mathfrak{g}, \widetilde{\mathrm{K}}) \times\left(\mathfrak{g}^{\prime}, \widetilde{\mathrm{K}^{\prime}}\right)$-module.
Moreover ρ_{1}^{\prime} has a unique irreducible quotient ρ^{\prime}. By applying the above procedure to ρ^{\prime} one recovers ρ.

We have just stated the main theorem, i.e.

Theorem (Howe 1989)

There is a quasisimple $\left(\mathfrak{g}^{\prime}, \widetilde{K^{\prime}}\right)$-module ρ_{1}^{\prime} of finite length such that $\mathcal{P} / \mathcal{N}_{\rho}=\rho \otimes \rho_{1}^{\prime}$ as a $(\mathfrak{g}, \widetilde{\mathrm{K}}) \times\left(\mathfrak{g}^{\prime}, \widetilde{\mathrm{K}^{\prime}}\right)$-module.
Moreover ρ_{1}^{\prime} has a unique irreducible quotient ρ^{\prime}. By applying the above procedure to ρ^{\prime} one recovers ρ.

- ρ_{1}^{\prime} is called the big Howe quotient, or $\Theta\left(\rho^{\prime}\right)$ or $\operatorname{big} \operatorname{Theta}\left(\rho^{\prime}\right)$
- ρ^{\prime} is called the irreducible Howe quotient, or $\theta\left(\rho^{\prime}\right)$ or theta $\left(\rho^{\prime}\right)$
- The resulting bijection $\rho \longleftrightarrow \rho^{\prime}$ is known as Howe correspondence or local θ correspondence.

General properties

Let $\mathrm{H}(\mathfrak{g}, \widetilde{\mathrm{K}})$ be the convolution algebra of left and right $\widetilde{\mathrm{K}}$-finite distributions on $\widetilde{\mathrm{G}}$ supported in $\widetilde{\mathrm{K}} \subseteq \widetilde{\mathrm{G}}$.

Theorem

$\rho_{1}^{\prime}=\rho^{\vee} \otimes_{\mathrm{H}(\mathrm{g}, \widetilde{\mathrm{K}})} \mathcal{P}$, where ρ^{\vee} is the contragredient of ρ.

Theorem

Suppose the rank of \mathfrak{g}^{\prime} is smaller or equal to the rank of \mathfrak{g}.
If ρ^{\prime} has infinitesimal character $\gamma_{\rho^{\prime}}: \mathcal{U}\left(\mathfrak{g}^{\prime}\right)^{\mathrm{G}} \rightarrow \mathbb{C}$, then ρ (in fact ρ_{1}) has infinitesimal character $\gamma_{\rho}=\gamma_{\rho^{\prime}} \circ \mathcal{C}: \mathcal{U}(\mathfrak{g})^{\mathrm{G}} \rightarrow \mathbb{C}$.

Theorem

Suppose $\sigma \in \widetilde{\mathrm{K}}$ is a lowest degree K -type of ρ and $\sigma^{\prime} \in \widetilde{\mathrm{K}^{\prime}}$ corresponds to σ via the correspondence of simultaneous harmonics. Then $\sigma^{\prime} \in \widetilde{\mathrm{K}^{\prime}}$ is a lowest degree K^{\prime}-type of ρ^{\prime} (in fact of ρ_{1}^{\prime}).

Theorem

Each irreducible ($\mathfrak{g}, \widetilde{\mathrm{K}}$)-module that occurs as a quotient of \mathcal{P} is the Harish-Chandra module of a representation of $\widetilde{\mathrm{G}}$ that occurs as the quotient of the space of the smooth vectors of ω by a closed invariant subspace. The same holds for ρ^{\prime} and $\rho \otimes \rho^{\prime}$.

This way the correspondence of the Harish-Chandra modules globalizes to a correspondence of group representations.

Theorem

If ρ occurs as a quotient of \mathcal{P} then $\operatorname{WF}(\rho) \subseteq \tau_{\mathfrak{g}}(\mathrm{W})$.

Theorem
 If ρ Hermitian then ρ^{\prime} Hermitian.

The Cauchy Harish-Chandra Integral

For a Cartan subgroup $\mathrm{H}^{\prime} \subseteq \mathrm{G}^{\prime}$. Define

- A^{\prime} the split part of H^{\prime};
- $\mathrm{A}^{\prime \prime} \subseteq S p$ the centralizer of A^{\prime};
- $\mathrm{A}^{\prime \prime \prime} \subseteq \mathrm{Sp}$ the centralizer of $\mathrm{A}^{\prime \prime}$.

Then ($\mathrm{A}^{\prime \prime}, \mathrm{A}^{\prime \prime \prime}$) form a (reducible) dual pair in Sp .
There is an open dense subset $\mathrm{W}_{\mathrm{A}^{\prime \prime}} \subseteq \mathrm{W}$ on which $\mathrm{A}^{\prime \prime \prime}$ acts freely.
Let $d \dot{w}$ be the measure on $\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}_{\mathrm{A}^{\prime \prime \prime}}$ defined by

$$
\int_{\mathrm{W}} \phi(w) d \mu_{\mathrm{W}}(w)=\int_{\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}_{\mathrm{A}^{\prime \prime \prime}}} \int_{\mathrm{A}^{\prime \prime \prime}} \phi(a w) d a d \dot{w}
$$

Theorem

For any $f \in C_{c}^{\infty}\left(\widetilde{\mathrm{A}^{\prime \prime c}}\right)$, the distribution

$$
T(f)=\int_{\widetilde{\mathrm{A}^{\prime \prime} c}} f(\tilde{g}) T(\tilde{g}) d \tilde{g} \in \mathcal{S}^{\prime}(\mathrm{W})
$$

is a function on W , such that

$$
\int_{\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{w}_{\mathrm{A}^{\prime \prime \prime}}}\left|\int_{\mathrm{A}^{\prime \prime}} f(g) T(g)(w) d x\right| d \dot{w}<\infty
$$

The formula

$$
\operatorname{Chc}(f)=\int_{\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}_{\mathrm{A}^{\prime \prime \prime}}} T(f)(w) d\left(\mathrm{~A}^{\prime \prime \prime} w\right) \quad\left(f \in C_{c}^{\infty}\left(\widetilde{\mathrm{A}^{\prime \prime c}}\right)\right)
$$

defines a distribution on $\widetilde{\mathrm{A}^{\prime \prime} c}$ which coincides with a complex valued measure. This measure extends by zero to $\widetilde{\mathrm{A}^{\prime \prime}}$ and defines a distribution, which we denote by the same symbol.

Moreover,

$$
W F(\mathrm{Chc})=\left\{\left(\tilde{g}, \tau_{\alpha^{\prime \prime *}}(w)\right) ; \tilde{g} \in \widetilde{\mathrm{~A}^{\prime \prime}}, \tau_{\alpha^{\prime \prime *}}(w) \neq 0, g(w)=-w\right\}
$$

The distribution Chc defined by

$$
\operatorname{Chc}(f)=\int_{\mathrm{A}^{\prime \prime \prime} \backslash \mathrm{W}_{\mathrm{A}^{\prime \prime \prime}}} T(f)(w) d\left(\mathrm{~A}^{\prime \prime \prime} w\right) \quad\left(f \in C_{c}^{\infty}\left(\widetilde{\mathrm{A}^{\prime \prime c}}\right)\right)
$$

is the Cauchy Harish-Chandra integral.
For any $h^{\prime} \in \mathrm{H}^{\prime r e g}$, the intersection of the wave front set of the distribution Chc with the conormal bundle of the embedding

$$
\widetilde{\mathrm{G}} \ni \widetilde{g} \longrightarrow \widetilde{h^{\prime}} \widetilde{g} \in \widetilde{\mathrm{~A}^{\prime \prime}}
$$

is empty. Hence there is a unique restriction of the distribution Chc to $\widetilde{\mathrm{G}}$, denoted $\mathrm{Chc}_{\widetilde{h^{\prime}}}$.

The distribution $\Theta_{\rho^{\prime}}^{\prime}$

Recall the Weyl - Harish-Chandra integration formula

$$
\int_{\tilde{\mathrm{G}}^{\prime}} \phi(g) d g=\sum_{\mathrm{H}^{\prime}} c_{\mathrm{H}^{\prime}} \int_{\widetilde{\mathrm{H}^{\prime r e g}}} D(h) \int_{\widetilde{\mathrm{G}}^{\prime} / \widetilde{\mathrm{H}}^{\prime}} \phi\left(g \widetilde{h} g^{-1}\right) d \dot{g} d \widetilde{h} .
$$

Define

$$
\Theta_{\rho^{\prime}}^{\prime}(f)=C_{\rho^{\prime}} \sum c_{\mathrm{H}^{\prime}} \int_{\mathrm{H}^{\prime r e g}} D(h) \Theta_{\rho^{\prime}}\left(\widetilde{h}^{-1}\right) \operatorname{Chc}_{\widetilde{h}}(f) d \widetilde{h}
$$

Theorem

$\Theta_{\rho^{\prime}}^{\prime}$ is an invariant eigendistribution on $\widetilde{\mathrm{G}}$ with infinitesimal character $\gamma_{\rho^{\prime}} \circ \mathcal{C}: \mathcal{U}(\mathfrak{g})^{\mathrm{G}} \rightarrow \mathbb{C}$.

Let $\mathrm{G}^{\prime 0}$ be the Zariski identity component of G^{\prime}.
(Then $\mathrm{G}^{\prime 0}=\mathrm{G}^{\prime}$, unless G^{\prime} is an even orthogonal group.)
Conjecture
If the character Θ_{ρ} is supported in $\mathrm{G}^{\prime 0}$, then, as distributions,

$$
\Theta_{\rho^{\prime}}^{\prime}=\Theta_{\rho_{1}},
$$

where ρ_{1} is the big Howe quotient of ρ^{\prime}.

Pairs of type I in the stable range

The pair $\left(G, G^{\prime}\right)$ is of type I if it acts irreducibly on W and W is a single isotypic component under this action. In this case, there is:
\diamond a division algebra \mathbb{D} with an involution over \mathbb{F}
\diamond two vector spaces V and V^{\prime} with with non-degenerate Hermitian forms (\cdot, \cdot) and $(\cdot, \cdot)^{\prime}$ of opposite type
such that
$\diamond \mathrm{W}=\mathrm{V} \otimes_{\mathbb{F}} \mathrm{V}^{\prime}$,
$\diamond \mathrm{G}$ coincides with the isometry group of $(\mathrm{V},(\cdot, \cdot))$,
$\diamond \mathrm{G}^{\prime}$ coincides with the isometry group of $\left(\mathrm{V}^{\prime},(\cdot, \cdot)^{\prime}\right)$.
The pair $\left(\mathrm{G}, \mathrm{G}^{\prime}\right)$ is in the stable range with G^{\prime} - the smaller member if the dimension of the maximal isotropic subspace of V is greater or equal to the dimension of V^{\prime}.

The equality $\Theta_{\rho^{\prime}}^{\prime}=\Theta_{\rho}$

Let $\left(G, G^{\prime}\right)$ be a dual pair of type I in the stable range with G^{\prime} - the smaller member.
Assume that the representation ρ^{\prime} of $\widetilde{\mathrm{G}}^{\prime}$ is unitary.
Theorem
$\Theta_{\rho^{\prime}}^{\prime}=\Theta_{\rho}$.
Idea of the proof. We show that the two distributions are equal on a Zariski open subset $\widetilde{\mathrm{G}}^{\prime \prime} \subseteq \widetilde{\mathrm{G}}$. Since both Θ_{ρ} and $\Theta_{\rho^{\prime}}^{\prime}$ are invariant eigendistributions, Harish-Chandra Regularity Theorem implies that they are equal everywhere.

References

R. Howe: Transcending Classical Invariant Theory, J. Amer. Math. Soc. 2, (1989), 535-552
R. Howe: Remarks on Classical Invariant Theory, Trans. Amer. Math. Soc., 313 (1989), 539-570.
[
T. Przebinda: Local Geometry of Orbits for an Ordinary Classical Lie Supergroup, Central Eur. J. Math., 4, (2006), 449-506
T. Przebinda: The duality correspondence of infinitesimal characters, Coll. Math, 70, (1996), 93-102
圊
T. Przebinda: A Capelli Harish-Chandra Homomorphism, Trans.Amer.Math.Soc., 3, (2004), 1121-1154
T. Przebinda: On Howe's Duality Theorem, J. Funct. Anal., 81, (1988), 160-183

囯 Yixin Babo and BinYong Sun" Coincidence of algebraic and smooth theta correspondences, Representation Theory, 21, (2017), 458-466
T. Przebinda: A Cauchy Harish-Chandra Integral, for a real reductive dual pair. Inven. Math., 141 (2000), 299-363
F. Bernon and T. Przebinda: The Cauchy Harish-Chandra integral and the invariant eigendistributions. International Mathematics Research Notices, 14 (2014) 3818-3862
T. Przebinda: The character and the wave front set correspondence in the stable range. J. Funct. Anal. 274 (2018) 1284-1305

Some open problems

Preservation of unitarity: under what conditions, if ρ is unitary, then so is ρ^{\prime} ? (T.P., Jian-Shu Li, Hongy He, Sun Binyoung, Chengbo Zhu, Jajun Ma, Dan Barbasch,...)

Character correspondence: given Θ_{ρ} describe $\Theta_{\rho^{\prime}}$. (T.P., Florent Bernon, Wee Teck Gan, Allan Merino,...)

Wave front set correspondence: given $W F(\rho)$ compute $W F\left(\rho^{\prime}\right)$. (T.P., Jajun Ma, Hung Yean Loke, Angela Pasquale, Mark McKee.)

Langlands parameters: given the Langlands parameters of ρ compute the Langlands parameters of ρ^{\prime}. (T.P., Jeff Adams, Dan Barbasch, Annegret Paul, Colette Moeglin, Jean-Loup Waldspurger, Jian-Shu Li, Chengbo Zhu, Eng-Chye Tan, Xiang Fan.)

Thank You

