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THE DONOHO – STARK UNCERTAINTY PRINCIPLE
FOR A FINITE ABELIAN GROUP

E. MATUSIAK, M. ÖZAYDIN and T. PRZEBINDA

Abstract. Let A be a finite cyclic group and let f be a non-zero complex valued
function defined on A. Donoho and Stark gave an elementary proof that the product

of the cardinality of the support of f and the cardinality of the support of the Fourier

transform of f is greater than or equal to the order of A. They also described the
set of functions for which the equality holds. We provide an elementary proof of

a generalization these results to the case when A is an arbitrary finite abelian group.

0. Introduction

The main purpose of this note is to provide an elementary proof for an uncer-
tainty principle on a finite abelian group. By an uncertainty principle we mean an
inequality involving (the concentration of) a function and its Fourier transform,
along with its minimizers, that is, all functions achieving equality. Such minimizers
are of interest in signal representation, see e.g. [5] and its references.

The uncertainty principle we consider states that the product of the cardinalities
of the supports of a (non-zero complex valued) function and its Fourier transform,
defined on a finite abelian group, is at least the order of the group. Moreover, the
minimizers are indicator functions of subgroups up to translations, modulations
and scalar multiples. When the group is cyclic an elementary proof of the inequal-
ity and the determination of its minimizers was given by Donoho and Stark, [2],
hence the title of this note.

However, (for any finite abelian group) the inequality immediately follows from
the earlier work of Matolcsi and Szücs [3], and the determination of minimizers
from that of K. T. Smith [6]1. Another proof is a consequence of an entropy based
uncertainty principle, [4], and will be explained in Section 1. These proofs are short
but not elementary and are consequences of other uncertainty principles (involving
Lp norms or entropy) in the more general context of a locally compact abelian
group. Our elementary proof, in Section 2, uses no more than basic concepts from
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finite dimensional linear algebra over complex numbers and the structure of finite
abelian groups.

We would like to thank the referee for a careful review of this work.

1. The Uncertainty Principle

Let A be a finite abelian group and let Â be the dual group (consisting of all
characters, i.e. group homomorphisms α : A → C×). For a function f : A → C
define the Fourier transform

f̂(α) =
∑
a∈A

f(a)α(−a), (α ∈ Â),

a modulation

Mβf(a) = β(a)f(a) (β ∈ Â, a ∈ A),

and a translation

Tcf(a) = f(a + c) (a, c ∈ A).

Let G be the group generated by all the modulations, all the translations and by
multiplications by complex numbers of absolute value 1. Explicitly

G = {zMβTc; z ∈ C, |z| = 1, β ∈ Â, c ∈ A}.

For a set S, let |S| denote the cardinality of S.

Theorem 1.1. For any non-zero function f : A → C,

| supp f | · | supp f̂ | ≥ |A|.(a)

The set of minimizers for the inequality (a), i.e. the set of functions for which the
equality occurs in (a), coincides with the union of orbits

G · f(b)

where f = const IB is a constant multiple of the indicator function IB of a subgroup
B ⊆ A.

The main goal of this article is to present an elementary proof of Theorem 1.1.
This will be done in Section 2. Here we shall provide a proof based on a characteri-
zation of the minimizers for the corresponding entropy inequality, [4, Theorem 1.5],

Let µ denote the counting measure on A, so that∫
A

f(a) dµ(a) =
∑
a∈A

f(a).

Then the measure µ is invariant under the translations Tc, c ∈ A. Thus µ is a
Haar measure on A. Let µ̂ be the dual Haar measure on Â, so that the inverse
Fourier transform is given by

f(a) =
∫

Â

f̂(α) α(a) dµ̂(α), (a ∈ A).
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Then, as is well known, µ̂ coincides with the counting measure on Â multiplied by
1
|A| .

We shall view the function f : A → C as a member of the Hilbert space L2(A,µ).
Suppose ‖ f ‖2= 1. Then, by the Plancherel formula, ‖ f̂ ‖2= 1. Hence we have
the entropies

H(|f |2) = −
∫

A

|f(a)|2 log(|f(a)|2) dµ(a),

H(|f̂ |2) = −
∫

Â

|f̂(α)|2 log(|f̂(α)|2) dµ̂(α),

where the log stands for the natural logarithm. Notice that

‖ µ(supp f)−1/2Isupp f ‖2= 1.

Since the entropy of a uniform probability distribution is maximal, we have

H(|f |2) ≤ H(|µ(supp f)−1/2Isupp f |2) = log(µ(supp f)).

Similarly

H(|f̂ |2) ≤ H(|µ̂(supp f̂)−1/2Isupp f̂ |
2) = log(µ̂(supp f̂)).

Hence, by the entropy inequality, [4, Theorem 1.5 (a)] or [1],

log(µ(supp f) · µ̂(supp f̂)) ≥ H(|f |2) + H(|f̂ |2) ≥ 0.(1.2)

This verifies the inequality (a) of Theorem 1.1.
The equality in part (a) of Theorem 1.1, together with (1.2), imply the following

equality

H(|f |2) + H(|f̂ |2) = 0.(1.3)

Hence, Theorem 1.5 (b) in [4] shows that the function f is of the desired form.

2. An elementary proof of Theorem 1.1

For a subset S ⊆ A let S⊥ = {α ∈ Â, α|S = 1}. Then, as is well known, for any
subgroup B ⊆ A,

|B| · |B⊥| = |A|.(2.1)

Consider a non-zero function f : A → C, as in Theorem 1.1. We may, and shall,
assume that 0 ∈ supp f and that 1 ∈ supp f̂ (translating and modulating f if
necessary). Here 1 ∈ Â is the identity element. Notice first that, in order to prove
the theorem, it would suffice to show that supp f is a subgroup of A. Indeed,
since the Fourier transform f̂ is invariant under the translations by (− supp f)⊥,
(f̂(αβ) = f̂(α) for all α ∈ Â and all β ∈ (− supp f)⊥), the equation (2.1) im-
plies the inequality (a) of the theorem. Furthermore, the equality in part (a) of
Theorem 1.1, implies that f̂ is supported on B⊥, where B = supp f . Since f̂ is
B⊥-invariant, f̂ is a constant on B⊥. Then f is a constant multiple of IB . Thus
we shall be done as soon as we verify the following Proposition.
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Proposition 2.2. For a finite abelian group A and a function f : A → C we
have

(a) if f 6= 0, then | supp f | · | supp f̂ | ≥ |A|;

(b) if | supp f | · | supp f̂ | = |A| and 0 ∈ supp f , then supp f is a subgroup of A.

Proof. When the group A is cyclic the Proposition follows from [2]. Thus we
may assume that there are nontrivial subgroups B,C ⊆ A such that A = B ⊕ C.
Then

Â = B̂ × Ĉ.

For a function f : A → C let

fc(b) = f(b + c) (b ∈ B, c ∈ C),

and let

gβ(c) = f̂c(β) (β ∈ B̂, c ∈ C).

Then, in particular,

f̂(βγ) = ĝβ(γ) (β ∈ B̂, γ ∈ Ĉ).(2.3)

We proceed via the induction on |A|. Suppose the proposition holds for the groups
B and C. Let B = {β ∈ B̂; gβ 6= 0} and C = {c ∈ C; fc 6= 0}.
Pick c ∈ C with | supp fc| minimal. Then

| supp fc| ≤
| supp f |
|C|

.(2.4)

Hence, by the inductive assumption,

| supp f̂c| ≥
|B|

| supp fc|
.(2.5)

From (2.4) and (2.5) we deduce

| supp f̂c| ≥
|B| · |C|
| supp f |

.(2.6)

Notice that supp f̂c ⊆ B, so that

| supp f̂c| ≤ |B|.(2.7)

Also,

supp gβ ⊆ C (β ∈ B).(2.8)

By the inductive assumption and by (2.8) we have

| supp ĝβ | ≥
|C|

| supp gβ |
≥ |C|
|C|

.(2.9)

We see from (2.3) that

supp f̂ =
⋃
β∈B

supp ĝβ × {β}.
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Therefore,
| supp f̂ | =

∑
β∈B

| supp ĝβ | ≥
∑
β∈B

|C|
|C|

= |C| · |B|
|C|

,(2.10)

where the inequality follows from (2.9). We see from (2.6) and (2.7) that

| supp f | ≥ |B| · |C|
| supp f̂c|

≥ |B| · |C|
|B|

.(2.11)

By combining (2.10) and (2.11) we get

| supp f | · | supp f̂ | ≥ |B| · |C| = |A|.(2.12)

This verifies the inequality (a) in our Proposition 2.2.
Suppose from now on that we have equality in (2.12). Also, we may and shall

assume that 1 ∈ supp f̂ .
The equality in (2.12) forces equalities in (2.4), (2.5), (2.6), (2.7), (2.9) and

(2.10). Therefore
| supp fc| =

| supp f |
|C|

,(2.13)

| supp fc| · | supp f̂c| = |B|,(2.14)

supp f̂c = B,(2.15)

supp gβ = C (β ∈ B),(2.16)

| supp gβ | · | supp ĝβ | = |C| (β ∈ B).(2.17)

Also,

1 ∈ B, and 0 ∈ C,(2.18)

because

ĝ1(1) = f̂(1) 6= 0, and f0(0) = f(0) 6= 0.(2.19)

By the inductive assumption, (2.14) and by (2.19), supp f0 is a subgroup of B. We
see from (2.14) and (2.19) that supp f̂0 = (supp f0)⊥ is a subgroup of B̂. Hence,
(2.15) implies that B is a subgroup of B̂ and f̂0 = const IB. Similarly

C = supp g1 is a subgroup of C and g1 = const IC .(2.20)

By the inductive assumption and by (2.14), supp fc is a translation of the subgroup
(supp f̂c)⊥ = B⊥ ⊆ B. Thus there is a function φ : C → B such that

supp fc = B⊥ + φ(c) (c ∈ C),(2.21)

where φ(0) = 0. Again, by (2.14) and (2.21),

f̂c(β) = β(φ(c)) f̂c(0) (β ∈ B, c ∈ C).(2.22)

Notice that f̂c(0) = g1(c) = g1(0). Thus (2.22) may be rewritten as

f̂c(β) = β(φ(c)) g1(0), (β ∈ B, c ∈ C).(2.23)
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Similarly, for some γβ ∈ Ĉ,

gβ(c) = γβ(c) gβ(0) (c ∈ C).(2.24)

Since gβ(c) = f̂c(β), we have

gβ(0) = f̂0(β) = f̂0(0) = g1(0).

Thus (2.24) may be rewritten as

f̂c(β) = γβ(c) g1(0) (β ∈ B, c ∈ C, ).(2.25)

By combining (2.23) and (2.25) we deduce the following equality,

β(φ(c)) = γβ(c) (β ∈ B, c ∈ C).

Hence for β ∈ B, and for c1, c2 ∈ C,

β(φ(c1) + φ(c2)− φ(c1 + c2)) = β(φ(c1))β(φ(c2))β(φ(c1 + c2))−1

= γβ(c1)γβ(c2)γβ(c1 + c2)−1 = γβ(0) = 1.

Therefore

φ(c1) + φ(c2)− φ(c1 + c2) ∈ B⊥ (c1, c2 ∈ C).(2.26)

We see from (2.21) and (2.26) that

supp f =
⋃
c∈C

supp fc × {c} =
⋃
c∈C

(B⊥ + φ(c))× {c}

is closed under addition. Therefore supp f is a subgroup of A. �
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3. Matolcsi T. and Szücs J., Intersections des mesures spectrales conjugees, C. R. Acad. Sci.
Paris 277 (1973), 841–843.
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