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i v TOMASZ PRZEBINDA 

Q = q l ( p - q ) ! f ° r P > q ^ Z> P > q > 0 

sgn x 
1 i f x > 0 
0 i f x - 0 

- 1 i f x < 0 

n 
lot I = Z ot. f o r a = (a , , a 0 , . . , a ) G Z, 

3 - 1 J 1 2 n + 

M (F) = t h e s p a c e of m a t r i x e s w i t h p rows and q columns w i t h e n t r i e s i n 
p , q 

F , F = R or C. 

c o l ( w i , w 9 , . • ,w ) = a t y p i c a l e l e m e n t of M . ( F ) , F = R o r C. 1 ^ P p , l 

9f 3 f = —- f o r f G C[z , z , . . , z ] . z. 9 z . 1 z n 
J J 

[X,Y] - XY - YX for X,Y in any ring 

U(V) = the group of unitary operators on a Hilbert space V. 

Horn Q(V,V ) = the space of continuous operators from the linear topological 

vector space V to the linear topological vector space V 

intertwining the (given) representations of the topological 

group G on V and on V respectively 

V* = the space of continuous linear functionals on the linear 

topological vector space V, 

G = the connected component of identity in the topological group G. 

G = the set unitary equivalence classes of irreducible unitary 

representations of the topological group G. 

Int g(x) = g x g for g,x in a group G 

ĝ  = the Lie algebra of a Lie group G 

g = the complexif ication of g_ 

A(g,h) = the set of roots of the Cartan subalgebra h, in the complex, 

reductive Lie algebra £ [Wa, 111] 
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THE OSCILLATORY DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) v 

l A+(_g,h) = E + a, for A (g,h) C A(g,h) 
a€A (§>h) 

p(n.) = p(n.,a) = — sum of the roots of a_ in j^, 

where P = MAN is a Langlands decomposition of a parabolic subgroup of a 

reductive Lie group G. [Wa 1.2, VI 0.2]. 

GL(n,C), GL(n,R), 0(p,q), 0(n) , Sp(n,C), Sp(n,R), U(n,n) , U(n) - are 

concrete matrix groups as defined in [He Ch IX §4] 

I = the matrix in M n(R) with 1 on the diagonal and 0 elsewhere. 

CONFLICTING NOTATION: 

IT is either a representation of a compact group or is the real number 

equal to the area of the disc with radius one. 

is either a quasicharacter of a Cartan subgroup (2.3.11) or 

oo 

T(z) = / xZ~l e"X dx for z <E C, Re z > 0 
0 
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ABSTRACT 

We calculate this correspondence and show that the unitary representations of 

0(2, 2,) are mapped to unitary representations of Sp(2, R) • 

Key words and phrases: Howe's correspondence, unitarity, example 
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INTRODUCTION 

The theory of representations of real reductive groups enjoys extremely rapid 

growth these years. In the early seventies Langlands [La] has reduced the 

problem of classification of the (infinitesimal equivalence classes) of the 

irreducible admissible representations of such groups to the analogous problem 

for tempered representations. Later Knapp and Zuckerman [K-Z2] have described 

the tempered representations and provided a unitarity criterion [K-Zl] for 

admissible representations in Langlands picture. 

In the early eighties Vogan [V4] and later Wallach [Wl] have proven a 

theorem about unitarizibility of the Derived Functor Modules invented by 

Zuckerman. This led to the classification of the unitary dual of GL(n,D) for 

D = R, C or H [V3] . 

In the meantime Howe [H2] has shown that for a real reductive dual pair 

G,G* (1.1.2) there is a bisection between some irreducible admissible 

representations of 'G (a double cover of G) and some such representations of 

'Gt (a double cover of G') - see (1.2.15). We call this bijection the 

OSCILLATOR DUALITY CORRESPONDENCE. 

The role of unitarity in this correspondence is still obscure. Adams [A] 

had identified the (unitary) representations of 0(p,q) corresponding to the 

disprete series representations of Sp(n,R) for 2n < min {p,q}. His methods 

rely (among others) on Repka's theorems about decomposition of the tensor 

product of holomorphic and antiholomorphic discrete series representations of 

Sp(n,E)[R]. 

The object of this paper is to provide the full description of the 

Oscillator Duality Correspondence for the pair 0(2,2), Sp(2,R). We do it in 

Chapter 3. Since Repka's results do not apply to our example, the 

computations are sometimes technically unpleasant. The result however is 

simple. Roughly speaking (for the precise statement see (3.6.5)). 

(1.1) The Oscillator Duality Correspondence induces the identity map on the 

(appropriately identified) sets of character data for these groups -

except the case when a discrete series representation of 0(2,2) 

corresponds to a non-discrete series representation of Sp(2,l.). 

VII 
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viii THE OSCILLATORY DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 

Some other properties of this correspondence are summarized in (3.6.6) and 

(3.6.7). Moreover we would like to draw the reader's attention to the Theorem 

(C.7), in the Appendix C, where (again roughly speaking) we show that 

(1.3) the determinant representation of the group 0(p,q) occurs in the 

pairing with Sp(m,R) if and only if p+q < m. 

In Chapter 2, §4, §5 we list the unitary duals of Sp(2,R) and 0(2,2) 

respectively. The reader will find the nepessary calculations based on [K-Zl] 

and [K-Sp] for Sp(2,R) in the Appendix A. A surprising conclusion from a 

comparison of these lists with the description of the Oscillator Duality 

Correspondence is the fact (3.6.11) that 

(1.2) the unitary representations of 0(2,2) correspond to unitary 

representations of Sp(2,R). 

We have also checked (not included in this paper) that (1.2) remains true if 

one replaces 0(2,2) by the Lorentz group 0(1,3). It is also known [PI] that 

for any real reductive dual pair the Oscillator Duality Correspondence maps 

hermitian representation of one group to hermitian representations of the 

other group (and vice versa). 

Recently Jian Shu Li [Li] has shown, using Mackey's theory, that the 

Oscillator Duality Correspondence maps the whole unitary dual of 0(p,q) into 

the unitary dual of Sp(n,R) for p+q < n. This result holds for groups over 

any local fields! 

All the above should convince the reader that the Oscillator Duality 

Correspondence may become an important tool for the, still distant, 

classification of the unitary dual of a real classical group (since all of 

them fit into the framework of Howe's theory of reductive dual pairs). 

Finally I can't resist the temptation to mention that Stanislaw Ulam [The 

Scottish Book] has noticed the following phrase of Shakespeare's in 

Henry VIII: "Things done without example, in their issue are to be feared." 

Ulam's interpretation seems to be that this is an "anti - 'new math'" 

statement. Most probably our paper will add a drop to this controversy. 
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CHAPTER 1 

THE OSCILLATOR DUALITY CORRESPONDENCE 

In sections 1 and 2 we recall the notion of a reductive dual pair 

(1.1.2), list the basic properties of the oscillator representation (1.2.6) 

and quote Howe's Duality Theorem (1.2.15). In paragraphs 3 and 4 we review 

various models of the oscillator representation, illustrate them on 

examples and relate them to each other. 

Section 5 is devoted to a clarification of the notion of a lowest 

degree K-type (1.5.16) introduced by Howe in [H2]. 

§1. Reductive Dual Pairs 

Let (W, < , >) be a finite dimensional symplectic vector space over a 

commutative field. Denote by 

(1.1.1) Sp(W, < , >) = Sp(W) = Sp the isometry group of the form 

(1.1.2) Def. [H3, H5] . A pair of subgroups G, G' of the symplectic 

group Sp(W) is called a reductive dual pair if 

(1.1.3) G1 is the centralizer of G in Sp(W) and vice versa, and 

(1.1.4) both G and G' act reductively on W . 

These pairs have been classified [H4, H5] over fields of characteristic 

different than two. 

(1.1.5) Example. Let us inject any element g of the group 0(2, 2) 

into the group Sp(8, R) (see "Notation" for the definition of these 

groups) by the map 

(1.1.6) g+ diag (g, g, (gV 1 , (gV1) . 

Define an imbedding of Sp(2, R) into Sp(8, R) by lifting of the 

following homomorphism of Lie algebras: 

Received by the editors June 17, 1988. 
Partial support: NSF Grant DMS8503781 

1 

Licensed to Univ of Oklahoma.  Prepared on Fri Nov  3 21:38:48 EDT 2017for download from IP 129.15.14.45.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



2 TOMASZ PRZEBINDA 

(1.1.7) 

Xl X2 yl y2 

X3 X4 y2 y4 

Vl V2 "Xl "X3 

V2 V4 "X2 "X4 

V 0 x2I 0 yxI 0 y2I 

0 xLl 0 x2l 0 -y^ 0 -y2I 

x3I 0 x4I 0 y2l 0 y4I 

0 x3I 0 x.I 4 0 -y2I 0 -y4I 

V 0 v2I 0 -xLI 0 -x I 

0 -v I 0 -v I 0 -x I 0 -x3I 

V 0 v.I 4 0 -x I 0 -x.I 0 

0 -v2I 0 -v.I 0 -x0I 4 2 0 -x.I 4 

Here I = I~ . 
One checks easily that the images of 0(2, 2) and Sp(2, R) form a 
reductive dual pair in Sp(8, R) • It will be convenient in some of our 
future calculations to use another orthogonal matrix group isomorphic to 
0(2, 2) Name ly let 02 o denote the group of real matrixes of size 4 
preserving the symmetric bilinear form on R defined by the matrix 

(1.1.8) 
l2 ° 

This group is isomorphic to the group 0(2, 2) via 

(1.1.9) the conjugation by c 
/2 

inside GL(4, R) 

The matrix 

(1.1.10) C = diag (c, c, c, c) 

belongs to the maximal compact subgroup 

(1.1.11) 0(16) O Sp(8, R) 

of Sp(8, R) . 

We realize O2 0 » SP(2, R) as a reductive dual pair in Sp(8, R) by the 
following commuting diagram of group homomorphisms: 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 3 

(1-1-6) 
2,2 -> Sp(8, R) <-

(1.1.12) (1.1.9) 

0(2,2) ( K 1 ' 6 ) > S P(S/R) <-

Int C 

(1.1.7) 

Sp(2, R) 
I 
i 

I id 

Sp(2, R) 

where id stands for the identity map and the unmarked arrow for 

(Int C)" 1 o (1.1.7) o id . 

§2. The Oscillator Representation. 

(1.2.1) Def [H4 Chi §3] . The Heisenberg group attached to the real 
symplectic vector space W is the smooth manifold 

H(W) = W e R 

with multiplication 

(w, r)(wf, rT) = (w + wf, r + rT + V2 <w , wf>) 

where w, wf G W and r, rT E R 

The symplectic group Sp(W) acts on H(W) by automorphisms leaving the 
center z(H(W)) of H(W) pointwise fixed: 

(1.2.2) 

Therefore 

(1.2.3) 

g(w, r) = (gw, r) ĝ e Sp(W), (w, r) e H(W)) . 

the unique connected two fold covering group Sp of Sp, 
usually called the metaplectic group acts on H(W) and we 
may form a semidirect product of Lie groups. 

(1.2.4) 

Let 

Sp x H(W) 

(1.2.5) x be a non-trivial unitary character of the abelian group 

Z(H(W)) . 
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4 TOMASZ PRZEBINDA 

(1.2.6) Theorem [H5]. Up to a unitary equivalence there is only one 

unitary representation OJ of the group (1.2.4) satisfying the following 

conditions: 

(1.2.7) the restriction of w to H(W) is irreducible, 

(1.2.8) a) restricted to Z( H(W)) is a multiple of x » 

(1.2.9) o)(i)a)(h)o)(i)"1 =a)(g(h)) 

for h G H(W) and g e Sp covering g G Sp(W) . 

One of the most striking properties of oo is expressed in Howe's Duality 

Theorem (1.2.15). Before stating it we fix some additional notation. 

For any group G — Sp let 

(1.2.10) 'G be the preimage of G in Up . 

If G is a reductive Lie group let 

(1.2.11) R(G) be the set of infinitesimal equivalence classes of 

continuous irreducible admissible representations of G on locally convex 

topological vector spaces. 

CO r* 

Denote by a) the smooth representation of Sp associated to ai and let 

(1.2.12) R^, a)) be the set of elements of R(G) which can be realized 

as quotients of the smooth representation a) by co (G)-invariant closed 

subspaces. 

Consider a reductive dual pair G, GT in Sp . It is not hard to show 

that 'G and GT commute with one another. The identity maps from G to 

itself and from G ' to itself induce a homomorphism 

(1.2.13) ' G x G t + G - G'-Sp . 

Hence we may r e g a r d OJ |G • *G a s a r e p r e s e n t a t i o n of G x G . I t i s w e l l 

known [F] t h a t R ^ x G') = R(G) x R(G f) . The i d e n t i f i c a t i o n a s s o c i a t e s 

t o n G R (G) and II1 G R ( ^ T ) t h e o u t e r t e n s o r p r o d u c t 

n ® n ' G R (G x G' ) . The t o p o l o g y of II ® IIT is not uniquely determined 
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THE OSCILLATORY DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 5 

but the infinitesimal equivalence class is. In this sense 

(1.2.14) R(G« G', a)) is a subset of the cartesian product 

R(G, a)) x R(G» , OJ) . 

It can be verified that the projections of R(G • G', w) onto R(G, a)) 
and R(G', oo) are surjective. 

(1.2.15) Theorem [H2]. The set R(G • G', OJ) is the graph of 
bisection between R(G, a)) and R(GT , OJ) . In other words, for each 
II G R(G, a)) there is a unique 11' G R(Gf , to) such that 

(1 .2 .16) n ® n T e R(G • 2 ' , w ) 

and vice versa . Moreover for n and IT' as above 

(1.2.17) dim Horn- ^ ^ o T , n ® IT) = 1 . 

(1.2.18) Def. The function II > II1 defined by (1.2.16) is called the 
Oscillator Duality Correspondence. 

It is known that the representation GO can be realized on a Schwartz 
space S ([H4, H5],. (1.3.16)) and that the action of the group Isp 
extends from S to S*-the space of tempered distributions. 

(1.2.19) Proposition. For each element II ® 11' of R(G • G', w) 
there is a unique irreducible G • G! submodule V of S* realizing 
II ® nf , and conversely each irreducible ~G • G' submodule V of S* 
corresponds to an element n ® II! of R(G • G', a)) . 

Proof: Let a) denote the contragradient oscillator representation of 
'Sp realized on S . Assume that V ̂  S* is a closed u(G • Gf ) -
irreducible subspace. Then the topological dual V* is a quotient of S 
by a closed 03 (G • G')-invariant subspace N . Since S* is a reflexive 
topological vector space, it follows from [Ke - Na, Ch. 5, 20.2 (ii)]that 
V is reflexive. Therefore V* does not contain any closed non-trivial 
subspaces invariant under the contragradient action of G • G* . Thus 

(1.2.20) V* represents an element of R('S • Gf , u> ) . 

(2 c ~ ~ 
Conversely, let N — S be a OJ (G • Gf )-invariant 

Licensed to Univ of Oklahoma.  Prepared on Fri Nov  3 21:38:48 EDT 2017for download from IP 129.15.14.45.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



6 TOMASZ PRZEBINDA 

closed subspace such that S/N is irreducible. Denote by V the 
annihilator of N in S* with the contragradient action of G • G' * Then 
again by reflexivity of N 

(1.2.21) V is a closed a)(G • ̂ -irreducible subspace of S* . 
Combining (1.2.20) and (1.2.21) we see that 

(1.2.22) the set of V*'s, for V's described in the proposition, is 
a set of realizations of all elements of R( G • Gf , GO ) . 

Since by [PI Theorem 5.5], R( G • G! , a)°) = R(G • G' , OJ) = the set of 

infinitesimal equivalence classes of contragradient representations of 

G • G y the statement (1.2.20) completes the proof. 

Q.E.D. 

§3. The Mixed and the Schrodinger Models 

Let 

(1 .3 .1 ) W = W © W be a decomposition of W in to an orthogonal 
sum of two symplectic spaces , and 

(1 .3 .2 ) W = X© Y be a complete p o l a r i z a t i o n of W, . 

The statement (1 .3 .2 ) means t h a t X, Y are maximal i s o t r o p i c subspaces 

of W, and W, i s a d i r e c t sum of them. Denote by 

(1 .3 .3 ) Py the pa rabo l ic subgroup of Sp(W) whose elements 

preserve Y , and by 

(1 .3 .4 ) Ny the subgroup of Py which a c t s t r i v i a l l y on Y and on 

( Y e W2) /Y . 

As explained in [H4 Ch I §9] , the cen te r Z(Ny) of the group Ny i s 
2* isomorphic to the abe l i an add i t ive group S (X) of the symmetric b i l i n e a r 

forms on X (g(x , x f ) = <x, gx'> , g G Z(N ) x, x ' G X) . Moreover i f we 
def ine the map 

* : Horn (W2 Y) + Horn (X,W2) by 

( 1 . 3 . 5 ) <Tw, x> = <w, T*x> ( x G X , wG W ) 
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TTHE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 7 

then a straightforward calculation shows that for T, T' e Horn (W , Y) the 
map 

(1-3.6) X x X 3 (x, xf ) > <x, (TTf* - T'T*)x'> G R 

i s a symmetric b i l i n e a r form on X . 

We can thus define a group s t r u c t u r e on 

(1-3 .7) Horn (W2, Y) X S2*(X) 

by introducing the following multiplication: 

(1.3.8) (T, b)(T' , b' ) = (T + T' , b + b + V2 (TT»* - T'T*)) 

with T, TT e Horn (W2> Y) and b, bf e S2*(X) . Having developed the 
above notation we can quote a result from [H4 Ch I §9] which says that 

(1.3.9) N = Horn (W2> Y) x S (X) . 

Put 

(1.3.10) \, Y = ^ P
Y • 

Then M preserves the decompositions (1.3.1), (1.3.2) and by Witt's X,Y 
theorem 

(1.3.11) **x Y " G L ( X ) X SP^ W2^ 

by restriction. It is well known that 

(1-3.12) Py = MX)V Ny and Mx y n Ny = {1} . 

Combining (1.3.12), (1.3.11), and (1.3.9) we obtain an isomorphism 

(1.3.13) P Y = (GL(X) x Sp(W2)) xg(Hom (W2> Y) x S2*(X)) . 

In the sense of (1.3.13) the preimage P of P in the metaplectic group 
Sp(w) is the product in Sp of a group (isomorphic to) the metaplectic 

group 1*p(W ) , the group 

(1.3.14) GL(X) = {(g, 0\g e GL(X), g2 = det g} , 

and the unipotent radical (1.3.9) . 
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TOMASZ PRZENINDA 

Let 

(1.3.15) co9 be a realization of the oscillator representation of 

the group l$p(W ) x H( W ) (1.2.6) on a Hilbert space V2-

(1.3.16) Theorem [H4 Ch II §3]. The oscillator representation 
2 

a) may be realized on the Hilbert space V = L (X, V ) and the 

restriction of u) to P is given by the following formulas: 

(1.3.17) o)(g) f(x) = o)2(g)(f(x)) (g<ESp(W2)) , 

(1.3.18) o)(g, C)f(x) - C ^ f U ^ x ) ((g,£) G GL(X)) > 

(1.3.19) o>(b)f(x) = x(" V2b(x,x))f(x) (beS 2*(X)) , 

(1.3.20) w(T)f(x) = a)2(T*(x))(f(x)) (TG Horn (W2> Y)) . 

Moreover the space of smooth vectors 

(1.3.21) V°° = S( X, V™) is the Schwartz space of X with values in 

oo 

v2 . 

(1.3.22) Def [H4] The realization of a) described in the above 

theorem is called a mixed model of the oscillator representation adopted to 

the decomposition 

(1.3.23) W = (X e Y) e W 2 . 

In particular, when W2 = 0 we obtain a Schr'ddinger model. 

(1.3.24) Example. Let W = M̂  (R) be the space of row vectors 
1,2n 

w = (w , w , ...,w ) , with the symplectic form 

(1.3.25) <w, wT> = w.w' +...+W w' - w w.f-...-w , w' 
1 n+1 n n+n n 1 n+n n 

Then the group Sp(n, K.) acts on W by 

(1.3.26) g(w) = Kg* . 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 9 

Let X be the subspace of W consisting of vectors with zeros in the last 

n-places, and Y be the subspace whose vectors have zeros in the first 

n-places. Then the subgroup Py of Sp(n, R) consists of matrices with 

zero in the upper right corner and the isomorphism (1.3.13) is given by the 

following maps: 

(1.3.27) M X , Y 3 

g 0 

o (gV11 < > g G GL(n, R) 

(1.3.28) Ny 3 
I 0 n 
b I < > b G S(n, R) 

where S(n,BS.) denotes the space of all symmetric real matrices of size 

n , which are identified with the bilinear symmetric forms on X = M (R) 
± ,n 

as usual: 

(1.3.29) b(x, x) = xbxC . 

Fo r notational convenience let us identify X with M^ i(R) by 

(1.3.30) X 3 (x,0) •> x G M .(R) n, 1 

Then by (1.3.27), (1.3.28), the formulas (1.3.18), (1.3.19) may be rewritten 

as 

o>(g, S)f(x) = £ f(g x) (g G GL(n,R), I = det 

(1.3.31) 

,(b)f(x) = x(-V 2x t bx)f(x) (b G S(n, R)) . 

where 

(1.3.32) x(r) = e 
%ir 

(r G R) 

This character (1.3.32) of R is going to be fixed throughout this paper. 

§4. The Fock Models 

Let J be a compatible, positive, complex structure on W . This means 

that J belongs to Sp(W), J - - I and (I = the identy map) 

<Jw, w > > 0 for all w G W , w * 0 [H4]. Since J generates a subfield 

of End™(W) isomorphic to C we can view W as a complex vector space where 
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10 TOMASZ PRZEBINDA 

iw = J(w) for w e W . The centralizer of J in Sp(W) is a maximal 

compact subgroup Uj , which is isomorphic to U(n) if 2n = dim^CW) . 

Define a hermitian form ( , ) , or W by 

(1.4.1) ( w ^ w 2 ) j = <Jw1 , w2> + i <wi? w2> (w , w 2 G W) , 

and the corresponding norm 

(1.4.2) |w|j = (w, w) (w G W) . 

Consider 

(1.4.3) the Hilbert space V, of holomorphic functions on W which 

are square integrable with respect to the measure 

o 
exp(- | w | )dm(w) 

where m is a Haar measure on the additive group W • 

(1.4.4) According to [H4 Ch II §3] there is a realization of GO on 

the Hilbert space V, . We shall refer to this realization as to 

(1.4.5) the Fock model of w adapted to the compatible positive 

structure J on W and describe it in a special case below. 

(1.4.6) Example Let W be the 2n dimensional real vector space 

underlying d1 . On W consider the symplectic form 

(1.4.7) <w,wf> = 21m ^ w' (w, wf G W) 

Define J(w) = iw , where i = / - l as u s u a l . Then J i s a compatible , 

p o s i t i v e complex s t r u c t u r e on W . Since 

9 9 9 9 
|w | j = IwJ + |w2 | + . . . + | w J (w = co l (w l f w 2 , . . . , w n ) ) , 

we see t ha t Uj = U(n) . 

We can realize W as a real symplectic subspace of the standard complex 

sympletic space C [He Ch IX §4] by the map 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 9)2,2), Sp(2,R) 

(1.4.8) W = w > G C 2n 

Then the group Sp(W, < , >) is identified with the group 
Sp(n, C) n U(n, n) . 

Recall that the Lie algebra sp(n,C) of Sp(n,C) consists of matrices of the 
form 

(1-4.9) 
LZ2 "^ 

(Z. = z\ , Z9 = z\ , UG Mn (C)) 1 1 I I n,n 

Let e . , denote a matr ix with 1 in the i - t h row and k - th column. Then, 

by ( 1 . 4 . 9 ) , a bas i s of _sp(n,C) c o n s i s t s of the l i n e a r combinations of 

e . L i + e i 1 . » e
1 - n + e , i . > e . 1 " e . 1 , . ( 1 < j , k < n ) . j ,n+k k ,n+ j ' n+j,k n+k,j j ,k n+k,n+j J > 

We def ine a r ep re sen t a t i on of j3p(n,C) on C[z , z , . . . , z ] by 

tof e . , + e, ,) • -z ,z, ^ j , n+k k , n + j ; j k 

(1 .4 .10) cafe + e ) - 3 3 

•C«, ' j , k n+k,n+j ; 

where 1 < j , k < n . 

Vo fz.8 +9 z.) 

We in t roduce a s c a l a r product in C [z , z , . . . , z ] by dec la r ing the 
s e t of elements 

a 
(1.4.11) (a = (a, , a 0 , . . . , a ) ; a. 

/—r 1 2 n j 
= 0, 1, 2 , . . . ; j = 1, 2 , . . . , n ) . 

to be the orthonormal basis. One can check [H7] that the Hilbert space norm 
on C[ z , z9,...z ] obtained this way is 

,2 
(1.4.12) II f!!2 = / |f(z)|2 e |z| dm(z) 

cn 

where m is a suitably normalized Haar measure on the additive group 
Cn . By completion one obtains the Hilbert space of holomorphic functions 
f : Cn+ C such that II fII < » (1.4.12). 
A straightforward calculation shows that 
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12 TOMASZ PRZEBINDA 

(1.4.13) sp(n, C) n ii(n, n) is mapped via a) into the space of 

skew-Hermitian operators. 

The real Lie algebra (1.4.13) consists of matrices 

(1.4.14) 

Fix an injection of U G u(n) into (1.4.14) by 

U Z 

"z TJ fu e u(n) , Z = Zt e M (C)l 
v — n,n J 

(1 .4 .15) U -• diag(U, U) 

Define a double covering U(n) of U(n) by 

(1 .4 .16) U(n) = {(g ,£) | g e U(n) , £ = det g} 

with the covering map (g, £) > g . 

Let U(n) act on Cf z. , z»,...,z 1 via the formula: L 1 z nJ 

(1.4.17) >(g,£)f(z) = Cf(zg) 

Here z denotes the row vector f z, , z z 1 . 

The formulas (1.4.10), (1.4.17), (1.4.15) make Cfz., z_...,z ] into an 
L 1 I nJ 

f sp(n, C) O _u(n, n ) , U(n))-module . I t i s known [H2] tha t t h i s i s the 

Harish-Chandra module of (co, V ) . 

The l i e a lgebra sp(n, R) i s isomorphic to sp(n, C) n _u(n, n) via the 

fol lowing map: 

(1 .4 .18) 

where 

(1 .4 .19) 

sp(n , R) :=- X-• C XC e sp(n, C) n u (n, n) , n n — — 

/ 2 

-I i l 
n n 

I i l 
n n 

Let for x e R and IT = 3.14. 

- 1 / 2 

(1 .4 .20) y (x) = (>m m!) 72 ( - V2 9 + Trx)m e ^ x , (m = 0, 1, 2, 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 13 

Define an isometry from L (R ) to the Hilbert space V by the linear 

extension of the following map of the orthonormal basis: 

(1.4.21) 
Ax! 

(a e Z«) , 

where f (x. , x, x ) = T (x.) Y (x0)..¥ (XJ • 
1 z n 

Combining the l i f t of (1 .4 .18) with the pullback of (1 .4 .21) we get t h e 

following commutative diagram 

(1 .4 .22) 

Sp(n? R) 

U(L2(Rn)) <~ 

-> (Sp(n, C) O U(n, n)) 

« ( V J ) 

where the left vertical arrow is defined by the three others . 

This way we obtain a realization of the oscillator representation a> of 

sp(n, R) on L ( R ) . A straightforward calculation involving the 

properties [H7 (1.7.14)] of the Hermite functions Y (1.4.20) shows that 

this realization coincides with the one described in (1.3.24). 

§5. The degree of a representation in the Oscillator Duality Correspondence. 

Let J be a compatible, positive, complex structure on W as in §4. Let 

(1.5.1) 

such that 

lg J be the element of the Lie algebra of the center of Uj 

(1.5.2) J = exp(lg J) and 

(1.5.3) the norm of lg J is minimal with respect to this property. 

In the example (1.4.6) 

(1.5.4) lg J 
I 0 
n 

0 -I 

Since all the compatible, positive complex structures on W are conjugate via 

the adjoint action of Sp(W) [H4 Ch I 12.4] all the Fock models are equivalent 
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14 TOMASZ PRZEBINDA 

as representations of Sp. In particular the spectrum of the operator 

ai(lg J) does not depend on the particular Fock model Vj. Therefore (1.5.4) 

and the last formula in (1.4.10) imply that for any Fock model VT of OJ 

(1.5.5) V decomposes into a direct sum of finite dimensional 

eigenspaces for o)(lg J) with eigenvalues 

i ̂  (d + |) (d = 0,1,2,..; 2n = dimR(W)). 

Here IT = 3.14... . 

In the example (1 .4 .6 ) the eigenspace with eigenvalue i — (d + -y) (1 .5 .5 ) i s 

simply the space of homogenous polynomials in C [ z . , z ? , . . , z ] of degree d. 

Let L be a closed subgroup of Uj. Following [H2] we in t roduce the 

(1 .5 .6 ) Def. For o E R(L,u)) l e t degj (a) be the minimal eigenvalue 

of the operator 

(1 .5 .7 ) ( i i r ^ U g J) - | I) 

on the a-isotypic component of Vj. 

Assume that L,LT is a reductive dual pair in Sp(W) and that Jf is another 

compatible positive complex structure on W such that L C U . Then L 

centralizes both J and JT. Therefore J and JT belong to LT. Moreover it 

follows from the known structure of the pairs L,Lf [H4 Ch I §6] that 

(1.5.8) lg J and lg Jf are conjugate inside L'. 

Indeed, a sketch of an argument for (1.5.8) looks as follows. One can, 

clearly, assume that L,L' is a, so called, irreducible pair [H5]. If L' is 

a symplectic group—the case of our interest in this paper—then (1.5.8) 

follows directly from [H4 Ch I §6]. In the remaining (two) cases an analysis 

similar to [ H4 Ch I §6], the substance of which is that all maximal compact 

subgroups of L' are conjugate, yields (1.5.8). 

This statement implies that for any o E R(L,OJ) the spectra of 

oo(lg J) and o)(lg J') on the cr-isotypic components of Vj and V,T , 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 9)2,2), Sp(2,R) 15 

respectively, coincide. In particular 

(1.5.9) degj(a) = degJf(a). 

In the example (1.4.6) 

(1.5.10) deg (a) is the minimal degree of a non-zero polynomial in the 

cr-isotypic component of C[z ,z ,..,z ]. 

This explains the notation: deg (a). The statement (1.5.9) implies that 

for a given reductive dual pair L,LT with L compact and for a e R(L,a>) 

one can define 

(1.5.11) deg(or) to be deg (a) for any Fock model V of oo such that 
J J 

L C U r 

Though our main concern in t h i s paper i s to compute the O s c i l l a t o r Duali ty 

Correspondence for a small dual p a i r , i t i s e a s i e r to s t a t e and prove the 

following lemma in genera l . 

Assume t h a t W = W © W as in ( 1 . 3 . 1 ) . Let L. , L! be a reduct ive dual 

p a i r in Sp(W.) with L. compact ( j = l , 2 ) . Then L x L and LJ x L' act on W 

coordinatewise , and form a reduct ive dual p a i r in Sp(W). Let a) . denote the 

o s c i l l a t o r r ep re sen t a t i on of Sp(W.), j = 1,2. 

(1 .5 .12) Lemma. If a . e R(L . ,a) . ) for i = l , 2 , then 
^" J J J 

ol ® o2 e R(LX x L2) ,(u) and 

deg(aL ® a 2 ) = deg (c^) + d e g 2 ( a 2 ) . 

Here deg. r e f e r s to the p a i r L. , L?., and we iden t i fy a ® o0 with i t s 

p u l l to L. x L„. 

Proof: I t i s known [H6] tha t the pu l l back of a) to 1Sp(W ) x 'SpCW ) i s 

isomorphic to OJ. ® o>9. We may choose the Fock models of w and u) 

s a t i s f y i n g (1 .5 .11) for Li and L2 in such a way tha t t h e i r Harish-Chandra 
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16 TOMASZ PRZEBINDA 

1 2 modules are spaces P and P of polynomials as in (1.4.6), respectively. Then 

we have the following L x L?-isotypic direct sum decomposition 

1 2 1 2 
(1.5.13) p ® p = © p ® p 

a^o^ 1 2 

where a varies over R(L. ,o). ), i = 1,2. Since the degree of a product of 
J J J 

two homogenous polynomials is equal to the sum of their degrees the Lemma 

follows from (1.5.13). 

Q.E.D. 

Let GyG1 be any r e d u c t i v e d u a l p a i r i n Sp(W). Modulo e v e n t u a l c o n j u g a t i o n 

i n s i d e Sp(W) we may assume t h a t 

( 1 . 5 . 1 4 ) K = G O U and Kf = G' n U a r e maximal compact s u b g r o u p s of G 

and Gf r e s p e c t i v e l y . 

Let 

(1.5.15) n ® n' e R(G • G', a)). 

Since K (K' ) and its centralizer in Sp(W) form a reductive dual pair [H2 §5] 

the statement (1.5.11) applied to L = K (L = K') implies that independently of 

J satisfying (1.5.14) we may define 

deg n = min {deg a | a is a K-type of H}, 

(1.5.16) D(n ) = {o e (K)A | deg a = degll}, and analogously 

deg IT , D(IT ). 

The number deg II will be called the degree of the representation n , and 

the set D(H) the set of lowest degree K-types of II. It follows from the 

Lemma 4.1 in [H2] that 

(1.5.17) under the above assumptions deg n = deg II ?. 

Fix a Fock model V (1.4.3) of co , and under the assumption (1.5.14) define 

[H2 (3.8)] 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 17 

(1.5.18) H(K) to be the deg -eigenspace of the operator (1.5.7) on 
a o 

(VT) , and similarly H(KT ) t. J a a 

In the example (1.4.6), 

(1.5.19) H(K) is the subspace of C[z. ,z0,.. ,z ]) of homogenous 
a 1 Z n a 

polynomials of degree deg o*. 

By combining the Lemmas 3.3 and 4.1 in [H2] we deduce the following 

(1.5.20) Theorem. If n ® II' G R(G • G' ,u) and a G D(n) then there is 
a unique a' G D(TIT) and a unique subspace H . of V such that 

o ,o J 

(1.5.21) H , is not annihilated by a quotient map from V °° to I, 
O" ,0* J 

(1.5.22) H , is contained in the deg cr-eigenspace of (1.5.7), 

(1.5.23) H is K • K-invariant and is of type a as a K-module. 
a ,cr J r 

Moreover 

(1.5.24) H , = H(K) n H(K') ~ o ® a' as a K x K'-module. 
o ya o a 

(1.5.25) Corollary. Let V * 0 be a closed G • G1-invariant subspace 
of the Hilbert space V-,. Assume that V is isotypic for the action of ^. 
Then as a G • G'-module 

(1.5.26) V * n ® nf for a I e (G)A and a IT e (G')", and 

(1.5.27) I I ^ ' G R(G • G' ,u)). 

Assume that the Fock model VT and Sp(W) are chosen as in the example 

(1.4.6). Suppose that V has a cyclic vector 

a 
(1.5.28) f(z) = I a - ^ (a G Z, n). 

a a /a! 

Let d be the minimal integer for which the d-homogenous component fj(z) of 
f(z) is non-zero. Assume that d < deg n and that the action of K on f^(z) 
generates an irreducible subspace of type a G (K) A. Then 
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18 TOMASZ PRZEBINDA 

(1.5.29) a E D ( n ) , d = deg II, and the subspace generated by the 

K • K 1-action on f d(z) is equal to H f (1.5.24). 
a ,a ' 

Proof: Since under the oscillator representation a) of Sp the von Neumann 

algebras generated by w(G) and a)(G') are mutual commutants [H2 Theorem 6.1] 

the space V is irreducible as a G • '5'-module and (1.5.26) holds. Let 

(1.5.30) Pr be the projection operator from V onto V. 

Then the restriction of Pr to V is continuous and we see that (1.5.27) is 
valid. 

Since the scalar product 

(1.5.31) ff(z), f Xz)) = E la | 2 > 0 
d |a|-d a 

the G • G T-intertwining operator Pr does not annihilate the subspace H, 

generated by the K • K f-action on f i(z). In particular a is a K-type of n 

and since d < deg II, a is a lowest degree K-type of II. By the Theorem 

(1.5.20) there is a unique a ? G D(lT) such that H. = H .. 
d a ,a 

Q.E.D. 

(1.5.32) Lemma Let L' be the centralizer of K in Sp. Assume that 

IT ® n 1 E R(G • 'Gf , w ) , a G D(n) and that a ® IT , G R(K • L' ,a)). Suppose 

that T T G D(n' ) and a 1 G D(n') correspond to a via (1.5.26). Then a' 

is the unique 'k'-type of T ' which occurs in R(K' ,ca) and has degree equal 

to deg a . 

Proof: This is just the statement (3.15) in [H2] . 

Q.E.D. 
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CHAPTER 2 

A CLASSIFICATION OF IRREDUCIBLE REPRESENTATIONS 

Since the goal of this paper is to describe the Oscillator Duality 

Correspondence (1.2.18) for the pair Oo o» Sp(2,R) we have to choose a 

parametrization of the set of infinitesimal equivalence classes of irreducible 

admissible representations of these groups. Voganfs classification by sets of 

character data (2.3.14) and lowest K-types (2.2.18) seems to be the best 

choice. The reader will find complete lists of irreducible admissible and 

unitary representations of these groups in §4 and §5. 

In §1 we review two different norms (2.1.13), (2.1.21) on K-types 

introduced by Vogan and Carmona and compare them with the notion of degree 

(1.5.16) on examples. 

The lemma (2.2.23) explains how, using the notions of lowest and of 

lowest degree K-types, one can attempt to identify representations being in 

the Oscillator Duality Correspondence. 

§1. The maximal compact subgroups 

Fix the following maximal compact subgroups 

(2.1.1) °2 2 n ° ( 4 ) > a n d 

(2.1.2) Sp(2,R) n 0(4) 

of 0 (1.1.5) and Sp(2,R) respectively. The isomorphism (1.1.9) maps 

(2.1.1) onto the group 

(2.1.3) 0(2,2) n 0(4) 

which is isomorphic to 0(2) x 0(2) via the map 

(2.1.4) 0(2) x 0(2) 3 (gL,g2) > diag(g1,g2) E 0(2,2) n 0(4). 

The unitary dual of 0(2) x 0(2) consists of outer tensor products 

19 
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20 TOMASZ PRZEBINDA 

(2.1.5) TT1 ® TT2 (7ri^2 e 0 ( 2 ) )* 

It is well known [VI 1.4.2] that 

(2.1.6) 0(2) = {1, det, Ind x | n = 1,2,3,...} 

where 1 stands for the trivial representation 

-r J * -r j0(2) , /cos x sin x > inx Ind for Indcr./oX and Y f ) = e S0(2) ^n^-sm x cos xJ 

To shorten the notation let us write (for m, n = ±1,±2,±3,.., and p,q = 0,1) 

7T = Ind y ® Ind Y , m,n Am An 

(2.1.7) 

TTP = Ind X m ® (det)P, 

TTP = (det)P ® Ind v , 0,n An 

^ l = (det)P« (det)q 

Since Ind x - Ind x_ we may replace m by -m or n by -n in (2.1.7) without 

changing the representation. 

(2.1.8) Via a composition of the isomorphisms (2.1.4), (1.1.9) we shall 

use (2.1.7) to parametrize the unitary dual of (2.1.1). 

The irreducible unitary representations of the group U(2) are well known. 

They can be described in terms of highest weights as follows. Each IT G U(2) 

defines an irreducible representation of the Lie algebra JJ_(2) . This 

representation can be extended to the complexification gl(2,C) of u.(2). 

For m,n G Z, m > n, let 

(2.1.9) TT * be an irreducible unitary representation of U(2) which 
m,n 

contains a vector v stabilized by the upper triangular Borel subalgebra of 

gl(2,C) and such that diag(u ,u ) G j[l(2,C) acts on v via multiplication 

by mui + nu2» 

Then 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 21 

(2.1.10) U(2) = (IT1 m,n G Z, m > nf . 
1 m,n ' J 

Combining the isomorphisms (1.4.18), (1.4.15) we shall use (2.1.10) to 

parametrize the unitary dual of (2.1.2). 

Let in the rest of this paragraph G be any real reductive Lie group in 

the sense of Vogan [VI 0.1.2] with a maximal compact subgroup K. Choose a 

maximal torus T of K and a positive root system A (k,_t) • Put 

(2.1.11) 2p = E A (k»_t) (see "Notation"). 

For a \i G it* put 

(2.1.12) nyll* = (u+2oc, U+2p c) 

where ( , ) denotes the inner product on _t* obtained from the Killing 

form on _g_ by restriction to _t_ and dualization. 

(2.1.13) Def [VI 5.4.18]. If TT G K has a highest weight p G it* 

define the norm of TT 

II TT II = llyll . 
V 

( 2 . 1 . 1 4 ) Example. For t h e group G = Sp(2,R) 

II TT' II2 = (m+1)2 + ( n - 1 ) 2 = ^ f (m+n) 2 + (m-n+2)2) m,n 2 K J 

The group 0 does not satisfy [VI 0.1.2b]. Notice however that the 

definition (2.1.12) does not depend on G containing K. We may regard 

0(2) x 0(2) as a maximal compact subgroup of GL(2) x GL(2) which does 

satisfy [VI 0.1.2]. Doing so we have 

2 2 2 II TT II = m +n m,n 

( 2 . 1 . 1 5 ) HTTP II = HTTP II = I ml 
m,o o,m ' ' 

ll7rP,qil = 0 ( 2 . 1 . 9 ) . 
o , o 

Let H be t h e c e n t r a l i z e r of T i n G. For any \i G it_*, which i s dominant 
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22 TOMASZ PRZEBINDA 

with respect to A (Jt>_t) (i.e. (y ,a) > 0 for all a E A (Jt,_t)) there is a 

9-invariant positive root system A (_g>h) making y + 2p dominant 

[VI pp 239]. Let 

(2.1.16) 2p = T. + a 
aEA (g,h) 

Then 

(2.1.17) y+2p - p c 

is not necessarily dominant with respect to A (j£,h) . Define a closed Weyl 

chamber in h* : 

(2.1.18) 

Let 

C = {y E h* | Re(y,a) > 0, a E A (g,h)} 

(2.1.19) X = lambda (y) be the point in C closest to y+2p - p, 

Here we measure distance using the usual scalar product on h . (See the 

sentence after (2.3.10).) 

Since C is closed and convex, lambda (y) is well defined. Put 

(2.1.20) HyiL , , * (x,x) lambda (y E it*, X = lambda (y)). 

(2.1.21) Def. If TT E K has a highest weight y e t , set 

Hull _ , . - HylK , . . lambda lambda 

(2.1.22) Examp1e. A straightforward calculation based on the above 

definitions shows that for G = Sp(2,R), in the notation (2.1.9), 

HIT' 
m,n lambda 

2 2 1/2 
((m-1) +(n-2) ) 

m-1 

. 2 2 1/2 
< ((m-1) +n ) 

/2 
2 

^ 0 

(m-n-1) 

m > n > 2 

m > l & 0 < n < 2 

m > l & l - m < n < 0 

m+n = 0 , m-n > 1 

m = n = 0 
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THE OSCILLATORY DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 23 

and HTTT Ik t J = IITT' II. 1_J (m+n > 0). m,n lambda -n,-m lambda 

Carmona [Ca §2] has shown that the construction (2.1.21) is the same as 

Vogan's [VI 5.3.3, 5.4.1]. 

Finally we notice that det g = 1 for g in the image of the group (2.1.1) or 

(2.1.2) in U(8). Therefore we may choose the following splitting 

g + (g,D 

of the covering (1.4.16) over this image. In this sense we shall talk about 

the degree (1.5.11) of the representations (2.1.7) and (2.1.9). It is known 

[H2], and easy to check, that the centralizer of the image of (2.1.1) in 

Sp(8,m) (1.1.12) is isomorphic to Sp(2,R) x Sp(2,R). Similarly the 

centralizer of (2.1.2) in Sp(8,R) is isomorphic to U(2,2). Since the 

Oscillator Duality Correspondence is well understood for the pairs U(2), 

U(2,2) and 0(2), Sp(2,R) (see [K-Ve III §6 and II §6]) we find that 

(2.1.23) deg (*• ) = |m| + |n| 

and (using (1.5.12)) 

deg(lTm n^ * 'm' + 'nl 

(2.1.24) deg(irp ) = deg(irF ) - |m| + 2p 
m,o o ,m • ' 

d e8 (" , rolo > = 2p + 2q 

§2 The Cuspidal Data 

As we have already noticed the group 0~ ~ is not a real reductive Lie 

group in the sense of Vogan [VI, 0.1.2]. This is only a minor obstacle 

because the subgroup, of index two, SO = 0 ,n SL(2,E) satisfies [VI 

0.1.2]. Thus in the rest of this chapter we denote by G any group 

satisfying [VI 0.1.2] or G = 0 9 and leave to the reader the verification 

of the theorems in this case (compare [PI]). 

Let P be a parabolic subgroup of G with Langlands decomposition 
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24 TOMASZ PRZEBINDA 

( 2 . 2 . 1 ) 

( 2 . 2 . 2 ) 

where 

( 2 . 2 . 3 ) 

P = MAN [Wa p p . 81] 

Example. For G = 0 2 o l e t 

(a = 0 , 1 ) P = M A N 
a a a a 

MQ = ( d i a g ( £ l , e 2 ,el , e 2 ) | e x , e 2 = ± l} , 

1 - l x ( 2 . 2 . 4 ) AQ = ( d i a g ( a 1 , a 2 , a 1 , a 2 ) | * 1 » a 2
> 0} , 

( 2 . 2 . 5 ) 

x 0 y 

0 -y 0 

0 0 0 

0 -x 0 

c,y e R} , and 

( 2 . 2 . 6 ) 

( 2 . 2 . 7 ) 

( 2 . 2 . 8 ) 

^ = {diag(g,(gt) x) | g e si^U.m)} [vi, Chi § 4] 

A = { d i a g ( a , a , a ,a ) | a > 0} , 

* 1 = 
0 y 
0 0 

y e o (2) } 

The g r o u p s P n , P, and 0 9 ~ e x h a u s t (up t o c o n j u g a c y ) a l l p a r a b o l i c subg roups 

of 0 2 f 2 . 

( 2 . 2 . 9 ) Example . Let G = S p ( 2 , R ) . De f ine 

( 2 . 2 . 1 0 ) Pf = M A Nf (a = 0 , 1 ) 
a a a a 

w i t h M , A a s i n ( 2 . 2 . 2 ) and 
a a 

( 2 . 2 . 1 1 ) 

( 2 . 2 . 1 2 ) 

6̂ 
0 x u v 
0 0 v w 
0 0 0 0 
0 0 -x 0 

*i-i[s 

x , u , v ,w G R} , 

S (2 ,R)} ( 1 . 3 . 2 8 ) . 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 25 

There is exactly one more proper parabolic subgroup P' = M A N in 

Sp(2,ft) not conjugate to (2.2.10) with N C N' and 

(2.2.13) M2 = 

e 0 0 0 
0 a 0 b 
0 0 e 0 
0 c 0 d 

-1 

e = ± 1; ad - be = 1; a,b,c,d G Rf , 

(2.2.14) A ={diag(a,l,a , 1) | a > 0} 

All P as Pf listed above are cuspidal in the sense that M has a compact 
a a oi 

Cartan subgroup [B-W III §4.1]. 

Let K be a maximal compact subgroup of G, compatible with the Cartan 

decomposition of j£_ as in [VI, 0.1.2]. 

(2.2.15) Def [K, VII §11]. An irreducible admissible representation 6 

of the group M (2.2.1) is called tempered iff all its K-finite matrix 
p 

coefficients are in L (M) for any p > 2. The representation <$ is said to 

belong to the discrete series of M iff all these matrix coefficients are in 

L2(M). 

Remark: Tempered representations are unitary. 

For a fixed parabolic subgroup P (2.2.1), a linear functional v G ji* and a 

discrete series representation 6 of M let 

n 

(2.2.16) Ind (6 ® v) denote the parabolically induced representation of 

G [VI Ch4 §1] (This is normalized induction.) 

(2.2.17) Def [VI 6.6.11] A set of cuspidal data for G is a triple 

(MA,6,v), where P = MAN is a cuspidal parabolic subgroup of G, 5 is a 

discrete series representation of M and v G at. 

(2.2.18) Def [VI 5.4.18]. Let II be a representation of G. 

A representation TT G K occurring in n |K is called a lowest K-type of n 

iff IITTII < IIall (2.1.13) for any K-type a of L 

Finally we are ready to state the classification. 
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26 TOMASZ PRZEBINDA 

(2.2.19) Theorem. Let II be an irreducible admissible representation 

of G and let TT £ K be a lowest K-type of II. Then there is a set of 

cuspidal data (MA,<S,v) such that 

(2.2.20) TT is a lowest K-type in Ind* __(5L^ J; 
M n K • M n K 

(2.2.21) for any parabolic subgroup P with Langlands decomposition 

P = MAN, II is infinitesimally equivalent to the unique irreducible 

subquotient of (2.2.16) containing the K-type TT ; 

(2.2.22) if (M'A!,6T,vf) is another set of cuspidal data satisfying 

(2.2.21), then (M'A'^'jV1) is conjugate by K to (MA,<5,v). 

This is a simple consequence of the theorems [VI, 6.6.14, 6.6.15], [V2, 5.2] 

and the fact [VI, page 297] that for an irreducible representation n, as in 

(2.2.18), the set of lowest K-types of II is equal to the set of K-types 

ir of II with II-ITII, ,, minimal, lambda 

Consider the pull back of the oscillator representation to (1.3.24) to 

G * G', with G = 02 2> G' s=Sp(2,R), obtained via (1.1. 6) , (1.1.12) . 

Denote by K and K' the maximal compact subgroups (2.1.1) and (2.1.2) 

respectively. Then of course K x K' is a maximal compact subgroup of 

G x G'. We identify G and G' with their images in Sp(8,ft). 

(2.2.23) Lemma. Let (MA,5,v) and (MfAf,6f,vf) be sets of cuspidal data 

for G and GT respectively. Extend MA and M'A' to two parabolic subgroups 

P - MAN c G and Pf - M'A'N' c G? . Assume that 

(2.2.24) there is a continuous, linear, G x G' intertwining map 

oo G v G f 

u> + Ind (5 ® v) ® Ind , (5 f ® v f ) , 
P P 

(2.2.25) a 9 a' is a lowest K x Kf-type (2.2.18) of the induced 

representation (2.2.24), and the space H .(1.5.24) is non-zero 

(2.2.26) the operator (2.2.24) does not annihilate the subspace H , 

(1.5.30) of 0) 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 27 

Q 

(2.2.27) Ind (5 ® v) has an irreducible quotient IT containing the 

K-type a, and a G D(n) (1.5.16). 

Then the representation 11' of GT corresponding to II via the Oscillator 

Duality Correspondence (1.2.18) 

(2.2.28) is the unique irreducible subquotient of 

G' Ind , (5 ' ® v') containing the K'-type a \ and a' e D(n ' ). 

Proof: By assumption we have the following sequence of G x G'-intertwining 

maps 

uT (2'2'24)> IndG(5 ® v) ® IndG!(6' ® v1) 
P , P 

I Q ® ic (2.2.29) 4 Q ® id 
v G' II ® Ind f (6 ' ® vf ) 

where Q denotes the quotient map (2.2.27). Since Q is faithful on the 

a-isotypic component of the induced representation (2.2.24), the assumption 

(2.2.25) implies that Q ® id o (2.2.24) * 0. The parabolically induced 

epresentation (2.2.28) has a finite composition series [VI 4.1.12, 0.3.21]. 

Therefore there is an irreducible quotient 

n ® n' e R ( G • G', 03) 

00 v G ' 

of the image of oo in n ® Ind , (6 f ® v f ) under ( 2 . 2 . 2 4 ) . By ( 2 . 2 . 2 7 ) , IT 

con ta ins the K'- type a ' . 
Q.E.D. 

Remark. This lemma with the above proof holds for any reductive dual pair 

'S, '5'. To see this one has to verify (2.2.19) in this general situation 

(see [PI]). 
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28 TOMASZ PRZEBINDA 

§3. THE CHARACTER DATA 

The Theorem (2.2.19) assumes understanding of the discrete series 

representations 5 € M. For the group O2 7 tni-s i-s easy because its identity 

component is covered by SL(2,R) x SL(2,R) and the theory of highest weight 

representations is sufficient (see [VI Ch I] or [K Ch II § 5]). The discrete 

series of Sp(2,E) requires more attention. It can be obtained from some 

unitary characters of a compact Cartan subgroup by applying the Zuckerman 

functors [VI 6.6.9]. Using them one can state the classification theorem 

(2.2.19) in terms of lowest K-types and irreducible representations of Cartan 

subgroups of G. 

To be more precise we need some definitions. For a cuspidal parabolic 

subgroup P = MAN (2.2.1) let 

(2.3.1) T be a compact Cartan subgroup of M, and 

(2.3.2) H = TA. 

Then H is a 9-stable Cartan subgroup of G [VI 6.6.12]. 

(2.3.3) Example. The following two groups (2 .3 .4) , (2 .3 .5) , may be 

regarded as 9-stable Cartan subgroups of either Og ~ o r Sp (2 ,R) ( a s 

d e f i n e d e x p l i c i t l y i n ( 1 . 1 . 5 ) and i n " N o t a t i o n " ) . We w i l l u s e t h e f a c t t h a t 

t h e s e 9 - s t a b l e C a r t a n s i n t h e two g r o u p s c o i n c i d e t o i d e n t i f y t h e c h a r a c t e r 

d a t a a s s o c i a t e d t o them ( s e e ( 2 . 3 . 1 4 ) f o r t h e d e f i n i t i o n of c h a r a c t e r d a t a ) . 

( 2 . 3 . 4 ) HQ = MQ AQ ( 2 . 2 . 3 ) ; 

( 2 . 3 . 5 ) H = T A , w i t h 

r , . / N / c o s x s i n x>* „ 1 
T l = { ^ g ( g , g ) , S = ( _ s i n x c o s x)> * € *•} 

and A, as in (2 .2 .7) . 

Moreover there is a compact Cartan subgroup of O2 2 

g r g2 G S0(2)} . (2.3.6) Rj = { i 
51+S2 g l S2 
g l " g 2 g l + S 2 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 29 

The groups (2.3.4), (2.3.5), (2.3.6) exhaust all conjugacy classes of the 
9-stable Cartan subgroups of 0y o. 

In Sp(2,R) there are two other conjugacy classes represented by 

(2.3.7) 

and 

(2.3.8) 

(2.3.9) 

H3 = 

c. 0 s, 
c2 0 

"sl ° Cl ° 
-sl 0 

lc.= cos(x. ),s.= sin(x.), x.GR, j = 1,2} 

H = T A with T2 consisting of elements 

e 0 0 0 
0 c 0 s 
0 0 e 0 
0 -s 0 c 

(e = ± 1, c - cos x, s = sinx, xG R), 

and A« as in (2.2.14). 

Let 

(2.3.10) h_ = t_ e a_ be the Lie algebra of H (2.3.2). 

By restriction and dualization the Killing form on j£_ provides an inner 

product ( , ) on h , (real on it* + a*) 

(2.3.11) Def. [VI 6.6.1] A regular character of H (2.3.2) is a pair 

(r,y), where T:H^ (f is a group homomorphism and y e _h , such that 

(2.3.12) if a G A(ii,_t.) , then (a ,y ) is real and not zero, and 

(2.3.13) if A+(m,t) = {a G A(m,t) | (a ,y ) > 0} 
then the differential 

dr = y + "2 E A +(B>!) " S A+(m n k,t). 

(2.3.14) Def [VI pp. 410] A set of character data for G is a triple 
(H,r,y) where H is a 9-stable Cartan subgroup of G and (r ,y) is a 
regular character of H. 
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30 TOMASZ PRZEBINDA 

To each set of cuspidal data (MA,6,v) (2.2.17) we can associate a set of 

character data (H,r,y) by choosing H as in (2.3.2) and defining 

(2.3.15) r| = t h e highest weight [VI 5.1.1] of the unique lowest 

M n K-type of 6, 

(2.3.16) dr| = y| = v. 

This map i s b i j e c t i v e on the l eve l of K-conjugacy c l a s se s [VI 6 . 6 . 1 2 ] . 

Let a l so 

( 2 . 3 . 1 7 ) A [ H , I \ y ] = A [ H , r ] 

be the set of lowest K-types in the induced representation (2.2.20) 

This set depends only on the conjugacy class [H,r,y] of (H,r,y) 

(2.3.18) Theorem [VI 6.6] Each (infinitesimal equivalence class of) 

irreducible admissible representation II of G corresponds to a unique 

K-conjugacy class [H,r,y] of character data for G and a subset A of 

A[H,r,y] in such a way that A = A(n) is the set of lowest K-types of 

II. For such a n we shall write 

(2.3.19) n = n [H,r,y](A) = Jl[H,r,y](A) 

Remark: The equivalence of (2.2.19) and (2.3.18) is explained in [VI 6.6] 

The element y e h* in the Theorem (2.3.18) represents the infinitesimal 

character [VI 0.3.18] of the representation U. (2.3.19) in terms of the 

Harish-Chandra isomorphism [VI 0.2.8]. The Theorem (2.3.18) asserts that to 

identify R one has to know its infinitesimal character y, a lowest K-type 

of II and a character r of the associated Cartan subgroup H. This subgroup 

is determined (up to K-conjugacy) by any lowest K-type of n. 

If n is tempered (2.2.15), the situation is simpler. 

(2.3.20) Theorem [VI 6.1.5] Let (H,T,y) be a set of character data 

for G with y =A © v, X e _t*, v G_a*. Assume that n e A C A[H,T ,y ] and 

that n = H_[H,r ,y](A) as in (2.3.19). Then G — 
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(2.3.21) 11X11 = IITTIL , , = min (flail, , , I a is a K-type of n}. 
lambda l lambda ' y r J 

•(2.3.22) Corollary. Let II be a tempered (irreducible) representation 

of G with real infinitesimal character [VI 5.4.11]. Assume that h_ is a 

fundamental Cartan subalgebra of g_ and that y € Ji* represents the 

infinitesimal character of n. Let i G K be a K-type of II. Then 

(2 .3 .23) IITTIL . , = llyll 
lambda ' 

impl ies t h a t TT i s a lowest K-type of n . 

Proof: Since n i s tempered v € ia* ( 2 . 3 . 1 6 ) , [T r ] . The assumption t h a t 

II has a r e a l i n f i n i t e s i m a l cha rac te r implies t h a t v G _a*. Therefore 

v = 0 and llyll - 11X11 ( 2 . 3 . 2 1 ) . 

Q.E.D. 

(2.3.24) Remark: For a fixed 9-stable Cartan subgroup H one defines 

the corresponding Weyl group 

(2.3.25) W(H) = W(G,H) = (the normalizer of H in G)/H 

This group acts on H by conjugation and also on regular characters of H by 

wr(g) - r(w gw ). 

Using the theorem (2.3.18) one can thus parametrize the admissible dual of 

G by choosing a maximal family H ,H ,H ,... of non-conjugate 9-stable 

Cartan subgroups and for each H. specifying a fundamental domain for the 

action of W(G,H.) on the set of regular characters of H.. By a representation 

attached to H. we shall mean any representation (2.3.19) of the form 

nG[Hj,r,Y](A). 

For our groups 0« 2 an(* Sp(2,R) we will use the Cartans defined in 

(2.3,4),..., (2.3.8). 
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32 TOMASZ PRZEBINDA 

§4. THE UNITARY DUAL OF Sp(2,R). 

In this paragraph we describe the admissible dual and the unitary dual of 
Sp(2,R) in terms of character data (2.3.14). For the proofs we refer the 

reader to Appendix A. For a complex number z we will write 

(2.4.1) z > 0 if and only if e i ther Re z > 0 or Re z = 0 and 

Im z > 0. 

The representations attached to the s p l i t Cartan subgroup HQ. (2.3.4) 

Let 

(2.4.2) a i , c r 2 = 0 , 1 ; v l , v 2 G C ; v l , v 2 ' V1~V2 * ° ' °2 > a l i f v l " v 2 ; 

a l a 2 
r(diag(e 1 > e 2

, e l , s 2 ^ = e l e 2 ; 

1 - l o V V2 r (d i ag (a 1 , a 2 , a 1 ,a2 )) = al a2 ; 

Y = dr 

(2.4.3) Proposition. For the parameters (2.4.2) 

, {1} i f a 1 = a 2 = 0; 

A[H0>r,y] = < {TT| 0,TT^ } if aL = 1 and o2 = 0, or o^ = 0 and a^ = 1; 

L W , i > * - i , - i } i f a i = a 2 = u 

(2.4.4) Theorem. The irreducible admissible representations of 
Sp(2,M.) attached to the Cartan subgroup HQ, 

(2.4.5) n = n[H0,r,y](A), 

fall into eight disjoint families described by the parameters r,y (2.4.2) 
and A (2.3.19) as follows: 

(2.4.6) a = a 2 = 0, A = { 1} (n » 1 for V]> = 2, v2 = 1); 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 33 

(2-4.7) ax = 1, a2 = 0, vx ^ 0, A = [TT * Q ,TT̂  _^ ; 

(2.4.8) ax = 0, a2 = 1, v2 ^ 0, A = [*» Q ,T^ _J ; 

(2.4.9) rl =0, a2 = 1, v2 = 0, A= b i j 0 } ; 

(2.4.10) ax = 0, a2 = 1, v2 = 0, A = {TT̂  }; 

(2.4.11) a i = a2 = i, Vi * o, v2 * 0, A = {TT̂  L , T T _ ^ _ ] [ } ; 

(2.4.12) ax = a2 = 1, v2 = 0, A = {TTJ J ; 

(2.4.13) a 1 = a 2 1, v2 = 0, A = l ^ ^ } . 

(2.4.14) Theorem. The representations listed in (2.4.4) are unitary if 
and only if the following additional assumptions are satisfied. 

(2.4.15) v ,v G i R, or v ,v G R and v +v < 1, or v - v G i R 

and v + v G R and v + v < 1 in (2.4.6) and in (2.4.11); 

v G i R and v. G R and v < 1, or v = 2 and v = 1 in 

(2.4.6); 

(2.4.16) v. ,v2 G i R in (2.4.7) and (2.4.8); \> G i R and v G R and 

v < 1 in (2.4.8); 

(2.4.17) v. G i R or v, G R and v, < 1 in (2.4.9) , (2.4.10) , (2.4.12) , 

(2.4.13) 

The r ep re sen t a t i ons a t tached to H, ( 2 . 3 . 5 ) . 

Let 

(2 .4 .18) nG Z , n > 1, v G C, v > 0 ; 

, , / J . / w i (n+ l )x 
T(d iag(g ,g ) ) = e ; 
T (d i ag (a , a , a ,a )) = a ; 

Y l a = d r | a ; 
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34 TOMASZ PRZEBINDA 

y ( d i a g ( X , X ) ) = i n x , X = 0 x 
-x 0 , x e R. 

( 2 . 4 . 1 9 ) P r o p o s i t i o n . For r , y a s i n ( 2 . 4 . 1 8 ) we h a v e 

AlH^r^] = < 

N1 
L m 

m,-m J 
i f n = 2m - 1 

{ I T ' , ,TT ' } i f n = 2m 
L m+l,-m m, -m- l J 

(2.4.20) Theorem. The irreducible admissible representations of Sp(2,R) 

attached to the Cartan subgroup H, fall into four disjoint families described 

by the parameters r,y (2.4.18) and A (2.3.20) as follows: 

(2.4.21) n = 2m - 1, A = hr' 
1 m,-mJ 

(2.4.22) n = 2m, v * 0, A = fir' ,TT ' ,} ; 
1 m+l,-m m,-m-lJ 

(2.4.23) n = 2m, v = 0, A = {it1. }; 
= l m+l,-m 

(2.4.24) n = 2m, v = 0, A = (TT' , } . 
= L m,-m-lJ 

(2.4.25) Theorem. The representations listed in (2.4.20) are unitary if 

and only if the following additional assumptions are satisfied: 

( 2 . 4 . 2 6 ) v G i R o r v e R and v < 1 i n ( 2 . 4 . 2 1 ) . 

( 2 . 4 . 2 7 ) v e i R i n ( 2 . 4 . 2 2 ) . 

The representations (2.4.23), (2.4.24) are tempered. 

The representations attached to H^ (2.3.8). 

Let 

(2.4.28) a =0,1; n e Z , n * 0 , v G C , v > 0. 

r'( 
e 
0 
0 
0 

0 
c 
0 

- s 

0 
0 
e 
0 

0 
s 
0 
c 

v o inx i sgn(n)x 
) = s e e 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 35 

(c = cos x, s = sin x, x G R) 

I"(diag(a,l,a \l)) = aV 

n'ax lax 

W 
0 
0 
0 
0 

0 
0 
0 

-x 

0 
0 
0 
0 

0 
x 
0 
0 

) = inx, x G R. 

(2.4.29) 
K-types 

Proposition. Under the assumptions (2.4.28) the set of lowest 

i-W 

A[H 2 , r j Y ; ] = \ 
n+l,lJ 

lir-2,n-l'ir0,n-lJ 

if a = 1, n < 0; 

if a = 1, n > 0; 

if a = 0, n < 0; 

K+l^rUl.C,} «« -0. »>0. 

(2.4.30) Theorem. The irreducible admissible representations of 
Sp(2,R) attached to H« fall into eight families described by the parameters 

r',Y' (2.4.28) and A as follows, n = 

(2.4.31) 

(2.4.32) 

(2.4.33) 

(2.4.34) 

(2.4.35) 

(2.4.36) 

(2.4.37) 

a = l, n < 0 , A = U \ 
= -I,n-1 

a - 1, n > 0 , A - { ^ + 1 > 1 

a = 0, n < 0, v * 0, A = 

a = 0, n > 0, v * 0, A » 

a = 0, n < 0, v = 0, A == 

a = 0, n < 0, v = 0, A = 

a = 0, n > 0, v = 0, A = 

-2 ,n-l 0,n-lJ 

^n+l^'^n+l.O' ' 

"-2'n-l" 

*0 ,n-l^ 

^1,2>' 
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36 TOMASZ PRZEBINDA 

(2.4.38) a = 0, n > 0, v = 0, A = {̂ +̂1,0̂  * 

(2.4.39) Theorem. The representations listed in (2.4.30) are unitary 
under the following additional assumptions: 

(2.4.40) v E i R or v E R and v < 1 in (2.4.31), (2.4.32); 

(2.4.41) v E i R in (2.4.33) and (2.4.34). 

The representations attached to H' (2.3.7), 

These are the discrete series representations (2.2.15). Let 

(2.4.42) m,n 6 Z; m-n > 0; m,n,m+n * 0; 

1 m,n 

0 0 x 
0 0 0 y 
-x 0 0 0 
0 -y 0 0 

) = i(mx + ny) x,y E R; 

Tf be associated to y via (2.3.13). 

(2.4.43) Theorem. The irreducible admissible representations of Sp(2,R) 
attached to H' are all unitary, belong the discrete series and have the form 

n[H<rv )(A) 
3 , m,n = 

r v 

with r ,y as in (2.4.42) and A. containing the single element 
n,n = 

(2.4.44) 

(2.4.45) 

ir ' „ if n > 0; m+l,n+2 

m+1 ,n 

(2.4.46) TT1 
m,n-l 

if m > ~n, n < 0; 

if m < -n, n < 0; 

(2.4.47) TT' . if m < 0. m-2,n-l 

§5. THE UNITARY DUAL OF 0 2,2" 

Co nsider the following two embeddings of the group SL(2,R) into 02 2
: 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 37 

(2.5.1) 

(2.5.2) 

SL(2,R) 3 g -• diag(g,(gt) l) G 0, 

a b> SL(2,R) 3 C °) • c d; 

a 0 
0 a 
0 -c 
c 0 

2,2> 

0 b 
-b 0 
-d 0 
0 d 

G 0 2,2-

Then the image of SL(2,R) x SL(2,R) in 0 under (2.5.1) x (2.5.2) is 
z, z 

the connected component of the identity of 02 2- Since 0(2) x 0(2) has four 

connected components, so does 0~ « (1 1.9), (2.1.4), Using this and the known 

structure of the admissible dual of SL(2,R) [VI Chi], [L], one can, with 
some effort, figure out the admissible and the unitary duals of 0~ «. We 

present the results in this paragraph leaving the proofs to the reader. 

The representations attached to H0 (2.3.4). 

(2.5.3) 

A[H0,r,Y] = { 

Propos i t ion . Using the no ta t ion of (2 .1 .7 ) and (2 .4 .2 ) 

K'j-1} if a, = a o = 0 ; 

K,o'*o,i ; p = 0 j 1} i f ai *ar 

[ 0 ,0* 0,0* i f a, = Oj - 1. 

(2.5.4) Theorem. The irreducible admissible representations of 02 2 

attached to the Cartan subgroup HQ fall into twelve disjoint families 

described by the parameters r ,y (2.4.1) and A. (2.3.19) as follows: 

(2 .5 .5) 

(2 .5 .6 ) 

( 2 .5 .7 ) 

(2 .5 .8 ) 

(2 .5 .9 ) 

a l = a 2 
1,1 = 0, v 2 * 0, A M - o i o ' 1 } ' 

a]L = a 2 = 0, v 2 = 0, A = (1} (n = 1 for V]̂  = 1); 

a x = a 2 = 0, v 2 = 0, A = {*Q'Q} (n = det for V l = 1) , 

a l * a 2 , V2 * ° ' = = ^ [ H o , r , Y l ; 

ax = 1, a 2 = 0, vx * 0, v 2 = 0, A = { * 1 ) 0 > * 0 j l } , 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 39 

(2.5.21) vx e i R in (2.5.9), (2.5.10), (2.5.12), (2.5.13). 

The representations attached to Hi (2.3.5), 

(2.5.22) Proposition. Under the assumptions (2.4.17) 

1 m,mJ n = 2m - 1, 

I f w ,. ,TT . ,} n = 2m u l m+1 ,m m,m+lJ 

(2.5.23) Theorem. Ihe irreducible admissible representations of Or, ~ 

attached to H. fall into four disjoint families described by the parameters 

r,y (2.4.18) and A (2.3.19) as follows: 

( 2 . 5 . 2 4 ) 

(2 .5 .25 ) 

(2 .5 .26 ) 

(2 .5 .27 ) 

n = 2 m - l , A = { T T } , V G C, v > 0 ; L m,mJ 

n = 2m, v * 0 , A = A[H , r , y 3 ; 

n = 2m, v = 0 , A = {TT , } ; 1 m+1 , mJ 

n = 2m, v = 0 , A = {TT A 
- L m, m+1j. 

(2.5.28) Theorem. The representations listed in (2.5.23) are unitary if 

and only if the following additional assumptions are satisfied: 

(2.5.29) v G i R or v G R and v < 1 in (2.5.24); 

(2.5.30) v E i R in (2.5.25). 

The representations attached to Ho (2.3.6). 

Let 

(2.5.31) m,n E Z; m-n * 0, m+n t 0, m > 0; n < 0; 

y (diag(X. ,X_)) = imx. + inx0, where m,n 1 z 1 z 

X. -
3 

-o X j i 

- x . 0 
L j J 

, x E R, j = 1,2; 
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40 TOMASZ PRZEBINDA 

Then v G t_ via the isomorphism (1.1.9). Let T be associated to Y 
1 m,n —3 m,n 

via (2.3.13). 

(2.5.32) Theorem. The irreducible admissible representations of CL 2 

attached to Ho belong to the discrete series and have the form 

with r ,y as in (2.5.31) and A containing the single element (see 

( 2 . 1 . 7 ) ) . 

( 2 . 5 . 3 3 ) 

( 2 . 5 . 3 4 ) 

( 2 . 5 . 3 5 ) 

( 2 . 5 . 3 6 ) 

( 2 . 5 . 3 7 ) 

( 2 . 5 . 3 8 ) 

m+1 ,n 

m , n - l 

0 
^m+^O 

1 

0 

1 
' 0 , 1 1 - 1 

i f m > - n , m * 0 , 

i f - n > m, m * 0, 

i f n = 0 ; 

i f n = 0 ; 

i f m = 0 ; 

i f m = 0 . 

n ± 0 ; 

n ± 0 ; 

Here one obtains (2.5.36) and (2.5.38) from (2.5.35) and (2.5.37), 

respectively, by tensoring with det. 
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CHAPTER 3. R(02 2 • Sp(2,R),Cu), 

In this chapter we compute the above set. We begin with a smaller pair 

0(2,2), Sp(l,R) in §1 to establish some notation necessary in §2 and §3. 

Section 3, where we find all pairs II c• Ti' being in the Oscillator Duality 

Correspondence such that 1' is a discrete series representation of 

Sp(2,R), is the most technically involved part. We are forced to combine 
p 

here Howe's L -estimates for the matrix coefficients of the oscillator 

representation (3.3.10), Vogan's classification of tempered representations 

(2.3.22) and Zuckerman's translation functors (3.3.54), (3.3.55). Sections 4 

and 5 are technically easier. In §6 we show that our list of corresponding 

representations from §2, §3, §4, §5 is complete. 

The conclusion of this chapter is theorem (3.6.1) which asserts that the 

Oscillator Duality Correspondence maps unitary representations of O2 9 t 0 

unitary representations of Sp(2,R). 

SI. 0(2,2) x Sp(l,R) . 

Put 

(3.1.1) s = -
• 2 

± J and s2 = diag(s,s). 

Then the conjugation Int s« inside GL(4,C) transforms the Lie algebra 

o(2,2) into 

(3.1.2) g -

it 0 

I1 Z2 
z z 
2 1 

Zl Z2 
0 -it z z 

1 2 1 
it 0 

2 
0 -it 

t ,t e R; z ,z G Ci. 
I* 2 ' 1 * 2 ; 

a n d t h e maximal compact s u b g r o u p ( 2 . 1 . 3 ) i n t o K = K • K , where 

K° = { d i a g ( u 1 , u 1 \ u 2 , u 2
 l) I u e C, | u J G C, | u j | = 1, j = 1,2} 

41 
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42 TOMASZ PRZEBINDA 

(3.1.3) 

I = {diag(w ,w ,) | E J , E 2 = 0,1), » = (1 Q) • 

Define the following root vectors in the complexification j» of £ (3.1.2): 

(3.1.4) 

Put 

(3.1.5) 

X- = ei,3 + e4,2' y- = e2,4 + e3,l 

x+ =el,4 + e3,2' y+ =e2,3 +e4,l 

h- = ei,l ~ e2,2 -e3,3 + e4,4' 

h, = e. - e0 + e_ - e, . . + 1,1 2,2 3,3 4,4 

Then clearly 

(3 .1 .6 ) [x ,y ] = h , [h ,x ] = 2x , [h ,y ] = -2y for a = +, 
a a a a a a a a a 

so that the decomposition 

(3.1.7) £ = (Cx_ + Ch_ + Cy_) + (Cx+ + Ch+ + Cy+) 

provides an isomorphism of j£ with the direct sum of two copies of 
sU2,C)(= sp(l,C)). 

The Lie algebra (of 2 by 2 matrices) 

(3.1.8) ĝ  - S£(1,C) 

has the following two root vectors: 

(3.1.9) xT = i e and y? = - i e2 ^ 

Let 

(3.1.10) h? = el 1 "" e2 2 

Then x', h', y' satisfy the standard commutation relations (3.3.7). Put 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 43 

(3.1.11) g'2 = ££(!,« n u(l,l) and K^ = U(l). 

We embed £, and g* into sp(4,C) O u.(4,4) by mapping the typical element 

of g_ (3.1.2) to 

(3.1.14) 

and 

(3-1.15) 

U Z 
"z "u 

with (3.1.12) 

(3.1.13) U = diag(it1,-it1,-it2,it2), and 

Z = 

0 0 

0 0 

z Z2 ° 

4 3 
it z 

7 -it 
-• (3.1.12), with 

U = diag(it,it,-it,-it) , 

2 „ zs 0 

0 zs2 
(s as in (3.1.1)). 

[0 zŝ J 
Moreover we 

(3.1.16) inject K into U(4) by the identity map, and 

(3.1.17) K' into U(4) by K' s u -• diag(u,u,u ,u ). 

This way we have embedded (£,K) x (g' Kf ) into (sp(4,C) n IJ(4,4), u(4)) 

or equivalently G x G' into Sp(4,C) n U(4,4), where 

(3.1.18) G = 0(2,2), G^ = Sp(l,C) n U(l,l). 

The determinant (1.4.16) of an element of the image of K or K' in U(4) under 
(3.1.16) or (3.1.17) is clearly equal to 1. Putting £ = 1 in (1.4.17) we 
shall pull back the oscillator representation a) to the group K x K' . The 
action of JĴ  in the Fock model (c.f. §1.4) C[z ,z ,z ,z,] is given by: 
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44 TOMASZ PRZEBINDA 

a) (x ) = - z i z 0 + 3 3 
1 3 z 2 z 4 

<o(h_) = z l 3 - z 2 3 + z 3 3 - z 4 3 
1 2 3 4 

oj(y ) = - z . z . + 8 a 
2 4 z L z 3 

u) (x , ) = - z , z . + 3 3 
1 4 z 2 z 3 

a)(h ) = z 3 - z 3 - z_ 3 + z. 3 + 1 z. 2 z . 3 z 0 4 z, 
1 2 3 4 

o)(y ) = - z z + 3 3 + 1 5 z, z, 1 4 

Let f o r z = (z , z ,z , z ) and n = 0 , 1 , 2 , 3 . . . , 

( 3 . 1 . 1 9 ) 

, x a a+n 
. , , " ( Z 1 Z 2 2 3 ) z 4 
f _ ( z ) = 2 - j a = Q a! (n+a)! 

( 3 - 1 - 2 0 > a + n , 
f . , ; Z_l ( Z 2 Z 3 Z 4 ) 

f ( z ) = Z / .̂ M ; 
- n n ( a + n ) ! a! 

a=U 

Then t h e norm ( 1 . 4 . 1 2 ) 

( 3 . 1 . 2 1 ) II f II 2 = i , a !
N t is finite for n > 2. 

-fcn n ( a + n ) ! a=U 

A. s t r a i g h t fo rward c a l c u l a t i o n shows t h a t 

( 3 . 1 . 2 2 ) 

and t h a t 

( 3 . 1 . 2 3 ) 

S i m i l a r l y 

co(x )f - w ( y )f = 0 , 
- n + n 

u)(h )f = -n f , a)(h )f = nf - n n + n n 

0)(y )f „ = o)(y, )f = 0 , - n + - n 

a)(h )f = nf , u(h J_)f = nf . - - n —n + —n —n 

o)(xf ) = - z . z + 3 3 , 
1 2 z

3
 z

4 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 45 

(3.1.24) o)(hT) - z , 3 + zn 3 - z0 3 - z, 3 , 
1 Zl 2 Z2 3 Z3 4 Z4 

and 

co(y') = -z z + 8 3 , 
J 4 zl z2 

w(x')f = oj(y?)f = 0, n -n 

(3.1.25) o)(hT)f = -nf , w(hT)f = nf . 
n n -n -n 

(3.1.26) Theorem. The closed subspace of the Hilbert space of the 

oscillator representation u) (1.4.12) generated by the action of 

(g,K) x (g!, K') on f . (f n ) , for n > 1, is irreducible as a — —z L n+1 -n-1 

G x G'-module and isomorphic to 

(3.1.27) n ® n' e R(G . G£, W ) 

where 

(3.1 28) IT is the discrete series representation of G with the lowest 

K"type "S.-n-l^n+l.O^ 

(3.1.29) IT is a discrete series representation of G' with the lowest 

K'-type TT' (TT1). -n n 

(ir̂ (u) = ub u € U(l),b e Z) 

Moreover 

(3.1.30) deg n - n, D(n ) = A(n ) , D(n f ) = A(n'). 

Proof: The situation for f_n n is entirely analogous, to that of f ,,, 

therefore we leave it to the reader. Let V be the Hilbert space generated by 

the action of (g.,K) x (g^^l) on fn+1- The formulas (3.1.25) imply that 

(gf,K?) acts on V via a unitary representation nf of highest weight -n-1. 

There is only one such representation of Gf , namely the one described in 

(3.1.29), see [L Ch VI §6, Theorem 8]. 

Similarly G acts on V via a unitary representation n, which according 

to the formulas (3.1.22) and the decomposition (3.1.7) must be the one 

described in (3.1.28). By the corollary (1.5.31), V ~ n 5 n'. 
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It is apparent from (3.1.17) and (1.4.17) that for any K'-type TT ' 
2 —b 

( 3 . 1 . 2 9 ) , deg TT' = | b | . T h e r e f o r e deg IT ' = n and ( 3 . 1 . 3 0 ) h o l d s (compare 

( 1 . 5 . 1 6 ) and ( 2 . 1 . 1 3 ) ) . 

Finally, for future use in §6, we record the following 

Q.E.D. 

(3.1.31) Proposition. Let n = n Q [H0,r,y](Al as in (2.5.6) or (2.5.9) 

or, (2.5.11) with A containing TT^ Q or TTQ ±. Then II G R(G,oo). 

The proof of (3.1.31) is entirely analogous to the proof of the Theorem 

(3.4.31). Therefore we omit it. 

§2. THE DISCRETE SERIES OF 0 2 2> 1-

Let us embed the groups 0(4) n 0(2,2) and U(2) in U(8) by the following maps 

(3 2.1) diag(gl,g2) + diag(g1,g2,g1,g2), (g e 0(2), j = 1,2), and 

(3.2.2) 
u l l 
u 2 1 

U12 
u 2 2 

-> 

U11X2 ° 
0 -U11X2 

U21X2 ° 
0 -U12X2 

\2h 
0 -U21X2 

U22X2 
0 "U22I2 

respectively. Clearly the determinants of the images (3.2.1), (3.2.2) are 

one. Putting £ = 1 in (1.4.17) we obtain, via (3.2.1) and (3.2.2) a pull 

back of the oscillator representation GO (1.4.6) to the group 

0(4) n 0(2,2) x U(2). This is consistant with Chapter 2, §1. 

The differentials of the maps (3.2.1) and (3.2.2), when composed with 

(1.4.15) and then with the inverse of (1.4.18), provide the same injection of 

the Lie algebras £(4) n £(2,2) and £(4) n_sp(2,R) in sp(8,R) , 

respectively, as the diagram (1.1.12) does. 

Thus via the identification (1.1.9) we have a well defined pull back of 

the Harish-Chandra module of oo to 

(£2 2' ° ( 4 ) n °2 2) * ^ ( 2 > R ) > 0 ( 4 ) ° Sp(2,R)). 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 47 

Since the splitting of the covering 1Sp(8,R) •> Sp(8,R) over the images of the 
maximal compact subgroups 0(4) O 0 and 0(4) n Sp(2,ffi.) determines the 

splitting over the images of the groups 02 2 an(* Sp(2,R), the set 

(3.2.3) R(02 2 • Sp(2,R),a)) 

is well defined (see (1.2.14)). 

(3.2.4) Theorem. Put a = 0 in (2.4.28). Let in the notation (2.5.32) 

11 = I I 0 9 9
[ H3' r^0,n 1 ( 7 TS,n-l ) j 

(3.2.5) Z,/ 

*' =nSp(2,R)[H2'r'<1(S,n-l^ 

for n = -1,-2,-3,..., and 

11 = I I 0 , ,lH3'r'Yn,01(l,2fl,0)' 
(3.2.6) l ' 1 

n' =nSp(2)R)[H2'r'^;Kli;+l)0)' 

for n = 1,2,3,... . Then 

(3.2.7) n ® nf G R(02 • Sp(2,R),a)) 

and 

(3.2.8) deg n = |n| + 1, D(n ) = A(n ) , D(n ' ) = A(n'). 

Proof: We identify 02 2 with 0(2,2) via (1.1.9). The group Sp(8,R) is the 

isometry group of the symplectic space (W, <»>) (1.3.24). Define the direct 
sum decomposition 

(3.2.9) W = X © Y © W , where 

(3.2.10) X = {a,b,c,d,0, ... ,0) | a,b,c,d, G R} 
12 

(3.2.11) Y = {(0,.. ,0,a,b,c,d,0,.. ,0) | a,b,c,d G R} , 
8 4 
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48 TOMASZ PRZEBINDA 

(3.2.12) W = {(0,.. ,0,a,b,c,d,0,.,0,e,f ,g,h) | a,b,..,he R} . 

Then the preimage of the parabolic subgroup P C Sp(8,R) (1.3.3) in 

Sp(2,R) via (1.1.7) is equal to 6P' (2.2.13). Moreover the image of 

0(2,2) under (1.1.6) is contained in Mx y (1.3.10). Let us fix the 

isomorphism 

(3.2.13) i 
1 0 0 0 
0 a 0 b 
0 0 1 0 
0 c 0 d 

a b 
c d G Sp(l,R) 

Clearly M ~ (Z/2Z) x Sp(l,R), (2.2.13). 

Let GO be the Fock model of the oscillator representation of 

(Sp(4,C) n U(4,4))~, (1.4.6). We pull back w to 0(2,2) x M^ by the 

group isomorphism 

(3.2.14) ((3.1.12)x(3.1.15))o(Int s x (1.4.18)o(id x (3.2.13)) 

where s 2 is defined in (3.1.1). 

Consider the mixed model, as in (1.3.22), of the oscillator representation u> 

of l5p(8,R) adapted to the decomposition (3.2.9) with GO as a 

representation of 1Sp(W2) ='§p(4,]il) ? (Sp(4,C) n U(4,4)T by (1.4.18). 

Define 

(3.2.15) TQ: S(X,OJ2 ) ̂  a)~ by T(f) = f(0). 

Since dim x = 4, i t follows immediately from the theorem (1.3 .16) t ha t 

( 3 . 2 . 1 6 ) TQ G Horn (OJ , ( 1 ® OJ 2 ) ® p(6n . 2 ) ® 1 ) , and 

( 3 . 2 . 1 7 ) T e Horn (a)°° ,a) °°) . 
U 0 (2 ,2 ) 

For each discrete series representation II' (3.1.29) of M (3.2.12), let 

(3.2.18) T ? denote the 0(2,2) x M - intertwining operator from 

OJ2 onto n ® n^ (3.1.27) . 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 49 

define T = T2 o T . Then by (3.2.16), (3.2.17) we get 

( 3 . 2 . 1 9 ) T G Hom0 ( 2 2 ) x Q p (o)°° ,n ® ( ( 1 ® Tip ® p ( 9 n 2 ) ® D ) . 

The smooth Frobenius reciprocity theorem (Appendix B) implies the existence of 

a non-zero, 0(2,2) x Sp(2,R)-intertwining operator 

(3.2.20) Ind T:o) -• II ® Ind*Lv * ' (6 ® v) where 
6P2 

(3.2.21) 5 = 1 ® II' and v = 0. 

Therefore there is an irreducible subquotient n ? G Sp(2,R)" of the induced 

representation (3.2.20) such that 

(3.2.22) n ® n' € R(0 2 • Sp(2,R),oj) 

Assume that III has a lowest KL-type TT ', . (3.1.29) with n > 0. Then II Z z n+1 

contains the unique lowest degree K-type IT n and has degree n+1 in the 

sense of (1.5.16) with respect to the pair 0(2,2), Sp(l,R). The K-types of 

II are TT ,., , (r,s = 0,1,2,3,.., r*s) and TT ,,,« n n+l+r+s, r-s n+l+2r,0 

(r=0, 1,2,...). Therefore (2.1.24) implies that TT , ̂  is the unique lowest 

n+1 ,U 

K-type of n and that deg n = n+1 (with respect to the pair 0(2,2), 

Sp(2,R)). This and (1.5.20) shows (3.2.8). 
We know already from the above discussion and from the theorem (1.5.20) 

that the map (3.2.20) does not annihilate the space H . with TT = TT , . A. r TT ,TT n+1,0 

On the other hand (3.2.20) implies that TT ' occurs in 

(3.2.23) IndJJ. M (ISTT1) for an r > n+1, r-n-1 G 2Z. 
R M M r 

Since the degree of i' is n+1, (2.1.23) and (A.1.8) imply that 
71 f ~ n \ \ n* Tlie c a s e n < 0 is completely analogous. 

§3. THE DISCRETE SERIES OF 0 2 2, II. 

(3.3.1) Theorem. In the notation (2.5.32), (2.4.43) let 

Q.E.D. 
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50 TOMASZ PRZEBINDA 

U - J m,n m+1 ,n 
(3.3.2) Z , Z 

Sp(2,R) 3' Mm,n J m+l,n 

for m+n > 0, m > 0 > n and 

n - n [H„,r,y ](TT i, 
0 ? 3 m,n m,n-l 

(3.3.3) Z , Z 

Sp(2,R) 3 m,n m n-1 

for m+n < 0, m > 0 > n. Then 

(3.3.4) n ® IT G R(02 • Sp(2,R),o)) and 

(3.3.5) deg n = |m| + |n| + 1. 

In the proof of this theorem we shall use the following lemmas. 

(3.3.6) Lemma: Let x,h,y be the standard basis of the Lie algebra 

sl(2,C) satisfying the commutation relations 

(3.3.7) [x,y] = h, [h,x] = 2x, [h,y] = -2y. 

Assume that jsl(2,C) acts on a vector space containing a vector v such that 

(3.3.8) x v = 0, h v = - b v 

where b = 1 , 2 , 3 . . . . Then the span of the vec to r s yJv (j = 0 , 1 , 2 . . . ) i s 

i nva r i an t under J J ^ (2,C) and 

(3 .3 .9 ) ( j + i r W j ) " 1 x y j + 1 v = -y j v (j = 0 , 1 , 2 . . . ) . 

Proof: If j = 0 then (3 .3 .9 ) holds because 

b xyv = b (yx + h)v = - v . 

Assume tha t j > 0. Then, by induct ion on j , 

xy J v = (yxyJ + hy J )v = 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp2,R) 51 

- -j(b + j - l)yJv + (-b - 2j)yJv 

= -(j+l)(b+j)y3v. 

Q.E.D. 

(3.3.10) Lemma. If n ® IT G R(0? 9 • Sp(2,ffi.), u)) occurs as a closed 

subspace of the Hilbert space V of a), then II1 is tempered (2.2.15). 

Proof: It is known [H6 Prop. 8.1] that the matrix coefficients 

'Spdi,*) T g + (a3(g)v,v') G C (v,v? E V) 

of the oscillator representation of the metaplectic group belong to 

L (̂ p(n,K.)) for any p > 4n. In particular, when n = 2, they are in iP with 

p > 8. Since the pull back (3.2.3), (1.1.12) of the oscillator representation 

oi of Sp(8,K.) to Sp(2,R) is essentially a tensor product of two copies of 

the oscillator representation of ?p(2,R) and two copies of the 

contragradient one, the Schwartz inequality implies that the matrix 

coefficients of this pull back are in Lp(Sp(2,R)) for any p > 2. Therefore 

the matrix coefficients of IT' are in Lp for any p > 2. 

Q.E.D. 

(3.3.11) Lemma. Assume that m,n e Z, n > m+2, m > 2. Then 

(3.3.12) I Z (i^l±ill) 2
T4_ 7-^_ 

4^0 a b*1 J " (a+m)! (b+n)! 

is finite. 

Proof: Since 

oo , , oo n 

J\ Tb^)T< n * (b+n) < ̂ T(n-1+J> > 
b=j b=j 

(3.3.12) can be estimated by a positive multiple of 

/(m-l+j)!^, ,,.vl-m f .,,Nl-n Z [- . tJ J (m-l+j) (n-l+j) 
J-0 J* 
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( m - l + i ) ^ / , , . vin~n 

j=0 ( n - l + j ) n j=0 

which is finite because m-n < -2. 

Q.E.D. 

Proof of t h e t heo rem ( 3 . 3 . 1 ) : Let g_ and K be d e f i n e d a s i n ( 3 . 1 . 2 ) , 

( 3 . 1 . 3 ) . Put 

( 3 . 3 . 1 3 ) G1 = S p ( 2 , C ) n U ( 2 , 2 ) , | ' = £ p ( 2 ,C) n u ( 2 , 2 ) and Kf = U ( 2 ) . 

Fix the diagonal Cartan subgroup _t_f in g_' and chose the following root vectors 
in the complexif ication £ of j*_f : 

x; = e 1 ( 2; x; = -i(e1(4 + e ^ ) ; xj - ^ y , x' = - i e ^ 
(3.3.14) 

y- " e2,l; K ~ i(e4,l + e3,2 ) ; yi = l e3,l ; y2 = le4,2-

Put 

(3.3.15) h» = [x\yf] for a = -,+,1,2. 
a a a 

Then xf ,h?,y' satisfy (3.1.7) for a as in (3.3.15). Define 
a a a 

( 3 . 3 . 1 6 ) s = d i a g ( s , s , s , s ) w i t h s a s i n ( 3 . 1 . 1 ) . 

Then s E U(8) a c t s on s p ( 8 , C ) by c o n j u g a t i o n ( 1 . 4 . 1 5 ) . We p u l l back t h e 

o s c i l l a t o r r e p r e s e n t a t i o n o> of _sp(8,C) ( 1 . 4 . 1 0 ) t o _g © _gf v i a t h e 

i n j e c t i o n 

( 3 . 3 . 1 7 ) I n t s o ( 1 . 4 . 1 8 ) o ( ( 1 . 1 . 6 ) ® ( 1 . 1 . 7 ) ) o ( I n t s " 1 © ( 1 . 4 . 1 8 ) " 1 ) 

of _g e j*' into j3j>(8,C). Ihis makes our notation compatible with (3.2.3), 
and yields the following formulas 

( 3 . 3 . 1 8 ) a ) (x ? ) = z ,3 + zo3 - z » - z 3 
1 z_ 2 z , 7 z 0 8 z, 

5 6 3 4 

o ) ( h ' ) = z a + z 3 - z a - z,9 - z a - z a + z a + z 3 
1 z. 2 z_ 3 z0 4 z. 5 zc 6 z, 7 z_ 8 z0 

I Z J A - J O / O 
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U(y:> = z53Zi + z ^ - 239^ - z ^ 

( 3 . 3 . 1 9 ) a ) ( x ' ) = - z . z , - z_z_ + 3 3 + 3 3 
+ 1 6 2 5 z 3 z g z 4 z ? 

a ) ( h ' ) = z .3 + z_3 - z_3 - z . 3 + z_3 + z ,3 - z_3 - zQ3 + 1 z. 2 z 0 3 z_ 4 z. 5 z_ 6 z , 1 z_ 8 zQ 1 2 3 4 5 6 7 8 

o ) ( y ' ) = - z . z Q - z. z_ + 3 3 + 3 3 J+ 3 8 4 7 z . z , z _ z c 1 6 2 5 

( 3 . 3 . 2 0 ) a ) ( x ' ) = - z z . + 3 3 
1 1 2 z 3 z 4 

a ) ( h ' ) = z a + z03 - z 3 - z 3 
1 1 z 2 z 3 z 4 z 

uKy1.) = - z . z + 3 3 
1 3 4 z i z 2 

( 3 . 3 . 2 1 ) o)(x' ) = - z z, + 3 3 
2 5 6 z

7
 zg 

ca(h ' ) = z 3 + z.3 - z_3 - z .3 
2 5 z_ 6 z , 7 z_ 8 zn 5 6 7 8 

w ( y ' ) = " z
7

z o + 3 3 , z / o zc z , 

Similarly we get 

( 3 . 3 . 2 2 ) a)(x ) = - z . z , + 3 3 - z_z_ + 3 3 
1 3 z 2 z 4 5 7 z 6 z 8 

w(h ) = z.3 - z .3 + z_3 - z .3 + z_3 - z ,3 + z_3 - zQ3 1 z. 2 z n 3 z . 4 z, 5 z_ 6 z , 7 z_ 8 zn 1 2 3 4 5 6 7 8 

a)(y ) = - z . z , + 3 3 - z . z . + 3 3 
2 4 zY z 3 6 8 z 5 z g 

( 3 . 3 . 2 3 ) a>(x ) = - z . z , + 3 3 - z c z 0 + 3 3 
+ 1 4 z . z_ 5 8 z , z_ 2 3 6 7 

0 3 ( h ) = z a - z a - z03 + z .3 + z c3 - z .3 - z_3 + z03 + 1 z. 2 z_ 3 zn 4 z. 5 z_ 6 z , 7 z_ 8 z 0 1 2 3 4 5 6 7 8 

oo(y ) = - z z + 3 3 - z z + 3 3 . 
+ 2 3 z . z , 6 7 z c z 0 1 4 5 8 

For two f u n c t i o n s <J> and <J> of f o u r complex v a r i a b l e s l e t 

( 3 . 3 . 2 4 ) <f>l 9 $ (z , z , . . . ,z ) = ^ i ^ 2 ! > z 2 , z 3 , Z 4 ) ( { ) 2 ^ Z 5 , Z 6 , Z 7 , Z 8 ) # 

Denote by w 9 the oscillator representation (1.4.10) of sp(4 ,C) O u.(4,4). 
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Then c l ea r l y 

( 3 . 3 . 2 5 ) < o | £ - < o 2 l £ « <*2I& 

We want to show tha t (3 .3 .3 ) implies ( 3 . 3 . 4 ) . Define 

(3 .3 .26) f = I . t ( , n ]]].. o)0(x ) j f ® w0(y ) j f 
m,n . ~ i ! (n-l+j ) ! 2 - -m 2 w - n 

for integers m,n with n > m > 1. 

The number m will happen to be the one from (3.3.3), but the n in (3.3.26) 

will correspond to -n-1 in (3.3.3). 

Here f_m, f are as in (3.1.20). A. straight forward calculation using 

(3.1.22) and the lemma (3.3.6) verifies that 

(3.3.27) co(x ) f = 0. 
- m,n 

Since y+ commutes with x_ and with y_, (3.1.22) and (3.1.23) imply that 

(3.3.28) a)(y)f = 0. 
+ m,n 

Similarly 

(3.3.29) w(h )f = (m-n)f and 
- m,n m, n 

to(h )f = (m+n) f 
+ m,n m,n 

Straight from the definitions (3.1.19), (3.1.20), we get 

w 9 ( x ) f ^ = " m z^ f-n, i> z - -m 3 -m-1 
(3.3.30) 

03 2(y_)fn =-n z2 fn+1. 

Iterating (3.3.30) we obtain the explicit formula 

LUX O.T 1 c lT \ . . a , K V LTT I 

(3 3 3D f = y rm-l+J^ _J 2 3_4 5_6 7 8_ 
^ ^ ^ L ) t

myn . , / j } (nri-a+j)! a! b! (n+b+j)! 
j , a , D — u 

In particular, by the definition (1.4.11) and the lemma (3.3.11) 
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(3.3.32) if l, 2=E T ("-^2 al b! 
m,n . n u • J (m+a)! (n+b)! j=0 a,b=j 

is finite for n > m + 2, m > 2. 

Let 

(3.3.33) V be the closed subspace of the Hilbert space of oo generated 
m,n r r o 

by the action of (£,K) x (jgf , KT ) on f with 

n > m+2, m > 2; m,n G Z. 

The formulas (3.3.27), (3.3.28), (3.3.29) and the known structure of the 
highest weight jsl(2 ,C)-modules imply that the jj-module a) (j£) f is 

irreducible. Therefore V is isotypic as a 0 2 2-module a n d by tne Corollary 

(1.5.25) 

(3.3.34) V m n - n ® IT G (02 2 x Sp(2,R)T 

where, according to our parametrization of K (2.1.8), 

(3.3.35) II belongs to the discrete series of 0 2 n and contains the 
unique lowest K-type TT (2.1.7). 

m,n 

From the known weight decomposition of the discrete series representations of 
SL(2,m) [L] and from the formulas (3.3.27), (3.3.28), (3.3.29) we deduce that 
(for p,q > 0) 

(3.3.36) TT is a K-type of n iff 
p»q 

p+q G m+n + XL and p -q G m-n-2Z . 

T h e r e f o r e , by ( 2 . 1 . 2 4 ) , 

( 3 . 3 . 3 7 ) TT i s a l o w e s t d e g r e e K - t y p e of n and deg n = m+n. 

m,n 
The lowest degree term of f (3.3.31) is a constant multiple of z. z Q . 

m ,n 1 o 
Since 
(3.3.38) a)l = o)J ® o)0L (see also (3.2.1) and (1.4.17)) 

(3.1.16) implies that the space generated by the action of K on z. z Q is 
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/n o ™\ ^ . m n ~ m n „ ni n „ m n 
(3.3.39) Cz, z_ + Cz0 zQ + Cz. z_ + Cz_ z_ ~ TT 

1 o Z o 1 / L I m,n 

By (3.3.18) and (3.3.19), 

(3.3.40) o)(x^) Z i
m z 8

n = 0, a)(h:)Z i
mz8

n = (m+n^Zg 1 1 

w(h^)z1 zg = (m-n) z1 zg . 

Therefore the Corollary (1.5.25) implies that 

(3.3.41) nf (3.3.34) contains the (lowest degree) KT-type TT ' 
m,-n 

The formulas (3.3.27), (3.3.28), (3.3.29) imply that 

(3 3.42) IT has infinitesimal character v (2.5.32). 
m,-n+l 

It follows from [P2] that 

(3.3.43) n' has infinitesimal character vT (2.4.42). 
m,-n+1 

In par t icular (2.1.22) implies that 

(3.3.44) II TT * Ik . , = lly' l| 
m,-n lambda m,-n+l 

Since II f II < «, (3.3.32), the lemma (3.3.10) ensures that II T i s tempered. m,n 

Combining th is with (3.3.44) and the corollary (2.3.22) we conclude that 

( 3 . 3 . 4 5 ) TT ' is a lowest K'-type (2.2.18) of IT. 
m, -n 

The representations (3.3.45) appear in the list of possible lowest KT-types 

((2.4.3), (2.4.19), (2.4.29), (2.4.43)) only in the representations attached 

to H'. Therefore 11' is a discrete series representation. Combining the 

above with (3.3.35) we see that (3.3.3) implies (3.3.4) except the case of 

lowest K x K'-types TT, ® TT' (n = 3,4,5...). 1, -n 1, -n 

To complete the argument we employ the theory of translation functors 

[Z]. Let S* be the dual topological vector space to the space of smooth 

vectors S on which u) is realized (oa extends to S*). Denote by V_ the 
2,n 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 9(2,2), Sp(2,R) 57 

Harish-Chandra module of V (n > 4). 
2,n 

Let 

(3.3.46) Diff denote the Weyl algebra of polynomial coefficient differential 

operators acting on C[z,,Z2,•• ,Zg]. 

Then (£,K)x(^' ,K? ) acts on Diff by conjugation and, in the spirit of the 

formula (1.2.9), we have a (£,K)x (jgT ,Kf )-intertwining map 

(3.3.47) Q : Diff ® V -• S*, Q(u®v) = u(v). 
z ,n 

Let 

(3.3.48) u = z a - zn 3 . 
3 Zj. 7 z. 

We check easily that 

(3.3.49) [u>(x_),u] = [o)(y_),u] = [u)(h_),u] = 0, 

[o)(y+),u] = 0, [w(h+),u] = -2u 

(3.3.50) [o)(y;),u] = [u>(y|),u] = [ w(yp,u] = [a>(y£),u] = 0, 

[a)(x;),u] = [co(h^),u] = 0, [a)(h|),u] = -2u. 

Fix the Borel subalgebra of _g © jj1 containing the vectors 

x_,x + (3.1.4), x^, x_j_, x f, x' (3.3.14). Denote by 

(3.3.51) V the subspace of Diff generated by the action of (£,K)x (jr1 ,K' ) 

on u. 

It follows from (3.3.49) and (3.3.50) that 

(3.3.52) u is a lowest weight vector in V with weight y © y' 

((2.5.32), (2.4.42)) and V is irreducible. 

According to our choice of Borel subalgebra in jg © £ we consider 

(3.3.53) v , n © Yf , « as a representative for the infinitesimal 'n-1,2 n-1,2 

character of the (£,K)x (_̂f ,K' ) -module V 9 
z ,n 

It follows from [Zl, §1] that 
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(3.3.54) V ® V contains exactly one irreducible submodule Wu with 
2 ,n 

infinitesimal character 

(Yn-l,2 e ^-1,2> + (Y-1,-1 ° ^-l.-l* = Yn-2,1 * ^-2,1' 

Moreover [VI, 8.2.1] implies that 

(3.3.55) W is isomorphic to the Harish-Chandra module of the discrete 
series representation (of our pair of groups) with lowest 

Let 

(3.3.56) W. be the subspace of V ® V? generated by the action of 

(g,K)x(g» ,K') o n u H , . — — Z,n 

The formulas (3.3.27), (3.3.28), (3.3.29) and (3.3.49), (3.3.50) imply that 

(3.3.57 (_g_»K) acts on W- with infinitesimal character y 

Therefore W, = W e W0 (3.3.54), where (gf ,K') acts on W° with 
i I — Z 

infinitesimal character different than Y'_ 9 , • Since by [P2] the 

infinitesimal characters of representations which occur in the Oscillator 
Duality Correspondence, for our pair, must coincide we see that 

(3.3.58) Q(W^) = 0, and therefore Q(W°) = Q(W°). 

By a straightforward calculation we check that u f £ 0. Thus Q(W ) * 0 
and by (3.3.58) 

(3.3.59) Q(W°) * 0. 

Combining (3.3.62) and (3.3.55) we conclude the proof of "(3.3.4) if 
(3.3.3)." The case (3.3.2) can be verified in a similar way with f n 

(3.3.26) replaced by 

(3.3.53) <j> = I . . / ^ I , ou(x )jf m ® 039(y )3f for m > n > 1. Ym,n ._„ j!(m-l+j)! 2 - -m 2 J - n 

Q.E.D. 
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§4. THE PRINCIPAL SERIES 

Let us identify M (R) with M 0(R) by 
8,1 4 , L 

(3.4.1) col(x1 ,x2,.. ,xg) > 

Xl X5 
X2 X6 
x3 x? 

\ X8 

Then the pull back of the oscillator representation to O x Sp(2,R) by 
z , z 

( 1 . 1 . 1 2 ) can be r e a l i z e d on t h e s p a c e of Schwar tz f u n c t i o n s S(M 9 ( R ) ) = S 
4 > ^ 

and t h e f o r m u l a s ( 1 . 3 . 3 1 ) imply t h a t f o r f E S 

( 3 . 4 . 2 ) 00(g) f ( x ) - f ( g _ 1 x ) (g E 02 x E M4 ( » ) ) ; 

( 3 . 4 . 3 ) u ( h f ) f ( x ) = ( d e t h ) ' 2 f ( x ( h t ) " 1 ) , 

t , - l where hf = d i a g ( h , ( h ) ) E S p ( 2 , R ) , h e GL(2 ,R) ; 

( 3 . 4 . 4 ) o ) ( b ' ) f ( x ) = x ( - - 8 ( x , x ) ) f ( x ) : 

b? = h ° 
2 J 

, B ( x , x ) = T r ( x b x F) ( f o r F s e e ( 1 . 1 . 8 ) ) 

For a = 0 , 1 and f o r y E C p u t 

( 3 . 4 . 5 ) X ( j ) y ( r ) = ( s g n r ) a | r | M ( r E R ) . 

De f ine t h e f o l l o w i n g t empered d i s t r i b u t i o n s on M ( R ) : 
4 , Z 

( 3 . 4 . 6 ) u ( f ) = / f ( 

" x l 
0 

0 
_0 

x 3 
X2 
0 
0 _ 

) X ( x i ) x ( x o ) d x . d x 0 d x Q 
* a , ,u , 1 cr2 , ti« 2 1 2 3 

where t h e i n t e g r a t i o n i s o v e r R and 

a l , a 2 = ° , 1 ; P 1 , M 2 G C ; ^ y l > " 1 ; ^ M 2 > ~ 1 ; 

i f p . = - 1 t h e n a - u . E 2Z, j = 1 ,2 . 
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It is classical that u is well defined [S-W, Ch VI Thm 3.1] • A. simple 
consequence of the definition (3.4.6) and the formulas (3.4.2), (3.4.3) 
(3.4.4) is the fact that 

(3.4.7) ue Horn ftP,(S,(6 ® (v+p(0)) ® (5' ® (vf +p (8<) ) ) ) , T 0 x 9PQ -U -0 

where P , P' are defined in (2.2.2), (2.2.10), and 

°l °2 6(diag(e ..e^e^e^) = e, e^ , 6 = 6f, 

vCdiagCa^a^-a^-a^) = (^+1^ + (y2+l)a2,v =v f. 

By composing u with the inverse of the map (1.4.21) we obtain u as a 
continuous linear functional on the space V of Schwartz functions in the 
Fock model (1.4.6) [H7, Cor. 1.7.2]. We may expand it in a series 

(3.4.8) u = E u z //a! a a a 

where the summation is over all a in Z and 

(3.4.9) u(f) = E u f for any f in V with f(z) = £ f z //a!. 
a a a 

a a 

( 3 . 4 . 1 0 ) Lemma. The l o w e s t d e g r e e t e r m of u ( 3 . 4 . 8 ) i s a n o n - z e r o 

m u l t i p l e of 

(3.4.11) z. z, Z. 
1 D 

Proof: By applying u (3.4.8) to za//"aT we find that (see (1.4.20) for y ) 
m 

( 3 . 4 . 1 2 ) u = C(a) • / <f> ( x ) x ( x ) d x / $ ( x ) d x / if, ( x ) x ( x ) d x , 
R a l a l ' y l R a 5 R a 6 a 2 ^ 2 

where 

C ( a ) = i[» ( 0 ) if, ( 0 ) ip ( 0 ) if, ( 0 ) if, ( 0 ) , 
a 2 a 3 a 4 a ? a g 

We are looking for u ± 0 with |a| minimal. Clearly we can assume that 

a0 = a 0 = a, = a-, = a0 = 0 (1.4.20). By a change of variables we check that 
Z J 4 / o 
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r • ( \ t \A r° f o r y = -1, a = 1 
J ^c\*\ (x)dx = { 
R U a,y const (l+(-l)a)r(liyi) , otherwise 

(3.4.13) 
/ ^(xfc (x)dx = const2 (l-(-l)a )r(-^2) 

where (a ,y) = ( a . , p . ) ( 3 . 4 . 6 ) , const, and const^ a re p o s i t i v e cons tants 

°° -1 -independent of (o ,\i) and T(z) = / x e dx The lemma follows immediately 
0 

from ( 3 . 4 . 1 2 ) , (3 .4 .13) and the fac t tha t r ( z ) * 0 for Re z > 0, z * 0 [Vi, 

Ch V § 1 . 5 ] . 
Q.E.D. 

According to the formulas (3.3.18), (3.3.19), (3.3.22), (3.1.16), (3.3.38), 
(1.4.17) the space V contains the following K x K' ((3.1.3), (3.3.13))-
invariant and irreducible subspaces: 

(3.4.14) Oli? 1® 1 

0 (3.4.15) Cz. + Cz0 + Cz„ + Cz, ~ * ® »' n, 1 2 5 6 1,0 1,0 

(3.4.16) Cz3 + Cz4 + Czy + Czg ~ -nQ _ ® TTfQ _1? 

(3.4.17) « V 6 - Z2 Z5 ) 3 'J!?*"!.! 

(3.4.18) C(z3Z8 - z4Z7) = ^S:i • - i i . - i -

Here the parametrization of representations is as in (2.1.7), (2.1.9). Put 

(3.4.19) Let c be as in (1.1.9), and s4 as in (3.3.16). Set 

cn = diag (c,c). Let c , s, e U(8) map to c0,s, respectively, 

via the covering map (1.4.16). 

(3.4.20) Lemma. Let for u (3.4.6) and 6 ,v (3.4.7) 
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62 TOMASZ PRZEBINDA 

0 x Sp(2,R) 
(3.4.21) Ind u : S • Ind Z '* ((5 ® v) ® (5' ® v')) PQ x 9P^ 

be the non-zero, continuous, O x Sp(2,R)-intertwining operator provided 
Z , L 

by the smooth Frobenius reciprocity theorem (Appendix B). Then the operator 

(3.4.22) Ind u o (1.4.21) from V to the induced representation 
(3.4.21) 

does not annihilate the image under a)(g.) (3.4.19) of the space 

(3.4.14) if a = a2 = 0; 

(3 4.15) , (3.4.16) if Q * a2, 

(3.4.17), (3.4.18) if a = a2 = 1. 

Moreover t h i s image transforms under the maximal compact subgroup 

(2 .1 .1 ) x (2 .1 .2 ) of 0 x Sp(2,R) as ind ica ted in ( 3 . 4 . 1 4 ) , . . , ( 3 . 4 . 1 8 ) , 

and 

(3.4.23) the operator (3.4.21) annihilates every polynomial f e V of 
degree lower than cr + a0» 

Proof: We have the following commuting diagram of group isomorphisms. 

0(4)nQ(2,2)xQ(4)nSp(2,R)(1'1'6)x(1'1'pQ(16)nSp(8,R)(1'4-15)"°1 (1-4'18^U(8) 

|(1.1.9)xid Int C Int cQ 

0(4)nQ(2,2)x0(4)nSp(2,R)(1'K6)x(1'1S7)0(16)nSp(8,R)(K4'15)^ (K4'1S)U(8) 

lint s x(1.4.15)"o (1.4.18) lint s 
KxK' — — — >U(8) 

where the lowest horizontal arrow makes KxK' act on the Fock model as in §2, 
and C is defined in (1.1.10), c in (3.4.19), s in (3.1.1) and s, in 
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(3.3.16). Since g> (3.4.19) covers ( S , C Q ) ~ , the above diagram and our 

parametrization (2.1.8), (2.1.10) of the unitary dual of the group 

0(4) n 09 ? x 0(4) n Sp(2,K) implies that the spaces (3.4.14),..., (3.4.18) 

transform under this group as indicated there. It follows easily from the 

formula (1.4.17) that u)(s, ) preserves the spaces (3.4.14),...., 

a a 2 
(3.4.18). Since the lowest degree term of u (3.4.8) is z, ar (3.4.11), 

the lowest degree term of u o u)(c ) is (a non-zero multiple of) 

a a 
(3.4.24) (zx + z3) i(z 6 + zg) 

Therefore u o u)(c ) does not vanish on 1 if a = o = 0; 

zl and z^ if a^ = 1 and o = 0; z6 and zg if a = 0 and a = 1; 

z.z, and z~z„ if a, = a« = 1- From the definition of the induced map (B.5) 

we see that the above implies the lemma. 

Q.E.D. 

Define another tempered distribution on S 

(3.4.25) v(f) = / f ( 

0 
0 
0 
0 

X 

0 
0 
0 

) X (x) dx a = 0,1; y e C, Re \i > -1) , 

A s t r a i g h t forward c a l c u l a t i o n shows t h a t 

(3 .4 .26) v E Homp x Q p t ( S, (6® (v+p ( i^) M<5 '®(vf +p (n^) ) ) , 

where 6 ( d i a g ( £ l , e 2 , e ^ e ^ ) = e 1 , 6 f (diag(e ,e , e ,e 2 ) ) = e 2 

v ( d i a g ( a 1 , a 2 , - a 1 , - a 2 ) ) =u&1» vf ( d i ag (a 1 ,a2~a 1 > - a 2 ) ) = p a ^ 

Notice that under the assumptions (3.4.6) we could not reach the parameters 

5,v (3.4.26) in (3.4.7). This is why we consider the distribution v 

(3.4.25). 

As in the lemma (3.4.10) we check that in the Fock model the lowest degree 

term of v is Zc° (up to a non-zero multiple depending on y ). Therefore 

copying the proof of the lemma (3.4.20) we obtain 
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64 TOMASZ PRZEBINDA 

(3.4.27) Lemma. Let 

0 xSp(2,R) 
(3.4.28) Ind v : S> Ind ,Z ( (6®v)®(6 f®v f )) (3.4.26) 

po x 0 Po 

be the non-zero, continuous, 09 9 x Sp(2,R)-intertwining operator provided 

by the smooth Frobenius reciprocity theorem (Appendix B). Then the operator 

(3.4.29) Ind v o (1.4.21)"1 from V to the induced representation (3.4.28) 
does not annihilate the image under w(g,) (3.4.19) of the space 

(3.4.14) if a = 0 

(3.4.15), (3.4.16) if a = 1. Moreover 

(3.4.30) the operator (3.4.29) annihilates every polynomial f G V of 
degree lower than a. 

(3.4.31) Theorem. Let 

n = n [H ,I\Y](A), and 
(3.4.32) z , z 

n' = nSp(2,R) [ H0' r^ ] (^ ) 

as in (2.5.4) and (2.4.5) respectively. Define the sets 

(3.4.33) D = {*0)0'*1,0>1'0)-I>*0)0'7r0(0> ^ K' 

(3.4.34) D- - l ^ l o * ' ^ * ' ^ * ' - ^ } Cl< 

and the function 3 : D -*• D' by 

(3.4.35) S^J'J) ' S n ' 3 ^ ^ ^In^^l'I) =''i i^^I'^ =''i i-0,0 0,0 m,n m,n 0,0 1,1 0,0 -1,-1 

Then An D * 0 and Af n 3(An D) ± 0 imply t h a t 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 65 

(3.4.36) n 9 IP E R(02 2 • Sp(2,R),u)) (3.2.3), and 

(3.4.37) deg n = a + <s 

P r o o f . The images of t h e s p a c e s ( 3 . 4 . 1 4 ) , . . , ( 3 . 4 . 1 8 ) u n d e r a>(g.) ( 3 . 4 . 1 9 ) 

a r e c l e a r l y of t h e form H , ( 1 . 5 . 2 4 ) w i t h TT ' = 3 (IT ) ( 3 . 4 . 3 5 ) . The 
IT ,7T 

operators Ind u and Ind v constructed in (3.4.21) and (3.4.28) satisfy the 

assumptions (2.2.24), (2.2.26) of the lemma (2.2.23) and the corresponding 

K x K'-types IT ® 8 (TT ) are lowest in the induced representations (3.4.21), 

(3.4.28)-see (2.4.3), (2.5.3). By the choice of parameters a >cr ,y ,y 

(3.4.6) and a ,y (3.4.25) the representation 

0 
d 
P 

(3.4.38) Ind 2,2(<5®v) ((3.4.7), (3.4.26)) 

h a s an i r r e d u c i b l e q u o t i e n t n c o n t a i n i n g a K - t y p e TT E D ( 3 . 4 . 3 3 ) . C l e a r l y 

TT E D(TI). T h e r e f o r e t h e lemma ( 2 . 2 . 2 3 ) i m p l i e s t h a t 

n ® IT E R(0 2 2 • Sp(2 ,R) ,o) ) 

w h e r e 8 (TT ) E D( lT) and ITf i s a s u b q u o t i e n t of 

Indfp
(2>*W<) 

9 P 0 

Notice that the regular characters (r ,y) obtained from 5 ,v and from 6 f ,v ' 

coincide (modulo a conjugation by K f ) , and that by (3.4.6), (3.4.25) they 

exhaust all possible regular characters (2.4.2) (modulo the Weyl group). This 

shows (3.4.36). The last statement follows from (3.4.23) and (3.4.30). 

Q.E.D. 

§5. THE MAXIMAL PARABILICS. 

In the notation (3.4.1).,,. (3.4.4) define the following linear map from S to 

the space of functions on SL"(2,R) [VI, I §4]: 

(3.5.1) u(f)(g) = f°°0
 f (oS)rlJ(ir (f E S, g E SL±(2,R), y E C, Re y > 0). 

Let 
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(3 .5 .2 ) llyll = max { | x | ; X G C, X i s an eigenvalue of y} ( y e M 9 ( R ) ) . 

Since f (3 .5 .1 ) i s a Schwartz funct ion, the re a re cons tan ts 
N > Re y + 1 and C < » such t ha t 

(3 .5 .3 ) 

Therefore 

| f ( £ ) | < C^Cl+t yl >~N for a l l y e M , ( R ) . 

( 3 . 5 . 4 ) | u ( f ) ( g ) | < / " cN(l+xllgl ,)-N x ^ V + l f 

, „ ,°° ,, v-N Re p , s -Re u - 1 
(C^ J 0 (1+x) x Mdx) • Ilgll M 

Apply the Cartan decomposition [L, Ch VIII §2 Int 2] to the element g: 

(3 .5 .5 ) g = 
I cos e s in 9 

-e . s i n 9 e cos 6 . 
cos 6 2 s in 9 2 

-e s i n 8 2 e 2cos 0 2 

0 < 8 1 , e 2 < 2 » r ; e 1 , e 2
a ! ± l , h t = 

^ 0 

0 e 
; fc£R. 

Since the norm (3.5.2) is an operator norm we see that 

(3.5.6) || g|| =11 h II = e ' ' . 

Therefore, for r , p e R 

(3 .5 .7 ) / Ilgll p r dg < / , e P r | t | d g = / " e p r t s i n h ( 2 t ) d t , 
SL (2,R) SL (2,R) 

This number i s f i n i t e for pr > 2. 

Combining ( 3 . 5 . 4 ) , ( 3 . 5 . 7 ) , we see t h a t 

(3 .5 .8 ) the map u (3 .5 .1 ) i s a continuous l i n e a r opera tor from S t o 
2 ± the space of smooth vec to r s in L (SL (2,K.)) i f Re y > 0 

and in any LP( SL*(2 ,R) ) , p > 2, if Re p > 0. 

It follows from [L, Ch IX §1] that 
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(3.5.9) the Harish-Chandra modules of the discrete series 

representations of SL~(2,R) are all contained in the 

intersection of all the spaces Lq ( SL (2,8)) for q > 1. 

Let V be the Harish-Chandra module of the isotypic component in 

2 ± L (SL (2,8.)) of one discrete series representation of this group. 

Denote by V^ the completion of V in Lq = Lq(SL±(2,8)) , q > 1. By a 

theorem of Harish-Chandra [HC] V is irreducible with respect to the left 

and right action of the group SL (2,R) x SL (2,R). Taking the adjoint of 

the injection V •> L we obtain a surjection 

(3.5.10) (L q)* + (V q)* 

which intertwines the contragradient actions of the group SL (2,8) x SL (2,R) 

on both spaces. Since Lq is a reflexive linear topological vector space it 

follows from [Ke-Na Ch 5 §20.2 (ii)] that Vq is reflexive so that in 

particular (V q)* is irreducible. 

Let V be the space of complex conjugates of the functions from V. Then 

the image of V under the identification (L ) * ~ L , — + — = 1, and the 
P q 

restriction map (3.5.10) is not zero (by a straight forward integration). 

Therefore (V )* may be identified with V^, and we have a continuous 

intertwining map 

We summarize the above discussion in the following statement: 

(3.5.11) for each discrete series representation 6 of SL""(2,8) and 

for each p > 2 there exist an irreducible representation of 

SL"(2,8) x SL"(2,R) on a Banach space V^ , which is 

infinitesimally equivalent to 6 ® 5 , and a continuous non-zero, 

linear, intertwining map 

T : LP(SL't(2,8)) + V9. 

Here 5 denotes the contragradient of 5, and the group acts on Lp by the 

left and right translations. 
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(3.5.12) Lemma. the image of S under u (3.5.1) is dense in 

LP(SLi(2,R)) for any p > 2. 

Proof: Fix <j> G Lq(SL (2,R)), — + — = i, and define a linear map 

(3.5.13) S ^ f + f u(f)(s)$(s)ds G C 
SL±(2,R) 

By ( 3 . 5 . 8 ) , t h i s map i s a tempered d i s t r i b u t i o n on S. Assume t h a t the 

i n t e g r a l (3 .5 .13) i s zero for a l l f G S. Then 

0 = / n / M g(xs)xy<fr(s)dsdx for a l l gG S(M9 9 ( R ) ) . 
U Slf(2,R) Z , Z 

and therefore the function 

R+ x SL*(2,R) 3 (x,s) -• xy<f)(s) G C 

is zero. Since x ± 0 we conclude that ^ = 0. 

Q.E.D. 

(3 .5 .14) Corol lary . For every d i s c r e t e s e r i e s r ep re sen t a t i on 

5 of SL±(2,R), the opera tor 

(3 .5 .15) v = T o u : S + V9 ( ( 3 . 5 . 1 1 ) , ( 3 . 5 . 1 ) ) 

i s non-zero. 

Let, for y G C, v G _a* (2.2.7) be defined by 

(3.5.16) v (diag(a,a,-a,-a) ) = y a 

We identify Mj (2.2.6) with SL±(2,R) via 

(3.5.17) SL±(2,R) B g -• diag(g,(gt)""1) G U^ 

(3.5.18) Lemma. Fix y G C with Re y > 0, define v as in (3.5.16) and 

let 6 be a discrete series representation of Mi and v be as in (3.5.15). 

Then 
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V G Homp x Q p t (S,(6®(v+p(n1)))®(5 ®(v+p(9nj)))) 

is non-zero. 

Proof. The group P x 0P' acts on S by the formulas (3.4.2), (3.4.3), 

(3.4.4). Therefore one obtains the transformation properties of v with 

respect to A N x A'9NJ by a straight forward calculation. The intertwining 

properties of v with respect to M x M and the fact that v * 0 are 

immediate from (3.5.11) and the Corollary (3.5.14). 

Q.E.D. 

(3.5.19) Theorem. Let 

n = n [H ,r,y](A), and 
2,2 

(3.5.20) n- - H g p ^ ^ l H ^ r . Y K A ^ 

as in (2.5.23) and (2.4.20) respectively. Define the following bijection 

(3.5.21) " S o I»1.r.TNiSp(2|1)[H1,r,T] 

by 

(3.5.22) 3(TT ) = TT1 if n * 2m-1, 
m, —m m, —m 

(3.5.23) 9 (TT J_. ) = IT' . , d (TT . ) = TT ' . 
m+l,-m m+l,-m m,-m-l m,-m-l 

i f n = 2 m. 

Then A? = 8 (A) i m p l i e s t h a t 

( 3 . 5 . 2 4 ) n ® n 1 e R(0 • S p ( 2 , R ) , u ) ) , and deg n = n + 1 . 

Proof: We notice that GL(2,R) ,GL(2,R) is a reductive dual pair in Sp(4,R) 

and that via the obvious extension of the identification (3.5.17) to an 

isomorphism GL(2,R) ? M A , 

(3.5.25) (5®v)®(5C®v) € RCM^ • M ^ , ^ ) , (3.5.18), 
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where OJ is the oscillator representation of "sp(4,R) (corresponding to the 

same character (1.3.32) as aj). 

Let 

(3.5.26) deg(6S>v) - n+1, (1.5.16) 

Then n = 1,2,3,... depends on 5 (is equal to the lambda norm of 6). As 

far as the compact groups are concerned, the Harish-

be identified ((3.4.1), (1.4.21)) with the subspace 

far as the compact groups are concerned, the Harish-Chandra module of OJ may 

(3.5.27) C[z1 ,z2,z5,z6] c Clz^.^Zg] 

of t h e H a r i s h - C h a n d r a module of GO. Let a be a l o w e s t d e g r e e 0 ( 2 ) - t y p e of 

5®v ( 3 . 5 . 2 5 ) and l e t 

( 3 . 5 . 2 8 ) H' t C C[z . , z z z ] 
a >o 1 I ~> o 

be the corresponding subspace (1.5.24) in the Fock model of OJ . It follows 

immediately from the definition (B.5) that 

(3.5.29) the induced map Ind v when restricted to the subspace 

K x K' • H' . generated by the action of K x K' ((3.1.3), 
a »a 

(3.3.13)) on H' , is injective. 
a ,a 

A straightforward calculation (using (1.5.32)) shows that 

(3.5.30) H , = C ( z 1 + i z 0 + i z _ - z , ) n + C ( i z 1 + z _ - z_+ i z , ) n 

Cf ,0* l Z D O l Z D O 

+ C ( i z 1 - z 2 + z 5 + i z 6 ) n + 1 + C ( - z 1 + i z 2 + i z 5 + z 6 ) n + 1 

and that for g^ defined in (3.4.19) 

-1 ( 3 . 5 . 3 1 ) a ) (g 4
x )H^ t = C ( i z 2 + z 3 - z 6 + i z y ) + C ( i z 1 + z 4 - z 5 + i z g ) 

+ C ( - z 2 + i z 3 + i z 6 + z 7 ) n + 1 + C ( - Z l + i z 4 + i z 5 + z 8 ) n + 1 . 

App ly ing —^ 
• 2 

o b t a i n t h e s p a c e 

i -1 
1 i 

as an element of K' (3.3.13) to the space (3.5.31) we 
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( 3 . 5 . 3 2 ) C ( Z l + z 8 ) n + 1 + C ( z 2 + z y ) n + 1 + C ( z 3 + z 6 ) n + 1 + C ( z 4 + z , _ ) n + 1 

I t f o l l o w s e a s i l y from t h e f o r m u l a s ( 3 . 3 . 1 8 ) , ( 3 . 3 . 2 3 ) , t h a t f o r 

f 0 ( z ) - ( z 1 + z 8 ) n + 1 

( 3 . 5 . 3 3 ) w(x^) f Q = 0 and u>(h)f = ( n + l ) f Q f o r h = h + or h ^ . 

The formulas (3.3.19), (3.3.15) imply that the space generated by the action 

of the center of K' on f« is 

(3.5.33) I C fk, fk(z) = (zrz8)k(Zl+z8)n+1"k, and that 
k=0 

( 3 . 5 . 3 4 ) w < h + ) f
k
 = a ) ( h - ) f k = k f k - l + ( n + 1 ~ k ) f k + l ( k = 0 » ^ - " n + 1 ) ' 

Assume t h a t n+1 = 2m i s an even i n t e g e r . Then ( 3 . 5 . 3 4 ) i m p l i e s t h a t 

( 3 . 5 . 3 5 ) o>(hp* - o > ( h _ ) * - 0 , where 

m . 

* - * (-D Q f
2k 

k=0 K lK 

Since w(h^) commutes with u>(hO, w(x^), w(h ) the statements (3.5.33) . 

(3.5.35) shows that 

(3.5.36) the subspace generated by the action of K x Kf on $ is 
V 

i s o m o r p h i c t o * m ® w * m . 
r m, -~m m, —m 

Assume now t h a t n = 2m, m G 2 . For e » ± 1 d e f i n e 

n+1 
( 3 . 5 . 3 7 ) <$ = Z at f, , where a , * a « e and 

e , rs k k 1 n 

a k+l = ( k + e - 2 - n ) ( k + l ) " a k ^ 1 (k - 1 , 2 , 3 . . , n ) . 

Then by ( 3 . 5 . 3 4 ) , 

( 3 . 5 . 3 8 ) w(h»)$ • oj(h )$ - e $ e - ± 1. 
+ e - e € 

Licensed to Univ of Oklahoma.  Prepared on Fri Nov  3 21:38:48 EDT 2017for download from IP 129.15.14.45.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



72 TOMASZ PRZEBINDA 

Thus 

(3.5.39) the subspace generated by the action of K x K' on $ is 
e 

isomorphic to TT , , ® TT ' , . for e = 1 and to m+1, -m m+1,-m 

TT .® TT ' . f or e = -1. m,—m—1 m,-m-1 

By (2.1.23) and (2.1.24) the subspaces (3.5.36) and (3.5.39) occur in lowest 
degree i.e. are of the form H (1.5.24). Combining (3.5.29), (3.5.36), 

TT ,TT 

(3.5.39), (2.4.19), (2.5.22) we conclude that the operator 

0 x Sp(2,R) 
Ind v : S + Ind_Z,Z

 Q_ ( (5®v)® (6°®v) ) , (3.5.29), 
Pl X 9 P1 

satisfies the assumptions of the lemma (2.2.23). By the choice of y 
(3.5.1), (2.2.27) is valid, therefore the lemma (2.2.23) implies the theorem. 

Q.E.D. 

COMPLETENESS OF THE LIST AND UNITARITY. 

(3.6.1) Theorem. The representations listed in (3.2.4), (3.3.1), (3.4.31), 
(3.5.19) exhaust the set R(0 • Sp(2,R),aO, (3.2.3). 

Z , Z 

Proof: Let a), denote the representation of Oo 2 denoted by a) in 

(3.1.31). By inspection of the list of the admissible irreducible 

representations of 0 2 2 (2.5.4), (2.5.23), (2.5.32) and the Theorems (3.1.26), 

(3.1.31) we check that the only representations of 0 2 o which do not occur in 

(3.2.4), (3.3.1), (3.4.31), (3.5.19) are of the form 

(3.6.2) det ® n, where n e R(0 ,OJ) and II is not equivalent to 
Z, L 

d e t ® n , and II e R ( 0 2 , u ) 

Assume t h a t d e t <s> II G R(0_ 9 ,OJ ) - as above. Since every irreducible 
z > z 

admissible representation of 0 2 9 is self-contragradient we see that 

(3.6.3) the trivial representation of On o ̂ s a quotient of 

n ® n ( = n ® n c ) . 
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Therefore our assumption implies that 

(3.6.4) det G R(0 ,u) ® u^). 

This contradicts the theorem (C.7). 

Q.E.D. 

In order to clarify our description of the set R(0 • Sp(2,R), GO) (3.6.1) 
L y L 

we shall emphasize some of its properties. 

(3.6.5) Theorem. Under the identification (2.3.3) of the sets of character 

data for O2 2 a n d Sp(2,ffi.) the Oscillator Duality Correspondence induces the 

identity map on these sets - except the case when a discrete series 

representation of O2 2 corresponds to a tempered, but not discrete series, 

representation of Sp(2,M) (3.2.4). 

(3.6.6) Theorem. There are some discrete series representations 
V 

IT ® 11' G R(0 • Sp(2,tt),u>) which occur in the Hi lber t space of a> and 
Z, Z 

some which don't. 

This follows from the proof of (3.3.1). The point is that f, (3.3.26) does 

not belong to the Hilbert space of GO • 

(3.6.7) Theorem. The representations IT G R(0 ) which do not occur in 

R(0 ,a)) have the property that 
Z , L 

( 3 . 6 . 8 ) II i s not equivalent to det ® IT, and 

(3 .6 .9 ) II occurs in the Osc i l l a to r Duality Correspondence for the p a i r 
02 2> Sp( l ,R) . 

Mo reover for any IT G R(0? 9) 

(3.6.10) either II or det ® II occurs in R(0 ,co). 

2,2 

Combining our description of R(0 • Sp(2,R)a)) (3.2.4), (3.3.1), (3.4.31), 

(3.5.19) with the classification theorems (2.4.14), (2.4.25), (2.5.17), 

(2.5.28) for the unitary duals of 0? <y and Sp(2,S.) we obtain the following 
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74 TOMASZ PRZEBINDA 

(3.6.11) Theorem. The Oscillator Duality Correspondence maps 

R(02 2,u>) n 0 2 2 into R(Sp(2,R) ,w) n Sp(2,R). 

The converse is not true since the trivial representation of Sp(2,R) 

corresponds to a non-unitary representation of 0 - see (2.4.6), (3.4.31), 

(2.5.18) . 

Imitating the calculations of §4 one can check that the theorem (3.6.11) holds 

with On 2 replaced by 0(1,3). 
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APPENDIX A. THE UNITARY DEAL OF Sp(2,R). 

The results we prove here are known to experts for years. Since the facts we 

need about representations induced from maximal parabolics are available in 

the literature [K-B and B-K] we treat them marginally in §4. The only 

relevant computations are contained in §3 where we classify the unitarizible 

Langlands quotients (A.3.1) corresponding to the minimal parabolic subgroup of 

Sp(2,R). 

§1. THE LOWEST Kf-types. 

In this paragraph we prove the propositions (2.4.3), (2.4.19), (2.4.29). 

Proof of (2.4.3). By the Frobenius reciprocity theorem for compact groups the 

condition TT ' G A[H ,T ,y] is equivalent to the following requirement 

(A.1.1) HTT' II (2.1.13) is minimal with respect to the property: p,q v f t- J 

(A.1.2) TT ' when restricted to the subgroup 
p,q 5 p 

{ d i a g ( e i > e 2 ) | el ,e 2 = ± l} c U(2) 

c o n t a i n s t h e r e p r e s e n t a t i o n 

d i a g ( e ,e ) -• e , e 2 • 

The w e i g h t s of TT f , on t h e d i a g o n a l C a r t a n subgroup of U ( 2 ) , a r e 

( A . 1 . 3 ) d i a g ( u 1 , u 2 ) ^ U l
P " k u 2

q + k ( k = 0 , l , 2 , . . , p - q ) . 

Thus ( A . 1 . 2 ) means t h a t 

( A . 1 . 4 ) p - k E a .+2Z and q + k G °2+2Z f o r a k = 0 , l' 2 *'' , p " q # 

Combining t h i s w i t h t h e fo rmula ( 2 . 1 . 1 4 ) f o r t h e norm of TT ' we g e t t h i s 

r e s u l t . 

Q.E.D. 

Proof of (2.4.19). Again by the Frobenius reciprocity theorem it follows from 

the known structure of the discrete series representations of SL (2,R) 
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[VI, Ch I §4] t h a t IT' G A [ H . , r , v ] i f f HIT' II i s min imal w i t h r e s p e c t t o 
p»q = 1 p>q 

the property 

(A.1.5) TT ' when restricted to S0(2) C U(2) contains a character 
p , q -

x ( 2 . 1 . 6 ) w i t h r > n+l and r - n - 1 G 2Z. 

The c o n d i t i o n t h a t TT ' l„,*,«v c o n t a i n s v i m p l i e s p - q > r . T h e r e f o r e p , q ' S 0 ( 2 ) A r 

( A . 1 . 5 ) and ( 2 . 1 . 1 4 ) imply 

( A . 1 . 6 ) 21171' II2 - ( p + q ) 2 + ( p - q + 2 ) 2 > ( n + 3 ) 2 . 
p»q 

If n+l = 2m i s even , t h e n TT ' s a t i s f i e s ( A . 1 . 5 ) and g i v e s e q u a l i t y i n 
m, —m 

( A . 1 . 6 ) . 

If n = 2m, t h e n TT ' , . and TT T , s a t i s f y ( A . 1 . 5 ) and have min imal norm 

m+1, -m m, -m-1 

( A . 1 . 6 ) . 

Q.E.D. 

Proof of ( 2 . 4 . 2 9 ) . C o n s i d e r t h e c a s e n > 0 . Then TT ' G A[H , r , Y ] i f and 
P,q = 2 

o n l y i f It TT ' II i s min imal w i t h r e s p e c t t o t h e p r o p e r t y 
p»q 

(A. 1.7) TT ' when restricted to the subgroup 
p>q 

T2 = ( d i a g ( e ,u) | e = ± 1 , u G C, | u | = l} C U(2) 

c o n t a i n s a r e p r e s e n t a t i o n 

d i a g ( e ,u ) + e°u r > n + l , r - n - 1 G 2Z. 

Since we know t h e w e i g h t s of TT ' (A. 1 . 3 ) , (A. 1.7) t r a n s l a t e s t o 
p»q 

(A. 1.8) there is kO, 1 ,2,.. ,p-q such that q+k G o+2Z and 

p-k > n+l, p-k-n-1 G 2Z. 

This implies that 

(A.1.9) (p+D2 + (q-D2 > (n+2)2 + (a-1)2. 
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Thus the formula (2.1.14) completes the proof for n > 0. The case n < 0 is 
entirely analogous. 

Q.E.D. 

§2. DECOMPOSITION OF THE PRINCIPAL SERIES. 

The goal of this paragraph is to prove the theorem (2.4.4). We begin 
with the computation of the reducibility groups [VI, 4.3.13, 4.4.9]. 

Let us choose an orthonormal basis of _a* - the dual of the 

complexification of the Lie algebra of AQ (2.2.4): 

(A.2.1) e (diag(a1,a2 - a^-a^) = a. (j = l,2). 

Then the set of positive roots with respect to the minimal parabolic subgroup 
P̂  (2.2.10) is 

(A.2.2) A + = (ei-e2, 2e1>ei+e2 , 2e2J . 

Denote by 

(A.2.3) w € W(H_) (2.3.4) the reflection with respect to the root a 0 
a G A . 

We shall parametrize the dual M of Mn (2.2.3) by the pairs 6 = (6, ,6 ?) of 

numbers 5, ,6 9 = 0,1: 

61 62 (A.2.4) 5(diag(e1,e2,e ̂ s^) =e], e2 

Then for the simple reflections 

e - e l 2 2 1 2e 

(A.2.5) w e 1 - e 2
( v l e l 4 v 2 e 2 ) = V 2 e l + V l e 2 ' 

W 2 e 2
( v i e i + V 2 e 2 ) = V l 6 l " V 2 e 2 -

Since r (2 .4 .2 ) i s of the form 5 ® e , t he statement (A.2.5) implies t ha t 
(2 .4 .2) descr ibes a fundamental domain for the ac t i on of W(HQ) on the s e t of 
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r e g u l a r c h a r a c t e r s ( 2 . 3 . 1 1 ) on HQ . F o l l o w i n g [VI , 4 . 3 . 6 ] f o r e a c h a e A 

we f i x an i n j e c t i o n $ of t h e L ie a l g e b r a s l ( 2 , R ) i n t o s p ( 2 , R ) : 

( A . 2 . 6 ) 

( A . 2 . 7 ) 

p p ( x ) -
e l " e 2 

2e ^c dJ 

x 

0 

a 
0 
c 

L° 

0 

t - x 

0 
0 
0 
0 

b 
0 
d 
0 

0 
0 
0 
0 

( A . 2 . 8 ) 

( A . 2 . 9) 

e. +e~^ c d̂  ~ 

^ e ^ c d^ 

a 0 0 b 
0 a b 0 
0 c -d 0 
c 0 0 -d 

0 0 0 0 
0 a 0 b 
0 0 0 0 
0 c 0 d 

Then Let m = exp(d) (TT f . r))) f o r a G A and IT = 3 . 1 4 . . . . 

» d i a g ( - l , - 1 , - 1 , - 1 ) , nu = d i a g ( - l , 1 , - 1 , 1 ) 

( A . 2 . 1 0 ) 
e r e 2 

m = m , 
e 1 + e 2 e r e 2 

2e, 

m = d i a g Q , - 1 , 1 , - 1 ) . 
Z 2 

Having the m 's we can identify the set of good roots [VI, 4.3.11] 
a 

(A.2.11) A = {a e A+ | 5(m ) = l} 

and the subgroup W c W(Hn) generated by w , a E Ap. Explicitly o ~~ 0 a 6 

( A . 2 . 1 2 ) W^ = < 

W(HQ) 

{ l . w 2 e 2 l 

{ l . w 2 e } 

v f l , w ,w , ,w w , } 
1 e r e 2 e i+ e2 e r e i e i+ e2 

f o r 6 = ( 0 , 0 ) 

f o r 6 = ( 1 , 0 ) 

f o r 6 - ( 0 , 1 ) 

f o r 6 = ( 1 , 1 ) 

The s t a b i l i z e r of 6 i n W(Hn) 
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( A . 2 . 1 3 ) Wx 
o f 1 , W 2 e 1 ' w 2 e 2 ' w 2 e 1

 w 2 3 ^ f o r f i ^ f i ^ 

Let v = v , e +v9e9 belong to the closed pos i t i ve Weyl chamber: 

(A.2.14) Re(v 1-v 2) > 0, Re v > 0. 

The stabilizer of v in W(HQ) 

(A.2.15) W(v) is generated by w , a G A , a orthogonal to v. 

Put 

(A.2.16) W°(v) = W° n W(v), W.(v) = W. n W(v) 
0 O 0 0 

then [VI, 4.4.9] the reducibility group 

(A.2.17) R6(V) = W6(v)/W5°(v). 

(A.2.18) Lemma. Under the assumption (A.2.14) the group R (v) ha 
5 

exactly two elements if either of the following conditions is satisfied 

(A.2.19) v = 0 and <$ * (0,0) 

(A.2.20) v * 0, v2 = 0 and $2 = 1 

(A.2.21) v. = 0, v2 * 0 and 6 = 1 

Otherwise R (v) is trivial. 6 

(A.2.22) Remark. Since clearly R (wv) = R„(v) for w = w 
w6 <5 el~e2 

conditions (A.2.20) and (A.2.21) are equivalent. 

Proof of the lemma: Clearly 

(A.2.23) R (v) ~ W(v) ~ {1} if v ^ , v^O, v?_*0, 

and by (A.2.12), (A.2.13), (A.2.16) 

(A.2.24) R (v) = {1} for all v (A.2.14) if 6 = (0,0). 
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Moreover (A.2.12) and (A.2.13) imply that 

(A.2.25) R (0) ? Z/2Z if 6 * (0,0) • 
o 

In t h e c a s e s complementary t o ( A . 2 . 2 3 ) and t o ( A . 2 . 2 5 ) we have (modulo t h e 

Remark ( A . 2 . 2 2 ) ) 

f { l > w } i f v x - v 2 * 0 

( A . 2 . 2 6 ) W(v) = | 

L{ l , w 2 e } i f v 1 ^ 0 , v 2 = 0 

Combining ( A . 2 . 1 2 ) , ( A . 2 . 1 3 ) , and ( A . 2 . 2 6 ) we s e e t h a t 

{ 1} f o r a l l 5 i f v x = v 2 ^ 0 

( A . 2 . 2 7 ) R $ ( v ) ~j Z/2Z f o r 5 2 - 1 i f v 1 * 0 , v 2 = 0 

L { 1} f o " 6 = ( I r O ) i f v ^ 0 , v 2 = 0 

Chas ing t h r o u g h ( A . 2 . 2 3 ) , ( A . 2 . 2 4 ) , ( A . 2 . 2 5 ) and ( A . 2 . 2 7 ) we o b t a i n t h e lemma. 

Q.E.D. 

Proof of t h e Theorem ( 2 . 4 . 4 ) : C o n s i d e r t h e i n d u c e d r e p r e s e n t a t i o n 

Sp(2 ,R) 
( A . 2 . 2 8 ) Ind (6®v) 

PT 

0 

where 6 G Mn and v satisfies (A.2.14). (2.4.4) is a theorem about the 

irreducible subquotients of (A.2.28) containing the lowest KT-types. It 

follows from [VI 4.3.15 c) and 4.4.10] that 

(A.2. 29) the number of irreducible subquotients of (A.2.28) containing a 

lowest K'-type from ^[H ,r,y] is equal to the cardinality of 

Rs(v). 

This and the lemma (A.2.18) imply (2.4.4) via a case by case verification. 

Q.E.D. 

§3. THE UNITARY REPRESENTATIONS ATTACHED TO HQ. 

Here we prove the theorem (2.4.14), which describes the unitarizable 

quotients of the induced representation (A.2.28) containing KZ-types from 

A[H ,r,Y] (2.4.3). 
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We begin by quoting from [K-Sp, §1] Langlands classification of the 

irreducible admissible representations of a connected semisimple Lie group 

G having a faithful matrix representation. Fix a minimal parabolic subgroup 

PQ in G. 

(A.3.1) Theorem [K-Sp, §1]• The (equivalence classes of) irreducible 

admissible representations of G stand in one to one correspondence with all 

triples (P,5 ,v) where 

(A.3.2) P = MAN is a parabolic subgroup of G containing the fixed 

minimal one PQ. 

(A.3.3) 6 is an irreducible tempered unitary representation (2.2.15) 

of M 

(A.3.4) v is a complex valued linear functional on the Lie algebra _a_ 

of A with Re v in the open positive Weyl chamber. 

The Langlands representation J(P,6,v) is the unique irreducible quotient of 

the induced representation 

(A.3.5) Indp(6®v) 

and is given as the image of an explicit intertwining operator 

(A.3.6) A(9P,P,6,v) : Ind^(6®v)+ Ind^(6®v) 

Here 0 denotes a fixed Cartan involution on G. Let K be the corresponding 

maximal compact subgroup of G. 

Right after this comes the 

(A.3.7) Unitarizability Criterion [K-Zl, K-Sp Si]. J(P,6 ,v) is 

infinitesimally unitary if and only if 

(A.3.8) there exists a w in K normalizing A. with 

wPw = 6P, w6 ? 5 , w v = - v ; and 

(A.3.9) the hermitian intertwining operator 

Licensed to Univ of Oklahoma.  Prepared on Fri Nov  3 21:38:48 EDT 2017for download from IP 129.15.14.45.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



82 TOMASZ PRZEBINDA 

B(P,w,5,v) == 5(w)R(w)A(6P,P,5 ,v) 

is positive or negative semidefinite. 

Here R(w) denotes the right translation of functions by w, and 5(w) is an 

extension of 6 to the smallest subgroup of G containing M and w. Such 

an extension exists - see [K-S, Lemma 7.9]. Moreover the operator B(P,w,6,v) 

is independent of a choice of a representative w in the normalizer of A in 

K [K, pp. 546]. 

(A.3.10) Example. Let G = Sp(2,R). The representations listed in (2.4.4) 

are either tempered - if Re v. = Re v = 0 or of the form IT = J(P,6,v) 

(A.3.1) with P * G. Using the lemma (A.2.18) we verify the following 

interpretation of (2.4.4) in terms of (A.3.1): 

(A.3.11) Re v > 0, Re(v -v2) > 0. Then P = P' is minimal and 

II, with v = v ,e +v 9e , is one of the representations (2.4.6), (2.4.7), 

(2.4.8), (2.4.11) depending on 5 = (ol>o2), (A.2.4). 

(A.3.12) Re vL = Re v 2 > 0, P = P^ (2.2.10) and TI is one of the 

representations (2.4.6), (2.4.7), (2.4.8), (2.4.11) depending on 

Ml 6 = I n dMnp (a®0)> ° = ( al j a2 ) G V 

Here e
1
+ e

9 i-s viewed as an element of _a* (2.2.7) in the obvious way and 6 

is irreducible [VI Ch I §4] . 

(A.3.13) Re v > 0, Re v = 0, P = P' (2.2.13). Here the situation is 

more complex. Let 

M2 

T = I n V p
o

( a 0 V 2 e 2 ) 

where a = (a,,cr9) G M and e9 belongs to a* in the obvious way. It 

follows from the well known properties of the principal series of SL(2,R) 

[VI Ch I §3] that 

T is irreducible if a9 = 0 or v? * 0, and 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 83 

x = 6 ®5_ is a direct sum of two irreducible tempered representations if 

a = 1 and v 2 = 0. 

Therefore n with a = 0 and 6 - T is one of the representations (2.4.6) , 

(2.4.7) depending on a.. If v ? * 0 and 6 = T then n is one of (2.4.6), 

(2.4.7) (2.4.8), (2.4.11) depending on (a^o^). For a 2 = 1 and v 2 = 0 . 

J(P ,5 ,v,e ) is one of (2.4.9), (2.4.12), and J(P ,6_ ,v e ) one of 

(2.4.10), (2.4.13) depending on a . 

Here the last sentence actually determines 5 and 5_. Also e G a* 

in the obvious way. 

We shall investigate the unitarizability of the Langlands quotients 

(A.3.10) via a careful analysis of the intertwining operators (A.3.6). Let us 

begin by recalling some known facts about them from [K-S, K, W2] for a 

general connected, semisimple Lie group G. 

Let P be a minimal parabolic subgroup of G with a Langlands 

decomposition P = MAN. For any element w in the normalizer of A in K 

and for v G _a* with the real part in the open positive (with respect to N) 

Weyl chamber, and any 6 G M one defines the G-intertwining operator 

G G 
(A.3.14) A(w,5,v): Ind (6®v) > Ind (w5 ® wv) 

P P 
by the integral 

(A.3.15) A(w,6,v)f(x) = / f(xwy)dy. 
w Nw n 6N 

Here dy stands for an appropriately normalized measure on the indicated 

nilpotent group [K-S Ch I §2] and the above integral is convergent [K-S Prop. 

4.1]. Recall that the Weyl group W(A) = NK(A)M/M is generated by simple 

reflections w (a G A (£>j0 simple positive root) and that by the length of an 

element w G W(A) one understands the smallest possible number of w 's such 
a 

that w is a product of them. An important property the intertwining operators 

(A.3.14) have is the so-called cocycle relation: for w , w? G W(A) 

(A.3.16) if length (w w2) = length (wj,) + length (w2) then 

A(w1w2,6,v) = A(w1 ,w2<5 ,w2v) A(w2>6,v), 
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[K-S, Prop 7. 8(iv)]. 

It is well known that the space of K-finite vectors in the induced 
Q 

representation Ind (6®v), as a representation of K, is isomorphic to the 
P 

following direct sum 

(A.3.17) © TT ® HomM(TT,5), [K-Sp Prop 5.1, W2 §8.11]. 

TTGK 

We shall interpret the operators (A.3.14) in the context of (A.3.17). For 

each element x of G = KAN we have its Iwasawa decomposition: 

(A.3.18) x = k(x)a(x)n(x) 

Put p = p(n) (see "Nota t ion" ) . For TT G K, w G N__(A), v G a* with the r e a l 
is. — 

p a r t in the pos i t i ve Weyl chamber define 

(A.3.19) A (w,v) = / e"" ( v"h D )(a(x)) ir(k(x) ) ~ l dx TT (W) ~*. 
* w Nw O 6N 

Then 

(A.3.20) A (X,V)TT(W) G Horn (TT ,TT ) [K-Sp Prop 5 . 2 ] , 

and A(w,6,v), (A.3 .15) , when r e s t r i c t e d to the space of K- f in i t e vec to rs 

(A.3.17) coincides with the following d i r e c t sum 

(A.3.21) © „ id 9 r(A (w ,v ) ) , 
TTGK * 

where id is the identity operator on TT and r( A (w,v)) means the operator 
TT TT 

of r i g h t m u l t i p l i c a t i o n by A (w,v) on the space HOBLXTT ,6 ) [K-Sp, Prop 

5 . 2 ] . Therefore the cocycle r e l a t i o n (A.3.16) t r a n s l a t e s to 

(A.3.22) A (w w ,v) = A (w_,v)A (w. ,w9v) i f 
TT 1 2 T T 2 TT 1 2 

w , w G W(A) and length (w w ) = length (w,) + length (w 9). 1 2 1 2 -L ^ 

Assume now that the conditions of the Unitarizability Criteria (A.3.7) are 

Licensed to Univ of Oklahoma.  Prepared on Fri Nov  3 21:38:48 EDT 2017for download from IP 129.15.14.45.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR o(2,2), Sp(2,R) 85 

satisfied and consider the operators B(P,w,6,v) (A.3.9) from the view point 

of the K-decomposition (A.3.17). 

For a IT E K define an operator on Horn (TT ,5 ) : 
n 

(A.3.23) B (w,6,v) = l(6(w))r(A (w,v)) 
TT TT 

where 1(5(w)) is the multiplication on the left by 5(w). Then 

B(P,w,6,v), when restricted to the space of K-finite vectors (A.3,7) 

coincides with the following direct sum 

(A.3.24) © id ® B (w,5 ,v) 
TT TT 

7TEK 

Therefore the Unitarizability Criteria (A.3.7) can be expressed as follows: 

(A.3.25) The Langlands quotient J(P,<$ ,v) is unitarizable if and only if 

( A . 3 . 2 6 ) t h e r e i s a w E W(A) w i t h w Pw = 9P, w6 = 5 , wv = -v" 

a n d 

( A . 3 . 2 7 ) t h e h e r m i t i a n o p e r a t o r s B ( w , 6 , v ) , TT <8> K, 
TT 

are all positive semidefinite, or all are negative semidefinite. 

For any w E W(A) any TT E K and any v in the positive Weyl chamber define 

(A.3.28) A1T(w,v) = / , exp(-(v+p))(a(x)) 7TC(k(x))dx 
w N»n 8N 

where a(x), k(x) are defined in (A.3.18) and TT stands for the 

contragradient representation to TT . Assume that dim 6=1. Then 

(A.3.29) r(A (w,v)) = TT°(W) A* (w ,v ) 
TT 

and if w,5,v satisfy (A.3.26) then 5 (w) E C and 

(A.3.30) B (w,5,v) = 5(W)TT C(W)A 7 T(W,V). 
TT 

(A.3.31) Example. First we compute the determinants of the operators 

B (w,6,v) for G = Sp(2,R). Put 
TT 
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( A . 3 . 3 2 ) w^ = w w_ w w. 
0 e r e 2 2 e 2 e fe % 2 e 2 

( A . 2 . 5 ) . 

Then f o r t h e minimal p a r a b o l i c P = P* ( 2 . 2 . 1 0 ) 

( A . 3 . 3 3 ) wrt Fw = 9P, wA5 = 5 f o r 6 G M, and w v = -v f o r v G a* . 
9 6 6 0 — 

To s a t i s f y t h e symmetry c o n d i t i o n ( A . 3 . 2 6 ) of t h e U n i t a r i z a b i l i t y C r i t e r i a we 

s h a l l assume t h a t 

( A . 3 . 3 4 ) v = v 1 e 1 + v 2 e 2 ; v^ , v 2 G R; vL , v 2 > 0 ; v - v 2 > 0 . 

The maximal compact subgroup (2.1.2) of G is isomorphic to K = U(2) via the 

maps (1.4.18) and (1.4.15). Explicitly 

(A.3.35) 0(4)nSp(2,m) 3 _ X y ~ x + iy G K. 
I y x 
L. —I 

In particular 

(A.3.36) w can be represented by diag(-i,-i) G K, (i = /-l) 

and therefore for 6 = (6,,69) G M (A.2.4) we have 

(A.3.37) 5(wQ) = 1 if 5 1 = 62, 6 (w ) = i if 6L * 5 2 

2 2 (because 6(w ) = 5(w ) = 5(-identity)), 

For an irreducible unitary representation TT = TT ' (2.1.9) of K chose a 
m,n 

basis of weight vectors v. of TT = TT ' with respect to the diagonal 
J - n , - m 

C a r t a n subg roup of K = U(2) such t h a t 

( A . 3 . 3 8 ) T i C ( d i a g ( u 1 , u 2 ) ) v . = u ~ j " n u ^ ~ m
v . ( j = 0 , 1 , 2 , . ,m-n) . 

(A.3.39) Lemma. The ,5-isotypic component of rr is equal to 

(A.3.40) Cv. 
j-m-iS2G 2Z 

for m-n-5 -<5 2 G 2Z 

and to zero otherwise. 

Proof: Putting u, = u9 = -1 in (A.3.38) we see that the condition (A.3.40) is 
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THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 87 

necessary for the space in question to be non-zero. Taking Ui = 1 and u9 = -1 

in (A.3.38) we check that (A.3.40) is correct 

Q.E.D. 

Let for x G Rand n = 1,2,3,4..,, 

U.3.41) •(x.o) = r(±)r(§)r(-̂ )_1, 

• Oc.i) - r ^ r ^ r ^ ) - 1 , 

<j,(x,2n) =^(x,0)n (x-(2j-l))(x+(2j-l)) \ 
j-l 

n -1 
<t,(x,2n+l) =<()(x)l)n (x-2j)(x+2j) . 

j-l 

For m G Z put <j>(x,m) = tj> (x, |m | ) . 

(A.3.42) Lemma. Let TT = IT ' , v be as in (A.2.14), and m, n 

6 = (6, ,69) G M. Then, with a = e - e , the determinant of the operator 

(A.3.43) A (w ,v) restricted to the 6-isotypic component of IT 
a 

(A.3.44) n <{>(v,-v , m-n-2j) 
3-0 

where d is an integer equal to 

(A.3.45) (m-n-l)/2 for 6 * 6 , 

(A.3.46) (m-n-2)/2 for 6 = 5 2 and m-6 G 2Z+1 

(A.3.47) (m-n)/2 for 6 = 62 and m-6 G 2Z. 

If a = 2e9 and m-n-6 -5 G 2Z, then the determinant of the operator (A.3.43) 

is 

(A.3.48) II <j> (v 9 ,m-j ) , where the product is over the integers 
J 
0 < j < m-n satisfying j-m-5 G 2Z. 
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Proof: We begin with the formulas for the Iwasawa decomposition (A.3.18) of 

elements of the group w Nw n 6N: (see [VI, 1.3.6]) 
a a 

( A . 3 . 4 9 ) 

1 0 0 0 
x 1 0 0 
0 0 1 - x 
0 0 0 1 

X b"1 1 -x 
x 1 

- 1 - 1 2 2 
d i a g ( b , b , b ,b ) , b = (1+x ) f o r a = e 1 - e 

A . 3 . 5 0 ) 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 x 0 1 

1 0 
0 ( l - i x ) b ' 

d i a g ( l , b , l , b X ) , b = ( l + x 2 ) 1 / 2 f o r a = 2e 

By a s t r a i g h t f o r w a r d c o m p u t a t i o n one c h e c k s t h a t f o r Re y > 0 , 

( A . 3 . 5 1 ) 
2 - y (1+y) ? " "? n 

»(y»n) = J R ( l + x ) ( ( l - i x ) ( l + x Z ) Z ) n d x , 

where <f> was defined in (A.3.41) [K-Sp (5.8)]. 

Since p = p(n) is equal to 2e + e? (A.2.1) 

(A.3.28) and from the formulas (A.3.50) that the operator 

Since p = p(n) is equal to 2e + e? (A.2.1) it follows from the definition 

(A.3.52) A (w_ ,v) acts on v. (A.3.38) via the multiplication by 
2 e

2 J 
<j> (v2,j-m). 

This statement together with the lemma (A.3.39) imply (A.3.48). 

Similarly, since 

(A.3.53) 1 -x 
x 1 

1-ix 0 
0 1+ix (for s see (3.1.1)), 

the definition (A.3.28) and the formula (A.3.49) imply that 

( A . 3 . 5 4 ) A (w ,v ) a c t s on TT ( c ) v ( A . 3 . 3 8 ) v i a t h e m u l t i p l i c a t i o n 
e r e 2 J 

by <|> (v -\> ,m-n-2 j ) . 
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Combining (A.3.54), with the lemma (A.3.39) we get (A.3.44). 

Q.E.D. 

( A . 3 . 5 5 ) Lemma. Under t h e a s s u m p t i o n s of ( A . 3 . 4 2 ) , t h e d e t e r m i n a n t 

D(TT,6,Y>) of t h e o p e r a t o r 

( A . 3 . 5 6 ) A (w , v ) r e s t r i c t e d t o t h e 6 - i s o t y p i c component of TT i s 

e q u a l t o 

( A . 3 . 5 7 ) n ( c | ) (v 1 -v 2 ,m-n -2 j ) ( ( ) (v 1 +u 2 , m - n - 2 j ) ) 
d 
n 

j-o 

m-n m-n 
x n ( j ) ( v , , j - m ) x n <j)(v9 ,j-m) 

j=0 j - 0 

j - m - 6 . G 2Z j - m - 6 2 G 2Z 

fo r 6 * 5 2 , d = ( m - n - l ) / 2 G Z, and t o 

d 
( A . 3 . 5 8 ) n (<j>(v -v ,m-n-2j)(|>(v +v ,m-n-2 j ) ) x 

j=0 

x n ( ^ ( v , , j -m) ( ( f>(v 9 , j -m) ) 
j - 0 

j - m - 5 2 G 2Z 

f o r 6 = 6 2 , d = ( m - n - 2 ) / 2 G Z i f m - L E 2Z+1 and 

d = ( m - n ) / 2 G Z i f H G 2Z. 

P roof : Put a = e i ~ e
9
 an& B - 2e . Then ( A . 3 . 3 2 ) w i t h t h e c o c y c l e r e l a t i o n 

( A . 3 . 2 2 ) and ( A . 3 . 2 9 ) imply t h a t 

(A. 3 . 5 9 ) A (wrt ,v) = IT (w w w„) A (w ,w w w u ) TT (w W w r t) x 
0 B a B a B a B B a B 

C — 1 TT C 
X 7T (W W f l) A (W ,W W f l v ) TT ( w W ) X 

a B B a B a 8 

C — 1 TT C 
X TT ( W . ) A (W ,W v ) TT (W ) X 

P a p p 

x A (w ,v ) • 
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c c 
Let 7T be t h e 6 - i s o t y p i c component of TT . S i n c e w a c t s t r i v i a l l y 

on M , ( A . 3 . 5 9 ) i m p l i e s t h a t 

( A . 3 . 6 0 ) detCA^Cw , V ) | T T ^ ) - d e t C A ^ w ,w w w0v) lir^) x 
a 5 a S a 3 ' 6 

x d e t ( A (w0 ,w w 0v) |TT. t ) x d e t ( A (w , w v ) | i r x ) 
p a p o oc p o 

IT 

x d e t ( A (w ,v ) |TT5) 

where 6 ' = 6 for 6, =6„ and 6 ' = w 5 for 6, * 6„. 1 2 a 1 2 

This combined with the lemma (A.3.39) completes the proof. 

(A.3.61) Proposition. The determinant B(TT,6,V) of the operator 

B (w .6 ,v) (A.3.30) restricted to the 6-isotypic component of TT 
7T 8 

equal to (see (A.3.55) for D(TT,6,V)) 

(A.3.62) (_i)m(d+1) D(TT,5,U) for 5 x * 62 , d = (m-n-l)/2e Z; 

6 e 
(A.3.63) (-1) D(TT,6,V) f or 6 l = 62, e - (m+n) /2 , 

(m-n)/2 G Z. 

Proof: Clearly by (A.3.37), (A.3.32) and (A.3.39) 

det(6(wo)TrC(wft)| c) = (6(w J(-l)m(-i)m~n)k 
y y IT., y 

o 

where k = dim TT . This and the lemma (A.3.39) completes the proof. 
5 

( A . 3 . 6 4 ) Theorem. The Lang lands q u o t i e n t J ( P , 6 , v ) ( A . 3 . 1 1 ) i s 

u n i t a r i z a b l e i f and on ly i f e i t h e r 

( A . 3 . 6 5 ) v i , v 2 G R ; v l + v 2 < l i a n d °l = °2* °T 

( A . 3 . 6 6 ) v . = 2, v 2 = 1, a i = a 2 = °* 

In the last case this quotient is a trivial representation. 
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Proof: We work in the open Weyl chamber (A..3.11). The symmetry criteria 

(A.3.26) requires that 

(A.3.67) v ! » v
2
 G R 

The fact that under the condition (A.3.66) J(P,6,v) is trivial is well known 

(recall that p = 2e +e ) and follows, for example, from [K-S, (3.5)]. A 

generalization [B-W, Theorem 5.2] of the Howe-Moore theorem [H-M] on vanishing 

at infinity of the matrix coefficients of a non-trivial, irreducible, unitary 

representation of a real, simple, algebraic group imply that we may restrict 

our attention to v satisfying (A.3.11), (A.3.67) and 

(A.3.68) v -KJ < 3 and v < 2. 

It follows from the lemma (A.3.55) that in this region the representation 

(A.3.69) IndG(6®v) 
P 

i s reducible only on the following l ine segments: 

(A.3.70) ^ " ^ 9 = l ° r v l = 1 ° r v2 = l ° r V l ~ v ? = 1 f o r 6 = (°>°)» 

(A.3.71) vi"K,2 = 1 ° r Vl"V2 = l for 5 = (1 ,1 ) , 

(A.3.72) v l + v 2 = 2 ° r V2 = 1 for 6 = (1 ,0 ) , 

(A.3.73) v l + v 2 = 2 ° r Vl = l for 5 = (0 ,1 ) . 

The Proposition (A.3.61) and the fact that the function r (x) (A.3.41) i s 

posit ive for x > 0 imply that the determinant B(TT,6,V) (A.3.61) is a 

posi t ive multiple of 

(A.3.74) 1 for TT = TT̂  Q , 5 = (0,0) 

(A.3.75) (v 1 -v 2 -D(v 1 +v 2 -D for TT =7^ _ 1 $ 5 = (0,0) 

(A.3.76) 1 for TT = TT' , 5 * 5 

(A.3.77) -1 for TT = TT̂  , 5 * 6£ 
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(A.3.78) -1 for TT = TT » _ , 5 = (1,1) 

(A.3.79) -(v1-v2-D(v1-+v2-l) for * " *g _2' 6 " ( 1 , 1 ) 

From (A.3.39) we deduce that all the K-types TT in (A.3. 74) ,... , (A.3.79) 
c 

have the property that dimGr.) = 1. Therefore the Unitarizability Criteria 
<5 

and (A.3,76), (A.3.77) imply that 

(A.3.80) J(P,6,v) is not unitarizable for 61 * 6 ?. 

Similarly (A.3.74), (A.3.75), (A.3.78), (A.3.79) combined with (A.3.68) and 
the continuity argument [K-Sp §4] imply that 

(A.3.81) if J(P,5,v), with 6 = 6 9, is unitarizable then V.+Y> < 1. 

Let 0 < y < 1/2. One can check (easily) using [VI 4.2.25] and the 

properties of the principal series of SL(2,R) that 

n 
(A.3.82) Ind (<5®u(e +e 2)) is irreducible. 

Harish-Chandra's theorem [VI, 4.1.20] implies that 

(A.3.83) lndG (6 ® y(e t-e 0)) is irreducible for all 6. p 1 2 

By double induction [VI, 4.1.17] (A.3.83) coincides with 

Q 

(A.3.84) Ind , (T ® V ) , where v = 0 and 
Pl 

M 
(A.3.85) T = Ind^^S ® u(ei-e2)). 

Since M = SL (2,R),T is (irreducible and) unitarizable iff 5 = 69» 

Therefore (A.3.84) is unitarizable iff 5. = 69 and the continuity argument 

completes the proof. 

Q.E.D. 

(A.3.86) Proposition. The Langlands quotient (A.3.12) is unitarizable if 

and only if 0 < v = v ? < 1/2 and a = a?. 
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Proof: The symmetry condition (A.3.26) (with w = w ) requires that 
8 

3 
U - v, = v« G R. Since p (n. ) = — (e +e ), Howe-Moore theorem [B-W, 

theorem 5.2] implies that we may restrict our attention to 

(A.3.87) y < |. 

Now a straight forward analysis of reducibility of the induced representation 

(A.3.82) - for example via [VI, 4.2.25] - combined with the theorem (A.3.64) 

and the continuity argument [K-Sp, §4] implies (A.3.86). 

Q.E.D. 

(A.3.88) Proposition. The Langlands quotient (A.3.13) is unitarizable if 

and only if either 

(A.3.89) a = a = 0, 0 < v < 1 and v = 0, or 

(A.3.90) a = 1, 0 < vx < 1 and v 2 = 0. 

Proof: The proof of this proposition under the assumption o - 0 is 

entirely analogous to the above proof of (A.3.86). The case a = 1 follows 

directly from [K-B]. 

Q.E.D. 

The Theorem (2.4.14) follows from (A.3.64), (A.3.86), (A.3.88) by chasing 

through the dictionary (A.3.10). 

§4. THE REPRESENTATIONS INDUCED FROM MAXIMAL PARABOLIC SUBGROUPS. 

Since the representations induced from maximal parabolics are understood 

for any connected semi-simple Lie group other than F, or split G„ [K-B] we are 

not going to elaborate on this subject here. As a hint for a reader willing 

to do the computations we mention that one can deduce (2.4.20), (2.4.25), 

(2.4.29), (2.4.39) from the properties of the (nonunitary) principal series 

representations of SL(2,ffi.) by rewriting the representations (2.2.16) in 

terms of, so called, 0-stable data [VI, 6.6.2] and then using [VI, 6.6.15] 

together with the Vogan-Wallach theorem [V4, Wl] on the unitarizability 

preserving properties of Zuckerman functors. The methods used in [K-B] are 

different. 
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APPENDIX B. THE SMOOTH FROBENIUS RECIPROCITY THEOREM. 

For reader's convenience we present here an immediate consequence of the 

theorem 5.3.3.1 in [Wa]. 

Let G be a Lie group and P a closed subgroup of G with G/P compact. Fix 

two Frechet spaces V and V . Let G act on Vf and P act on V. We define 

a subspace 

(B.l) IndG(V) c C°°(G,V) 

consisting of these functions f e C (G,V) , that 

(B.2) f(Xy) = p(y)"1 y"1 • f(x) (x e G, y e P) . 

1/2 Here p(y) = (A_(y)/A (y)) where A r, A are modular functions on G G p G p 

and P respectively. The group G acts on the space (B.l) via the left 

translations: 

(B.3) y . f(x) = f(y_1x) (x,ye G) . 

( B . 4 ) Theorem. Under t h e above a s s u m p t i o n s 

Horn ( V , p®V) =? Homr,(Vf , I n d G ( V ) ) 
P G p 

where for a P-intertwining map 

u : V > p ® V 

the corresponding G-intertwining map is given by 

(B.5) Ind u(x)(v) = u(x"1«v) (x e G, v G V ) . 
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APPENDIX C. THE DETERMINANT REPRESENTATION OF 0(p,q) 
AND THE OSCILLATOR DUALITY CORRESPONDENCE. 

Let V be a finite dimensional, real vector space with a symmetric, 
nondegenerate, bilinear form (,) of signature p,q. Denote by 

(C.l) G the isometry group of (V,(,)). 

Then clearly G is isomorphic to the matrix group 0(p,q). 

For an integer m > 1 let 

(C.2) X be an m-dimensional, real vector space and X = V ® X . m m 

Here, and in the rest of this paper, ® = ® . Denote by 
R. 

(C.3) S(X) the Schwartz space of rapidly decreasing functions on X 
as usual. Since the group G acts naturally on X we may define the 
following representation of G on S(X), 

(c.4) a(g) f(x) = f(g_1x) (g e G, f G s(x), x e x), 

and by dua l i z a t i on extend i t to S*(X) 

(C.5) ( a ( g ) u ) ( f ) = u(Q(g _ 1 ) f ) (g € G, f e S(X), uG S*(X)). 

By a standard argument one can show that for p+q < m 
(C.6) there is a non-zero u in S*(X) such that 

fi(g)u = det(g)u (g e G). 

Here det is the character of G by which G acts on the top-dimensional 
component of the exterior algebra of V [Jl, pp. 395]. 

(C.7) Theorem. Assume that p+q > m. Then there is no, non-zero, tempered 
distribution u e S*(X) such that 

(C.8) fl(g)u = det(g) u (g e G). 

Proof: We begin with a reformulat ion of t h i s theorem in terms of the theory 

of the Osc i l l a to r Duality Correspondence (Ch. 1). Let X* stand for the dual 
m 

vector space to X (C.2). Define the vector space 

(C.9) V = X © X* with a nondegenerate symplectic form m m 
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(x © x*, y © y*) ' = x*(y) - y*(x) (x,y G X ,x*,y* e X*). 
m m 

Denote by 

(CIO) G' the isometry group of (V ,(,)'). 

Let 

(C.ll) W = V® V and <,> be the symplectic form on W obtained by 

tensoring the symmetric form (,) on V and the symplectic form (,)' on V . 

Then, since G and G' act in the obvious way on W, preserving the form <,> 
we may identify them with their images in Sp(W), (1.1.1), respectively. 

Let 

(C.12) 'Sp(W) denote the metaplectic group (1.2.3), 

pr : 'Sp(W) -• Sp(W) 

the corresponding covering map, and 

a) the oscillator representation of Sp(W) (1.2.6). 

Choose the Schrodinger model (1.3.22) of u> adapted to the decomposition 

W = X © Y 

where X is as in (C.2) and Y = V «> X*. Then it follows from (1.3.16) that 
m 

(C.13) there is a cha racter ch of G (= pr (G)) such that the kernel of 
ch is isomorphic to G and 

w(g)f = ch(g) fi(pr(g))f (gGG, fGS(X)). 

Define the following, one dimensional, representation of G: 

(C.14) n(g) = ch(g) det(pr(g)) (g e G) . 

Then clearly (C.13) and the Proposition (1.2.19) imply that the Theorem (C.7) 
is equivalent to the following statement: 

(C.15) n £ R(G,co) (1.2.12) . 

We shall need some additional notation to show (C.15). 
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Let us choose a decomposition of the space V into an orthogonal sum of 
anisotropic subspaces V and V such that the restriction (,) of the form (,) 

to V is positive definite and the restriction (,) of (,) to V is negative 

definite: 

(C.16) V = V e V , (,) = (,) e (,) , (,) > 0, (,) < 0. p q p q p q 

Let 

(C.17) G be the isometry group of (V , ( ,) ) , (s = p,q) 

and 

(C.18) K be the subgroup of G consisting of all the elements g in G 
which preserve the decomposition (C.16) of V. 

Then K is a maximal compact subgroup of G and there is an obvious 
isomorphism from G x G onto K: 

P q 

(C.19) G x G 3 ( g , g ) + g G K with 
p q p q 
g(v © v ) = g v © g v , (v E V , s = p,q). 

p q P P qq s s 
Let 

(C.20) W = V ® V , <,> = (,) ® (,)', (s = p,q), as in (C.ll). s s s s 

Since G (s = p,q) and G' act in the obvious way on W , preserving the form 

<,> , we may embed them into Sp(W ). 

Let 

(C.21) Gf be the image of G' in Sp(Wg). 

We shall identify G and Gf with their images in Sp(W ). The decomposition 

(C.16) and the definition (C.ll) imply that 

(C.22) W - W e W , <,> = <,> © <,> . 
p q p q 

Thus clearly we have the injection 
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(C.23) Sp(W ) x Sp(W ) 3 (g , g ) + g G Sp(W) with 
p q p q 

g(w © w ) = g (w ) e g (w ), (w E W , s = p,q). p q p p q q s s 

It is known, and not hard to check, that 

(C.24) the centralizer of K in Sp(W) preserves the decomposition (C.22) 
and its preimage by (C.23) is equal to G' x G' (C.21). 

Moreover by 

(C.25) composing the injection Gf •> Sp(W) with the inverse of (C.23) and 
with the isomorphism G' x G1 -• G' x Gf (C.21) we obtain the 

P q 
diagonal embedding 

G' 3 g • (g,g) E G< x G'. 

So far we have constructed the following reductive dual pairs 

(C.26) G,G' in Sp(W), 

G ,G' in Sp(W ) (s = p,q), s s s 

K, Gf x Gf in Sp(W), (K =? G x G ). 
P q p q 

Let K' be a maximal compact subg roup of G ' . Then, a s i n [H4, I , P r o p . 12 .3 ] 

(C .27 ) t h e r e i s an i somorphism K' ~ U(m). 

For s ~ p , q l e t l3p(W ) be t h e m e t a p l e c t i c g roup ( 1 . 2 . 3 ) w i t h t h e c o v e r i n g 
map 

(C .28) p r : 1Sp(W ) > Sp(W ) . 

Let (Sp(W ) x Sp(W ))~ denote the preimage under pr (C.12) of the image of 

Sp(W ) x Sp(W ) in Sp(W) under (C.23) . Then a standard argument shows that 
p q 

there is a group homomorphism id such that the following diagram is 
commutative: 

Licensed to Univ of Oklahoma.  Prepared on Fri Nov  3 21:38:48 EDT 2017for download from IP 129.15.14.45.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE OSCILLATOR DUALITY CORRESPONDENCE FOR THE PAIR 0(2,2), Sp(2,R) 99 

Sp(W )xSp(W ) — > (Sp(W )xSp(W ))~ 

(C.29) pr xpr Jpr 

I P q i 
Sp(W )xSp(W ) — — > Sp(W )xSp(W • ) . 

p q id p q 

Here id stands for the identity map, as usual. Moreover 

(C.30) the pull back of ^ ^ ^ j f 

to Sp(W )xSp(W ) by Id coincides with ^ ® 03°. 
P q P q 

Here w is the oscillator representation of 1sp(W ) contragradient to w . 
Put 

(C.31) G^ = prs
_1(G'), ^ = Pr

s"1(K') <s = P>q). a n d 

K = pr_1(K), K» = p r " 1 ^ ' ) . 

We shall need a parametrization of representations of Kf , .̂f (s = p,q) which 

occur in a) , 0) respectively. It is known and not hard to check that s 

(C.32) any of the groups Kf , Kf (s = p,q) is either 

(C.32.1) connected, or 

(C.32.2) is isomorphic to the group U(m)x(Z/2Z). 

Wbreover, by passing to a Fock model (1.4.6), one can check that 

(C.33) in the case (C.32.2) for any representation of the group in question 

(K',K' or K') its pull back to U(m)x(Z/2Z) has the property that 
p q 

the (Z/2Z) acts non-trivially. 

Combining (C.3 2) and (C.33) we see that 

(C.34) any representation which occurs in R(K' ,o)) or R(K' ,u> ) (s = p,q) 

(1.2.11) is completely determined by the derived representation of 
the corresponding lie algebra. 
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The lie algebras of Kf , K', K' are all isomorphic to the lie algebra u(m) 
p q — 

(C.27). The finite dimensional, irreducible representations of _u_(m) may be 

parametrized by highest weights with respect to the upper triangular Borel 

subalgebra of _u_(m). These highest weights in turn correspond to m-tuples 

(C.35) y = ^ 1 , U 2 , - . , P m ) , y. €= C, v - yk E Z, (j,k = 1 2,.,m). 

F i n a l l y we come t o t h e e s s e n t i a l p a r t of t h e p r o o f . 

Assume, c o n t r a r y t o ( C . 1 5 ) , t h a t 

( C . 3 6 ) n ® n f E R(G.Gr ,a)) ( 1 . 2 . 1 6 ) 

when n i s as i n ( C . 1 4 ) . Then II h a s t h e u n i q u e K- type IT = II |~ which 
K 

must be of l o w e s t d e g r e e ( 1 . 5 . 1 1 ) . Moreoever i t f o l l o w s f rom [K-Ve, I I ] , 

( C . 2 4 ) , ( C . 3 0 ) , ( C . 3 6 ) and t h e lemma ( 1 . 5 . 1 2 ) t h a t 

(C .37 ) p , q < m and deg TT = p+q. 

More precisely [K-Ve, II] and (1.4.6) imply that (for s = p,q) 

(C.38) there is a character ch of 'G such that ch" (1) is isomorphic 
s s s 

to G and if we define 

(C.38.1) TT (g) = ch (g) det (pr (g)) (gE G ) then there is a 

representation nT of G' such that 
s s 

(C.38.2) TT ® n ' E R(G • GT ,o) ) 
s s s s s 

and the lowest degree K'-type TT f of II' has highest weight 

| (!,..,!) + (1,.. 1,0,..,0) (C.35). 

Let TT! be the lowest K1-type of II f (C.36). Combining (C.38.2), (C.30), 

(C.25) (and the obvious identifications of the lie algebras of K', K', KT) 
P q 

we conclude that 

(C.39) the derived representation dn' of the lie algebra of Is.1 occurs 

in the tensor product 
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dir ' ® (dTr')C. 
P q 

It follows from (C.39), (C.38.2) and [Hu, Exercise 12 pp. 142] that 

(C.40) the highest weight (C.35) of TT ' is of the form 

^ (i,...,i) + (x r..,x m) 

m 

with |X | < 1 (j = 1,2,. ,m). 

I n p a r t i c u l a r , a g a i n by [K-Ve, I I ] , 

m 
( C . 4 1 ) deg TT ' = E |X. | < m < p+q = deg TT (C .37) . 

j - l J 

C l e a r l y t h e s t a t e m e n t (C .41) c o n t r a d i c t s Howe's Lemma ( 1 . 5 . 1 7 ) . T h e r e f o r e 

( C . 1 5 ) h o l d s and we a r e d o n e . 

Q.E.D. 

The representation tt defined in (C.4) depends on the integer m (C.2). To 

make it explicit we shall write tt for tt (C.4). 
m 

For G defined in (C.l) let 

(C.42) R(G, tt ) denote the set of infinitesimal equivalence classes of m 

continuous, irreducible admissible representations of G on locally 

convex topological vector spaces which can be realized as quotients 

of S(X) (C.4) by tt (G)-invariant closed subspaces. m 

The following corollary can be verified by the argument used in the proof of 

the theorem (3.6.1). 

(C.43) Corollary. Fix two integers m, n > 1 such that m+n < p+q. Assume 

that 

(C.44) n e R(G, tt ), and m 

(C.45) det ® IT is not equivalent to II. 

Then det ® II 4 R(G, tt ). 
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