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Abstract. Let (G, G′) ⊂ Sp(W) be an irreducible real reductive dual pair of type I in stable
range, with G the smaller member. In this note, we prove that all irreducible genuine rep-
resentations of G̃ occur in the Howe correspondence. The proof uses structural information
about the groups forming a reductive dual pair and estimates of matrix coefficients.

1. Introduction and the main result

One of the most important constructions in representation theory of reductive groups
over local fields and the theory of automorphic representations is the reductive
dual pair correspondence (or theta-correspondence) defined by R. Howe, see [3,6].
In his pioneering works [4,5] R. Howe demonstrated that a certain singular part
of the unitary dual of G′ = Sp2n(R) (or its two-fold cover) can be obtained from
the unitary duals of various orthogonal groups G = Op,q(R), where G is “much
smaller” than G′. This theory was completed by J.-S. Li [7] by incorporating all
irreducible reductive dual pairs (G, G′) of type I in stable range with G the smaller
member over an arbitrary local field F . In this setting, J.-S. Li proved that any
irreducible admissible genuine unitary representation π of G̃ occurs in the corre-
spondence.

The purpose of this note is to give a uniform proof of an analogous result, Theo-
rem 1, without the unitarity assumption on π . This statement seems to be known to
the experts in the area; a sketch of a proof for a dual pair (Sp2n(R), O2m,2n(R)), m ≥
n, appears in [9]. Our argument is similar to both [9, III.5] and [7, Theorem A]. We
should note that the Langlands parameters of the representations occurring in the
reductive dual pair correspondence have been worked out explicitly in many cases
in [1,8,10]. However, this involves a fairly detailed analysis of representations, in
particular, their K -types, and case-by-case considerations. By contrast, our proof
uses only the standard results from the theory of reductive dual pairs (which we
recall below) and some elementary estimates on the matrix coefficients from [12].
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Let W be a finite dimensional vector space over the reals, with a non-degenerate
symplectic form 〈 , 〉. Let Sp(W) be the corresponding symplectic group and let
˜Sp(W) denote the metaplectic group with the covering map

˜Sp(W) � g̃ → g ∈ Sp(W). (1)

Let (G, G′) ⊂ Sp(W) be an irreducible reductive dual pair of type I. The Classifi-
cation Theorem due to R. Howe describes G and G′ as isometry groups of certain
non-degenerate bilinear or sesquilinear forms on their defining modules V and V ′.
One says that the pair (G, G′) is in the stable range with G the smaller memeber if
the defining module for G′ containes an isotropic subspace of the same dimension as
the defining module for G. For example, the reductive dual pair (Op,q (R), Sp2n(R))

is in the stable range with Op,q(R) the smaller member if and only if n ≥ p + q.
Every irreducible admissibe representation of a real reductive Lie group can

be realized on some Hilbert space Hπ so that the maximal compact subgroup acts
by unitary operators. Let G̃, G̃′ ⊂ ˜Sp(W) be the preimages of G, G′ in ˜Sp(W).
Let Z2 be the kernel of the covering map (1). This is a two-element subgroup of
˜Sp(W), contained in both G̃ and G̃′. A representation π of G̃ on a Hilbert space
Hπ is called genuine if and only if the restriction of π to Z2 is a multiple of the
unique non-trivial character of Z2.

Fix a character of the additive group of the real numbers and let ω be the
corresponding oscillator representation of ˜Sp(W) realized on a Hilbert space Hω, as
in [3]. Let H∞

ω be the space of smooth vectors and let H∞
ω

∗ be the linear topological
dual, with the natural action of ˜Sp(W) also denoted by ω.

Theorem 1. Let (G, G′) ⊂ Sp(W) be an irreducible real reductive dual pair of
type I in the stable range, with G the smaller memeber. Let π be an irreducible
admissible genuine representation of G̃ on a Hilbert space Hπ . Then there is a
continuous injective intertwining map

Q : Hπ → H∞
ω

∗. (2)

In fact, there exists a non-zero linear functional v∗ ∈ H∞
ω

∗ such that for any non-
zero vector ν0 ∈ Hπ the following integral is absolutely convergent and defines a
map Q with the required properties:

Q(ν)(v) =
∫

G̃

(π(g̃)ν, ν0)Hπ
v∗(ω(g̃)v) dg̃ (ν ∈ Hπ , v ∈ H∞

ω ). (3)

Remark. In the language of the theta correspondence (or Howe correspondence),
the theorem says that each irreducible genuine representation of G̃ occurs in the
correspondence. That only genuine representations occur in the correspondence
is immediate. On the other hand, we do not assume that the representation π is
unitary.

The intertwining property of the map (3) follows by formal manipulations,
provided that the integral is absolutely convergent. We will verify the absolute
convergence and the injectivity below. This is not difficult but requires some care.
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The argument proceeds similar to the proof of Theorem A in [7] (where the rep-
resentation π was assumed to be unitary), but instead of considering all smooth
matrix coefficients of the oscillator representation ω as in [7], we concentrate on
certain specially constructed ones that are sufficient for our purpose and use some
estimates on the matrix coefficients which may be found in [12]. Very briefly, for
the absolute convergence we show that the first factor in the integrand in (3) is
of moderate growth, while the second one is rapidly decreasing, with respect to
some norm on G̃. In order to establish the injectivity, we construct an equivariant
embedding of G into an isotropic subspace X of W and analyze the action of G̃ in
the mixed model of ω (cf. [9]).

2. Mixed model of ω

Let J ∈ End(W) be a positive definite complex structure. Specifically, J ∈ sp(W),
J 2 = −I , and the symmetric bilinear form 〈J , 〉 is positive definite. Since (G, G′)
is a type I reductive dual pair, we may assume that the conjugation by J preserves
G and thus induces a Cartan involution θ on G. (This is explained in detail in [11]).

Let us view the symplectic vector space W as a real Hilbert space with the
scalar product (u, v) = 〈Ju, v〉. Denote by | | the corresponding operator norm on
End(W):

|T | = max
w∈W: (w,w)=1

(T w, T w)1/2

Then the restriction of | | to G is a norm on this group, in the sense of Wallach,
[12, 2.A.2].

Recall that any irreducible real reductive dual pair of type I can be obtained
as follows, [3,6]. There exist (1) a division algebra D over R, with involution #,
and (2) left D-vector spaces V and V ′ with non-degenerate #-sesquilinear forms
( , ) and ( , )′, one #-hermitian and the other #-skew-hermitian such that G and
G′ are the isometry groups of ( , ) and ( , )′, and W = Hom D(V ′, V ). By the
stable range assumption, the formed space V ′ contains an isotropic subspace X ′ of
the same dimension as V . Since the form ( , )′ is non-degenerate, we may choose
another isotropic subspace Y ′ such that the restriction of the form ( , )′ to X ′ + Y ′
is non-degenerate, and we let V ′

0 be the orthogonal complement to X ′ + Y ′ in V ′.
Then V ′ = X ′ ⊕ Y ′ ⊕ V ′

0. Introduce the following subspaces of W:

X = Hom D(X ′, V ), Y = Hom D(Y ′, V ), W0 = Hom D(V ′
0, V ).

Then X , Y are isotropic and W0 is the orthogonal complement of X +Y in W. Thus

W = X ⊕ Y ⊕ W0.

Let us identify X ′ = V . Then X = EndD(V ) and the right multiplication of
w ∈ W = Hom D(V ′, V ) by x ∈ X induces an embedding

ι : X → End(W).
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We pull back the operator norm | | from End(W) to X via ι. The key observation
now is that

G ⊆ EndD(V ) = X. (4)

Recall [12, 2.A.2.4] that there is d > 0 such that
∫

G |g|−d dg < ∞. Hence, for any
r ∈ R there is N such that

∫

G

|g|r (1 + |g|)−N dg < ∞. (5)

For any g̃ ∈ G̃, its image under the projection (1) to G will be denoted by g, and
we set |g̃| = |g|. We shall realize the oscillator representation ω in a mixed model
associated to the decomposition (4) so that

H∞
ω = S(X,H∞

ω0
), (6)

where ω0 is the oscillator representation of ˜Sp(W0) on the Hilbert space Hω0 . Then
G̃ acts as follows:

ω(g̃)v(x) = ω0(g̃)(v(g−1x)) (g̃ ∈ G̃, v ∈ S(X,H∞
ω0

), x ∈ X), (7)

see section 4 in [7].

3. Construction of the intertwining map Q

Lemma 1. For a seminorm q on H∞
ω0

there is a seminorm q ′ on H∞
ω0

and a constant
C such that

q(ω0(g̃)v0) ≤ q ′(v0)|g̃|C (g̃ ∈ G̃, v0 ∈ H∞
ω0

).

Proof. Our Cartan involution θ induces a Cartan decomposition

G̃ = K AK .

Clearly, it will suffice to verify the statement with G̃ replaced by A. We may realize
ω0 in a Schrödinger model corresponding to a complete polarization W0 = X0 ⊕Y0
preserved by A, and such that H∞

ω0
= S(X0). Then there is a group homomorphism

δ : A → R
× such that

ω0(ã)v0(x0) = δ(ã)v0(a
−1x0) (ã ∈ A, v0 ∈ S(X0), x0 ∈ X0).

Since the seminorm q is given in terms of derivatives and multiplication by poly-
nomials on X0, see [2], the estimate follows. ��
Lemma 2. For a seminorm q on H∞

ω0
and any N ≥ 0 there is a seminorm qN on

H∞
ω such that

q(v(x)) ≤ qN (v)(1 + |x |)−N (v ∈ H∞
ω , x ∈ X).
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Proof. This is clear if we realize ω0 as in the proof of Lemma 1. ��
Lemma 3. For a seminorm q on H∞

ω0
and any N ≥ 0 there is a seminorm qN on

H∞
ω such that

q(ω0(g̃)v(g−1)) ≤ qN (v)(1 + |g|)−N (g̃ ∈ G̃, v ∈ H∞
ω , x ∈ X).

Proof. Lemmas 1 and 2 show that for any M ≥ 0, the left hand side may be
dominated by

q ′(v(g−1))|g|C ≤ q ′
M (v)(1 + |g|)−M |g|C ,

where C does not depend on M . Since there is M such that

(1 + |g|)−M |g|C ≤ (1 + |g|)−N ,

we are done. ��
Fix a non-zero element v∗

0 ∈ H∞
ω0

∗ and define a linear functional v∗ ∈ H∞
ω

∗ by
the formula

v∗(v) = v∗
0(v(1)) (v ∈ H∞

ω ). (8)

Here 1 is the identity of the group G, viewed as an element of X via (4), and v(1)

is in H∞
ω0

, cf. (6). Lemma 3 shows that there are seminorms qN on H∞
ω such that

|v∗(ω(g̃)v)| ≤ qN (v)(1 + |g|)−N (g̃ ∈ G̃, v ∈ H∞
ω ; N = 0, 1, 2, . . .). (9)

As shown in [12, 2.A.2.2], there are constants C , r such that the operator norm

‖ π(g̃) ‖≤ C |g̃|r (g̃ ∈ G̃). (10)

By combining the estimates (9) and (10) of the matrix coefficients and taking into
account the convergence statement (5), we see that the integral (3) is absolutely con-
vergent and that the resulting map (2) is continuous. Thus the map Q is well-defined
and has the required intertwining property. To complete the proof of Theorem 1,
we need to check that this map is injective.

4. Injectivity of the intertwining map Q

Recall the non-zero vectors ν0 ∈ Hπ (3) and v∗
0 ∈ H∞

ω0
∗ (8). Fix ν ∈ Hπ , ν �= 0.

We need to find v ∈ H∞
ω such that Q(ν)(v) �= 0.

Since the representation π is irreducible and ν, ν0 �= 0, the function g̃ �→
(π(g̃)ν, ν0)Hπ

is not identically zero. Hence there is an element g̃ν ∈ G̃ and c ∈ C

such that c(π(g̃ν)ν, ν0)Hπ
> 0. Therefore, there is an open neighborhood Ũ of g̃ν

in G̃ such that

Re c(π(g̃)ν, ν0)Hπ
> 0 (g̃ ∈ Ũ ).
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Since ω0(g̃ν) is invertible, v∗
0 �= 0, we see that v∗

0 ◦ ω0(g̃ν) is a non-zero element
of H∞

ω0
∗ and there exists an element vν ∈ H∞

ω0
such that

v∗
0(ω(g̃ν)vν) = 1.

We may shrink the neighbourhood Ũ if necessary so that

Re
(

c(π(g̃)ν, ν0)Hπ
v∗

0(ω0(g̃)vν)
)

> 0 (g̃ ∈ Ũ ). (11)

Let U ⊆ G be the image of Ũ under the covering map (1). Since π is genuine, the
last inequality continues to hold if we replace Ũ by the preimage of U in G̃, which
we will again denote by Ũ . Choose a function vs ∈ C∞

c (X) such that

vs ≥ 0, vs(g
−1
ν ) > 0, supp vs ⊆ U−1. (12)

Let

v(x) = cvs(x)vν (x ∈ X).

Then v ∈ C∞
c (X,H∞

ω0
) and the definition (8) of v∗, together with the formula (7)

for the action of G̃ in the mixed model imply that

(π(g̃)ν, ν0)Hπ
v∗(ω(g̃)v) = c(π(g̃)ν, ν0)Hπ

v∗
0(ω0(g̃)vν)vs(g

−1) (g̃ ∈ G̃).

(13)

The right hand side of the last expression is a product, where the first factor has
positive real part for g̃ ∈ Ũ by (11) and the second factor is positive for g in the
interior of (supp vs)

−1 ⊆ U and zero on its complement, by (12). Therefore, the
real part of the product is non-negative for all g̃ ∈ G̃ and strictly positive on an
open subset containing g̃ν . It follows that Q(ν)(v), which is the integral of the left
hand side of (13) over G̃, is non-zero.
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