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1. Introduction

The Weil representation is a magnificent structure which keeps appearing in a variety of places throughout Mathe-matics and Physics. This is evident from a simple google or mathscinet search for “oscillator representation”, “Weilrepresentation”, “Howe correspondence” or “local theta correspondence”. The last two terms refer to a correspondenceof irreducible representation for certain pairs of groups, conjectured to exist in [16], proven to exist over the reals in [19],over p-adic fields (p odd) in [39] and essentially proven not to exist over finite fields in [1]. A concise description ofthe Weil representation may be found in [37]. Anyone interested in a short and complete presentation should read thatpaper and stop right there. That work is really hard to improve upon. In this article we take the opposite approach. Wedissect the Weil representation into small pieces, study how they work, and put them back together, in effect checking
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that the formulas of [37, Theorem C] are correct, thus reversing Thomas’ proofs and skipping most of the literature onwhich it is based. Hence the title of this article. The methods we use are elementary, i.e. contained in a graduatecurriculum of an average university in the USA. In contrast, a reader well versed in Algebraic Geometry will certainlyenjoy [6, 7] or [8]. In the real case one should also mentions some classics, such as [24] or [4].The Weil representation concerns a symplectic group defined over a field or over the adeles (or, more recently, over aring [2, 9, 21], or a finite abelian group [32]). The field could be finite or local. We always assume that the characteristicis not 2, skip the case of the complex numbers as not interesting, and the adeles, the rings and the finite abelian groupsas very interesting but requiring more energy, which we have just exhausted. Here is a brief description of what we do.Let F be a finite field of odd characteristic and let W be a finite dimensional vector space over F equipped with anon-degenerate symplectic form 〈 , 〉. The symplectic form induces a twisted convolution \ on the space L2(W), makingit into an associative algebra with identity over C. One may think of it as of “the essential part” of the group algebraof the Heisenberg group attached to (W, 〈 , 〉). For any subspace X ⊆ W, define a measure µX on W by
∫

X ψ(x)dµX(x) := |X|−1/2∑
x∈X ψ(x),

where |X| is the cardinality of X and ψ : X→ C is a function. Fix a non-trivial character χ of the additive group F. Thenthe twisted convolution (with respect to χ) of two functions φ,ψ : W→ C is defined as
φ\ψ(w) := ∫W φ(u)ψ(w − u)χ( 12 〈u,w〉)dµW(u) (w ∈ W). (1)

The algebra H.S.(L2(X)) of the Hilbert-Schmidt operators on L2(X) may be identified with L2(X × X) by assigning theintegral kernel K ∈ L2(X× X) to each operator Op(K ) ∈ H.S.(L2(X)) by setting
Op(K )v(x) := ∫X K (x, x ′)v(x ′)dµX(x ′).

Suppose that X is a part of a complete polarization W = X ⊕ Y. Let K : L2(W) → L2(X × X) be the corresponding theWeyl transform:
K(φ)(x, x ′) = ∫Y φ(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y).

Then we have the following sequence of algebra isomorphisms:
L2(W) K→ L2(X× X) Op→ H.S.(L2(X)). (2)

Let Sp(W) denote the symplectic group, that is the isometry group of the form 〈 , 〉. The main result of [37, Theorem C]gives an explicit formula for a map T : Sp(W)→ L2(W) such that the resulting composition
ω : Sp(W) T→ L2(W) K→ L2(X× X) Op→ H.S.(L2(X)), (3)

is an injective group homomorphism of the symplectic group into the group U(L2(X)) of the unitary operators on L2(X),
ω : Sp(W)→ U(L2(X)), (4)

which has the following “conjugation property”
(
ω(g) Op ◦ K(φ)ω(g−1)) (w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)). (5)
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A reverse engineering approach to the Weil representation

A less explicit formula for T (g) occurred already in [15, Theorem 2.9]. The missing ingredient was the description of thetrace tr(ω(g)), which was done in [36] and led to [37, Theorem C]. A proof of the existence of ω satisfying (4) and (5) isalso available in [5, Theorem 2.4]. In Section 3 we check, via a straightforward but non-trivial computation, that the ωgiven in [37, Theorem C] is indeed a group homomorphism.Our approach is the following. For any g ∈ Sp(W), the left and right radicals of the bilinear form (w,w ′) 7→ 〈(g−1)w,w ′〉coinciding with Ker(g− 1), we get a non-degenerate bilinear form Bg on the quotient W/Ker(g− 1). Let dis(Bg) denoteits discriminant. We set Θ(g) := |Ker(g− 1)|1/2 γ(1)dim (g−1)W dis(Bg), (6)
where

γ(1) = ∫
F
χ(xtx)dµF(x).

Then we define T (g) by
T (g) := Θ(g) χc(g) I(g−1)W ,

where for u ∈ (g− 1)W
χc(g)(u) = χ( 14 〈c(g)u, u〉), (7)

c(g) : (g− 1)W→ W/Ker(g− 1) denoting the Cayley transform, and I(g−1)W is the indicator function of (g− 1)W .Our first main result (Theorem 3.8) asserts that
T (g1)\T (g2) = T (g1g2), for any g1, g2 ∈ Sp(W). (8)

Let ω := Op ◦ K ◦ T . Our second main result (Theorem 3.10) asserts that ω is an injective group homomorphism fromSp(W) to U(L2(X)), that the function Θ coincides with the character of the resulting representation, and that Eqn. (5)holds true.In the case F = R, the reals, one has to deal with the “smog overspreading the infinite field” [15, page 2]. In particularthe first two Hilbert spaces which occur in (2) have to be replaced by the spaces of tempered distributions. Hence, thealgebra structure breaks down, but enough of it survives to make sense out of the formulas like
T (g̃1)\T (g̃2) = T (g̃1g̃2), (9)

where g̃1, g̃2 ∈ S̃p(W), a double cover of Sp(W) (see below). The resulting representation ω of S̃p(W) appeared first in[35], as a natural development in Quantum Mechanics, [38]. Explicit formulas for ω(g̃), g̃ ∈ S̃p(W), may be found in [33,Theorem 5.3] and for T (g̃) in [26]. Furthermore, if one thinks of ω(g̃) as of a pseudo-differential operator, then its Weylsymbol, see [14], is T (g̃).Our approach consists of defining first, for g ∈ Sp(W),
Θ2(g) := γ(1)2 dim (g−1)W (det(g− 1: W/Ker(g− 1)→ (g− 1)W))−1 , (10)

setting next S̃p(W) := {(g, ξ); g ∈ Sp(W), ξ ∈ C×, ξ2 = Θ2(g)},
and finally Θ(g̃) := ξ, for g̃ = (g, ξ) ∈ S̃p(W).
Let χ(r) = exp(2πir) for r ∈ R. Define χc(g) as in (7). Then we set

T (g̃) := Θ(g̃) χc(g) µ(g−1)W ,
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where µ(g−1)W is an appropriately normalized Haar measure on (g− 1)W , and prove that the formula (9) is satisfied.Similar difficulties as for the reals occur when F is a p-adic field, with some new ones, see Section 5 for details. Therepresentation ω was constructed in [42] and the explicit formulas for ω(g̃), g̃ ∈ S̃p(W), may be found in [31]. Ourconstruction in the p-adic case occurs to be a mixed version of the finite and the reals cases, as shows the definition ofΘ(g̃)2 (see Definition 5.15).Checking the equality (8) (or (9)) requires some effort. First we compute the twisted convolution of the unnormalizedGaussians χc(g) I(g−1)W (or χc(g) µ(g−1)W ) and obtain a cocycle C (g1, g2). This is straightforward, but not easy in thesense that one has to keep track of various determinants, which are explained in Section 2. Then we “guess” thenormalization factor Θ(g) (or Θ(g̃)) and verify (8) (or (9)). This second step is more difficult. “Guessing” the normalizingfactor, which happens to be the distribution character of the Weil representation, was done for us by Teruji Thomasin the finite case and others in the remaining two cases. We show that the normalized Gaussians form a group by adirect computation involving the cocycle. The point is that this computation is the same in all three cases (finite, realand p-adic) and avoids the holomorphic continuation to the oscillator semigroup studied in [18, 27] or [29]. In a sense,we replace analytic difficulties by some convoluted linear algebra of Section 2. Our methods are equivalent, but notequal, to those used in [24, sec. 1.4-1.7] where the authors describe the cocycle C (g1, g2)/|C (g1, g2)| and give a formulafor the Weil representation acting in some Schrödinger model. Proving that C (g1, g2)/|C (g1, g2)| is a cocycle relies onKashiwara’s description of Maslov index associated to three maximal isotropic subspaces of W. We deduce this factfrom the associativity of the twisted convolution of the Gaussians. Thus our “convoluted linear algebra” replaces thebeautiful theory of Maslov index. (Another justification for the title of our article.)Weil’s construction covers the cases of all locally compact non-discrete fields (including the reals) and adeles and givesapplications to the theory of automorphic forms. Hence the name “Weil representation”, taking away some of the creditfrom David Shale - a student of Erza Segal. Possibly in an attempt to find a middle ground Roger Howe proposedthe name “the oscillator representation”, [15, page 1]. The names “Segal-Shale-Weil representation”, [22], “metaplecticrepresentation”, [30], and “spin representation of the symplectic group”, [23] have also been used. Since, as the readerwill see, understanding the Fourier transform of a Gaussian is the only prerequisite to follow our reverse engineeringprocess, a name like “Gauss-Fourier-Segal-Shale-Weil representation” is another option. (In fact many researchers havebeen (and most likely will be) fascinated by the Gaussians and wrote volumes about them, see for example [28].) Wechose to use the name “Weil representation”, because it is the shortest one.
2. Linear algebra preliminaries

The first aim of this Section is to collect various results, valid for arbitrary commutative fields of characteristic notequal to 2, that we will use in each of the three next sections. It is the object of the subsections 2.1 to 2.4. The twoother subsections are devoted to determinants over the reals, and over a p-adic field, respectively; the main result isLemma 2.11 (resp. Lemma 2.23), which will be used in the proof of Lemma 4.17 (resp. Lemma 5.16).
2.1. General results on quadratic forms

Let F be a commutative field of characteristic not equal to 2. Let U be a finite dimensional vector space over F. Suppose
q is a non-degenerate symmetric bilinear form on U. Then the formula

Φ(u)(v) = q(u, v) (u, v ∈ U) (11)
defines a linear isomorphism Φ: U→ U∗, where U∗ is the vector space dual to U. The form q∗ dual to q is given by

q∗(u∗, v∗) = v∗(Φ−1(u∗)) (u∗, v∗ ∈ U∗).
Let Q be the matrix obtained from any basis u1, u2, . . . , un of U by

Qi,j = q(ui, uj ) (1 ≤ i, j ≤ n). (12)
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Lemma 2.1.
If Q is the matrix corresponding to q and a basis u1, u2, . . . , un of U, as above, then Q−1 corresponds to q∗ and the dual
basis u∗1, u∗2, . . . , u∗n of U∗.
Proof. Suppose Φ(u) = u∗. Then for any v ∈ U,

u∗(v) = q(u, v) = n∑
i,j=1u

∗
i (u)q(ui, uj )u∗j (v).

Thus
u∗ = n∑

j=1
( n∑

i=1 u
∗
i (u)q(ui, uj ))u∗j .

Therefore
u∗(uj ) = n∑

i=1 u
∗
i (u)q(ui, uj ) (1 ≤ j ≤ n).

In matrix form the above equations may be written as
(u∗(u1), u∗(u2), . . . , u∗(un)) = (u∗1(u), u∗2(u), . . . , u∗n(u))Q.

Hence, (u∗(u1), u∗(u2), . . . , u∗(un))Q−1 = (u∗1(u), u∗2(u), . . . , u∗n(u)).
Thus

u = n∑
j=1 u

∗
j (u)uj = n∑

j=1
n∑
i=1 u

∗(ui)(Q−1)i,juj .
Therefore,

q∗(u∗, u∗) = n∑
j=1

n∑
i=1 u

∗(ui)(Q−1)i,ju∗(ui).
In other words,

q∗(u∗i , u∗j ) = (Q−1)i,j .
2.2. Symplectic spaces

Let W be a finite dimensional vector space over F with a non-degenerate symplectic form 〈 , 〉 and let U ⊆ W be asubspace. We shall identify W with the dual W∗ by
w∗(w) = 〈w,w∗〉 (w,w∗ ∈ W). (13)

Then U∗ = W/U⊥ and (U/V)∗ = V⊥/U⊥, (14)
where the orthogonal complements are taken in W, with respect to the symplectic form 〈 , 〉.
Lemma 2.2.
Let V1,V2 ⊆ W be two subspaces and let w ∈ W be such that V1 ∩ (V2 + w) 6= ∅. Then for any v ∈ V1 ∩ (V2 + w),

V1 ∩ (V2 + w) = V1 ∩ V2 + v.
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Proof. There are vectors v1 ∈ V1 and v2 ∈ V2 such that
v = v1 = v2 + w.

Then V1 ∩ (V2 + w)− v = V1 ∩ (V2 + w)− v1 ⊆ V1 − v1 = V1and V1 ∩ (V2 + w)− v = V1 ∩ (V2 + w)− (v2 + w) ⊆ (V2 + w)− (v2 + w) = V2.Hence, V1 ∩ (V2 + w)− v ⊆ V1 ∩ V2.Conversely, let V1 3 v ′1 = v ′2 ∈ V2. Then
v ′1 + v = v ′1 + v1 ∈ V1 and v ′2 + v = v ′2 + v2 + w ∈ V2 + w.

Therefore V1 ∩ V2 + v ⊆ V1 ∩ (V2 + w).
Let Sp(W ) denote the isometry group of 〈 , 〉:

Sp(W) = {g ∈ GL(W) : 〈gw, gw ′〉 = 〈w,w ′〉 ∀w,w ′ ∈ W} .
Let dim(W) = 2n. Then there is a group isomorphism

Sp(W) ' Sp2n(F) := {A ∈ GL2n(F) : AtJ ′A = J ′}, (15)
where At means the transpose of A, and

J ′ = ( 0 In
− In 0

)
.

The Lie algebra of Sp2n(F) is equal to
sp2n(F) = {X ∈ gl2n(F) : X tJ ′ + J ′X = 0}.

Matrices which belong to Sp2n(F) are called symplectic matrices. It clearly follows from (15) that the square of thedeterminant of any symplectic matrix is 1. In fact, the determinant itself is always 1. Indeed, the determinant of anyantisymmetric matrix can be expressed as the square of a polynomial in the entries of the matrix. This polynomial Pf iscalled the Pfaffian. The following identity holds true: Pf(AtJ ′A) = det(A) Pf(J ′). Since AtJ ′A = J ′, we get det(A) = 1.
2.3. The Cayley transform

For g ∈ Sp(W), we set
g± := g± 1, (16)

and define the Cayley transform by
c(g) : g−W 3 g−w → g+w + Ker(g−) ∈ W/Ker(g−). (17)
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Then the bilinear form
〈c(g)u′, u′′〉 = 〈g+w ′, g−w ′′〉 (u′ = g−w ′, u′′ = g−w ′′, w ′, w ′′ ∈ W) (18)

on the space g−W is well defined and symmetric.
Lemma 2.3.
For any g ∈ Sp(W) the map

g+ : Ker(g−)→ Ker(g−)
is bijective.
Also, for any u = g−w, with w ∈ W, the preimage of c(g)u ∈ W/Ker(g−) under the quotient map W → W/Ker(g−) is
equal to g+w + Ker(g−).
Proof. Since g+ commutes with g−, g+ preserves Ker(g−). Suppose w ∈ Ker(g−) and g+w = 0. Then

g−w = 0 and g+w = 0,
which implies w = 0. The second statement is obvious.
Notation 2.4.For g1, g2 ∈ Sp(W), let U1 := g−1 W, U2 := g−2 W and U12 := (g1g2)−W,

K1 := Kerg−1 , K2 := Kerg−2 and K12 := Ker(g1g2)−.
Lemma 2.5.
Let g1, g2 ∈ Sp(W) and let w, v ∈ W be such that

v ∈ U1 ∩ (U2 + w).
Then for any u′ ∈ U1 ∩ U2
〈c(g1)(u′ + v), u′ + v〉+ 〈c(g2)(w − u′ − v), w − u′ − v〉+ 2〈u′ + v, w〉= 〈(c(g1) + c(g2))u′, u′〉 − 2〈u′, c(g1)v − c(g2)(w − v)− w〉+ 〈c(g1)v, v〉+ 〈c(g2)(w − v), w − v〉+ 2〈v, w〉.

Proof. Notice that all the terms in the above expression make sense. Also,
〈c(g1)(u′ + v), u′ + v〉 = 〈c(g1)u′, u′〉+ 2〈c(g1)u′, v〉+ 〈c(g1)v, v〉

and
〈c(g2)(w − u′ − v), w − u′ − v〉 = 〈c(g2)(w − v), w − v〉 − 2〈c(g2)(w − v), u′〉+ 〈c(g2)u′, u′〉.Hence

〈c(g1)(u′ + v), u′ + v〉+ 〈c(g2)(w − u′ − v), w − u′ − v〉= 〈(c(g1) + c(g2))u′, u′〉+ 〈c(g1)v, v〉+ 〈c(g2)(w − v), w − v〉+ 2〈c(g1)u′, v〉 − 2〈c(g2)(w − v), u′〉.
Furthermore

〈c(g1)u′, v〉 − 〈c(g2)(w − v), u′〉 = −〈u′, c(g1)v〉+ 〈u′, c(g2)(w − v)〉 = −〈u′, c(g1)v − c(g2)(w − v)〉
and the desired equality follows.
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Notation 2.6.For two elements g1, g2 ∈ Sp(W), let U := U1 ∩ U2, and let qg1,g2 denote the following symmetric form on U:
qg1,g2 (u′, u′′) = 12 (〈c(g1)u′, u′′〉+ 〈c(g2)u′, u′′〉) (u′, u′′ ∈ U). (19)

Let V ⊆ U be the radical of qg1,g2 and let q̃g1,g2 be the corresponding non-degenerate form on the quotient U/V.
Lemma 2.7.
Let g1, g2, U and V be as in Notation 2.6. Then(a) dim(K1 ∩ K2) + dim V = dim K12;(b) dim W − dim U− dim V = dim K1 + dim K2 − dim K12;(c) dim U1 + dim U2 − dim U12 = dim U + dim V;(d) V = g−2 K12 = (g−11 − 1)K12.
Proof. It is easy to check that the kernel of the following map

W ⊕W 3 (w1, w2)→ (a, b, c) ∈ W ⊕W ⊕W
where

a = g−1 w1 − g−2 w2, b = g−1 w1 + g−2 w2 and c = g+1 w1 + g+2 w2,
is equal to

{(w,−w); w ∈ K1 ∩ K2} (20)
and that the set of the pairs (w1, w2) such that a = 0 and c = 0 is equal to

{(−g2w2, w2); w2 ∈ K12}. (21)
Let u ∈ U. Then there are w1, w2 ∈ W such that u = g−1 w1 = g−2 w2. In particular the element “a” is zero. The conditionthat u ∈ V means that

g+1 w1 + g+2 w2 ∈ U⊥. (22)
Since U⊥ = K1 + K2, there are elements x1 ∈ K1 and x2 ∈ K2 such that

g+1 w1 + g+2 w2 = x1 + x2.
Lemma 2.3 shows that there are unique elements y1 ∈ K1 and y2 ∈ K2 such that g+1 y1 = −x1 and g+2 y1 = −x2. Let
w ′1 = w1 + y1 and w ′2 = w2 + y2. Then

g+1 w ′1 + g+2 w ′2 = 0 and u = g−1 w ′1 = g−2 w ′2.
Therefore V is equal to the projection on the “b component” of the set (21).Hence, dim V is equal to the dimension of the set (21) minus the dimension of the kernel (20):

dim V = dim K12 − dim(K1 ∩ K2).
This verifies (a).

1507

Brought to you by | University of Oklahoma Libraries
Authenticated

Download Date | 11/4/17 3:03 AM



A reverse engineering approach to the Weil representation

Since dim U⊥ = dim(K1 + K2) = dim K1 + dim K2 − dim(K1 ∩ K2)
and since dim U⊥ = dim W − dim U, (b) follows from (a).We have

dim U1 + dim U2 − dim U12 = (dim W − dim K1) + (dim W − dim K2)− (dim W − dim K12)= dim W + dim K12 − dim K1 − dim K2 = dim U + dim V,
because of (b). It proves (c).As we already noticed,

V = {g−1 (−g2w2) + g−2 w2; w2 ∈ K12} = {g−1 (−g−11 w2) + g−2 w2; w2 ∈ K12}= {(g−11 − 1)w2 + g−2 w2; w2 ∈ K12} = {2g−2 w2; w2 ∈ K12}= {g−2 w2; w2 ∈ K12} = {(g−11 − 1)w2; w2 ∈ K12}.
This verifies (d).
Lemma 2.8.
Let g ∈ Sp(W). Then there is a direct sum decomposition

W = X⊕W0 ⊕ Y ⊕W1
such that the subspaces X and Y are isotropic,

(X + Y)⊥ = W0 + W1, X⊕W0 ⊕ Y = W⊥1 ,X⊕W0 = Im(g−), X⊕W1 = Ker(g−), and X = Ker(g−) ∩ Ker(g−)⊥,
where Im(g−) = g−W. Furthermore, there are unique elements

g0 ∈ Sp(W0), T ∈ Hom(W0,X), S ∈ Hom(Y,X)
such that for x ∈ X, w0 ∈ W0, y ∈ Y and w1 ∈ W1

g(x + w0 + y+ w1) = (x + Tw0 + Sy) + (g0w0 − g0T ∗y) + y+ w1,
where T ∗ ∈ Hom(Y,W0) is the conjugate of T with respect to the pairing 〈 , 〉, and the map

W0 ⊕ Y 3 w0 + y→ (Tw0 + Sy) + ((g0 − 1)w0 − T ∗y) ∈ X⊕W0
is invertible.
In particular if g1 ∈ End(W) is defined by

g1(x + w0 + y+ w1) = −x − g−10 w0 − y− w1,
then g1 ∈ Sp(W) and Ker(g1g−) = Ker(gg−1 ) = 0.
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Proof. Clearly X = Ker(g−) ∩ Ker(g−)⊥ is an isotropic subspace. Let Y ⊆ W be another isotropic subspace suchthat the restriction of the symplectic form to the sum X + Y is non-degenerate. Define W′ = (X + Y)⊥. Then we haveW = X⊕W′ ⊕ Y.Also, X⊕W′ = X⊥ = Ker(g−) + Ker(g−)⊥ ⊇ Ker(g−).
Set W1 = Ker(g−) ∩W′. Then the above inclusion implies that Ker(g−) = X⊕W1. Let W0 = W⊥1 ∩W′. Then

W′ = W0 ⊕W1 and Im(g−) = Ker(g−)⊥ = X⊕W0.
Since g acts as the identity on W1, g preserves W⊥1 . Then g|W⊥1 acts as the identity on X. Also, the stabilizer of X inSp(W) is a parabolic subgroup. Hence the formula for g follows from the well known structure of these subgroups.Clearly the element g1 belongs to Sp(W). Let w = x + w0 + y+ w1 as in the lemma.Suppose g1gw = w. Then

x = −x − Tw0 − Sy, w0 = −w0 + g−10 T ∗y, y = −y and w1 = −w1.
Since the characteristic of the field F is not 2, we see that w = 0.Suppose gg1w = w. Then

x = −x − Tg−10 w0 − Sy, w0 = −w0 + T ∗y, y = −y and w1 = −w1.
Again, since the characteristic of the field F is not 2, we see that w = 0.
2.4. More lemmas

Assume from now on till the end of this subsection that K1 = Kerg−1 = {0}.In this case U = g−2 W. Then
K2 ∩ K12 = K1 ∩ K2 = {0}.

Hence there is a subspace W2 ⊆ W such that
W = K12 ⊕W2 ⊕ K2. (23)

Pick a subspace U′ ⊆ W such that W = U⊕ U′.
Then U = K⊥2 and dim U′ = dim K2. Fix a basis wb+1, wb+2, . . . of K2 and let w ′b+1, w ′b+2, . . . be the dual basis of U′ inthe sense that

〈wi, w ′j〉 = δi,j (b < i, j).
Define an element h ∈ GL(W) by

h|K12⊕W2 = (g−11 − 1)−1g−2 , hwi = (g−11 − 1)−1w ′i , b < i. (24)
Let us extend the basis wi of K2 to a basis of W so that wi ∈ K12 if i ≤ a and wi ∈ W2 if a < i ≤ b. Then

hwi = wi (i ≤ a). (25)
1509

Brought to you by | University of Oklahoma Libraries
Authenticated

Download Date | 11/4/17 3:03 AM



A reverse engineering approach to the Weil representation

Lemma 2.9.
The following equalities hold:

det(〈(g1g2)−wi, hwj〉a<i,j ) = det(〈 12 (c(g1) + c(g2))g−2 wi, g−2 wj〉a<i,j≤b)= det(〈(g1g2)−wi, wj〉a<i,j ) det(h).
Moreover, we have det(〈wi, (g−11 − 1)hwj〉i,j ) = (−1)dim U det(〈g−2 wi, wj〉i,j≤b). (26)
Proof. Notice that both c(g1) and c(g2) are well defined on the space U and

g−1 12 (c(g1) + c(g2))g−2 = 12 (g+1 g−2 + g−1 g+2 ) + g−1 K2 = (g1g2)− + g−1 K2. (27)
Suppose a < i, j ≤ b. Then (27) shows that

〈(g1g2)−wi, hwj〉 = 〈(g1g2)−wi, (g−11 − 1)−1g−2 wj〉 (28)= 〈g−11 (g1g2)−wi, g−2 wj〉= 〈g−11 g−1 12 (c(g1) + c(g2))g−2 wi, g−2 wj〉= 〈 12 (c(g1) + c(g2))g−2 wi, g−2 wj〉.
Suppose j ≤ b < i. Then (g1g2)−wi = g−1 wi. Hence,

〈(g1g2)−wi, hwj〉 = 〈g−1 wi, (g−11 − 1)−1g−2 wj〉 (29)= 〈wi, g−2 wj〉= 〈(g−12 − 1)wi, wj〉= 〈−g−12 g−2 wi, wj〉= 〈0, wj〉= 0.
If b < i, j , then

〈(g1g2)−wi, hwj〉 = 〈g−1 wi, hwj〉. (30)
Notice that det(〈g−1 wi, hwj〉b<i,j ) = det(〈wi, (g−11 − 1)hwj〉b<i,j ) = det(〈wi, w ′j〉b<i,j ) = 1. (31)
The first equality in (26) follows from relations (28), (29), (30) and (31).Since h preserves the subspace K12, it makes sense to define h̃ ∈ GL(W/K12) by

h̃(w + K12) = hw (w ∈ W).
Then det(〈(g1g2)−wi, hwj〉a<i,j ) = det(〈(g1g2)−wi, wj〉a<i,j ) det(h̃).
But (25) implies det(h̃) = det(h). Hence the second equality in (26) follows.
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Also, if j ≤ b < i, then
〈wi, (g−11 − 1)hwj〉 = 〈wi, g−2 wj〉 = 0

because K2 ⊥ U. Hence,
det(〈wi, (g−11 − 1)hwj〉i,j ) = det(〈wi, (g−11 − 1)hwj〉i,j≤b) det(〈wi, (g−11 − 1)hwj〉b<i,j )= det(〈wi, (g−11 − 1)hwj〉i,j≤b)= det(〈wi, g−2 wj〉i,j≤b)= (−1)dim K12+dim W2 det(〈g−2 wi, wj〉i,j≤b)= (−1)dim U det(〈g−2 wi, wj〉i,j≤b),

This verifies (26).
Corollary 2.10.
With the above notation we have

det(〈12 (c(g1) + c(g2))g−2 wi, g−2 wj〉a<i,j≤b) = (−1)dim U det(〈(g1g2)−wi, wj〉a<i,j )det(〈g−1 wi, wj〉i,j ) det(〈g−2 wi, wj〉i,j≤b)−1 .

2.5. Determinants over the reals

Consider two vector spaces U′, U′′ over R of the same dimension equipped with positive definite bilinear symmetric forms
B′, B′′ respectively. Let u′1, u′2, . . ., u′n be a B′-orthonormal basis of U′ and let u′′1 , u′′2 , . . . , u′′n be a B′′-orthonormal basisof U′′. Suppose L : U′ → U′′ is a linear bijection. Denote by M the matrix of L with respect to the two ordered basis:

Lu′j = n∑
i=1 Mi,ju′′i (j = 1, 2, . . . , n).

Then (det(M))2 does not depend on the choice of the orthonormal basis. (Indeed, if we change the orthonormal basesin the two spaces, we get two matrices P = (Pt)−1 and Q = (Qt)−1, so that the new matrix is M ′ = PMQ. Thusdet(M ′) = det(P) det(M) det(Q). Since (det(P))2 = (det(Q))2 = 1, we see that (det(M ′))2 = (det(M))2.) Thus we maydefine (det(L))2 := (det(M))2.We shall also need a notion of a determinant for a linear map between two vector spaces (under some additionalassumptions of course). For that reason we fix an element J ∈ Sp(W) and the corresponding positive definite symmetricbilinear form B, that is,
B(w,w ′) = 〈J(w), w ′〉 (w,w ′ ∈ W). (32)

Then every subspace of W has a B-orthonormal basis.For a subset S ⊆ W let S⊥B ⊆ W be the B-orthogonal complement of S. It is easy to see that
S⊥B = J−1S⊥ = JS⊥. (33)

For an element h ∈ End(W) define h# ∈ End(W) by
〈hw,w ′〉 = 〈w, h#w ′〉 (w,w ′ ∈ W). (34)

Then (Kerh#)⊥ = hW.
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Consider an element h ∈ End(W) such that Kerh = Kerh#. (In our applications h will be equal to g−, where g ∈ Sp(W).Then g# = g−1 − 1 = −g−1g− has the same kernel as g−.) Let L = J−1h. Denote by L∗ the adjoint to L with respect to
B, (B(Lw,w ′) = B(w, L∗w ′)). Then L∗ = Jh#. Hence Ker L = Ker L∗. Since B is anisotropic, L maps (Ker L)⊥B = LWbijectively onto itself. Thus it makes sense to talk about det(L|LW), the determinant of the restriction of L to LW. If
w1, w2, . . . , wm is a B-orthonormal basis of (Ker L)⊥B , then

det(L|LW) = det(B(Lwi, wj )1≤i,j≤m)det(B(wi, wj )1≤i,j≤m) = det(B(Lwi, wj )1≤i,j≤m) = det(〈hwi, wj〉1≤i,j≤m). (35)
Under the condition Kerh = Kerh#, we define det(h : W/Kerh→ hW) to be the quantity (35).Suppose U ⊆ W is a subspace and x ∈ Hom(U,W) is a linear map such that the formula

〈xu, u′〉 (u, u′ ∈ U)
defines a symmetric bilinear form on U with the radical V ⊆ U. The form B induces a positive definite form on thequotient U/V. Pick a B-orthonormal basis u1 + V, . . . , uk + V ∈ U/V and set

det(〈x , 〉U/V) = det(〈xui, uj〉1≤i,j≤k ). (36)
It is easy to see that the quantity (36) does not depend on the choice of the B-orthonormal basis.
Lemma 2.11.
Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = {0}. Then

det((g1g2)− : W/K12 → U12)det(g−1 : W→ W) det(g−2 : W/K2 → U) = (−1)dim U det(〈12 (c(g1) + c(g2)) , 〉U/V) (det(g−2 : K12 → V))−2.

Proof. Let W2 ⊆ W be the B-orthogonal complement of K12 + K2. Then (23) holds, because B is anisotropic. Let
w1, w2, . . . be a basis of W such that w1, w2, . . . , wa is a B-orthonormal basis of K12, wa+1, wa+2, . . ., wb is a B-orthonormalbasis of W2 and wb+1, wb+2, . . . is a B-orthonormal basis of K2. Let Q ∈ GL(W) be such that

Qw1, Qw2, . . . is a B-orthonormal basis of W,
Qwi = wi if i ≤ b,
Qwi ⊥B K12 + W2 if b < i.

Define the matrix elements Qj,i by
Qwi =∑

j
Qj,iwj .

Then
Qj,i = δj,i if i ≤ b.

Hence, det(Q) = det((Qj,i)1≤j,i) = det((Qj,i)b<j,i) = det((Qj,i)a<j,i)
and 1 = det(J−1) = det(B(J−1Qwi, Qwj )1≤i,j ) = det(〈Qwi, Qwj〉1≤i,j ) = (det(Q))2 det(〈wi, wj〉1≤i,j ).
Therefore det((Qj,i)a<j,i)2 det(〈wi, wj〉1≤i,j ) = 1. (37)
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Let u1, u2, . . ., ub be B-orthogonal basis of U such that u1, u2, . . ., ua span V. Define the matrix elements (g−2 )k,i by
g−2 wi = b∑

k=1 (g−2 )k,iuk (1 ≤ i ≤ b).
Since g−2 K12 = V, we see that (g−2 )k,i = 0 if i ≤ a < k.

Hence det(((g−2 )k,i)1≤k,i≤b) = det(((g−2 )k,i)1≤k,i≤a) det(((g−2 )k,i)a<k,i≤b). (38)
Also,

(det(g−2 : K12 → V))2 = (det(((g−2 )k,i)1≤k,i≤a))2 and (39)(det(g−2 : W2 → U/V))2 = (det(((g−2 )k,i)a<k,i≤b))2.
Define h ∈ GL(W) as in (24). Then (26) shows that

det(〈(g1g2)−wi, wj〉a<i,j ) det(h) = det(〈 12 (c(g1) + c(g2))g−2 wi, g−2 wj〉a<i,j≤b). (40)
Furthermore, by (26),

det(h) = det((g−11 − 1)−1(g−11 − 1)h) = det(g−11 − 1)−1 det((g−11 − 1)h) (41)= det(g−11 − 1)−1 det(〈wi, (g−11 − 1)hwj〉1≤i,j ) det(〈wi, wj〉1≤i,j )−1
= det(g−11 − 1)−1(−1)dim U det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j )−1

Also, det(〈 12 (c(g1) + c(g2))g−2 wi, g−2 wj〉a<i,j≤b) = det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)2.
By (35),

det((g1g2)− : W/K12 → U12) = det(〈(g1g2)−Qwi, Qwj〉a<i,j ) = det((Qi,j )a<i,j )2 det(〈(g1g2)−wi, wj〉a<i,j ).
Define an element q ∈ GL(W) by

qwi = J−1ui if i ≤ b,
qwi = wi if b < i.

Then qw1, qw2, . . ., qwb is a B-orthonormal basis of J−1U = K⊥B2 so that
det(g−2 : W/K2 → U) = det(〈g−2 qwi, qwj〉i,j≤b).

Define the coefficients qi,j by
qwi =∑

j
qj,iwj .

Then
qj,i = δj,i if b < i

so that det(q) = det((qj,i)1≤i,j ) = det((qj,i)1≤i,j≤b).
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Also,
g−2 qwi =∑

j
qj,ig−2 wj =∑

j≤b

qj,ig−2 wj (i ≤ b).
Therefore, det(〈g−2 qwi, qwj〉i,j≤b) = det(q)2 det(〈g−2 wi, wj〉i,j≤b).Define the coefficients q−1

i,j of the inverse map q−1 by
wi = q−1(qwi) =∑

j
q−1
i,j qwj .

Since, the qwi form an orthonormal basis of W,
q−1
i,j = B(q−1qwi, qwj ) = B(wi, qwj ) = B(qwj , wi),

so that
q−1
i,j =


〈uj , wi〉 if j ≤ b,
B(wj , wi) if j > b,
B(wj , wi) = δi,j if i, j > b.

In particular, q−1
i,j = 0 if j ≤ b < i so that

det(q)−1 = det(q−1) = det((q−1
i,j )i,j≤b) = det(〈uj , wi〉i,j≤b).

Thus
det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U) = (det(〈g−2 wi, wj〉i,j≤b))2 det(q)2 (42)

= (det(〈 b∑
k=1 (g−2 )k,iuk , wj〉i,j≤b))2 det(q)2 = (det((g−2 )k,i)k,i≤b) det(〈uk , wj〉k,j≤b))2 det(q)2

= (det((g−2 )k,i)k,i≤b))2 = (det(g−2 : K12 → V))2 (det(g−2 : W2 → U/V))2,
where the last equality follows from (38) and (39). The formula (37) follows from (37) - (42) via a straightforwardcomputation:

det((g1g2)− : W/K12 → U12)det(g−1 : W→ W) det(g−2 : W/K2 → U)
= det((Qi,j )a<i,j )2 det(〈(g1g2)−wi, wj〉a<i,j )det(g−1 : W→ W) det(g−2 : W/K2 → U)
= det((Qi,j )a<i,j )2 det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det((g(2−)k,i)a<k,i≤b)2det(h) detg−1 det(g−2 : W/K2 → U)
= (−1)dim U det((Qi,j )a<i,j )2 det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)2det(g−11 − 1)−1 det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j )−1 detg−1 det(g−2 : W/K2 → U)
= (−1)dim U det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)2det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U)
= (−1)dim U det(〈 12 (c(g1) + c(g2)) , 〉U/V) (det(g−2 : W2 → U/V))2det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U)
= (−1)dim U det(〈 12 (c(g1) + c(g2)) , 〉U/V) (det(g−2 : W2 → U/V))2(det(g−2 : K12 → V))2 (det(g−2 : W2 → U/V))2
= (−1)dim U det(〈 12 (c(g1) + c(g2)) , 〉U/V)(det(g−2 : K12 → V))2 .

(Here the second equality follows from (40) and (42), and the third one from (41).)
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2.6. Determinants over p-fields

Let F be a commutative p-field in the terminology of [43, Def 2, page 12], that is, F is a local non Archimedean fieldwith finite residue field. Hence F is a finite extension of either the p-adic field Qp or of Fp((t)) (the fraction field of thering Fp[[t]] of formal power series in one indeterminate t with coefficient in Fp).Denote by | |F the module on F, as in [43, page 4]. Then oF = {a ∈ F : |a|F ≤ 1} is the ring of integers of F, and wehave o×F = {a ∈ F : |a|F = 1} as in [43, page 12].Being locally compact, F has a real-valued Haar measure: the unique translation invariant measure µF with the properties
dµ(ax) = |a|F dµ(x) (x ∈ F, a ∈ F×),

µF(oF) = ∫
|x|F≤1 dµ(x) = 1.

Let r ∈ Z. One has
µF(πrF oF) = ∫

|x|F≤qr
dµF(x) = qr . (43)

Then Eqn. (43) gives ∫
|x|F=qr dµF(x) = ∫

|x|F≤qr
dµF(x)− ∫

|x|F≤qr−1 dµF(x) = qr(1− q−1). (44)
More generally, let r, R ∈ Z with r ≤ R . One gets

∫
qr≤|x|F≤qR

dµF(x) = ∫
|x|F≤qR

dµF(x)− ∫
|x|F≤qr

dµF(x) = qR − qr . (45)
Let r = (r1, r2, . . . , rn) ∈ Zn and R = (R1, R2, . . . , Rn) ∈ Zn where ri ≤ Ri for every i ∈ {1, . . . , n}. We set

B(r,R) := {x = (x1, x2, . . . , xn) ∈ Fn : qri ≤ |xi|F ≤ qRi for i = 1, . . . , n} .
It follows from (45) that

µFn (B(r,R)) = n∏
i=1 (qRi − qri ). (46)

The following Lemma relates the volume of the linear image of the set in Fn to the volume of the set itself.
Lemma 2.12.
Let L : Fn → Fn be an invertible linear transformation then

µFn (L(B)) = | det(L)|F µFn (B), for all B ∈ B(Fn). (47)
Proof. Call B(r,R)t := {xt : x ∈ B(r,R)} a cell in Fn. (Here xt means the transpose of x.) We will first check thatthe relation (47) for every cell B(r,R)t . The matrix representing L can be written as a product of elementary matrices,and since determinant preserves products, it is sufficient to show that the relation (47) holds for elementary matrices.Let i ∈ {1, . . . , n}, let y ∈ F× and let Ei(y) be the elementary matrix obtained by multiplying by y the i-th row of theidentity n× n matrix. We have det(Ei(y)) = y and

Ei(y) · B(r,R)t = {(x1, . . . , xi−1, yxi, xi+1, . . . , xn)t : qrk ≤ |xk |F ≤ qRk for k = 1, . . . , n}= {(x1, . . . , xn) : qrk ≤ |xk |F ≤ qRk for k 6= i, |y|riFq ≤ |xi|F ≤ |y|
Ri
Fq

}
,
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since |yxi|F = |y|F · |xi|F. Hence
µFn (Ei(y) · B(r,R)t) = |y|F · n∏

k=1(qRk − qrk ) = | det(Ei(y))|F · µFn (B(r,R)t).
Let i, j ∈ {1, . . . , n}. Let Ei,j be the elementary matrix corresponding to the interchange of row i with row j . We havedet(Ei,j ) = −1 and

Ei,j · B(r,R)t =
(x1, . . . , xn) :


qrk ≤ |xk |F ≤ qRk for k 6= i, j
qri ≤ |xj |F ≤ qRi

qrj ≤ |xi|F ≤ qRj

 .

Hence | det(Ei,j )|F = 1 and µFn (Ei,j · B(r,R)t) = µFn (B(r,R)t).Let Ei∪j be the elementary matrix obtained by replacing row i by the sum of row i and row j . By multiplying by thematrix Ei,1 if necessary, we may assume that i = 1. We have E1∪j (x1, . . . , xn)t = (x1 + xj , x2 . . . , xn)t . Hence det(E1∪j ) = 1.We can view Fn as the Cartesian product F× Fn−1. For every x′ = (x2, . . . , xn)t ∈ Fn−1, let
B(r,R)tx′ := {z ∈ F : (z, x2, . . . , xn)t ∈ B(r,R)t}

and similarly (E1∪j · B(r,R)t)x′ := {z + xj ∈ F : (z + xj , x2, . . . , xn)t ∈ E1∪j · B(r,R)t} .
We have

(E1∪j · B(r,R)t)x′ = {z ∈ F : (z, x2, . . . , xn)t ∈ B(r,R)t} + xj

that is, (E1∪j · B(r,R)t)x′ = B(r,R)tx′ + xj .

Thus, for all x′ ∈ Fn−1, (E1∪j · B(r,R)t)x′ is a translation of B(r,R)tx′ and since, the measure µF is translation-invariant,we have µF((E1∪j · B(r,R)t)x′ ) = µF(B(r,R)tx′ ). On the other hand, by Fubini’s Theorem, we get
µFn (E1∪j · B(r,R)t) = ∫

Fn−1 µF(((E1∪j · B(r,R)t)x′ )dµFn−1 (x′) = ∫
Fn−1 µFB(r,R)tx′ )dµFn−1 (x′) = µFn (B(r,R)t).

Every open set in Fn can be written as a countable union of cells in Fn and therefore, by the countable additivity of theHaar measure on F, the measure µFn satisfies the relation (47) is for any open set. Then the regularity of µFn impliesthat (47) holds for any Borel set.
Lemma 2.12 shows that Lemma 4.2 is still valid on the local nonarchimedean field F with the pullback L∗(µV ) defined asin Eqn. (174) up to replacing the absolute value | | by | |F, that is, we obtain here:

L∗(µV ) = | det(L̃)|−1
F µL−1(V ).

Let W be a finite dimensional vector space over F and let L ⊆ W be a lattice, [43, page 28]. Let W∗ = Hom(W,F) bethe dual vector space and let
L∗ = {w∗ ∈ W∗ : w∗(w) ∈ oF for all w ∈ L}.

This is the lattice dual to L.
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Lemma 2.13.
For any subspace U ⊆ W, the restriction map

W∗ 3 w∗ → w∗|U ∈ U∗
induces the following short exact sequence

0→ L∗ ∩ U⊥ → L∗ → (L ∩ U)∗ → 0,
where U⊥ ⊆ W∗ is the annihilator of U. In particular we have the isomorphisms of lattices

(L∗ + U⊥)/U⊥ = L∗/L∗ ∩ U⊥ = (L ∩ U)∗.
Proof. By [43, Theorem 1, page 29], there is a basis w1, . . . , wm, . . . of W such that w1, . . . , wm is a basis of U and
L = oFw1 + oFw2 + . . . . Hence, L∩U = oFw1 + · · ·+ oFwm. Let w∗1 , . . . , w∗m, . . . be the dual basis of W∗ (w∗i (wj ) = δi,j ).Then L∗ = oFw∗1 + · · ·+ oFw∗m + . . . and (L∩U)∗ = oFw∗1 + · · ·+ oFw∗m. Hence the restriction map is surjective. The restis obvious.
Recall the notion of a norm, [43, page 24], and the norm associated to a lattice

NL(w) = inf{|x|−1
F : x ∈ F×, xw ∈ L} (w ∈ W),

[43, page 28]. Then L = {w ∈ W : NL(w) ≤ 1}. The following fact is stated in [43, page 29]
Lemma 2.14.
Let N be a norm on W. The N = NL if and only if

L = {w ∈ W : N(w) ≤ 1} (48)
and

{N(w) : w ∈ W} = {|x|F : x ∈ F}. (49)
Let N be a norm on W. As in [43, p. 26], we shall say that two subspaces W′, W′′ of W are N-orthogonal to each otherwhenever W = W′ ⊕W′′, and N(w ′ + w ′′) = sup(N(w ′), N(w ′′)) for all w ′ ∈ W′ and all w ′′ ∈ W′′.
Lemma 2.15.
Let V ⊆ W be a subspace. Then

N(L+V)/V(w + V) = inf{NL(w + v) : v ∈ V} (w ∈ W). (50)
Proof. [43, Theorem 1, page 29] implies that there is a subspace V′ ⊆ W which is NL-orthogonal to V and such that

W = V′ ⊕ V (51)
and

L = L ∩ V′ ⊕ L ∩ V. (52)
Let N(w + V) denote the right hand side of (50). For w ∈ W let w ′ ∈ V′ denote the V′-component of w, according tothe decomposition (51). Then clearly

N(w + V) = NL(w ′) (w ∈ W).
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In particular N is a norm on W/V. Also, the range of N coincides with the range of NL. Hence Lemma 2.14 implies that
N = NL′ , where L′ = {w + V ∈ W/V : N(w + V) ≤ 1}. The condition N(w + V) ≤ 1 means that NL(w ′) ≤ 1, which isequivalent to w ′ ∈ L′. Thus

L′ = {w + V ∈ W/V : w ′ ∈ L}.
But (52) shows that the condition w ′ ∈ L is equivalent to w ∈ L+ V. (Indeed, if w ′ ∈ L then w ∈ L+ V. Conversely,suppose w ∈ L+ V. Then there is w0 ∈ L and v ∈ V such that w = w0 + v . Hence, w ′ = w ′0. But w ′0 ∈ L∩ V′ by (52).Thus w ′ ∈ L.) Therefore

L′ = (L+ V)/V.
Corollary 2.16.
Under the identifications of Lemma 2.13, the following equalities hold for any w∗ ∈ W∗:

N(L∩U)∗ (w∗|U) = N(L∗+U⊥)/U⊥ (w∗ + U⊥) = inf{NL∗ (w∗ + w∗0 ) : w∗0 ∈ U⊥} = max{|w∗(u)|F : u ∈ L ∩ U}.
(The second equality means that the norm on the quotient is the usual quotient norm.)

Proof. The first equality amounts to the last identification of Lemma 2.13. The second equality follows from Lemma2.15 with W, L and V replaced by W∗, L∗ and U⊥ respectively. The third equality follows from the fact that
NL∗ (w∗) = max{|w∗(w)|F : w ∈ L}. (53)

One may verify the equality (53) as follows. The right hand side of (53) defines a norm on W∗ whose range coincideswith the range of | |F. The set of the w∗ such that the right hand side is less or equal than 1 coincides with the set ofthe w∗ such that w∗(w) ∈ oF for all w ∈ L. But this is L∗. Hence Lemma 2.14 implies (53).
Let L ⊆ W be a lattice. We know from [43, Theorem1, page 29], that there is a basis w1, w2, . . . of W such that

L = oFw1 + oFw2 + . . . . (54)
In particular the spaces Fw1, Fw2, . . . are NL-orthogonal and 1 = NL(w1) = NL(w2) = . . . . Thus we may define a basisof W to be NL-orthonormal if the condition (54) holds.Let w∗1 , w∗2 , . . . be the dual basis of W∗. Then

L∗ = oFw∗1 + oFw∗2 + . . . .

Hence the basis w∗1 , w∗2 , . . . is NL∗-orthonormal.Suppose W′ is another finite dimensional vector space over F with a lattice L′ and an NL′-orthonormal basis w ′1, w ′2, . . . .Given h ∈ Hom(W,W′), there is the corresponding matrix
M(h) = [hji], h(wi) =∑

j
hjiw ′j .

The determinant det(M(h)) does depend on the choice of the bases, but the quantity det(M(h))(o×F )2 does not. Hencewe may define det(h : W→ W′) = det(M(h))(o×F )2 ∈ F×/(o×F )2 (55)
and

| det(h : W→ W′)|F = | det(M(h))|F ∈ R. (56)
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Lemma 2.17.
Let h ∈ Hom(W,W′) and let h∗ ∈ Hom(W′∗,W∗) be the adjoint map. Then

det(h : W→ W′) = det(h∗ : W′∗ → W∗).
Proof. Let w∗1 , w∗2 , · · · ∈ W∗ be the basis dual to w1, w2, . . . and let w ′1∗, w ′2∗, · · · ∈ W′∗ be the basis dual to w ′1,
w ′2, . . . . Then,

h(wi) =∑
j
hjiw ′j if and only if h∗(w ′j ∗) =∑

i
hjiw∗i ,

because
hji = w ′j ∗(∑

j
hjiw ′j ) = w ′j ∗(h(wi)) = h∗(w ′j ∗)(wi).

Hence, the matrix M(h∗) is the transpose of the matrix M(h) and the claim follows.
Lemma 2.18.
For any T ∈ End(W) any Haar measure µ on the additive group W and any measurable set B ⊆ W

µ(T (B)) = | det(T )|F µ(B).
Proof. This is a direct consequence of Lemma 2.12.
Lemma 2.19.
Suppose w1, w2, . . . is an NL-orthonormal basis of W and T ∈ End(W) is such that Tw1, Tw2, . . . is also an NL-
orthonormal basis of W. Then | det(T )|F = 1.

Proof. Since, by the assumption, T (L) = L, the map T preserves the Haar measure on W. Hence, Lemma 2.18 showsthat | det(T )|F = 1.
From now on we assume that the space W is equipped with a non-degenerate symplectic form 〈 , 〉. We shall identifyW with the dual W∗ by

w(u) = 〈u,w〉 (u,w ∈ W). (57)
Then, for a subspace U ⊆ W the annihilator U⊥ coincides with the 〈 , 〉-orthogonal complement. We shall say that thelattice L is self-dual in the sense that L = L∗. Let us fix a self-dual lattice L ⊆ W.For any two subspaces V ⊆ U ⊆ W, N shall denote the quotient norm of NL:

N(u+ V) = inf{NL(u+ v) : v ∈ V} (u ∈ U). (58)
For an element h ∈ End(W) define h# ∈ End(W) by

〈hw,w ′〉 = 〈w, h#w ′〉 (w,w ′ ∈ W).
Then (Imh)⊥ = Kerh#. Hence, if Kerh = Kerh# then we have the following short exact sequence

0→ (Imh)⊥ → W→ Imh→ 0. (59)
In the next Lemma, we shall consider Imh as the quotient W/(Imh)⊥, and N will be the corresponding quotient norm asdefined in (58).
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Lemma 2.20.
Suppose h ∈ End(W) is such that Kerh = Kerh#. Let u1, . . . , uk be an N-orthonormal basis of Imh and let w1 +Kerh,
. . . , wk + Kerh be the dual basis of W/Kerh. Let M = M(h) be the matrix of the induced bijection h : W/Kerh → Imh
with respect to these two ordered basis,

hwi =∑
j
Mj,i uj .

Then det(M(h)) = det(〈hwi, wj〉1≤i,j≤k ).
Also, we may choose the elements w1, . . . , wk so that the spaces Fw1, . . ., Fwk , Kerh are N-orthogonal.

Proof. Since
〈hwi, wj〉 = 〈∑

l

Ml,iul, wj〉 = Mj,i,

the formula for the determinant follows. The last statement follows from Lemma 2.15 and Corollary 2.16.
Notice that if u′1, . . . , u′k is another N-orthonormal basis of Imh, with dual basis w ′1 + Kerh, . . . , w ′k + Kerh, then

det(〈hw ′i , w ′j〉1≤i,j≤k ) = det(〈hwi, wj〉1≤i,j≤k )a2,
where a ∈ F× is the determinant of the transition matrix from u1, . . . , uk to u′1, . . . , u′k (which is also the determinant ofthe transition matrix from the corresponding dual basis). We know from Lemma 2.19 that |a|F = 1. Hence without anyambiguity we may define det(h : W/Kerh→ Imh) = det(〈hwi, wj〉1≤i,j≤k ) (o×F )2 (60)
as an element of F×/(o×F )2. Also, without any ambiguity we may define

| det(h : W/Kerh→ Imh)|F = | det(〈hwi, wj〉1≤i,j≤k )|F (61)
as a positive real number.Similarly, if U ⊂ W is a subspace and x ∈ Hom(U,W) is such that the bilinear form

〈xu, u′〉 (u, u′ ∈ U)
is symmetric, with the radical V ⊆ U, we define

det(〈x , 〉U/V) = det(〈xui, uj〉1≤i,j≤k ) (o×F )2 (62)
and

| det(〈x , 〉U/V)|F = | det(〈xui, uj〉1≤i,j≤k )|F, (63)
where u1 + V, u2 + V, . . . , is an N-orthonormal basis of U/V.
Lemma 2.21.
If w1, w2, . . . is a NL-orthonormal basis of W, then

| det(〈wi, wj〉1≤i,j )|F = 1.
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Proof. Since 〈wi, wj〉 ∈ oF,
| det(〈wi, wj〉1≤i,j )|F ≤ 1.

Since the lattice L is self-dual the same inequality holds for the dual basis. The product of the two matrices is 1. Hencethe equality follows.
With the notation of (60), suppose Kerh = 0. Let hk,i be the matrix coefficients of h with respect to the basis w1, w2,
. . . :

hwi =∑
k

hk,iwk .

Then
〈hwi, wj〉 =∑

k

hk,i〈wk , wj〉

and det((hk,i)1≤k,i) = det(h)
is the usual determinant of h. Hence, by Lemma 2.21, the determinant defined in (60) satisfies the following equation

det(h : W→ W) = det(h) (o×F )2. (64)
More generally, suppose K,V ⊆ W are two subspaces of the same dimension and h ∈ Hom(K,V) is a bijection. Choosean N-orthonormal basis of F, an N-orthonormal basis of V and let hk,i denote the corresponding matrix coefficients of
h. Then, by Lemma 2.21, det((hk,i)1≤k,i) (o×F )2
does not depend on the choice of the bases. Therefore we may define

det(h : K → V) = det((hk,i)1≤k,i) (o×F )2 (65)
as an element of F×/(o×F )2 and

| det(h : K → V)|F = | det((hk,i)1≤k,i)|F (66)
as an element of R+. Notice that, via the identification (57), the definitions (65) and (66) are consistent with (55) and(56). Also, Lemma 2.17 may be rephrased as
Lemma 2.22.
Let h ∈ End(W) and let K ⊆ W be a subspace. Then

h#((hK )⊥) ⊆ K⊥, (67)
det(h : K → hK ) = det(h# : W/(hK )⊥ → W/K⊥) (68)

and
| det(h : K → hK )|F = | det(h# : W/(hK )⊥ → W/K⊥)|F. (69)

Proof. The point is that W/K⊥ = K ∗, W/(hK )⊥ = (hK )∗ and h# = h∗.
In the next Lemma, we keep the notation defined in Notation 2.4 and Notation 2.6, that is, for g1, g2 ∈ Sp(W),

U = U1 ∩ U2 = g−1 W ∩ g−2 W and U12 = (g1g2)−W,

K1 = Kerg−1 , K2 = Kerg−2 and K12 = Ker(g1g2)−.
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Lemma 2.23.
Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = {0}. Then

det((g1g2)− : W/K12 → U12)det(g−1 : W→ W) det(g−2 : W/K2 → U) = (−1)dim U det(〈12 (c(g1) + c(g2)) , 〉U/V) (det(g−2 : K12 → V))−2

and
| det((g1g2)− : W/K12 → U12)|F

| det(g−1 : W→ W)|F| det(g−2 : W/K2 → U)|F = | det(〈12 (c(g1) + c(g2)) , 〉U/V)|F | det(g−2 : K12 → V)|−2
F

Proof. Clearly (70) follows from (70). We shall verify (70). Let W2 ⊆ W be the NL-orthogonal complement of K12 +K2.Then (23) holds. Let w1, w2, . . . be a basis of W such that w1, w2, . . ., wa is a NL-orthonormal basis of K12, wa+1, wa+2,
. . ., wb is a NL-orthonormal basis of W2 and wb+1, wb+2, . . . is a NL-orthonormal basis of K2. Then w1, w2, . . ., wb is
NL-orthonormal basis of K12 + W2. Theorem 1 on page 29 in [43] implies that we may extend it to an NL-orthonormalbasis of W:

w1, . . . , wb, w ′b+1, w ′b+2, . . . .Define an element Q ∈ GL(W) by
Q(wi) = {wi if i ≤ b,

w ′i if i > b.

Then
Qw1, Qw2, . . . is a NL-orthonormal basis of W,
Qwi = wi if i ≤ b,
FQwb+1 + FQwb+2 + . . . is NL-orthogonal to K12 + W2.We see from Lemma 2.21 that

| det(〈Qwi, Qwj〉1≤i,j )|F = 1.
Hence, we may replace one of the wi by a suitable (oF)×-multiple of it so that

det(〈Qwi, Qwj〉1≤i,j ) = 1. (70)
Define the matrix elements Qj,i by

Qwi =∑
j
Qj,iwj .

Then
Qj,i = δj,i if i ≤ b.

In particular the matrix ((Qj,i)1≤j,i) looks as follows
((Qj,i)1≤j,i) = ( I ∗0 ((Qj,i)b<j,i)

)
,

where I is the identity matrix of size b. Hence,
det(Q) = det((Qj,i)1≤j,i) = det((Qj,i)b<j,i) = det((Qj,i)a<j,i).

Therefore (70) implies det((Qj,i)a<j,i)2 det(〈wi, wj〉1≤i,j ) = 1. (71)
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Let u1, u2, . . . , ub be a NL-orthogonal basis of U such that u1, u2, . . . , ua span V. (The existence of such a basis followsfrom [43, Theorem 1, page 29].) Define the matrix elements (g−2 )k,i by
g−2 wi = b∑

k=1 (g−2 )k,iuk (1 ≤ i ≤ b).
Since g−2 K12 = V, we see that (g−2 )k,i = 0 if i ≤ a < k.

Hence det(((g−2 )k,i)1≤k,i≤b) = det(((g−2 )k,i)1≤k,i≤a) det(((g−2 )k,i)a<k,i≤b).Define h ∈ GL(W) as in (24). Then (26) shows that
det(〈(g1g2)−wi, wj〉a<i,j ) det(h) = det(〈12 (c(g1) + c(g2))g−2 wi, g−2 wj〉a<i,j≤b).

Furthermore, by (26),
det(h) = det((g−11 − 1)−1(g−11 − 1)h) = det(g−11 − 1)−1 det((g−11 − 1)h)= det(g−11 − 1)−1 det(〈wi, (g−11 − 1)−1hwj〉1≤i,j ) det(〈wi, wj〉1≤i,j )−1

= det(g−11 − 1)−1(−1)dim U det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j )−1

Also, det(〈12 (c(g1) + c(g2))g−2 wi, g−2 wj〉a<i,j≤b) = det(〈12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)2.
By (60),

det((g1g2)− : W/K12 → U12) = det(〈(g1g2)−Qwi, Qwj〉a<i,j ) (o×F )2 = det((Qi,j )a<i,j )2 det(〈(g1g2)−wi, wj〉a<i,j ) (o×F )2.
We see from Lemma 2.20 that there are elements qwi ∈ W, i ≤ b, such that

〈uj , qwi〉 = δj,i (j, i ≤ b) (72)
and the spaces FqW1, . . . , Fqwb, K2 are N-orthogonal. Define an element q ∈ GL(W) by

q(wi) = qwi if i ≤ b,
q(wi) = wi if b < i.

Then det(g−2 : W/K2 → U) = det(〈g−2 qwi, qwj〉i,j≤b) (o×F )2. (73)
Define the coefficients qi,j by

qwi =∑
j
qj,iwj .

Then
qj,i = δj,i if b < i

so that det(q) = det((qj,i)1≤i,j ) = det((qj,i)1≤i,j≤b).
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Also,
g−2 qwi =∑

j
qj,ig−2 wj =∑

j≤b

qj,ig−2 wj (i ≤ b).
Therefore, det(〈g−2 qwi, qwj〉i,j≤b) = det(q)2 det(〈g−2 wi, wj〉i,j≤b). (74)
Define the coefficients q−1

i,j of the inverse map q−1 by
wi = q−1(qwi) =∑

j
q−1
i,j qwj .

Then, by (72),
q−1
i,j = { 〈uj , wi〉 if j ≤ b,

δi,j if i > b.

Hence, det(q)−1 = det(q−1) = det((q−1
i,j )i,j≤b) = det(〈uj , wi〉i,j≤b).

Thus
det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U) = (det(〈g−2 wi, wj〉i,j≤b))2 det(q)2 (o×F )2

= (det(〈 b∑
k=1 (g−2 )k,iuk , wj〉i,j≤b))2 det(q)2 (o×F )2

= (det((g−2 )k,i)k,i≤b)2 det(〈uk , wj〉k,j≤b))2 det(q)2 (o×F )2= (det((g−2 )k,i)k,i≤b))2 (o×F )2= (det(g−2 : K12 → V))2 (det(g−2 : W2 → U/V))2 (o×F )2,
where the first equality follows from (73) combined with (74), and the last equality follows from (72). Now the formula(70) may be verified via a straightforward computation, where we ignore the factor (o×F )2 for convenience:

det((g1g2)− : W/K12 → U12)det(g−1 : W→ W) det(g−2 : W/K2 → U)
= det((Qi,j )a<i,j )2 det(〈(g1g2)−wi, wj〉a<i,j )det(g−1 : W→ W) det(g−2 : W/K2 → U)
= det((Qi,j )a<i,j )2 det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)2det(h) detg−1 det(g−2 : W/K2 → U)
= (−1)dim U det((Qi,j )a<i,j )2 det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) det(((g−2 )k,i)a<k,i≤b)2det(g−11 − 1)−1 det(〈g−2 wi, wj〉i,j≤b) det(〈wi, wj〉1≤i,j )−1 detg−1 det(g−2 : W/K2 → U)
= (−1)dim U det(〈 12 (c(g1) + c(g2))uk , ul〉a<k,l≤b) (det((g−2 )k,i)a<k,i≤b))2det(〈g−2 wi, wj〉i,j≤b) det(g−2 : W/K2 → U)
= (−1)dim U det(〈 12 (c(g1) + c(g2)) , 〉U/V) (det((g−2 )k,i)a<k,i≤b)2(det(g−2 : K12 → V))2(det(g−2 : W2 → U/V))2
= (−1)dim U det(〈 12 (c(g1) + c(g2)) , 〉U/V)(det(g−2 : K12 → V))2 .

(Here the first equality follows from (72), the second equality from (72) and (72), the third from (72), the forth from (71)and the fifth from (75).)
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3. The Weil representation over a finite field of odd characteristic

Let F be a finite field of odd characteristic and let χ : F→ C× be a non-trivial character of the additive group F. In thisSection we provide an elementary construction of the corresponding the Weil representation, [5].
3.1. The Fourier transform

Let U be a finite dimensional vector space over F. Define a measure µU on U by∫
U φ(u)dµU(u) = |U|−1/2∑

u∈Uφ(u),
where |U| is the cardinality of U and φ : U → C is a function. For E a subset of U let denote by IE the indicatorfunction of E , that is, the normalized characteristic function of E:

IE (u) := {|E|−1 if u ∈ E;0 otherwise.
Define the Fourier transform F by

Fφ(u∗) = ∫U φ(u)χ(−u∗(u))dµU(u) (u∗ ∈ U∗).
Then µU∗ is the measure dual to µU in the sense that

φ(u) = ∫U∗ Fφ(u∗)χ(u∗(u))dµU∗ (u∗) (u ∈ U).
We record by the way the following, easy to verify, formula

FIV = |V||U|−1/2IV⊥ , (75)
where V ⊆ U is a vector subspace with the orthogonal complement V⊥ ⊆ U∗.
3.2. Gaussians on Fn

For a symmetric matrix A ∈ GL(Fn) define the corresponding Gaussian γA by
γA(x) = χ( 12xtAx) (x ∈ Fn),

where we view the x as a column vector. Also, let
γ(A) = FγA(0) = ∫

Fn
χ( 12xtAx)dµFn (x).

Lemma 3.1.
If we identify Fn with the dual (Fn)∗ by

y(x) = xty (x, y ∈ Fn),
then

FγA = γ(A)γ−A−1 .
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Proof. Notice that 12xtAx = 12 (x − A−1y)tA(x − A−1y)− 12ytA−1y+ xty.

Hence,
FγA(y) = ∫

Fn
γA(x)χ(−xty)dµFn (x) = ∫

Fn
χ( 12 (x − A−1y)tA(x − A−1y))dµFn (x)χ(−12ytA−1y)

= ∫
Fn
χ( 12xtAx)dµFn (x)χ(−12ytA−1y).

Lemma 3.2.
Suppose n = 1. Then(a) γ(a) = γ(ab2) (a, b ∈ F×),(b) γ(−a) = γ(a) = γ(a)−1 (a ∈ F×),(c) the function

a 7→ s(a) = γ(a)γ(−1) (a ∈ F×)
coincides with the unique non-trivial character of the group F×/(F×)2.

Proof. Part (a) and the first equation in (b) are obvious. Let us extend the character s to F by letting s(0) = 0. Then,since 12a 6= 0, we see from (75) that
γ(a) = ∫

F
(1 + s)(y)χ( 12ay)dµF(y)

= ∫
F
χ( 12ay)dµF(y) + ∫

F
s(y)χ( 12ay)dµF(y)

= ∫
F×
s(y)χ( 12ay)dµF(y) = ∫

F×
s(a−1y)χ( 12y)dµF(y)

= s(a−1) ∫
F×
s(y)χ( 12y)dµF(y) = s(a)γ(1).

Also,
γ(1)γ(1) = ∫

F×

∫
F×
s(y)s(z)χ( 12 (y− z))dµF(y)dµF(z)

= ∫
F×

∫
F×
s(yz)χ( 12 (y− z))dµF(y)dµF(z)

= ∫
F×

∫
F×
s(y)χ( 12 (y− 1)z)dµF(y)dµF(z)

= ∫
F×

∫
F×
s(y)χ((y− 1)z)dµF(z)dµF(y)

= ∫
F×
s(y)(∫

F
χ((y− 1)z)dµF(z)− |F|−1/2) dµF(y)

= ∫
F×
s(y)|F|1/2I0(y− 1)dµF(y)− |F|−1/2 ∫

F×
s(y)dµF(y) = s(1),

because the restriction of µF to F× is a Haar measure on F× and s is a non-trivial character of the abelian group F×.Since s(1) = 1, we see that
γ(1)γ(1) = 1.In particular |γ(1)| = 1. Therefore the first computation in this proof shows that |γ(a)| = 1 for all a ∈ F×. This impliesthe second equality in (b). Finally

s(a) = γ(a)γ(1)−1 = γ(a)γ(−1),as claimed in (c).
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Corollary 3.3.
For arbitrary n ≥ 1 and a symmetric matrix A ∈ GL(Fn),

γ(A) = γ(1)n s(det(A)).
Proof. There is g ∈ GL(Fn) and a diagonal matrix D = diag(a1, a2, . . . , an) ∈ GL(Fn) such that A = gtDg. Hence,

γ(A) = ∫
Fn
χ( 12xtAx)dµFn (x) = ∫

Fn
χ( 12xtDx)dµFn (x)

= ∫
Fn

n∏
j=1 χ( 12ajx2

j )dµFn (x) = n∏
j=1 γ(aj ) = n∏

j=1(γ(1)s(aj ))
= γ(1)ns( n∏

j=1 aj ) = γ(1)ns(det(D)) = γ(1)ns(det(A)).

3.3. Gaussians on a vector space

Let γ(q) = γ(Q), where Q is defined as in Eq. (12).
Lemma 3.4.
If q is a non-degenerate symmetric bilinear form on U, then∫

U χ( 12q(u, u))χ(−u∗(u))dµU(u) = γ(q)χ(−12q∗(u∗, u∗)) (u∗ ∈ U∗).
Proof. Let xi = u∗i (u) and let yj = u∗(uj ). Then∫

U χ( 12q(u, u))χ(−u∗(u))dµU(u) = ∫
Fn
χ( 12xtQx)χ(−xty)dµFn (x) = γ(Q)χ(−12ytQ−1y) = γ(q)χ(−12q∗(u∗, u∗)),

where the second equality follows from Lemma 3.1 and the last one follows from Lemma 2.1.
Corollary 3.5.
Let q be a symmetric form on U with the radical V. Denote by q̃ the induced non-degenerate form on U/V. Then, for
any u∗ ∈ U∗, ∫

U χ( 12q(u, u))χ(−u∗(u))dµU(u) = |V|1/2γ(q̃)IV⊥ (u∗)χ(−12 q̃∗(u∗, u∗)),
where we identify V⊥ = (U/V)∗.
Proof. The left hand side is equal to∫

U/V
∫

V χ( 12q(u+ v, u+ v))χ(−u∗(u+ v))dµV(v)dµU/V(u+ V)
= ∫

U/V χ( 12 q̃(u+ V, u+ V))(∫V χ(−u∗(u+ v))dµV(v)) dµU/V(u+ V)
= ∫

U/V χ( 12 q̃(u+ V, u+ V)) (χ(−u∗(u))|V|1/2IV⊥ (u∗)) dµU/V(u+ V)
= |V|1/2IV⊥ (u∗) ∫U/V χ( 12 q̃(u+ V, u+ V))χ(−u∗(u))dµU/V(u+ V)
= |V|1/2IV⊥ (u∗)γ(q̃)χ(−12 q̃∗(u∗, u∗)).
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3.4. Gaussians on a symplectic space

Lemma 3.6.
Suppose x ∈ Hom(U,W/U⊥) is such that

〈xu, v〉 = 〈xv, u〉 (u, v ∈ U).
Set

q(u, v) = 12 〈xu, v〉 (u, v ∈ U).
Let V be the radical of q and let q̃ be the induced non-degenerate form on U/V. Then(a) V = Ker(x);(b) for any w ∈ V⊥ there is u ∈ U such that xu+ (w + U⊥) = 0;(c) for any w ∈ W ∫

U χ( 14 〈xu′, u′〉)χ(−12 〈u′, w〉)dµU(u′) = |V|1/2γ(q̃)IV⊥ (w)χ(−14 〈u,w〉)
where u ∈ U is such that xu+ (w + U⊥) = 0.

Proof. Part (a) is obvious. Part (b) means that Ker(x)⊥ = Im(x), which is true.We know from Corollary 3.5 that the left hand side of (c) is equal to
|V|1/2γ(q̃)IV⊥ (w)χ(−12 q̃∗( 12w, 12w)).

Hence we may assume that w ∈ V⊥. Recall the map Φ: U/V→ (U/V)∗ = V⊥/U⊥:
Φ(u+ V)(u′ + V) = q̃(u′ + V, u+ V) = 12 〈xu′, u〉.

Suppose u ∈ U is such that Φ(u+ V) = 12w + U⊥. Then, by the above,
〈u′, 12w〉 = 12 〈xu′, u〉 = 〈u′,−12xu〉 (u′ ∈ U).

Therefore, xu+ 12w ∈ U⊥. In other words, xu+ (w + U⊥) = 0 and we see that
q̃∗( 12w + U⊥, 12w + U⊥) = 〈u, 12w〉,

so that
−12 q̃∗( 12w + U⊥, 12w + U⊥) = −14 〈u,w〉.The formula (c) follows.
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3.5. Twisted convolution of Gaussians

Recall the twisted convolution of two functions φ,ψ : W→ C:
φ\ψ(w) = ∫W φ(u)ψ(w − u)χ( 12 〈u,w〉)dµW(u) (w ∈ W). (76)

Let
χc(g)(u) = χ( 14 〈c(g)u, u〉) (u ∈ g−W).

More generally, for x and U as in Lemma 3.6, let
χx (u) = χ( 14 〈xu, u〉) (u ∈ U).

By a Gaussian we understand the following function,
Ig−W(w)χc(g)(w) (w ∈ W). (77)

The goal of this subsection is to verify the following proposition.
Proposition 3.7.
For any g1, g2 ∈ Sp(W), (

IU1χc(g1)) \ (IU2χc(g2)) = C (g1, g2) IU12 χc(g1g2),
where

C (g1, g2) = |K12|1/2
|K1|1/2|K2)|1/2 γ(q̃g1,g2 ).

Proof. Notice first that, by the definition of the twisted convolution (76),
(
IU1χc(g1)) \ (IU2χc(g2)) (w) = 0

if (U1 ∩ (U2 + w) = ∅. Therefore we may assume that there is v ∈ U1 such that w − v ∈ U2. Lemmas 2.2 and 2.5 plus astraightforward computation show that
(
IU1χc(g1)) \ (IU2χc(g2)) (w) = |U|1/2|W|1/2

∫
U χc(g1)+c(g2)(u′)χ(−12 〈u′, c(g1)v + c(g2)(v − w)− w〉)dµU(u′)

·χc(g1)(v)χc(g2)(v − w)χ( 12 〈v, w〉).
Since V⊥ = Ker(c(g1) + c(g2))⊥ is the image of c(g1) + c(g2), we see from Lemma 3.6 that the expression (78) is not zeroif and only if there is u ∈ U such that

(c(g1) + c(g2))u+ (c(g1)v + c(g2)(v − w)− w) ∈ U⊥. (78)
Let

u = g−1 v1 = g−2 v2, v = g−1 w1 and w − v = g−2 w2. (79)
Then,

g+1 v1 + g+2 v2 + g+1 w1 − g+2 w2 − w ∈ U⊥ = K1 + K2.
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Hence, Lemma 2.3 shows that, without changing v or w − v , we may choose w1 and w2 in (79) so that
g+1 v1 + g+2 v2 + (g+1 )w1 − g+2 w2 − w = 0. (80)

Multiplying (80) by g−1 we get
g−1 g+1 v1 + g−1 g+2 v2 + g−1 g+1 w1 − g−1 g+2 w2 − g−1 w = 0.

Since, g−1 (g+1 )v1 = (g+1 )g−1 v1 = (g+1 )g−2 v2, we see that
g+1 g−2 v2 + g−1 g+2 v2 + g+1 g−1 w1 − g−1 g+2 w2 − g−1 w = 0.

But, by (79), g−1 w1 = w − g−2 w2. Hence,
g+1 g−2 v2 + g−1 g+2 v2 + g+1 w − g+1 g−2 w2 − g−1 g+2 w2 − g−1 w = 0.

Thus (g+1 g−2 + g−1 g+2 )(v2 − w2) + 2w = 0.
Therefore

w = (g1g2)−(w2 − v2). (81)
Hence, w ∈ (g1g2)−W.Conversely, suppose w = (g1g2)−w0 for some w0 ∈ W. Then

w = g−1 g2w0 + g−2 w0.
Let w1 = g2w0 and let w2 = w0, so that

v = g−1 w1 and w − v = g−2 w2,as in (79). Then,
c(g1)v + c(g2)(v − w)− w = g+1 w1 − g+2 w2 = (g+1 g2 − g+2 − (g1g2)−)w0 = 0 ∈ U⊥.

Therefore (78) holds with u = 0. Thus we have the indicator function I(g1g2)−W in the formula of Proposition 3.7.Furthermore, with u as in Lemma 3.6 (b),
− 〈u, c(g1)v + c(g2)(v − w)− w〉+ 〈c(g1)v, v〉+ 〈c(g2)(v − w), v − w〉+ 2〈v, w〉 (82)= 〈g−2 v2,−g+1 w1 + g+2 w2 + w〉+ 〈g+1 w1, g−1 w1〉+ 〈g+2 w2, g−2 w2〉+ 2〈g−1 w1, w〉= 〈g−2 v2,−g+1 w1 + g+2 w2 + w〉+ 〈g+1 w1, w − g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w − g−2 w2, w〉= 〈g−2 v2,−g+1 w1 + g+2 w2 + w〉+ 〈g+1 w1, w − g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w, g−2 w2〉= 〈g−2 v2, g+2 w2 + w〉+ 〈g+1 w1, g−2 v2〉+ 〈g+1 w1, w − g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w, g−2 w2〉.

Notice that
〈g+1 w1, g−2 v2〉 = 〈g+1 w1, g−1 v1〉 = 〈(g−11 − 1)g+1 w1, v1〉= −〈g−11 g−1 (g+1 )w1, v1〉 = −〈g−11 g+1 g−1 w1, v1〉 = −〈g−11 g+1 (w − g−2 w2), v1〉= −〈(1 + g−11 )(w − g−2 w2), v1〉 = −〈w − g−2 w2, g+1 v1〉 = 〈g+1 v1, w − g−2 w2〉.
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Hence, (82) is equal to
〈g−2 v2, g+2 w2 + w〉+ 〈g+1 v1, w − g−2 w2〉+ 〈g+1 w1, w − g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w, g−2 w2〉= 〈g−2 v2, g+2 w2 + w〉+ 〈g+1 w1 + g+1 v1, w − g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w, g−2 w2〉. (83)

Now we compute g+1 w1 + g+1 v1 from (80) and substitute in (83) to see that (83) is equal to
〈g−2 v2, g+2 w2 + w〉+ 〈w + g+2 w2 − g+2 v2, w − g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w, g−2 w2〉 (84)= 〈g−2 v2, g+2 w2〉+ 〈g−2 v2, w〉+ 〈g+2 w2, w〉 − 〈g+2 v2, w〉 − 〈w, g−2 w2〉
−〈g+2 w2, g−2 w2〉+ 〈g+2 v2, g−2 w2〉+ 〈g+2 w2, g−2 w2〉+ 2〈w, g−2 w2〉= 〈g−2 v2, g+2 w2〉+ 〈g−2 v2, w〉+ 〈g+2 w2, w〉 − 〈g+2 v2, w〉+ 〈g+2 v2, g−2 w2〉+ 〈w, g−2 w2〉= 〈(g2 − g−12 )v2, w2〉+ 〈g−2 v2, w〉+ 〈g+2 w2, w〉 − 〈g+2 v2, w〉+ 〈(g−12 − g2)v2, w2〉+ 〈w, g−2 w2〉= 〈g−2 v2, w〉+ 〈g+2 w2, w〉 − 〈g+2 v2, w〉 − 〈g−2 w2, w〉 = 〈2(w2 − v2), w〉.

But we know from (81) that w = (g1g2)−(w2 − v2). Hence, (84) is equal to
〈2(w2 − v2), (g1g2)−(w2 − v2)〉 = 〈(g1g2)−(w2 − v2) + 2(w2 − v2), (g1g2)−(w2 − v2)〉= 〈(g1g+2 )(w2 − v2), (g1g2)−(w2 − v2)〉 = 〈c(g1g2)w,w〉.

(Notice that the computation (82) - (85) may be simplified as follows. We already know from (81) that w = (g1g2)−w0for some w0 ∈ W. Hence, we may choose w1 = g2w0, v = g−1 g2w0 and w2 = w0 in (79). Then
c(g1)v + c(g2)(v − w)− w = 0

and therefore it will suffice to show that
〈c(g1)v, v〉+ 〈c(g2)(w − v), w − v〉+ 2〈v, w − v〉 = 〈c(g1g2)w,w〉. (85)

The left hand side of (85) is equal to
〈g+1 w1, g−1 w1〉+ 〈g+2 w2, g−2 w2〉+ 2〈g−1 w1, g−2 w2〉= 〈(g1g2 + g2)w0, (g1g2 − g2)w0〉+ 〈g+2 w0, g−2 w0〉+ 2〈(g1g2 − g2)w0, g−2 w0〉= 2〈w0, g1g2w0〉 = 〈(g1g+2 )w0, (g1g2)−w0〉,

which coincides with the right hand side.) Therefore Lemma 3.6 shows that for w ∈ V⊥,
∫

U χc(g1)+c(g2)(u′)χ(−12 〈u′, c(g1)v + c(g2)(v − w)− w〉)dµU(u′) · χc(g1)(v)χc(g2)(v − w)χ( 12 〈v, w〉)= |V|1/2γ(q̃g1,g2 )χc(g1g2)(w).
By combining this with (78) we see that

(
Ig−1 Wχc(g)) \(Ig−2 Wχc(g)) = |U|1/2|V|1/2|W|1/2 γ(q̃g1,g2 )I(g1g2)−Wχc(g1g2)

But Lemma 2.7 implies
|U|1/2|V|1/2
|W|1/2 = |K12|1/2

|K1|1/2|K2|1/2 .
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3.6. Normalization of Gaussians

Let B be a non-degenerate bilinear form on a finite dimensional vector space over F. Define the discriminant of B as
dis(B) = s(det(A)), (86)

where A is the matrix obtained from a basis u1, u2, . . ., un of the space by
Ai,j = B(ui, uj ) (1 ≤ i, j ≤ n).

Clearly the discriminant does not depend on the choice of the basis.For any g ∈ Sp(W) the formula
〈g−w,w ′〉 (w,w ′ ∈ W)

defines a bilinear form whose left and right radicals coincide with Ker(g−). Hence we get a non-degenerate bilinearform Bg on the quotient W/Ker(g−). Then, for g 6= 1,
dis(Bg) = s(det(〈g−wi, wj〉1≤i,j≤r)),

where w1 + Ker(g−), w2 + Ker(g−), . . ., wr + Ker(g−) is a basis of W/Ker(g−). For completeness set dis(B1) = 1.For g ∈ Sp(W) define
Θ(g) = |Ker(g−)|1/2 γ(1)dim g−W dis(Bg), (87)
T (g) = Θ(g) Ig−W χc(g).

Theorem 3.8.
For any g1, g2 ∈ Sp(W),

T (g1)\T (g2) = T (g1g2).
Proof. Proposition 3.7 implies that we’ll be done as soon as we show that

C (g1, g2) = Θ(g1g2)Θ(g1)Θ(g2) (g1, g2 ∈ Sp(W)). (88)
Also, we see from Proposition 3.7 that the absolute values of both sides of (88) are equal. Hence, (88) is equivalent to

γ(q̃g1,g2 ) = θ(g1g2)
θ(g1)θ(g2) (g1, g2 ∈ Sp(W)), (89)

where
θ(g) = γ(1)dim g−W dis(Bg) (g ∈ Sp(W)).

Since the twisted convolution is associative, the function C (g1, g2) is a cocycle:
C (g1, g2)C (g1g2, g3) = C (g1, g2g3)C (g2, g3) (g1, g2, g3 ∈ Sp(W)).

Recall the non-degenerate symmetric form q̃g1,g2 defined in Notation 2.6. Hence, by the formula for C (g1, g2) inProposition 3.7, the function γ(q̃g1,g2 ) is also a cocycle:
γ(q̃g1,g2 )γ(q̃g1g2,g3 ) = γ(q̃g1,g2g3 )γ(q̃g2,g3 ) (g1, g2, g3 ∈ Sp(W)).
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Let
C ′(g1, g2) = θ(g1g2)

θ(g1)θ(g2) (g1, g2 ∈ Sp(W)).
This is also a cocycle. Fix two elements g2, g3 ∈ Sp(W). We have seen in Lemma 2.8 that there is g1 ∈ Sp(W) suchthat K1 = Kerg−1 = {0} and K12 = Ker(g1g2)− = {0}. Assume that (89) holds when K1 = {0} . Then

γ(q̃g2,g3 ) = γ(q̃g1,g2 )γ(q̃g1g2,g3 )
γ(q̃g1,g2g3 ) = C ′(g1, g2)C ′(g1g2, g3)

C ′(g1, g2g3) = C ′(g2, g3).
Hence, in order to verify (89) we may assume that K1 = {0}. Then Corollary 2.10 implies

dis(q̃g1,g2 ) = dis(Bg1g2 )s(−1)dim U dis(Bg1 ) dis(Bg2 ) = s(−1)dim U dis(Bg1g2 )dis(Bg1 ) dis(Bg2 ) .
But, it follows from Lemma 2.7 that

γ(1)dim U12
γ(1)dim U1 γ(1)dim U2 = γ(1)(− dim U−dim V). (90)

On the other hand, we see from Corollary 3.3 that
γ(q̃g1,g2 ) = γ(1)dim U−dim V dis(q̃g1,g2 ) = s(−1)dim Uγ(1)− dim U−dim V dis(q̃g1,g2 ),

because γ(1)2 = s(−1). Therefore (90) implies (89).
3.7. The conjugation property

Let ω1,1 denote the permutation representation of Sp(W) on L2(W):
ω1,1(g)φ(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)).

Also, let
φ∗(w) = φ(−w) (w ∈ W, φ ∈ L2(W)).

Proposition 3.9.
For any φ ∈ L2(W) and g ∈ Sp(W) we have(a) T (1)\φ = φ\T (1) = φ,(b) T (g)\φ\T (g−1) = ω1,1(g)φ,(c) T (g)∗ = T (g−1).
Proof. Since,

T (1) = |W|1/2I{0}
part (a) is easy to check. We see from (87) that the equality (c) is equivalent to

γ(1)− dim g−W dis(Bg) = γ(1)dim g−W dis(Bg−1 ),
which is the same as

s(−1)dim g−W = dis(Bg) dis(Bg−1 ).
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But the last equality holds because
dis(Bg−1 ) = dis(−Bg) = s(−1)dim g−W dis(Bg).

Thus it remains to prove the equality (b), which is equivalent to
T (g)\Iw0 = Igw0\T (g). (91)

The left hand side of (91) evaluated at w ′ is equal to
|W|−1/2Θ(g)Ig−W(w ′ − w0)χ( 14 (〈c(g)(w ′ − w0), w ′ − w0〉+ 2〈w ′ − w0, w ′〉))

and the right hand side is equal to
|W|−1/2Θ(g)Ig−W(w ′ − gw0)χ( 14 (〈c(g)(w ′ − gw0), w ′ − gw0〉+ 2〈gw0, w ′〉)).

Since,
w ′ − gw0 = (w ′ − w0)− g−w0

both sides have the same support. Also,
〈c(g)(w ′ − gw0), w ′ − gw0〉+ 2〈gw0, w ′〉 − (〈c(g)(w ′ − w0), w ′ − w0〉+ 2〈w ′ − w0, w ′〉)= 〈c(g)(w ′ − gw0), w ′ − gw0〉 − 〈c(g)(w ′ − w0), w ′ − w0〉+ 2〈g+w0, w ′〉= 〈c(g)((w ′ − w0)− g−w0, (w ′ − w0)− g−w0〉 − 〈c(g)(w ′ − w0), w ′ − w0〉+ 2〈g+w0, w ′〉= 〈c(g)g−w0, g−w0〉 − 2〈c(g)g−w0, w ′ − w0〉+ 2〈g+w0, w ′〉= 〈g+w0, g−w0〉 − 2〈g+w0, w ′ − w0〉+ 2〈g+w0, w ′〉= 〈g+w0, g−w0〉+ 2〈g+w0, w0〉 = 〈(g−1 − 1)g+w0, w0〉+ 2〈g+w0, w0〉= 〈(g−1 − g)w0, w0〉+ 2〈gw0, w0〉 = 0.

Therefore the two sides of (91) are equal.
3.8. The Weyl transform and the Weil representation

Pick a complete polarization W = X⊕ Y (92)
and recall that our normalization of measures is such that dµW(x + y) = dµX(x)dµY(y). Recall the Weyl transform

K : L2(W)→ L2(X× X), (93)
K(φ)(x, x ′) = ∫Y φ(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y).

Each element K ∈ L2(X× X) defines an operator Op(K ) ∈ Hom(L2(X), L2(X)) by
Op(K )v(x) = ∫X K (x, x ′)v(x ′)dµX(x ′). (94)
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A straightforward computation shows that Op ◦K transforms the twisted convolution of functions into the composition ofthe corresponding operators. Also,
tr Op ◦ K(φ) = ∫XK(φ)(x, x)dµX(x) = φ(0) and (Op ◦ K(φ))∗ = Op ◦ K(φ∗). (95)

Hence, the map Op ◦ K : L2(W)→ H.S.(L2(X)) (96)is an isometry. (Here H.S.(L2(X)) stands for the space of the Hilbert-Schmidt operators on L2(X).) Let U(L2(X)) denotethe group of the unitary operators on the Hilbert space L2(X).By combining (92) - (96) with Theorem 3.8 and Proposition 3.9 we deduce the following theorem.
Theorem 3.10.
Let ω = Op ◦ K ◦ T . Then

ω : Sp(W)→ U(L2(X))
is an injective group homomorphism. The function Θ coincides with the character of the resulting representation:

Θ(g) = tr ω(g) (g ∈ Sp(W)).
Moreover,

ω(g) Op ◦ K(φ)ω(g−1) = Op ◦ K(ω1,1(g)φ) (g ∈ Sp(W), φ ∈ L2(W)).
We end this Section by recalling some well known formulas for the action of ω(g) for some special elements g ∈ Sp(W).
Proposition 3.11.
Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and Y. Then the restriction to X defines a group
isomorphism M 3 g→ g|X ∈ GL(X) and

ω(g)v(x) = s(det(g|X))v(g−1x) (g ∈ M, v ∈ L2(X), x ∈ X). (97)
Proof. Fix an element g ∈ M. Let x1, x2, . . ., xk be elements of X such that the vectors x1 +Ker(g−)|X, x2 +Ker(g−)|X,
. . ., xk + Ker(g−)|X form a basis of the vector space X/Ker(g−)|X. Pick y1, y2, . . ., yk in Y so that 〈xi, yj〉 = 1. Then thevectors y1 + Ker(g−)|Y , y2 + Ker(g−)|Y , . . ., yk + Ker(g−)|Y form a basis of the vector space Y/Ker(g−)|Y . Let w1 := x1,
. . ., w2k := yk . Then w1 +Ker(g−), . . ., w2k +Ker(g−) for a basis of W/Ker(g−). Furthermore g defines an endomorphism
g−1|X/Ker(g−)|X of the space X/Ker(g−)|X and

det(〈g−wi, wj〉1≤i,j≤2k ) = (−1)dim(X/Ker(g−)|X) det(〈g−xi, yj〉1≤i,j≤k ) det(〈g−yi, xj〉1≤i,j≤k )= (−1)dim(X/Ker(g−)|X) det(〈g−xi, yj〉1≤i,j≤k ) det(〈yi, (g−1 − 1)xj〉1≤i,j≤k )= (−1)dim(X/Ker(g−)|X) det(〈g−xi, yj〉1≤i,j≤k ) det(〈g−1g−xj , yi〉1≤i,j≤k )= (−1)dim(X/Ker(g−)|X) (det(〈g−xi, yj〉1≤i,j≤k ))2 det(g−1|X/Ker(g−)|X ).
But det(g−1|X/Ker(g−)|X ) = det(g|−1X ). Therefore

Θ(g) = |Ker(g−)| 12 · γ(1)dim g−W · s((−1)dim(X/Ker(g−)|X) det(g|−1X ))
= (

|W|
|g−W|

) 12
· γ(1)2 dim g−X · s((−1)dim(X/Ker(g−)|X) det(g|−1X ))

= |Y|
|g−Y| · (s(−1))dim g−X · s((−1)dim(X/Ker(g−)|X) det(g|−1X ))

= |Y|
|g−Y| · s (det(g|−1X )) .
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Let x, x ′ ∈ X and let y ∈ Y be such that x − x ′ + y ∈ g−W. Then x − x ′ ∈ g−X and y ∈ g−Y. Moreover,
14 〈c(g)(x − x ′ + y), x − x ′ + y〉〉 = 12 〈c(g)(x − x ′), y〉.

Hence, (75) shows that∫
g−Y χc(g)(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y) = (

|g−Y|
|Y|

) 12 ∫
g−Y χ( 12 〈y, x + x ′ − c(g)(x − x ′)〉)dµg−Y(y)

= (
|g−Y|
|Y|

) 12 (
|g−Y|) 12 IKer(g−)|X

(12 (x + x ′ − c(g)(x − x ′))) ,
because the annihilator of g−Y in X coincides with Ker(g−)|X. But the condition x+ x ′− c(g)(x− x ′) ∈ Ker(g−)|X meansthat x ′ = g−1x. Indeed, if x − x ′ = g−x̃, then

0 = g−(x + x ′ − c(g)(x − x ′)) = g−(x + x ′ − g+x̃) = g−(x + x ′)− g+(x − x ′) = 2(gx ′ − x).
Therefore,

K(T (g))(x, x ′) = Θ(g)( |g−Y||Y|
) 12 (
|g−Y|) 12 δ0(g−1x − x ′)

= |Y|
|g−Y| s (det(g|−1X ))( |g−Y||Y|

) 12 (
|g−Y|) 12 δ0(g−1x − x ′)

= |Y| 12 s (det(g|−1X )) δ0(g−1x − x ′)
and the formula for ω(g) follows.
Proposition 3.12.
Suppose g ∈ Sp(W) acts trivially on Y and on W/Y. Then det((−g)− 1) 6= 0 and

ω(g)v(x) = χc(−g)(2x)v(x) (v ∈ L2(X), x ∈ X).
Proof. Since −g acts as minus the identity on Y and on W/Y, det((−g) − 1) 6= 0 and z := c(−g) ∈ sp(W) is welldefined. Furthermore

z : X→ Y→ 0.Hence, ∫
Y χz(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y) = ∫Y χz(x − x ′)χ( 12 〈y, x + x ′〉)dµY(y)

= χz(x − x ′)|Y | 12 δ0( 12 (x + x ′)) = χz(2x)|Y | 12 δ0(x + x ′)
Moreover, Θ(−g) = γ(1)dim(W)s(det(−2)) = s(−1)dim(X)s((−2)dim(W)) = s(−1)dim(X).Thus

K(T (−g))(x, x ′) = s(−1)dim(X)χz(2x)|Y | 12 δ0(x + x ′).Therefore,
ω(−g)v(x) = s(−1)dim(X)χz(2x)v(−x).Since, by Proposition 3.11,

ω(−1)v(x) = s(−1)dim(X)v(−x),the formula for ω(g) follows.
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Proposition 3.13.
Suppose g ∈ Sp(W) maps X bijectively onto Y and Y onto X and g2 = −1. Then

ω(g)v(x) = γ(1)dim(X) ∫X χ(〈gx, x ′〉)v(x ′)dµX(x ′) (v ∈ L2(X), x ∈ X).
(Thus ω(g) is a Fourier transform on L2(X).)
Proof. The formula (gx, x ′) (x, x ′ ∈ X)defines a non-degenerate symmetric bilinear form on X. Hence, there is a basis x1, x2, . . ., xn of X and scalars aj ∈ F×such that (gxi, xj ) = ajδi,j (1 ≤ i, j ≤ n).Set yj := −a−1

j xj , 1 ≤ j ≤ n. Then y1, y2, . . ., yn is a basis of Y and 〈xi, yj〉 = δi,j for all 1 ≤ i, j ≤ n. We have
g−xi = −ajyj − xj and g−yi = a−1

j xj − xj − yj .

Set A = diag(a1, a2, . . . , an). Then, with I = In,
det (g−) = det( − I A−1

−A − I
) = det( I 0

−A I
)(
− I A−1
−A − I

) = det(− I A−10 −2 I
) = 2n 6= 0.

Thus Ker(g−) 6= 0 so that g−W = W. Moreover, with wi = xi and wn+i = yi for i = 1, 2, . . . , n, we have
det (〈g−wi, wj〉1≤i,j≤2n) = det( − I A−1

−A −2 I
)t ( 0 I

− I 0
) = 2n det( 0 I

− I 0
) = 2n.

Thus dis(Bg) = s(2n).Hence, Θ(g) = γ(1)2n s(2n) = s(−1)n s(2n) = s(−2)n.Since g+ = g−(−g), we see that c(g) = −g. Further,
〈(c(g)(x − x ′ + y), x − x ′ + y〉 = 〈−g(x − x ′ + y), x − x ′ + y〉 = 〈−g(x − x ′), x − x ′〉+ 〈−gy, y〉.

Therefore, ∫
Y χc(g)(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y) = χ−g(x − x ′) ∫Y χ−g(y)χ( 12 〈y, x + x ′〉)dµY(y)

= χ−g(x − x ′) γ(q̃) χg(x + x ′) = γ(q̃) χ(〈gx, x ′〉),
where q̃ is the following symmetric bilinear form on Y

q̃(y, y′) = 12 〈−gy, y′〉 (y, y′ ∈ Y).
Since, det(q̃(yi, yj )1≤i,j≤n) = (−12

)n
,

we see that
γ(q̃) = γ(1)ns(−12

)n
.

Therefore,
K(T (g))(x, x ′) = s(−2)n γ(1)n s(−12

)n
χ(〈gx, x ′〉) = γ(1)n χ(〈gx, x ′〉).
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4. The Weil representation over R

Let χ(r) = exp(2πir), r ∈ R. This is a non-trivial character of the additive group R. In this Section we provide aconstruction of the corresponding Weil representation, [35], [42].
4.1. The Fourier transform

Let U be a finite dimensional vector space over R and let B be a positive definite scalar product on U. We normalizethe Lebesgue measure µU on U so that the volume of the unit cube (with respect to B) is 1. The formula
Φ(u)(v) = B(u, v) (u, v ∈ U)

defines a linear isomorphism Φ : U→ U∗. The form B∗ dual to B is given by
B∗(u∗, v∗) = v∗(Φ−1(u∗)) (u∗, v∗ ∈ U∗).

This is a symmetric positive definite bilinear form on U∗. Denote by µU∗ the corresponding Lebesgue measure.Let S(U) be the Schwartz space on U, [13, Definition 7.1.2]. For φ ∈ S(U) let
Fφ(u∗) = ∫U φ(u)χ(−u∗(u))dµU(u) (u∗ ∈ U∗)

be the Fourier transform of φ. Then, as is well known, Fφ ∈ S(U∗) and
φ(u) = ∫U∗ Fφ(u∗)χ(u∗(u))dµU∗ (u∗) (u∗ ∈ U∗),

see [13, Theorem 7.1.5].Let S∗(U) denote the space of the tempered distributions on U, [13, Definition 7.1.7]. When convenient we shall identifyany bounded locally integrable function f : U → C with the tempered distribution fµU. In particular, S(U) ⊆ S∗(U).Then the Fourier transform
F : S(U)→ S(U∗)

extends to
F : S∗(U)→ S∗(U∗),

[13, Definition 7.1.9].Let V ⊆ U be a non-zero subspace. The form B restricts to V and determines the Lebesgue measure µV . We may view
µV as a tempered distribution on U by

µV(φ) = ∫V φ(v)dµV(v) (φ ∈ S(U)).
In the case when V is zero we define µV = µ0 to be the unit measure at 0. In other words µ0 = δ0 is the Dirac delta at 0,

µ0(φ) = δ0(φ) = φ(0) (φ ∈ C (U)).
Also, for future reference, let δu ∈ S(U) be the Dirac delta at u ∈ U,

δu(φ) = φ(u) (φ ∈ C (U)).
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For an arbitrary subspace V ⊆ U, let V⊥ ⊆ U∗ be the annihilator of V. Then,
FµV = µV⊥ , (98)

see [13, Theorem 7.1.25].The quotient space U/V may be identified with the B-orthogonal complement of V in U. Hence it inherits the naturalscalar product.Consider two real vector spaces U′, U′′ of the same dimension equipped with scalar products B′, B′′ respectively.Let u′1, u′2, . . . , u′n be a B′-orthonormal basis of U′ and let u′′1 , u′′2 , . . . , u′′n be a B′′-orthonormal basis of U′′. Suppose
L : U′ → U′′ is a linear bijection. Denote by M the matrix of L with respect to the two ordered basis:

Lu′j = n∑
i=1 Mi,ju′′i (j = 1, 2, . . . , n).

Then | det(M)| does not depend on the choice of the orthonormal basis. Thus we may define | det(L)| = | det(M)| (seeSection 2.5).
Lemma 4.1.
With the above notation we have∫

U′ φ(L(u′))dµU′ (u′) | det(L)| = ∫U′′ φ(u′′)dµU′′ (u′′) (φ ∈ S(U′′)). (99)
Proof. Since ∫ 10 ∫ 10 · · · ∫ 10 dxn · · ·dx2 dx1 = 1 and by definition of µU′ , µU′ ([0, 1]u′1 + [0, 1]u′2 + · · ·+ [0, 1]u′n) = 1,

∫
U′ φ(u′)dµU′ (u′) = ∫ ∞

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(x ′1u′1 + x ′2u′2 + · · ·+ x ′nu′n)dx ′n · · · dx ′2 dx ′1,
and similarly for U′′. Therefore the right hand side of (99) equals

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ( n∑
i=1 x

′′
i u′′i )dx ′′n · · · dx ′′2 dx ′′1 = ∫ ∞

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ( n∑
i=1

n∑
j=1 Mi,jx ′ju′′i )dx ′n · · · dx ′2 dx ′1| det(M)|

= ∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ( n∑
j=1 x

′
jL(u′j ))dx ′n · · · dx ′2 dx ′1| det(M)|

which coincides with the left hand side.
Lemma 4.2.
Suppose X is a finite dimensional vector space over R with a positive definite symmetric bilinear form and L : X→ U is
a surjective linear map. Let

L̃ : X/L−1(V)→ U/V
be the induced bijection. Then

L∗(µV) = | det(L̃)|−1µL−1(V),
where the pullback L∗(µV) is defined as in [13, Theorem 6.1.2].
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Proof. Let X′ ⊆ X be the orthogonal complement of Ker(L). Denote by L′ the restriction of L to X′ and by L′′ therestriction of L to X′ ∩ L−1(V). Then
L′ : X′ → U and L′′ : X′ ∩ L−1(V)→ V

are bijections.According to [13, Theorem 6.1.2], for a test function φ we have
L∗(µV)(φ) = ∫Ker(L)

∫
V φ(x + L′−1(v))dµV(v)dµKer(L)(x) | det(L′)|−1. (100)

Lemma 4.1 shows that the right hand side of (100) is equal to
∫

Ker(L)
∫
L′′−1(V) φ(x + y)dµL′′−1(V)(y)dµKer(L)(x) | det(L′′)| | det(L′)|−1 = ∫

L−1(V) φ(z)dµL−1(V)(z) | det(L′′)| | det(L′)|−1.

Since | det(L′′)|−1 | det(L′)| = | det(L̃)|, we are done.
4.2. Gaussians on Rn

Let B be the usual dot product on Rn,
B(x, y) = xty = x1y1 + x2y2 + · · ·+ xnyn (x, y ∈ Rn).

Then dµRn (x) = dx is the usual Lebesgue measure on Rn, see [34, Theorem 10.33].For a symmetric matrix A ∈ GL(Rn) define the corresponding Gaussian γA by
γA(x) = χ( 12xtAx) (x ∈ Rn).

Also, let
γ(A) = FγA(0) = ∫

Rn
χ( 12xtAx)dx.As customary, we shall identify Rn with the dual (Rn)∗ via the dot product. In these terms we have the following theorem,[13, Theorem 7.6.1].

Theorem 4.3.
For any symmetric matrix A ∈ GL(Rn),

FγA = e πi4 sgn(A)√
| detA|γ−A−1 ,

where sgn(A) is the number of the positive eigenvalues of A (counted with the multiplicities) minus the number of the
negative eigenvalues of A (counted with the multiplicities). In particular,

γ(A) = e πi4 sgn(A)√
| detA| . (101)

Remark 4.4.Eqn.(101) follows also from [42, Chap. I Théorème 2 and Chap. II § 26].
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Remark 4.5.Eqn.(101) implies that
γ(A) = ±γ(1)n−1 γ(detA), (102)

which can be viewed as the analog on R of Corollary 3.3.Indeed, by applying Eqn.(101) to both 1 and detA, we get
γ(1) = e πi4 and γ(detA) = e

πi4 sign(detA)√
| detA| ,

where sign(detA) is the sign of the determinant of A. Hence we are reduced to compare the congruence modulo 4 ofsgn(A) with those of n− 1 + sign(detA). Let p (resp. q) denote the number of the positive (resp. negative) eigenvaluesof A. We have sgn(A) = p− q and n = p+ q. It follows that
n− 1 + sign(detA)− sgn(A) = 2q− 1 + sign(detA) ≡ 0 (mod 4),

since sign(detA) = (−1)q.
Remark 4.6.It is easy to see from (102) that (

γ(a)
γ(1)

)2 = 1
a (a ∈ R×). (103)

4.3. Gaussians on a vector space

Let U be a finite dimensional vector space over R with a symmetric positive definite bilinear form B. Suppose q is anon-degenerate symmetric bilinear form on U. Let γ(q) = γ(Q), where Q is the matrix obtained from any B-orthonormalbasis u1, u2, un of U by
Qi,j = q(ui, uj ) (1 ≤ i, j ≤ n).

Also, we define γ(0) = 1.
Lemma 4.7.
If q is a non-degenerate symmetric bilinear form on U, then

∫
U χ( 12q(u, u))χ(−u∗(u))dµU(u) = γ(q)χ(−12q∗(u∗, u∗)) (u∗ ∈ U∗).

Proof. Fix a B-orthonormal basis u1, u2, . . ., un of U and let u∗1, u∗2, . . ., u∗n be the dual basis of U∗. This is a
B∗-orthonormal basis. As we have seen in the proof of Lemma 3.4, if Q is the matrix corresponding to q, as above, then
Q−1 corresponds to q∗.Let xi = u∗i (u) and let yj = u∗(uj ). Then

∫
U χ( 12q(u, u))χ(−u∗(u))dµU(u) = ∫

Rn
χ( 12xtQx)χ(−xty)dx = γ(Q)χ(−12ytQ−1y) = γ(q)χ(−12q∗(u∗, u∗)),

where the second equality follows from Theorem 4.3.
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4.4. Gaussians on a symplectic space

Let W be a finite dimensional vector space over R with a non-degenerate symplectic form 〈 , 〉. Fix a positive definitecompatible complex structure J on W. In other words, J ∈ sp(W), J2 = − I and the form
B(w,w ′) = 〈J(w), w ′〉 (w,w ′ ∈ W) (104)

is positive definite. As explained in Section 4.1, this leads to a normalization of the Lebesgue measures on any subspaceof U ⊆ W and on any quotient U/V, where V is a subspace of U.We shall identify W with the dual W∗ by
w∗(w) = 〈w,w∗〉 (w,w∗ ∈ W). (105)

Then U∗ = W/U⊥ and (U/V)∗ = V⊥/U⊥, (106)where the orthogonal complements are taken in W, with respect to the symplectic form 〈 , 〉.
Lemma 4.8.
Suppose x ∈ Hom(U,W/U⊥) is such that

〈xu, v〉 = 〈xv, u〉 (u, v ∈ U).
Set

q(u, v) = 12 〈xu, v〉 (u, v ∈ U).
Let V be the radical of q and let q̃ be the induced non-degenerate form on U/V. Then(a) V = Ker(x);(b) The element x determines a bijection

x : U/V→ V⊥/U⊥,
with the inverse

x−1 : V⊥/U⊥ → U/V;
(c) Let x−1 : V⊥ → U/V be the composition of x−1 with the quotient map V⊥ → V⊥/U⊥. Define

χx (u) = χ( 14 〈xu, u〉) (u ∈ U), (107)
χx−1 (w) = χ( 14 〈x−1w,w〉) (w ∈ V⊥). (108)

Then, for any φ ∈ S(W),
∫

U
∫

W χx (u)χ(−12 〈u,w〉)φ(w)dµW(w)dµU(u) = 2dim(V)γ(q̃) ∫V⊥ χx−1 (w)φ(w)dµV⊥ (w)
= 2dim(V)γ(q̃) ∫V⊥/U⊥ χx−1 (w + U⊥) ∫U⊥ φ(w + v)dµU⊥ (v)dµV⊥/U⊥ (w + U⊥). (109)

Also, for any φ ∈ S(W/U⊥), ∫
U
∫

W/U⊥ χx (u)χ( 12 〈u,w〉)φ(w + U⊥)dµW/U⊥ (w + U⊥)dµU(u) (110)
= 2dim(V)γ(q̃) ∫V⊥/U⊥ χx−1 (w)φ(w + U⊥)dµV⊥/U⊥ (w + U⊥).
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Proof. Part (a) is obvious. Part (b) means that Ker(x)⊥ = Im(x), which is true. For φ ∈ S(W) we have,
∫

U
∫

W χx (u)χ(−12 〈u,w〉)φ(w)dµW(w)dµU(u) = ∫
W F (γqµU)( 12w)φ(w)dµW(w)

= ∫
W F (γqµU)(w)φ(2w)dµW(w) 2dim W

= γ(q̃)∫V⊥ γ−q̃∗ (w)φ(2w)dµV⊥ (w) 2dim W
= γ(q̃)∫V⊥ γ−q̃∗ ( 12w)φ(w)dµV⊥ (w) 2dim W−dim V⊥
= γ(q̃)∫V⊥ χx−1 (w)φ(w)dµV⊥ (w) 2dim V.

This verifies (109). For φ ∈ S(W/U⊥) we have,
∫

U
∫

W/U⊥ χx (u)χ( 12 〈u,w〉)φ(w + U⊥)dµW/U⊥ (w + U⊥)dµU(u)
= ∫

U/V
∫

V
∫

W/U⊥ χx (u+ V)χ( 12 〈u+ v, w〉)φ(w + U⊥)dµW/U⊥ (w + U⊥)dµV(v)dµU/V(u+ V)
= ∫

U/V
∫

V
∫

W/U⊥ γq̃(u+ V)χ(〈u+ v, w〉)φ(2w + U⊥)dµW/U⊥ (w + U⊥)dµV(v)dµU/V(u+ V)
2dim W/U⊥

= ∫
U/V
∫

V⊥/U⊥ γq̃(u+ V)χ(〈u,w〉)φ(2w + U⊥)dµW/U⊥ (w + U⊥)dµU/V(u+ V) 2dim W/U⊥

= γ(q̃)∫V⊥/U⊥ γ−q̃∗ (w + U⊥)φ(2w + U⊥)dµW/U⊥ (w + U⊥) 2dim W/U⊥

= γ(q̃)∫V⊥/U⊥ γ−q̃∗ ( 12w + U⊥)φ(w + U⊥)dµW/U⊥ (w + U⊥) 2dim W/U⊥−dim V⊥/U⊥

= γ(q̃) ∫V⊥/U⊥ χx−1 (w + U⊥)φ(w + U⊥)dµW/U⊥ (w + U⊥) 2dim V.

This verifies (110).
By a Gaussian on the symplectic space W we shall understand any non-zero constant multiple of the tempered distri-bution

χxµU ∈ S∗(W) (111)
where the function χx is defined in Lemma 4.8. In these terms Lemma 4.8 says that the Fourier transform of a Gaussianis another Gaussian.
4.5. Twisted convolution of Gaussians

Recall the twisted convolution of two Schwartz functions ψ,φ ∈ S(W):
ψ\φ(w) = ∫W ψ(u)φ(w − u)χ( 12 〈u,w〉)dµW(u) (w ∈ W). (112)

It is easy to see that the above integral converges and that ψ\φ ∈ S(W). Also, the twisted convolutions
δw0\φ(w) = φ(w − w0)χ( 12 〈w0, w〉) and φ\δw0 (w) = φ(w − w0)χ( 12 〈w,w0〉) (113)
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are well defined for any continuous function φ.Let
t(g) = χc(g)µg−W. (114)

For any φ ∈ S(W), the twisted convolution t(g)\φ is a continuous function given by the following absolutely convergentintegral
t(g)\φ(w) = ∫

g−W χc(g)(u)φ(w − u)χ( 12 〈u,w〉)dµg−W(u) (w ∈ W). (115)
Lemma 4.9.
For any g ∈ Sp(W),

t(g)\(δw0\φ) = δgw0\(t(g)\φ) (φ ∈ S(W), w0 ∈ W).
Proof. The left hand side evaluated at w ∈ W is equal to

∫
g−W χc(g)(u)(δw0\φ)(w − u)χ( 12 〈u,w〉)dµg−W(u)

= ∫
g−W χc(g)(u)φ(w − u− w0)χ( 12 〈w0, w − u〉)χ( 12 〈u,w〉)dµg−W(u)

= ∫
g−W φ(w − u− w0)χ( 14 (〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉))dµg−W(u)

and the right hand side is equal to
(t(g)\φ)(w − gw0)χ( 12 〈gw0, w〉) = ∫

g−W χc(g)(u)φ(w − gw0 − u)χ( 12 〈u,w − gw0〉)dµg−W(u)χ( 12 〈gw0, w〉)
= ∫

g−W χc(g)(u− g−w0)φ(w − gw0 − (u− g−w0))
χ( 12 〈u− g−w0, w − gw0〉)dµg−W(u)χ( 12 〈gw0, w〉)

= ∫
g−W φ(w − u− w0)χ( 14 (〈c(g)(u− g−w0), u− g−w0〉

+2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉))dµg−W(u).
A straightforward computation shows that
〈c(g)(u− g−w0), u− g−w0〉+ 2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉 − (〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉) = 0.

Hence, the two sides are equal.
Let

∂w0 = lim
t→0δtw0 − δ0

t .

Then, for any φ ∈ S(W) and w0 ∈ W,
∂w0\φ(w) = πi〈w0, w〉φ(w) + ∂w0 ∗ φ(w) (116)
φ\∂w0 (w) = −πi〈w0, w〉φ(w) + ∂w0 ∗ φ(w)

where ∂w0 ∗ φ(w) = d
dt φ(w − tw0)|t=0 is the directional derivative in the direction of −w0.
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Corollary 4.10.
For any g ∈ Sp(W),

t(g)\(∂w0\φ) = ∂gw0\(t(g)\φ) (φ ∈ S(W), w0 ∈ W).
Proposition 4.11.
For any g ∈ Sp(W) and φ ∈ S(W), t(g)\φ ∈ S(W). Moreover the map

S(W) 3 φ→ t(g)\φ ∈ S(W)
is continuous.

Proof. We see from Corollary 4.10 with the formulas (116) that for any w0, w ∈ W,
2πi〈w0, w〉(t(g)\φ)(w) = ∂w0\(t(g)\φ)(w)− (t(g)\φ)\∂w0 (w) = t(g)\(∂g−1w0\φ− φ\∂w0 )(w)

and similarly
2∂w0 ∗ (t(g)\φ)(w) = t(g)\(∂g−1w0\φ+ φ\∂w0 )(w).

Hence, for any polynomial coefficient differential operator P on W there is a polynomial coefficient differential operator
Q on W such that

P(t(g)\φ) = t(g)\Q(φ) (φ ∈ S(W)). (117)Notice also that by the definition (115)
‖ t(g)\φ ‖∞≤ sup

w∈W
∫
g−W |φ(w − u)|dµg−W(u) <∞ (118)

and that the right hand side is a continuous seminorm on S(W). The proposition clearly follows from these two facts.
In particular Proposition 4.11 shows that for any two elements g1, g2 ∈ Sp(W) there is a tempered distribution
t(g1)\t(g2) ∈ S∗(W) such that (t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ) (φ ∈ S(W)). (119)In order to verify Proposition 4.13 below, we shall need an explicit formula for the function t(g)\φ of Proposition 4.11.This is provided by the following Lemma.
Lemma 4.12.
Fix an element g ∈ Sp(W). Let U = g−W. The map

U 3 u→ 〈 , (1− c(g))u〉 ∈ U∗ = W/U⊥ = W/Ker(g−) (120)
is bijective.
Fix a complement Z of U in W so that W = U⊕ Z.
We shall denote the elements of U by u and elements of Z by z. In particular every w ∈ W has a unique decomposition

w = u+ z.

Then, for any φ ∈ S(W) and any w ′ = u′ + z′ ∈ W,

t(g)\φ(w ′) = χc(g)(u′)χ( 12 〈u′, w ′〉)
∫

U χc(g)(u)φ(u+ z′)χ(−12 〈u, (1− c(g))u′ + z′〉)dµU(u). (121)
In particular, (120) implies that t(g)\φ ∈ S(W).
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Proof. Suppose 〈 , (1− c(g))u〉 = 0. Then (1− c(g))u ∈ Kerg−. There is u0 ∈ W such that u = g−u0. Therefore
0 = g−(1− c(g))u = g−(1− c(g))g−u0 = g−(g−)u0 − g−g+u0= g−(g−)u0 − g+g−u0 = (g− − g−)g−u0 = −2g−u0 = −2u.

This verifies (120).The left hand side of (121) is equal to
t(g)\φ(w ′) = ∫

U χc(g)(u)φ(w ′ − u)χ( 12 〈u,w ′〉)dµU(u)
= ∫

U χc(g)(u+ u′)φ(z′ − u)χ( 12 〈u+ u′, w ′〉)dµU(u)
= ∫

U χc(g)(u′)χc(g)(u)χ( 12 〈c(g)u′, u〉)φ(z′ − u)χ( 12 〈u+ u′, w ′〉)dµU(u)
= χc(g)(u′)χ( 12 〈u′, w ′〉)

∫
U χc(g)(u)φ(z′ − u)χ( 12 〈u,w ′ − c(g)u′〉)dµU(u),

which coincides with the right hand side.
In the following proposition we use Notation 2.4 and Notation 2.6.
Proposition 4.13.
Fix two elements g1, g2 ∈ Sp(W). Let U′1 ⊆ U1 be the orthogonal complement of U with respect to the positive definite
form B, so that U1 = U′1 ⊕ U.
Then the map

L : U′1 + U2 3 u′1 + u2 → c(g1)u′1 − c(g2)u2 − u′1 − u2 + U⊥ ∈ W/U⊥
is well defined, surjective and L−1(V⊥/U⊥) = U12. Denote by

L̃ : (U1 + U2)/U12 3 u1 + u2 + U12 → c(g1)u1 − c(g2)u2 − u1 − u2 + V⊥ ∈ W/V⊥ = (W/U⊥)/(V⊥/U⊥)
the induced bijection and set

C (g1, g2) = γ(q̃g1,g2 )2dim V| det(L̃)|−1.
Then C is a cocycle, with C (g1, 1) = C (1, g2) = 1, and

t(g1)\t(g2) = C (g1, g2)t(g1g2). (122)
Here, and elsewhere in this paper, the determinant of the zero map on a zero vector space is by definition equal 1.
Proof. Since V⊥/U⊥ = (c(g1) + c(g2))U, the map L̃ is well defined. Suppose u′1 ∈ U′1 and u2 ∈ U2 are such that
L(u′1 + u2) ∈ V⊥/U⊥. Then there is u ∈ U such that

(c(g1) + c(g2))u+ c(g1)u′1 − c(g2)u2 − u′1 − u2 ∈ U⊥.
Let u = g−1 v1 = g−2 v2, v = u′1 = g−1 w1, and w − v = u2 = g−2 w2. Then

(c(g1) + c(g2))u+ c(g1)v + c(g2)(v − w)− w ∈ U⊥.
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Hence, the computation (79) - (81) shows that w = (g1g2)−(w2 − v2) ∈ U12. Therefore L−1(V⊥/U⊥) ⊆ U12.The map L is surjective. Indeed, for every w ∈ W , set u2 = g−2 w2 with w2 = − 12 g−12 w. Then
L(u2) = −c(g2)u2 − u1 + U⊥ = −g+2 w2 − g−2 w2 + U⊥ = −2g2w2U⊥ = w + U⊥ .

Lemma 2.7 (b) shows that dim((U1 + U2)/U12) = dim((W/U⊥)/(V⊥/U⊥)). Thus L−1(V⊥/U⊥) = U12.Here is a direct proof of this last equality. We already know that L−1(V⊥/U⊥) ⊆ U12. Therefore it will suffice toshow that L(U12) ⊂ V⊥/U⊥. This is true, because one can show (as was done in the first part of the proof), that for
u = (g1g2)−w = u1 + u2 = (u′1 + u′) + u2, with u1 = g−1 g2w and u2 = g−2 w, one has:

L(u) = c(g1)g−1 g2w − c(g2)g−2 w − (c(g1) + c(g2))u′ − (u1 + u2) + U⊥= (g+1 )g2w − g+2 w − u− (c(g1) + c(g2))u′ + U⊥= (g1g2)−w − u− (c(g1) + c(g2))u′ + U⊥= u− u− (c(g1) + c(g2))u′ + U⊥ ∈ V⊥/U⊥.

The computation (81) - (85) shows that, if u′1 + u2 ∈ U12 then
〈c(g1)u′1, u′1〉+ 〈c(g2)u2, u2〉+ 2〈u′1, u2〉+ 〈(c(g1) + c(g2))−1L(u′1 + u2), L(u′1 + u2)〉 = 〈c(g1g2)(u′1 + u2), u1 + u2〉

so that
χc(g1)(u′1)χc(g2)(u2)χ( 12 〈u′1, u2〉)χ(c(g1)+c(g2))−1 (L(u′1 + u2)) = χc(g1g2)(u′1 + u2). (123)

Any u1 ∈ U1 has a unique decomposition u1 = u′1 + u, where u′1 ∈ U′1 and u ∈ U. With this notation, Lemma 4.12shows that for any φ ∈ S(W),
t(g1)\(t(g2)\φ)(0) = ∫

U1 χc(g1)(u1)t(g2)\φ(u1)dµU1 (u1) (124)
= ∫

U1
∫

U2 χc(g1)(u1)χc(g2)(u)χ( 12 〈u, u′1〉)χ( 12 〈u2, (c(g2)− 1)u〉)
χc(g2)(u2)χ(−12 〈u2, u′1〉)φ(u2 + u′1)dµU2 (u2)dµU1 (u1)

= ∫
U
∫

U′1
∫

U2 χc(g1)(u1)χc(g2)(u)χ( 12 〈u, u′1〉)χ( 12 〈u2, (c(g2)− 1)u〉)
χc(g2)(u2)χ(−12 〈u2, u′1〉)φ(u2 + u′1)dµU2 (u2)dµU′1 (u′1)dµU(u)

The formula (110) applied with x = c(g1) + c(g2) shows that
∫

U χc(g1)(u1)χc(g2)(u)χ( 12 〈u, u′1〉)χ( 12 〈u2, (c(g2)− 1)u〉)dµU(u) (125)
= χc(g1)(u′1) ∫U χc(g1)+c(g2)(u)χ( 12 〈u, c(g1)u′1 − c(g2)u2 − u′1 − u2〉)dµU(u)
= 2dim Vγ(q̃g1,g2 )χc(g1)(u′1)(χ(c(g1)+c(g2))−1µV⊥/U⊥ )(c(g1)u′1 − c(g2)u2 − u′1 − u2).

Furthermore, Lemma 4.2 shows that, for u′1 + u2 ∈ U12,
µV⊥/U⊥ (c(g1)u′1 − c(g2)u2 − u′1 − u2) = L∗(µV⊥/U⊥ )(u′1 + u2) = | det(L̃)|−1µU12 (u′1 + u2). (126)
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The formula (122) follows directly from (123) - (126).We see from (113) that
t(g1)\(t(g2)\φ)(w) = (t(g1)\(t(g2)\φ))\δ−w (0) = (t(g1)\(t(g2)\(φ\δ−w )))(0)= ((t(g1)\t(g2))\(φ\δ−w ))(0) = ((t(g1)\t(g2))\φ)\δ−w )(0) = (t(g1)\t(g2))\φ(w).

Therefore (t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ).Hence, t(g1)\t(g2) coincides with the composition of t(g1) and t(g2) as elements of the associative algebra End(S(W)).Therefore the function C is a cocycle.
4.6. Normalization of Gaussians and the metaplectic group

For a subset S ⊆ W let S⊥B ⊆ W be the B-orthogonal complement of S and for an element h ∈ End(W) let h# ∈ End(W)be as in (34). In particular, (Kerh#)⊥ = hW.
Lemma 4.14.
Let h ∈ End(W) and let K ⊆ W be a subspace. Then

h#((hK )⊥) ⊆ K⊥ (127)
and

| det(h : K → hK )| = | det(h# : W/(hK )⊥ → W/K⊥)|. (128)
Proof. The inclusion (127) follows directly from (34).Let w1, . . ., wa be a B-orthonormal basis of K and let u1, ..., ua be a B-orthonormal basis of hK . Since J is a B-isometry,
Jw1, . . ., Jwa ∈ JK and Ju1, . . ., Jua ∈ JhK are B-orthonormal basis. Define a matrix (hk,i)1≤k,i≤a by

hwi = a∑
k=1 hk,iuk (1 ≤ i ≤ a).

Then
| det(h : K → hK )| = | det((hk,i)1≤k,i≤a)|. (129)We see from (33) that
JhK = (hK )⊥⊥B and JK = K⊥⊥B .Therefore

| det(h# : W/(hK )⊥ → W/K⊥)| = | det((h#
k,i)1≤k,i≤a)|, (130)where

h#Jui ∈
a∑
k=1 h

#
k,iJwk + K⊥ (1 ≤ i ≤ a).

But,
hj,i = a∑

k=1 hk,iB(uj , uk ) = − a∑
k=1 hk,i〈uk , Juj〉 = −〈hwi, Juj〉

= −〈wi, h#Juj〉 = −〈wi, a∑
k=1 h

#
k,j Jwk〉 = − a∑

k=1 h
#
k,j〈wi, Jwk〉 = a∑

k=1 h
#
k,jB(wk , wi) = h#

i,j .

Hence, (128) follows from (129) and (130).
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Lemma 4.15.
Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = Kerg−1 = 0. Then

2− dim V| det(L̃)| = | det(g−2 : K12 → V)|−1.
Proof. Since, by Lemma 2.7 (c), V = g−2 K12 = (g−11 − 1)K12, the right hand side of the equation we need to provemakes sense. Also, 2− dim V| det(L̃)| = | det( 12 L̃)|and a straightforward computation shows that

12 L̃ : W/U12 3 w + U12 → 12 (c(g1)− 1)w + V⊥ = (g−1 )−1w + V⊥ ∈ W/V⊥.
Hence,

| det( 12 L̃)|−1 = | det(g−1 : W/V⊥ → W/U12)|.
Notice that g−11 − 1 = g#1 . Since V = g−2 K12 and U12 = K⊥12, Lemma 4.14 shows that

| det(g−1 : W/V⊥ → W/U12)| = | det(g−11 − 1: K12 → V)|.
Since the restrictions of g−11 and g2 to K12 are equal, we are done.
Consider an element h ∈ End(W) such that Kerh = Kerh#. (In our applications h will be equal to g−, where g ∈ Sp(W).Then g# = g−1 − 1 = −g−1g− has the same kernel as g−.) Let L = J−1h. Denote by L∗ the adjoint to L with respectto B (i.e. B(Lw,w ′) = B(w, L∗w ′)). Then L∗ = Jh#. Hence Ker L = Ker L∗. Therefore L maps (Ker L)⊥B = LW bijectivelyonto itself. Thus it makes sense to talk about det(L|LW), the determinant of the restriction of L to LW. If w1, w2, . . ., wmis a B-orthonormal bais of (Ker L)⊥B , then

det(L|LW) = det(B(Lwi, wj )1≤i,j≤m) = det(〈hwi, wj〉1≤i,j≤m). (131)
Under the condition Kerh = Kerh#, we define det(h : W/Kerh→ hW) to be the quantity (131).Since

B(Jwi, Jwj ) = 〈JJwi, Jwj〉 = 〈Jwi, wj〉 = B(wi, wj ),
Jw1, Jw2, . . ., Jwm is a B-orthonormal basis of hW (=JLW). Further, if the coefficients hj,i are defined by

hwi =∑
j
hj,iJwj ,

then
det(〈hwi, wj〉1≤i,j≤m) = det(〈∑

k

hk,iJwk , wj〉1≤i,j≤m)
= det((hk,i)1≤k,i≤m) det(〈Jwk , wj〉1≤k,j≤m) = det((hk,i)1≤k,i≤m) det(B(wk , wj )1≤k,j≤m) = det((hk,i)1≤k,i≤m).

Thus | det(h : W/Kerh → hW)| = | det((hk,i)1≤k,i≤m)| coincides with the absolute value of the determinant definedpreviously in Section 4.1. In particular,
det(h : W/Kerh→ hW) = sgn(det(h : W/Kerh→ hW))| det(h : W/Kerh→ hW)|. (132)

Hence, if we identify R×/(R×)2 with {±1} via the sgn, then det(h : W/Kerh→ hW) is equal to the discriminant of thebilinear form induced by 〈h , 〉 on the quotient W/Kerh times | det(h : W/Kerh→ hW)|.
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Definition 4.16.
For g ∈ Sp(W) define

Θ2(g) := γ(1)2 dim g−W det(g− : W/Ker(g−)→ g−W)−1= γ(1)2 dim g−W−2 (γ(det(g− : W/Ker(g−)→ g−W))2.
(Here the second equality follows from (103).)

Lemma 4.17.
We have Θ2(g1g2)Θ2(g1)Θ2(g2) = C (g1, g2)2 (g1, g2 ∈ Sp(W)). (133)
Proof. Both sides of the equality (133) are cocycles. Hence, Lemma 2.8 shows that we may assume that K1 = {0}.In terms of the notation of Lemma 2.11 we have

− dim U12 + dim W + dim U = dim K12 + dim U = dim V + dim U = − dim (U/V) + 2 dim U.
Hence,

γ(1)2(− dim U12+dim W+dim U) = γ(1)4 dimU γ(1)−2 dim(U/V ) = (−1)dim U γ(1)−2 dim(U/V). (134)
Therefore the equality (37) is equivalent to

γ(1)−2 dim U12 det((g1g2)− : W/K12 → U12)
γ(1)−2 dim W det(g−1 : W→ W)γ(1)−2 dim U det(g−2 : W/K2 → U) (135)

= γ(1)−2 dim(U/V) det(〈12 (c(g1) + c(g2)) , 〉U/V) det(g−2 : K12 → V)−2.
By Remark 4.5, we get

γ(q̃g1,g2 ) = e πi4 sgn(q̃g1 ,g2 )| det(〈12 (c(g1) + c(g2)) , 〉U/V)|−1/2
and sgn(q̃g1,g2 ) = p− q,

where p is the dimension of the maximal subspace of U/V on which the form 〈c(g1) + c(g2) , 〉 is positive definite and qis the dimension of the maximal subspace of U/V on which the form 〈c(g1) + c(g2) , 〉 is negative definite. Hence,
γ(q̃g1,g2 )2 = ip−q| det(〈12 (c(g1) + c(g2)) , 〉U/V)|−1

= ip−q(−1)q det(〈12 (c(g1) + c(g2)) , 〉U/V)−1
= ip+q det(〈12 (c(g1) + c(g2)) , 〉U/V)−1
= idim(U/V) det(〈12 (c(g1) + c(g2)) , 〉U/V)−1.

This, together with Lemma 4.15, shows that the right hand side of (135) is equal to
γ(q̃g1,g2 )−2 (2− dim V| det(L̃)|)2

,

which, by Proposition 4.13, coincides with C (g1, g2)−2.
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Definition 4.18.
Let S̃p(W) = {(g, ξ); g ∈ Sp(W), ξ ∈ C×, ξ2 = Θ2(g)}.
where Θ2(g) is defined by Definition 4.16.

Lemma 4.19.S̃p(W) is a group with the multiplication defined by

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C (g1, g2)) (g1, g2 ∈ Sp(W)) (136)
the identity equal to (1, 1) and the inverse given by

(g, ξ)−1 = (g−1, ξ) (g ∈ Sp(W)).
Proof. Lemma 4.17 shows that the right hand side of (136) belongs to S̃p(W). A standard computation, as in [20,page 366], shows that S̃p(W) is a group with the multiplication given by (136), the identity equal to (1, C (1, 1)−1) and

(g, ξ)−1 = (g−1, C (g−1, g)−1ξ−1).
Since, by Proposition 4.13, C (1, 1) = 1, it remains to check that

C (g−1, g)−1ξ−1 = ξ.

But, as in the proof of Lemma 4.15,
C (g−1, g) = 2dim V| det(L̃)|−1 = | det(g− : W/Ker(g−)→ g−W)| = |Θ2(g)|−1 = |ξ|−2.

This completes the proof.
Notice that the map S̃p(W) 3 (g, ξ)→ g ∈ Sp(W)
is a group homomorphism with the kernel consisting of two elements. Thus S̃p(W) is a central extension of Sp(W) bythe two element group Z/2Z: 1→ Z/2Z→ S̃p(W)→ Sp(W)→ 1. (137)
Proposition 4.20.
The extension (137) does not split.

Proof. Pick a two-dimensional symplectic subspace W1 ⊆ W and let W2 = W⊥1 , so that
W = W1 ⊕W2.

Define an element g ∈ Sp(W) by
g(w1 + w2) = −w1 + w2 (w1 ∈ W1, w2 ∈ W2).

Then Θ2(g) = i2 det(−2 : W1 → W1)−1 = (i/2)2
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and
C (g, g) = 22 · 1 · 1 = 22.

Let g̃ = (g, i/2). Then g̃ ∈ S̃p(W) and
g̃2 = (g2, (i/2)2C (g, g)) = (1,−1) and g̃4 = (1, 1).

Thus the subgroup of S̃p(W) generated by g̃ is cyclic of order 4. The subgroup of Sp(W) generated by g is cyclic oforder 2. Hence the extension (137) does not split over that subgroup.
Corollary 4.21.
Up to an equivalence of central group extensions, as in [20, sec. 6.10], (137) is the only non-trivial central extension ofSp(W) by Z/2Z.

Proof. Since, as is well known (see [25, Theorems 5.10 and 11.1 (b)]),
H2(Sp(W),Z/2Z) = Hom(Z,Z/2Z),

the claim follows.
Let

φ∗(w) = φ(−w) and u∗(φ) = u(φ∗) (φ ∈ S(W), u ∈ S∗(W), w ∈ W).
Lemma 4.22.
For any g ∈ Sp(W), t(g)∗ = t(g−1).
Proof. By the definition (114),

t(g)∗ = (χc(g)µg−W)∗ = χc(g)µg−W = χ−c(g)µg−W.
Since g−W = (g−1 − 1)W, it will suffice to check that for any w ∈ W

−c(g)g−w = c(g−1)g−w.
The left hand side is equal to −g+w. The right hand side is equal to

−c(g−1)(g−1 − 1)gw = −(g−1 − 1)gw = −g+w.
Definition 4.23.
For g̃ = (g, ξ) ∈ S̃p(W) define Θ(g̃) = ξ and T (g̃) = Θ(g̃)t(g). (138)
Lemma 4.24.
With the notation of (138), the following formulas hold

T (g̃1)\T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ S̃p(W)), (139)
T (g̃)∗ = T (g̃−1) (g̃ ∈ S̃p(W)). (140)
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Proof. By Proposition 4.13 the left hand side of (139) is equal to
Θ(g̃1)Θ(g̃2)Θ(g̃1g̃2) C (g1, g2)T (g̃1g̃2).

Lemma 4.19 shows that Θ(g̃1)Θ(g̃2)Θ(g̃1g̃2) C (g1, g2) = 1.
This verifies (139).The equality (140) follows from Lemma 4.19 and Lemma 4.22:

T (g̃)∗ = Θ(g̃)t(g)∗ = Θ(g̃−1)t(g−1) = T (g̃−1).
Notice that Sp(W) is a connected Lie group. As such it has a unique connected double cover (up to an isomorphism ofcovers). See [3, sec. 16.30]. This way we may view S̃p(W), the metaplectic group, as a connected Lie group.
Lemma 4.25.
The map T : S̃p(W)→ S∗(W) is injective and continuous.

Proof. The injectivity of T follows from the injectivity of t : Sp(W)→ S∗(W), which is obvious. Let
Spc(W) = {g ∈ Sp(W); detg− 6= 0}.

Lemma 2.8 shows that Sp(W) = ⋃
h∈Sp(W) Spc(W)h. (141)

Let S̃pc(W) ⊆ S̃p(W) be the preimage of Spc(W). Then
S̃p(W) = ⋃

h̃∈S̃p(W)
S̃pc(W)h̃.

By Lemma 4.24, we have
T (g̃) = T (g̃h̃−1)\T (h̃) (g̃ ∈ S̃pc(W)h̃)

Thus for φ ∈ S(W),
T (g̃)\φ = T (g̃h̃−1)\(T (h̃)\φ).

By Proposition 4.11, the map
S(W) 3 φ→ T (h̃)\φ ∈ S(W)

is continuous. Hence it will suffice to check that the restriction of T to S̃pc(W) is continuous. But this is obvious.
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4.7. The conjugation property

Let L2(W) denote the Hilbert space of the Lebesgue measurable functions φ : W→ C, with the norm given by
‖ φ ‖22= ∫W |φ(w)|2 dµW(w).

Lemma 4.24 shows that for any g̃ ∈ S̃p(W) and any φ ∈ S(W)
‖ T (g̃)\φ ‖22= (T (g̃)\φ)∗\(T (g̃)\φ)(0) = φ∗\T (g̃)∗\T (g̃)\φ(0) = φ∗\φ(0) =‖ φ ‖22 .

Hence, the continuous linear map
S(W) 3 φ→ T (g̃)\φ ∈ S(W)

extends by continuity to an isometry L2(W) 3 φ→ T (g̃)\φ ∈ L2(W).
Furthermore, the formula

ω1,1(g)φ(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)).
defines a unitary representation ω1,1 of the symplectic group Sp(W) on L2(W).
Proposition 4.26.
For any φ ∈ L2(W) and g̃ ∈ S̃p(W) in the preimage of g ∈ Sp(W), T (g̃)\φ\T (g̃−1) = ω1,1(g)φ.

Proof. Since T (g̃) is a bounded operator, we may assume that φ ∈ S(W). Lemma 4.9 says that
t(g)\δw = δwg\t(g) (w ∈ W).

Therefore
T (g̃)\δw = δwg\T (g̃) (w ∈ W).

Since,
φ = ∫W φ(w)δw dµW(w) and ∫W φ(w)δgw dµW(w) = ω1,1(g)φ,

we see that
T (g̃)\φ = (ω1,1(g)φ)\T (g̃).

4.8. The Weyl transform and the Weil representation

Pick a complete polarization W = X⊕ Y (142)
and recall that our normalization of measures is such that dµW(x + y) = dµX(x)dµY(y). Recall the the Weyl transform

K : S∗(W)→ S∗(X× X), (143)
K(f)(x, x ′) = ∫Y f(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y),

This is an isomorphism of linear topological spaces, which restricts to an isometry
K : L2(W)→ L2(X× X). (144)
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Each element K ∈ S∗(X× X) defines an operator Op(K ) ∈ Hom(S(X),S∗(X)) by
Op(K )v(x) = ∫X K (x, x ′)v(x ′)dµX(x ′). (145)

Schwartz Kernel Theorem, [13, Theorem 5.2.1], implies that
Op : S∗(X× X)→ Hom(S(X),S∗(X)) (146)

is an isomorphism of linear topological vector spaces. A straightforward computation shows that Op ◦ K transforms thetwisted convolution of distributions (when it makes sense) into the composition of the corresponding operators. Also,
(Op ◦ K(f))∗ = Op ◦ K(f∗) (f ∈ S∗(W)) (147)

and tr Op ◦ K(f) = ∫XK(f)(x, x)dµX(x) = f(0) (148)
if Op ◦ K(f) is of trace class, [17, Theorem 3.5.4]. Hence, the map

Op ◦ K : L2(W)→ H.S.(L2(X)) (149)
is an isometry, which is a well known fact [17, Theorem 1.4.1]. (Here H.S.(L2(X)) stands for the space of the Hilbert-Schmidt operators on L2(X).)Let U(L2(X)) denote the group of the unitary operators on the Hilbert space L2(X).
Theorem 4.27.
Let ω = Op ◦ K ◦ T . Then

ω : Sp(W)→ U(L2(X))
is an injective group homomorphism. For each v ∈ L2(X), the map

S̃p(W) 3 g̃→ ω(g̃)v ∈ L2(X)
is continuous, so that (ω, L2(X)) is a unitary representation of the metaplectic group. The function Θ coincides with the
character of this representation:

∫
S̃p(W) Θ(g̃)Ψ(g̃)dg̃ = tr ∫S̃p(W) ω(g̃)Ψ(g̃)dg̃ (Ψ ∈ C∞c (S̃p(W)),

where the integral on the left is absolutely convergent. (Here dg̃ stands for any Haar measure on S̃p(W).) Moreover,

ω(g̃) Op ◦ K(φ)ω(g̃−1) = Op ◦ K(ω1,1(g)φ) (g̃ ∈ S̃p(W), φ ∈ L2(W)).
Proof. We see from the discussion in Section 4.7 that the left multiplication by ω(g̃) is an isometry on H.S.(L2(X)).This implies that ω(g̃) is a unitary operator.We see from (146) that for any two function v1, v2 ∈ S(X) there is φ ∈ S(W) such that

∫
X ω(g̃)v1(x)v2(x)dµX(x) = T (g̃)(φ) (g̃ ∈ Sp(W)).
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Hence Lemma 4.25 shows that the left hand side is a continuous function of g̃. Since the operators ω(g̃) are uniformlybounded (by 1), we see that the left hand side is a continuous function of g̃ for any v1, v2 ∈ L2(X). This implies thestrong continuity of ω, see [40, Lemma 1.1.3] or [41, Proposition 4.2.2.1].Lemmas 4.24 and 4.25 show that the ω : Sp(W)→ U(L2(X)) is an injective group homomorphism.It is not difficult to check that the function
det(Ad(g)− 1)detg− (g ∈ Sp(W))

is locally bounded. Furthermore, as shown by Harish-Chandra [10, Lemma 53, page 504], the function
| det(Ad(g)− 1)|−1/2 (g ∈ Sp(W))

is locally integrable. Hence the function,
|Θ(g̃)| = | detg−|−1/2 (g̃ ∈ S̃p(W))

is locally integrable.Notice that for any Ψ ∈ C∞c (S̃p(W)), ∫
S̃p(W) T (g̃)Ψ(g̃)dg̃ ∈ S(W). (150)

Indeed, since the Zariski topology on Sp(W) is noetherian the covering (141) contains a finite subcovering (see forexample [12, Exercise 1.7(b)]). Hence, there are elements h̃1, h̃2, . . ., h̃m in S̃p(W) such that
S̃p(W) = m⋃

j=1 S̃pc(W)h̃j .
Therefore Proposition 4.11, Lemma 4.24 and a standard partition of the unity argument reduces the proof of (150) to thecase when Ψ ∈ C∞c (S̃pc(W)). In this case (150) is equal to∫

sp(W) e
πi2 〈xw,w〉ψ(x)dx (151)

where ψ ∈ C∞c (sp(W)) and dx is a Lebesgue measure on sp(W). The function (151) is equal to the pullback of a Fouriertransform ψ̂ of ψ from sp∗(W) to W via the unnormalized moment map
τ : W→ sp∗(W), τ(w)(x) = 〈xw,w〉 (x ∈ sp(W), w ∈ W). (152)

Since ψ̂ ∈ S(sp(W)) and since τ is a polynomial map with uniformly bounded fibers,
ψ̂ ◦ τ ∈ S(W).

This verifies (150). Hence, we may compute the trace as follows:
tr ∫S̃p(W) ω(g̃)Ψ(g̃)dg̃ = (∫

S̃p(W) T (g̃)Ψ(g̃)dg̃) (0) = (∫S̃pc (W) T (g̃)Ψ(g̃)dg̃) (0)
= ∫

S̃pc (W) T (g̃)(0)Ψ(g̃)dg̃ = ∫S̃p(W) Θ(g̃)Ψ(g̃)dg̃.
The last formula is a direct consequence of Proposition 4.26.
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We end this Section by recalling some well known formulas for the action of ω(g̃) for some special elements g̃ ∈ S̃p(W).
Proposition 4.28.
Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and Y. Let Mc = {g ∈ M : detg− 6= 0}. Set

det−1/2X (g̃) = Θ(g̃)| det( 12 (c(g|X) + 1))|−1 (g̃ ∈ M̃c).
Then (det−1/2X (g̃))2 = det(g|X)−1 (g̃ ∈ M̃c), (153)
the function det−1/2X : M̃c → C× extends to a continuous group homomorphism

det−1/2X : M̃→ C×

and
ω(g̃)v(x) = det−1/2X (g̃)v(g−1x) (g̃ ∈ M̃, v ∈ S(X), x ∈ X). (154)

Proof. Set n = dim X. Fix an element g ∈ Mc . Then
Θ2(g) = det(ig−)−1 = (−1)n det(g|X − 1)−1 det(g|Y − 1)−1 = det(g|X − 1)−1 det(1− g|Y)−1

= det(g|X − 1)−1 det(1− (g|X)−1)−1 = det(g|X − 1)−2 det(g|X).
Also,

| det( 12 (c(g|X) + 1))|−1 = | det((g|X)(g|X − 1)−1)|−1 = | det(g|X − 1))|| det(g|X)|−1.
This verifies (153).Let x, x ′ ∈ X and let y ∈ Y. Then

K(t(g))(x, x ′) = ∫
Y t(g)(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y)

= ∫
Y χ( 12 〈c(g)(x − x ′), y〉)χ( 12 〈y, x + x ′〉)dµY(y)

= δ0( 12c(g)(x − x ′)− x − x ′) = δ0( 12 ((c(g)− 1)x − (c(g) + 1)x ′))
= | det( 12 (c(g|X) + 1))|−1δ0(g−1x − x ′).

Therefore
K(T (g̃))(x, x ′) = det−1/2X (g̃)δ0(g−1x − x ′).

Thus we have (154) for g̃ ∈ M̃c . Since ω is a representation of M̃, the remaining claims follow.
Proposition 4.29.
Suppose g ∈ Sp(W) acts trivially on Y and on W/Y. Then det((−g)− 1) 6= 0 and

ω(g̃)v(x) = ±χc(−g)(2x)v(x) (v ∈ S(X), x ∈ X).
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Proof. Since −g acts as minus the identity on Y and on W/Y, det((−g) − 1) 6= 0 and z := c(−g) ∈ sp(W) is welldefined. We have
z(w) = (−g)+((−g)−)−1(w) (w ∈ W).

Since g acts trivially on Y and on W/Y, we get, for every x ∈ X and every y ∈ Y:
g(x + y) = x + y+ yx , where yx ∈ Y.

It gives (−g)−(x + y) = −2x − 2y− yx . Also, (−g)−y = −2y, so that ((−g)−)−1y = − 12y. Hence,
((−g)−)−1(x + y) = −12 (x + y+ ((−g)−)−1yx ) = −12 (x + y) + 14yx .

We obtain
z(x + y) = (−g)+(−12 (x + y) + 14yx ),that is,

z(x + y) = z(x) = 12yx . (155)
In particular, we have

z : X→ Y→ 0.
Also, det(z − 1) 6= 0 and c(z) is well defined. On the other hand, we have (z − 1)(x + y) = −(x + y) + 12yx and(z − 1)y = −y. It follows that (z − 1)−1(x + y) = −(x + y)− 12yx .Hence,

c(z)(x + y) = (z + 1)(−(x + y)− 12yx
) = −12yx − (x + y)− 12yx ,that is,

c(z)(w) = −w − 2z(w), for every w ∈ W. (156)
We have c(z) ∈ Sp(W). Indeed, for any w,w ′ ∈ W, writing w = x + y and w ′ = x ′ + y′, with x, x ′ ∈ X and y, y′ ∈ Y,we have

〈c(z)(w), c(z)(w ′)〉 = 〈−w − yx ,−w ′ − yx′〉 = 〈w,w ′〉+ 〈x, yx′〉+ 〈yx , x ′〉.However, since g is in Sp(W), we have
〈x, x ′〉 = 〈gx, gx ′〉 = 〈x + yx , x ′ + yx′〉 = 〈x, x ′〉+ 〈x, yx′〉+ 〈yx , x ′〉,

which gives
〈x, yx′〉+ 〈yx , x ′〉 = 0.

Hence,
K(t(c(z)))(x, x ′) = ∫

Y χ−z(x − x ′)χ( 12 〈y, x + x ′〉)dµY(y)
= χ−2z(x − x ′)δ0( 12 (x + x ′)) = 2n χ−2z(x − x ′) δ0(x + x ′)

K(t(c(z)))(x, x ′) = ∫
Y χ−z(x − x ′)χ( 12 〈y, x + x ′〉)dµY(y)

= χ−z(x − x ′)δ0( 12 (x + x ′)) = 2nχ−z(x − x ′)δ0(x + x ′).
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Moreover, Θ2(c(z)) = ( i2
)2n

,

since dim ((c(z)− 1)(W)) = dimW = 2n, and,
det (c(z)− 1) = (−2)2n.

Thus
K(T (c̃(z)))(x, x ′) = ±inχ−z(x − x ′)δ0(x + x ′).

Since Proposition 4.28 shows that
ω((−̃1))v(x) = ±inv(−x),

the proof is complete.
Proposition 4.30.
Suppose g ∈ Sp(W) acts trivially on X and on W/X. Then det((−g)− 1) 6= 0 so that z = c(−g) ∈ sp(W) is well defined
and z : Y→ X→ 0. Assume z(Y) = X. Then

ω(g̃)v(x) = ± e πi4 sgn〈z, 〉|Y
| det(z : Y→ X)|1/2

∫
X χz−1 (x − x ′)v(x ′)dµX(x ′) (v ∈ S(X), x ∈ X),

where z−1 : X→ Y is the inverse of z : Y→ X.

Proof. The existence of z and its properties are verified as in the proof of Proposition 4.29. In particular, for all x ∈ Xand y ∈ Y, we have
g(x + y) = x + y+ xy, where xy ∈ X.

Similarly to the proof of Proposition 4.29, we get
z(x + y) = z(y) = 12xy. (157)

and
c(z)(x + y) = −(x + y)− xy, (158)

that is,
c(z)(w) = −w − 2z(w), for every w ∈ W. (159)

From (157)and (158), we obtain
〈c(z)(w), w〉 = 〈−w − 2z(w), w〉 = −2〈z(w), w〉. (160)

With notation (107), it gives
χc(z)(w) = χ

(14 〈c(z)(w), w〉) = χ
(
−12 〈z(w), w〉) = χ−2z(w). (161)

Let
q(y, y′) = 12 〈zy, y′〉 (y, y′ ∈ Y).
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Then, in terms of Lemma 4.7 and the identification (105),
q∗(x, x ′) = −2〈z−1x, x ′〉 (x, x ′ ∈ X)

and
γ(q) = e πi4 sgn〈z, 〉|Y

| det( 12z : Y→ X)|1/2 .Indeed, using notation of Eqn.(11),
〈y′,Φ(y)〉 = Φ(y)(y′) = q(y, y′) = 12 〈zy, y′〉 = 〈y′,−12zy〉.

Hence, Φ(y) = x if and only if − 12zy = x. Thus Φ−1(x) = −2z−1x. Therefore
q∗(x, x ′) = x ′(Φ−1(x)) = 〈Φ−1(x), x ′〉 = 〈−2z−1x, x ′〉.

Hence, by the definition of K (143), the assumption that z annihilates X and maps Y into X and Lemma 4.7, we obtain
K(t(c(z)))(x, x ′) = ∫

Y χ( 14 〈−z(x − x ′ + y), x − x ′ + y〉)χ( 12 〈y, x + x ′〉)dµY(y)
= ∫

Y χ( 14 〈−zy, y〉)χ( 12 〈y, x + x ′〉)dµY(y)
= ∫

Y χ( 12q(y, y))χ(−〈y,−12 (x + x ′)〉)dµY(y)
= γ(q)χ(−12q∗(−12 (x + x ′),−12 (x + x ′)))
= γ(q)χ(〈z−1(−12 (x + x ′)),−12 (x + x ′)〉) = γ(q)χz−1 (x + x ′).

Therefore
K(T (c̃(z)))(x, x ′) = Θ(c̃(z))γ(q)χz−1 (x + x ′).

But Θ(c̃(z)) = ± ( i2)n (where dim W = 2n), so that
Θ(c̃(z))γ(q) = ±( i2

)n e πi4 sgn〈z, 〉|Y
| det( 12z : Y→ X)|1/2 = ±in e πi4 sgn〈z, 〉|Y

| det(z : Y→ X)|1/2 .
Furthermore, by Proposition 4.28,

K(T (−̃1))(x ′, x ′′) = ±inδ0(x ′ − x ′′).Hence, the formula for ω(g̃) = ω(c̃(z)(−̃1)) follows.
5. The Weil representation over a p-adic field

Let F be a p-adic field, i.e. a finite extension of Qp. (In fact our argument works for all non Archimedean fields ofcharacteristic other than 2 till the statement (221) below. Hence our additional assumption.)Let χ(r), r ∈ F, be a character of the additive group F such that the kernel of χ is equal to oF . In this Section weprovide a construction of the corresponding the Weil representation, [42].
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5.1. The Fourier transform

Let U be a finite dimensional vector space over F and let L be a lattice in U. We normalize the Haar measure µU onU so that the volume of the lattice L is 1. Let L∗ ⊆ U∗ be the dual lattice. Denote by µU∗ the corresponding Haarmeasure.Let S(U) be the Schwartz-Bruhat space on U, i.e., the space of complex-valued locally constant functions with compactsupport on U. (Recall that a function φ on U is called locally constant if for each u ∈ U there is an open neighborhood
U of u such that φ is constant on U.) For φ ∈ S(U) let

Fφ(u∗) = ∫U φ(u)χ(−u∗(u))dµU(u) (u∗ ∈ U∗) (162)
be the Fourier transform of φ. Then, as is well known, Fφ ∈ S(U∗) and

φ(u) = ∫U∗ Fφ(u∗)χ(u∗(u))dµU∗ (u∗) (u∗ ∈ U∗), (163)
see [43, Corollary 1, page 107].As a linear topological space, S(U) is the inductive limit of the finite dimensional subspaces spanned by the characteristicfunctions of finite collections of open compact subsets.Let S∗(U) denote the linear topological dual of S(U). It corresponds to the space of the tempered distributions on U inthe real case. When convenient we shall identify any bounded locally integrable function f : U→ C with the tempereddistribution fµU. In particular, S(U) ⊆ S∗(U). Then the Fourier transform

F : S(U)→ S(U∗)
extends to

F : S∗(U)→ S∗(U∗).In fact, if we identify U∗∗ = U then the Fourier transform (162) is given by
Fψ(u) = ∫U∗ ψ(u∗)χ(−u∗(u))dµU∗ (u∗) (ψ ∈ S(U∗), u ∈ U) (164)

and the inverse (163) by
ψ(u∗) = ∫U Fψ(u)χ(u∗(u))dµU(u) (ψ ∈ S(U∗), u∗ ∈ U∗). (165)

Therefore
F (f)(φ) = f(F (φ)) (f ∈ S∗(U), φ ∈ S(U∗)).Indeed, if f ∈ S(U), then

F (fµU)(φ) = ((Ff)µU∗ )(φ)= ∫
U∗
∫

U f(u)χ(−u∗(u))dµU(u)φ(u∗)dµU∗ (u∗)
= ∫

U f(u)Fφ(u)dµU(u).
Let V ⊆ U be a non-zero subspace. Then L ∩ V is a lattice in V which determines the Haar measure µV . We may view
µV as a tempered distribution on U by

µV(φ) = ∫V φ(v)dµV(v) (φ ∈ S(U)).
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In the case when V is zero, µV = µ0 is the unit measure at 0. In other words µ0 = δ0 is the Dirac delta at 0,
µ0(φ) = δ0(φ) = φ(0) (φ ∈ S(U)).

Also, for future reference, let δu ∈ S(U) be the Dirac delta at u ∈ U,
δu(φ) = φ(u) (φ ∈ C (U)).

For an arbitrary subspace V ⊆ U, let V⊥ ⊆ U∗ be the annihilator of V. Then,
FµV = µV⊥ . (166)

Indeed, the formula (164) implies that (166) holds if V = {0}.The quotient space U/V contains the lattice (L + V)/V, which determines the normalization of the Haar measure µU/V .Then for φ ∈ S(U) we have φ̃ ∈ S(U/V) defined by
φ̃(u+ V) = ∫V φ(u+ v)dµV(v).

Since (166) holds for the Fourier transform on U/V, with (U/V)∗ = V⊥ and the left hand side being the evaluation of theFourier transform of a test function at zero, we have, with φ = Fψ,
µV(Fψ) = µV(φ) = ∫V φ(v)dµV(v) = φ̃(0) = ∫V⊥ Fφ̃(u∗)dµV⊥ (u∗)

= ∫
V⊥
∫

U/V φ̃(u+ V)χ(−u∗(u))dµU/V(u+ V)dµV⊥ (u∗)
= ∫

V⊥
∫

U/V
∫

V φ(u+ v)dµV(v)χ(−u∗(u))dµU/V(u+ V)dµV⊥ (u∗)
= ∫

V⊥
∫

U φ(u)χ(−u∗(u))dµU(u)dµV⊥ (u∗)
= ∫

V⊥ Fφ(u∗)dµV⊥ (u∗)= µV⊥ (F (φ)) = µV⊥ (F2(ψ)) = µV⊥ (ψ),
where the last equality follows from the fact that F2ψ(u) = ψ(−u), which is a simple consequence of (164) and (163).This completes the proof (166).Consider two vector spaces U′, U′′ over F of the same dimension equipped with lattices L′, L′′ respectively. Let
u′1, u′2, . . . , u′n be a L′-orthonormal basis of U′ and let u′′1 , u′′2 , . . . , u′′n be a L′′-orthonormal basis of U′′. Suppose L : U′ →U′′ is a linear bijection. Denote by M the matrix of L with respect to the two ordered basis:

Lu′j = n∑
i=1 Mi,ju′′i (j = 1, 2, . . . , n).

Then | det(M)|F does not depend on the choice of the orthonormal basis. Thus we may define | det(L)|F = | det(M)|F (seeSection 2.6).
Lemma 5.1.
With the above notation we have∫

U′ φ(L(u′))dµU′ (u′) | det(L)|F = ∫U′′ φ(u′′)dµU′′ (u′′) (φ ∈ S(U′′)). (167)
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Proof. This follows from Lemma 2.18. Indeed, let φ be the indicator function of L′′. Then the right hand side of theequation (99) is equal to 1. Hence we need to show that
∫

U′ φ(L(u′))dµU′ (u′) | det(L)|F = 1.
However, φ ◦ L is the indicator function of L−1(L′′). Thus the problem is to check that

µU′ (L−1(L′′)) | det(L)|F = 1.
Fix an L′-orthonormal basis u′1, u′2, . . . of U′ and an L′′-orthonormal basis u′′1 , u′′2 , . . . of U′′. Let T be the endomorphismof U′ defined by

T (L−1(u′j )) = u′′j (j = 1, 2, . . . ). (168)
Then

T (L−1(L′′)) = L′.
Hence, by Lemma 2.18,

µU′ (L−1(L′′)) | det(T )|F = µU′ (T (L−1(L′′))) = µU′ (L′)) = 1.
But (168) implies that | det(T )|F = | det(L)|F. Hence the claim follows.
Let X and U be two finite dimensional vector spaces over F equipped with lattices and the corresponding normalizedHaar measures µX and µU. Let L : X → U be a surjective linear map. Suppose f is a bounded function on U so that
fµU ∈ S∗(U). Define L∗(fµU) := (f ◦ L)µX. Thus for a test function φ ∈ S(U),

L∗(fµU)(φ) = ∫
X
f(L(x))φ(x)dµ(x). (169)

Choose a subspace X ′ ⊆ X complementary to Ker(L) so that X = Ker(L)⊕X ′. Let µKer(L) and µX ′ denote the correspondingnormalized Haar measures on Ker(L) and X ′ respectively. Then (169) may be rewritten as
∫
X ′

∫
Ker(L) f(L(x ′ + x ′′))φ(x ′ + x ′′)dµKer(L)(x ′′)dµX ′ (x ′). (170)

Let L′ denote the restriction of L to X ′. Then L′ : X ′ → U is a bijection and Lemma 5.1 shows that (170) may be rewrittenas ∫
U
∫

Ker(L) f(u)L∗(φ)(u)dµU(u). (171)
where

L∗(φ)(u) = ∫Ker(L) φ(L′−1(u) + x ′′)dµKer(L)(x ′′) | det(L′)|−1
F . (172)

Notice that L∗ : S(X )→ S(U) is a continuous map. Hence we have the notion of a pullback of a distribution
L∗(f)(φ) = f(L∗(φ)) (φ ∈ S(X ), f ∈ S∗(U)) (173)

which is consistent with [13, Theorem 6.1.2].
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Lemma 5.2.
Let X and U are two finite dimensional vector space over F equipped with lattices and the corresponding normalized
Haar measures µX and µU. Let L : X → U be a surjective linear map. Let

L̃ : X/L−1(V)→ U/V
be the induced bijection. Then

L∗(µV) = | det(L̃)|−1
F µL−1(V).

Proof. Let X′ ⊆ X be the orthogonal complement of Ker(L). Denote by L′ the restriction of L to X′ and by L′′ therestriction of L to X′ ∩ L−1(V). Then
L′ : X′ → U and L′′ : X′ ∩ L−1(V)→ V

are bijections.According to (173), for a test function φ ∈ S(X ) we have
L∗(µV)(φ) = ∫Ker(L)

∫
V φ(x + L′−1(v))dµV(v)dµKer(L)(x) | det(L′)|−1

F . (174)
Then the right hand side of (174) is equal to∫

Ker(L)
∫
L′′−1(V) φ(x + y)dµL′′−1(V)(y)dµKer(L)(x) | det(L′′)|F | det(L′)|−1

F = ∫
L−1(V) φ(z)dµL−1(V)(z) | det(L′′)|F | det(L′)|−1

F .

Since | det(L′′)|−1
F | det(L′)|F = | det(L̃)|F, we are done.

5.2. Gaussians on Fn

Let B be the usual dot product on Fn,
B(x, y) = xty = x1y1 + x2y2 + · · ·+ xnyn (x, y ∈ Fn).

Then the Haar measure associated to the lattice onF ⊆ Fn, dµFn (x) = dx1dx2 . . . dxn, is the n-fold direct product ofLebesgue measure dxi on F, such that ∫
oF
dxi = 1.For a symmetric matrix A ∈ GL(Fn) define the corresponding Gaussian γA by
γA(x) := χ( 12xtAx) (x ∈ Fn).

Also, let
γ(A) = FγA(0) = ∫

Fn
χ( 12xtAx)dx.In particular, taking n = 1, we have

γ(a) = ∫
F
χ( 12xtAx)dx, for a ∈ F×.

Let γW be the gamma factor defined by Weil in [42, n◦14 cor. 2]. It is related to γ by the equality
γ(A) = | det(A)|−1/2

F γW (A). (175)
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We set
γW (q) := γW (Q),if q is a quadratic form with associated symmetric matrix Q as in Eq. (12). Then γW defines a unitary character of theWitt group of F. The scalar γW (a) is the gamma factor attached to the quadratic form x 7→ ax2 (a ∈ F×). It dependsonly on the class of a modulo (F×)2. In particular, we have

γW (a2) = γW (1) for all a ∈ F×. (176)
Of course Eqn. (176) would not be true with γ instead of γW : we get γ(a2) = |a|−1

F γW (1). Note that γW (1) and γ(1) areequal.Recall the Hilbert symbol ( , ): for any a, b ∈ F×,
(a, b) := {1 if z2 = ax2 + bx2 has a non-zero solution (x, y, z) ∈ F3,

−1 otherwise.
It is related to the above γ factor as follows:
Proposition 5.3.
For any a, b ∈ F×, we have (a, b) = γ(ab) γ(1)

γ(a)γ(b) . (177)
Proof. It follows from [42, n◦25 prop. 3 and n◦28 prop. 4] that

(a, b) = γW (ab) γW (1)
γW (a)γW (b) .

Then the equality (177) is an immediate consequence of the equality γ(a) = γW (a) |a|−1/2.
Corollary 5.4.
The function

a 7→ s(a) := |a|F γ(a)2
γ(1)2

is a character of F×/(F×)2.
Remark 5.5.The function a 7→ γ(a)2

γ(1)2 is a character of F×. However it does not have trivial restriction to (K×)2.
Remark 5.6.The character s will play a similar role to that of the character s which was defined in Lemma 3.2 in the case of finitefields, and of a 7→ |a|a in the case of R.
In these terms we have the following theorem due to Weil.
Theorem 5.7.
For any symmetric matrix A ∈ GL(Fn),

FγA = γ(A) γ−A−1 , (178)
and

γ(A) = ±γ(1)n−1γ(det(A)). (179)
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Proof. We have (see [42, Chap. I Théorème 2 and Chap. II § 26])
γW (A) = ±γ(1)n−1 γW (detA). (180)

Hence, from Eqn. (175) we obtain
γ(A) = ±γ(1)n−1 γ(detA). (181)

Then the first equation in the statement of the theorem follows from [42, Eqn. (17) and Théorème 2, I. § 14] applied tothe character of second degree x 7→ γA(x).
5.3. Gaussians on a vector space

Let U be a finite dimensional vector space over F with a lattice L ⊆ U. Suppose q is a non-degenerate symmetricbilinear form on U. Let γ(q) = γ(Q), where Q is the matrix obtained from any NL-orthonormal basis u1, u2, . . ., un of Uby
Qi,j = q(ui, uj ) (1 ≤ i, j ≤ n).

Also, we define γ(0) = 1.
Lemma 5.8.
If q is a non-degenerate symmetric bilinear form on U, then

∫
U χ( 12q(u, u))χ(−u∗(u))dµU(u) = γ(q)χ(−12q∗(u∗, u∗)) (u∗ ∈ U∗).

Proof. Fix a NL-orthonormal basis u1, u2, . . ., un of U and let u∗1, u∗2, . . ., u∗n be the dual basis of U∗. This is a
NL∗-orthonormal basis. As we have seen in the proof of Lemma 3.4, if Q is the matrix corresponding to q, as above, then
Q−1 corresponds to q∗.Let xi = u∗i (u) and let yj = u∗(uj ). Then

∫
U χ( 12q(u, u))χ(−u∗(u))dµU(u) = ∫

Fn
χ( 12xtQx)χ(−xty)dx = γ(Q)χ(−12ytQ−1y) = γ(q)χ(−12q∗(u∗, u∗)),

where the second equality follows from Theorem 5.7.
5.4. Gaussians on a symplectic space

Let W be a finite dimensional vector space over F with a non-degenerate symplectic form 〈 , 〉. We shall identify Wwith the dual W∗ by
w∗(w) = 〈w,w∗〉 (w,w∗ ∈ W). (182)

The identification (182) provides to the following isomorphisms
U∗ = W/U⊥ and (U/V)∗ = V⊥/U⊥, (183)

where the orthogonal complements are taken in W, with respect to the symplectic form 〈 , 〉. Let {e1, . . . , en, e−n, . . . , e−1}be a symplectic basis of W, that is:
〈ei, ej〉 = 〈e−i, e−j〉 = 0 and 〈ei, e−j〉 = δij , for all 1 ≤ i, j ≤ n.
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Let L :=∑n
j=−n oFej . Then L is a self-dual lattice in W, i.e.,

{w ∈ W; 〈u,w〉 ∈ oF for all u ∈ L} = L.
Moreover,

{〈w1, w2〉; w1, w2 ∈ L} = oF.

As explained in Section 5.1, L leads to a normalization of the Haar measures on any subspace of U ⊆ W and on anyquotient U/V, where V is a subspace of U.
Lemma 5.9.
Suppose x ∈ Hom(U,W/U⊥) is such that

〈xu, v〉 = 〈xv, u〉 (u, v ∈ U).
Set

q(u, v) = 12 〈xu, v〉 (u, v ∈ U).
Let V be the radical of q and let q̃ be the induced non-degenerate form on U/V. Then(a) V = Ker(x);(b) The element x determines a bijection

x : U/V→ V⊥/U⊥,
with the inverse

x−1 : V⊥/U⊥ → U/V;
(c) Let x−1 : V⊥ → U/V be the composition of x−1 with the quotient map V⊥ → V⊥/U⊥. Define

χx (u) = χ( 14 〈xu, u〉) (u ∈ U),
χx−1 (w) = χ( 14 〈x−1w,w〉) (w ∈ V⊥).

Then, for any φ ∈ S(W),
∫

U
∫

W χx (u)χ(−12 〈u,w〉)φ(w)dµW(w)dµU(u) (184)
= 2dim(V)γ(q̃) ∫V⊥ χx−1 (w)φ(w)dµV⊥ (w)
= 2dim(V)γ(q̃) ∫V⊥/U⊥ χx−1 (w + U⊥) ∫U⊥ φ(w + v)dµU⊥ (v)dµV⊥/U⊥ (w + U⊥).

Also, for any φ ∈ S(W/U⊥),
∫

U
∫

W/U⊥ χx (u)χ( 12 〈u,w〉)φ(w + U⊥)dµW/U⊥ (w + U⊥)dµU(u) (185)
= 2dim(V)γ(q̃) ∫V⊥/U⊥ χx−1 (w)φ(w + U⊥)dµV⊥/U⊥ (w + U⊥).
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Proof. Part (a) is obvious. Part (b) means that Ker(x)⊥ = Im(x), which is true. For φ ∈ S(W) we have,
∫

U
∫

W χx (u)χ(−12 〈u,w〉)φ(w)dµW(w)dµU(u) = ∫
W F (γqµU)( 12w)φ(w)dµW(w)

= ∫
W F (γqµU)(w)φ(2w)dµW(w) 2dim W

= γ(q̃)∫V⊥ γ−q̃∗ (w)φ(2w)dµV⊥ (w) 2dim W
= γ(q̃)∫V⊥ γ−q̃∗ ( 12w)φ(w)dµV⊥ (w) 2dim W−dim V⊥
= γ(q̃)∫V⊥ χx−1 (w)φ(w)dµV⊥ (w) 2dim V.

This verifies (184). For φ ∈ S(W/U⊥) we have,
∫

U
∫

W/U⊥ χx (u)χ( 12 〈u,w〉)φ(w + U⊥)dµW/U⊥ (w + U⊥)dµU(u)
= ∫

U/V
∫

V
∫

W/U⊥ χx (u+ V)χ( 12 〈u+ v, w〉)φ(w + U⊥)dµW/U⊥ (w + U⊥)dµV(v)dµU/V(u+ V)
= ∫

U/V
∫

V
∫

W/U⊥ γq̃(u+ V)χ(〈u+ v, w〉)φ(2w + U⊥)dµW/U⊥ (w + U⊥)dµV(v)dµU/V(u+ V)
2dim W/U⊥

= ∫
U/V
∫

V⊥/U⊥ γq̃(u+ V)χ(〈u,w〉)φ(2w + U⊥)dµW/U⊥ (w + U⊥)dµU/V(u+ V) 2dim W/U⊥

= γ(q̃)∫V⊥/U⊥ γ−q̃∗ (w + U⊥)φ(2w + U⊥)dµW/U⊥ (w + U⊥) 2dim W/U⊥

= γ(q̃)∫V⊥/U⊥ γ−q̃∗ ( 12w + U⊥)φ(w + U⊥)dµW/U⊥ (w + U⊥) 2dim W/U⊥−dim V⊥/U⊥

= γ(q̃) ∫V⊥/U⊥ χx−1 (w + U⊥)φ(w + U⊥)dµW/U⊥ (w + U⊥) 2dim V.

This verifies (185).
By a Gaussian on the symplectic space W we shall understand any non-zero constant multiple of the tempered distri-bution

χxµU ∈ S∗(W) (186)
where the function χx is defined in Lemma 5.9. In these terms Lemma 5.9 says that the Fourier transform of a Gaussianis another Gaussian.
5.5. Twisted convolution of Gaussians

Recall the twisted convolution of two Schwartz functions ψ,φ ∈ S(W):
ψ\φ(w) = ∫W ψ(u)φ(w − u)χ( 12 〈u,w〉)dµW(u) (w ∈ W). (187)

It is easy to see that the above integral converges and that ψ\φ ∈ S(W). Also, the twisted convolutions
δw0\φ(w) = φ(w − w0)χ( 12 〈w0, w〉) and φ\δw0 (w) = φ(w − w0)χ( 12 〈w,w0〉) (188)
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are well defined for any continuous function φ.Let
t(g) = χc(g)µg−W. (189)

For any φ ∈ S(W), the twisted convolution t(g)\φ is a continuous function given by the following absolutely convergentintegral
t(g)\φ(w) = ∫

g−W χc(g)(u)φ(w − u)χ( 12 〈u,w〉)dµg−W(u) (w ∈ W). (190)
Lemma 5.10.
For any g ∈ Sp(W),

t(g)\(δw0\φ) = δgw0\(t(g)\φ) (φ ∈ S(W), w0 ∈ W).
Proof. The left hand side evaluated at w ∈ W is equal to

∫
g−W χc(g)(u)(δw0\φ)(w − u)χ( 12 〈u,w〉)dµg−W(u)

= ∫
g−W χc(g)(u)φ(w − u− w0)χ( 12 〈w0, w − u〉)χ( 12 〈u,w〉)dµg−W(u)

= ∫
g−W φ(w − u− w0)χ( 14 (〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉))dµg−W(u)

and the right hand side is equal to
(t(g)\φ)(w − gw0)χ( 12 〈gw0, w〉) = ∫

g−W χc(g)(u)φ(w − gw0 − u)χ( 12 〈u,w − gw0〉)dµg−W(u)χ( 12 〈gw0, w〉)
= ∫

g−W χc(g)(u− g−w0)φ(w − gw0 − (u− g−w0))
χ( 12 〈u− g−w0, w − gw0〉)dµg−W(u)χ( 12 〈gw0, w〉)

= ∫
g−W φ(w − u− w0)χ( 14 (〈c(g)(u− g−w0), u− g−w0〉

+2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉))dµg−W(u).
A straightforward computation shows that
〈c(g)(u− g−w0), u− g−w0〉+ 2〈u− g−w0, w − gw0〉+ 2〈gw0, w〉 − (〈c(g)u, u〉+ 2〈w0, w − u〉+ 2〈u,w〉) = 0.

Hence, the two sides are equal.
Lemma 5.11.
Fix an element g ∈ Sp(W). Let U = g−W. The map

U 3 u→ 〈 , (1− c(g))u〉 ∈ U∗ = W/U⊥ = W/Ker(g−) (191)
is bijective.
Fix a complement Z of U in W so that W = U⊕ Z.
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We shall denote the elements of U by u and elements of Z by z. In particular every w ∈ W has a unique decomposition

w = u+ z.

Then, for any φ ∈ S(W) and any w ′ = u′ + z′ ∈ W,

t(g)\φ(w ′) = χc(g)(u′)χ( 12 〈u′, w ′〉)
∫

U χc(g)(u)φ(u+ z′)χ(−12 〈u, (1− c(g))u′ + z′〉)dµU(u).
In particular, (192) and (191) imply that t(g)\φ ∈ S(W) and that the map

S(W) 3 φ→ t(g)\φ ∈ S(W)
is continuous.

Proof. Suppose 〈 , (1− c(g))u〉 = 0. Then (1− c(g))u ∈ Kerg−. There is u0 ∈ W such that u = g−u0. Therefore
0 = g−(1− c(g))u = g−(1− c(g))g−u0 = g−(g−)u0 − g−g+u0 = g−(g−)u0 − g+g−u0= (g− − g−)g−u0 = −2g−u0 = −2u.

This verifies (191).The left hand side of (192) is equal to
t(g)\φ(w ′) = ∫

U χc(g)(u)φ(w ′ − u)χ( 12 〈u,w ′〉)dµU(u)
= ∫

U χc(g)(u+ u′)φ(z′ − u)χ( 12 〈u+ u′, w ′〉)dµU(u)
= ∫

U χc(g)(u′)χc(g)(u)χ( 12 〈c(g)u′, u〉)φ(z′ − u)χ( 12 〈u+ u′, w ′〉)dµU(u)
= χc(g)(u′)χ( 12 〈u′, w ′〉)

∫
U χc(g)(u)φ(z′ − u)χ( 12 〈u,w ′ − c(g)u′〉)dµU(u),

which coincides with the right hand side.
In particular Lemma 5.11 shows that for any two elements g1, g2 ∈ Sp(W) there is a tempered distribution t(g1)\t(g2) ∈
S∗(W) such that (t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ) (φ ∈ S(W)). (192)
Proposition 5.12.
Fix two elements g1, g2 ∈ Sp(W). Let U′1 ⊆ U1 be the orthogonal complement of U with respect to the positive definite
form B, so that U1 = U′1 ⊕ U.
Then the map

L : U′1 + U2 3 u′1 + u2 → c(g1)u′1 − c(g2)u2 − u′1 − u2 + U⊥ ∈ W/U⊥
is well defined, surjective and L−1(V⊥/U⊥) = U12. Denote by

L̃ : (U1 + U2)/U12 3 u1 + u2 + U12 → c(g1)u1 − c(g2)u2 − u1 − u2 + V⊥ ∈ W/V⊥ = (W/U⊥)/(V⊥/U⊥)
the induced bijection and set

C (g1, g2) = γ(q̃g1,g2 )2dim V| det(L̃)|−1
F .

Then C is a cocycle, with C (1, 1) = 1, and

t(g1)\t(g2) = C (g1, g2)t(g1g2). (193)
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Proof. Since V⊥/U⊥ = (c(g1) + c(g2))U, the map L̃ is well defined. Suppose u′1 ∈ U′1 and u2 ∈ U2 are such that
L(u′1 + u2) ∈ V⊥/U⊥. Then there is u ∈ U such that

(c(g1) + c(g2))u+ c(g1)u′1 − c(g2)u2 − u′1 − u2 ∈ U⊥.
Let

u = g−1 v1 = g−2 v2, v = u′1 = g−1 w1, w − v = u2 = g−2 w2.Then (c(g1) + c(g2))u+ c(g1)v + c(g2)(v − w)− w ∈ U⊥.Hence, the computation (79) - (81) shows that w = (g1g2)−(w2−v2) ∈ U12. Therefore L−1(V⊥/U⊥) ⊆ U12. But (191) impliesthat L is surjective and Lemma 2.7 (b) shows that dim((U1 + U2)/U12) = dim((W/U⊥)/(V⊥/U⊥)). Thus L−1(V⊥/U⊥) = U12.The computation (81) - (85) shows that, if u′1 + u2 ∈ U12 then
〈c(g1)u′1, u′1〉+ 〈c(g2)u2, u2〉+ 2〈u′1, u2〉+ 〈(c(g1) + c(g2))−1L(u′1 + u2), L(u′1 + u2)〉 = 〈c(g1g2)(u′1 + u2), u1 + u2〉

so that
χc(g1)(u′1)χc(g2)(u2)χ( 12 〈u′1, u2〉)χ(c(g1)+c(g2))−1 (L(u′1 + u2)) = χc(g1g2)(u′1 + u2). (194)

Any u1 ∈ U1 has a unique decomposition u1 = u′1 + u, where u′1 ∈ U′1 and u ∈ U. With this notation, Lemma 5.11shows that for any φ ∈ S(W),
t(g1)\(t(g2)\φ)(0) = ∫

U1 χc(g1)(u1)t(g2)\φ(u1)dµU1 (u1) (195)
= ∫

U1
∫

U2 χc(g1)(u1)χc(g2)(u)χ( 12 〈u, u′1〉)χ( 12 〈u2, (c(g2)− 1)u〉)
χc(g2)(u2)χ(−12 〈u2, u′1〉)φ(u2 + u′1)dµU2 (u2)dµU1 (u1)

= ∫
U
∫

U′1
∫

U2 χc(g1)(u1)χc(g2)(u)χ( 12 〈u, u′1〉)χ( 12 〈u2, (c(g2)− 1)u〉)
χc(g2)(u2)χ(−12 〈u2, u′1〉)φ(u2 + u′1)dµU2 (u2)dµU′1 (u′1)dµU(u)

The formula (185) applied with x = c(g1) + c(g2) shows that∫
U χc(g1)(u1)χc(g2)(u)χ( 12 〈u, u′1〉)χ( 12 〈u2, (c(g2)− 1)u〉)dµU(u) (196)

= χc(g1)(u′1) ∫U χc(g1)+c(g2)(u)χ( 12 〈u, c(g1)u′1 − c(g2)u2 − u′1 − u2〉)dµU(u)
= 2dim Vγ(q̃g1,g2 )χc(g1)(u′1)(χ(c(g1)+c(g2))−1µV⊥/U⊥ )(c(g1)u′1 − c(g2)u2 − u′1 − u2).

Furthermore, Lemma 5.2 shows that, for u′1 + u2 ∈ U12,
µV⊥/U⊥ (c(g1)u′1 − c(g2)u2 − u′1 − u2) = L∗(µV⊥/U⊥ )(u′1 + u2) = | det(L̃)|−1µU12 (u′1 + u2).

The formula (193) follows directly from (194) - (197).We see from (188) that
t(g1)\(t(g2)\φ)(w) = (t(g1)\(t(g2)\φ))\δ−w (0) = (t(g1)\(t(g2)\(φ\δ−w )))(0)= ((t(g1)\t(g2))\(φ\δ−w ))(0) = ((t(g1)\t(g2))\φ)\δ−w )(0) = (t(g1)\t(g2))\φ(w).

Therefore (t(g1)\t(g2))\φ = t(g1)\(t(g2)\φ).Hence, t(g1)\t(g2) coincides with the composition of t(g1) and t(g2) as elements of the associative algebra End(S(W)).Therefore the function C is a cocycle.
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5.6. Normalization of Gaussians and the metaplectic group

For an element h ∈ End(W) define h# ∈ End(W) by
〈hw,w ′〉 = 〈w, h#w ′〉 (w,w ′ ∈ W). (197)

Then (Kerh#)⊥ = hW.
Lemma 5.13.
Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = Kerg−1 = 0. Then

2− dim V det(L̃) = det(g−2 : K12 → V)−1.
Proof. Since, by Lemma 2.7 (c), g−2 K12 = V, the right hand side of the equation we need to prove makes sense. Also,

2− dim V det(L̃) = det( 12 L̃)and a straightforward computation shows that
12 L̃ : W/U12 3 w + U12 → 12 (c(g1)− 1)w + V⊥ = g−11 w + V⊥ ∈ W/V⊥.

Hence, det( 12 L̃)−1 = det(g−1 : W/V⊥ → W/U12).Notice that g−11 − 1 = g#1 . Since V = g−2 K12 and U12 = K⊥12, Lemma 2.22 shows that
det(g−1 : W/V⊥ → W/U12) = det(g−11 − 1: K12 → V).

Since the restrictions of g−11 and g2 to K12 are equal, we are done.
Let B be a non-degenerate (not necessarily symmetric) bilinear form on a finite dimensional vector space over F. Definethe discriminant of B as

dis(B) = γW (det(A))
γ(1) , (198)

where A is the matrix obtained from a basis u1, u2, . . ., un of the space by
Ai,j = B(ui, uj ) (1 ≤ i, j ≤ n).

Clearly the discriminant does not depend on the choice of the basis.We have dis(B)2 = s(det(A)). (199)
For any g ∈ Sp(W) the formula

〈g−w,w ′〉 (w,w ′ ∈ W)defines a bilinear form whose left and right radicals coincide with Ker(g−). Hence we get a non-degenerate bilinearform Bg on the quotient W/Ker(g−). Then
dis(Bg) = γW (det(〈g−wi, wj〉1≤i,j≤r))

γ(1) ,

where w1 + Ker(g−), w2 + Ker(g−), . . ., wr + Ker(g−) is a basis of W/Ker(g−).For g ∈ Sp(W) define
θ(g) := γ(1)dim g−W dis(Bg). (200)
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Lemma 5.14.
Let g1, g2 ∈ Sp(W). Assume that K1 = Kerg−1 = {0}. Then

γW (q̃g1,g2 )2 = θ(g1g2)2
θ(g1)2 θ(g2)2 , (201)

where q̃g1,g2 is the non-degenerate symmetric form defined in Notation 2.6.

Proof. Let h be the element in GL(W) defined in Eqn. (24). Then since s is a character, it follows from Eqns. (199)and (26) that
s(det(〈(g1g2)−wi, hwj〉a<i,j ) = dis(q̃g1,g2 )2 s(det(〈g−1 wi, hwj〉b<i,j )). (202)

But
s(det(〈(g1g2)−wi, wj〉a<i,j )) = dis(Bg1g2 )2.Therefore (202) may be rewritten as

dis(Bg1g2 )2 s(det(h)) = dis(q̃g1,g2 )2. (203)
Notice that

dis(Bg1 )2 = s(detg−1 ) = s(det(g1(g−11 − 1))) = s(det(g−11 − 1)) = s(det(g−11 − 1))−1.
Then, from (26), we obtain dis(Bg1 )−2 s(det(h)) = s(−1)dim U dis(Bg2 )2.Therefore

s(det(h)) = s(−1)dim U dis(Bg1 )2 dis(Bg2 )2. (204)
By combining (203) and (204) we see that

dis(q̃g1,g2 )2 = dis(Bg1g2 )2 s(−1)dim U dis(Bg1 )2 dis(Bg2 )2 = s(−1)dim U dis(Bg1g2 )2dis(Bg1 )2 dis(Bg2 )2 .
We see from (180) that

γW (q̃g1,g2 )2 = γ(1)2 dim U−2 dim V dis(q̃g1,g2 )2 = s(−1)dim Uγ(1)−2 dim U−2 dim V dis(q̃g1,g2 )2,
because γ(1)4 = s(−1), which follows from the equality γ(1)γ(−1) = 1. Therefore (205) implies (201).
Definition 5.15.
For g ∈ Sp(W) define

Θ2(g) := γ(1)2 dim g−W−2 (γ(det(g− : W/Ker(g−)→ g−W))2 = θ2(g)| det(g− : W/Ker(g−)→ g−W)|−1
F ,

where
θ2(g) = γ(1)2 dim g−W s(det(g− : W/Ker(g−)→ g−W)).

(Here s was defined in Lemma 5.4.)
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Lemma 5.16.
We have Θ2(g1g2)Θ2(g1)Θ2(g2) = C (g1, g2)2 (g1, g2 ∈ Sp(W)). (205)
Proof. Both sides of the equality (205) are cocycles. Hence, Lemma 2.8 shows that we may assume that K1 = {0}.Therefore the equality (70) is equivalent to

det((g1g2)− : W/K12 → U12)det(g−1 : W→ W) det(g−2 : W/K2 → U) (206)
= (−1)dim U det(〈12 (c(g1) + c(g2)) , 〉U/V) (det(g−2 : K12 → V))−2

In particular
| det((g1g2)− : W/K12 → U12)|F

| det(g−1 : W→ W)|F| det(g−2 : W/K2 → U)|F = | det(〈12 (c(g1) + c(g2)) , 〉U/V)|F | det(g−2 : K12 → V)|−2
F

This, together with Lemma 5.13, shows that the right hand side of (207) is equal to
| det(〈12 (c(g1) + c(g2)) , 〉U/V)|F (2− dim V| det(L̃)|F)2

,

which, by Proposition 5.12, coincides with |C (g1, g2)|−2. Hence, the absolute values of the two sides of (205) are equal.Hence, (205) (without the absolute values) follows from Lemma 5.14.
Definition 5.17.
Let S̃p(W) := {(g, ξ); g ∈ Sp(W), ξ ∈ C×, ξ2 = Θ2(g)},
where Θ2(g) is as in Definition 5.15.

Lemma 5.18.S̃p(W) is a group with the multiplication defined by

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2 C (g1, g2)) (g1, g2 ∈ Sp(W)) (207)
the identity equal to (1, 1) and the inverse given by

(g, ξ)−1 = (g−1, ξ) (g ∈ Sp(W)).
Proof. Lemma 5.16 shows that the right hand side of (207) belongs to S̃p(W). A standard computation, as in [20,page 366], shows that S̃p(W) is a group with the multiplication given by (207), the identity equal to (1, C (1, 1)−1) and

(g, ξ)−1 = (g−1, C (g−1, g)−1ξ−1).
Since, by Proposition 5.12, C (1, 1) = 1, it remains to check that

C (g−1, g)−1ξ−1 = ξ.

But, as in the proof of Lemma 5.13,
C (g−1, g) = 2dim V| det(L̃)|−1

F = | det(g− : W/Ker(g−)→ g−W)|F = |Θ2(g)|−1
F = |ξ|−2

F .

This completes the proof.
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Notice that the map S̃p(W) 3 (g, ξ)→ g ∈ Sp(W)
is a group homomorphism with the kernel consisting of two elements. Thus S̃p(W) is a central extension of Sp(W) bythe two element group Z/2Z: 1→ Z/2Z→ S̃p(W)→ Sp(W)→ 1. (208)
Proposition 5.19.
The extension (208) does not split.

Proof. Pick a two-dimensional symplectic subspace W1 ⊆ W and let W2 = W⊥1 , so that
W = W1 ⊕W2.

Define an element g ∈ Sp(W) by
g(w1 + w2) = −w1 + w2 (w1 ∈ W1, w2 ∈ W2).

Then g−|W1 = (a− 1) I2 and g−|W2 = 0. Hence Ker(g−) = W2 and g−(W) = W1. We get
Θ2(g) = γ(1)4 s(det(g− : W1 → W1)) | detg− : W1 → W1))|−1

F = γ(1)4 s(4) | − 4|−1
F = γ(1)4

| − 4|2F .
We have g2 − 1 = 0, and Eqn. (205) gives

C (g, g)2 = 1(Θ2(g))2 = | − 2|4F.
Let g̃ = (g, γ(1)2

| − 2|F
). Then g̃ ∈ S̃p(W), and
g̃2 = (g2,Θ2(g)C (g, g)) = (g2, γ(1)4) and g̃4 = (g4,Θ2(g2)C (g2, g2)) = (g4, 1).

Thus the subgroup of S̃p(W) generated by g̃ is cyclic of order 4. The subgroup of Sp(W) generated by g is cyclic oforder 2. Hence the extension (208) does not split over that subgroup.
Corollary 5.20.
Up to an equivalence of central group extensions, as in [20, sec. 6.10], (208) is the only non-trivial central extension ofSp(W) by Z/2Z.

Proof. Since, as is well known (see [25, Theorems 5.10 and 11.1 (b)]),
H2(Sp(W),Z/2Z) = Hom(Z,Z/2Z),

the claim follows.
Let

φ∗(w) = φ(−w) and u∗(φ) = u(φ∗) (φ ∈ S(W), u ∈ S∗(W), w ∈ W).
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Lemma 5.21.
For any g ∈ Sp(W), t(g)∗ = t(g−1).
Proof. By the definition (189),

t(g)∗ = (χc(g)µg−W)∗ = χc(g)µg−W = χ−c(g)µg−W.
Since g−W = (g−1 − 1)W, it will suffice to check that for any w ∈ W

−c(g)g−w = c(g−1)g−w.
The left hand side is equal to −g+w. The right hand side is equal to

−c(g−1)(g−1 − 1)gw = −(g−1 − 1)gw = −g+w.
Definition 5.22.
For g̃ = (g, ξ) ∈ S̃p(W) define Θ(g̃) = ξ and T (g̃) = Θ(g̃)t(g). (209)
Lemma 5.23.
With the notation of (138), the following formulas hold

T (g̃1)\T (g̃2) = T (g̃1g̃2) (g̃1, g̃2 ∈ S̃p(W)), (210)
T (g̃)∗ = T (g̃−1) (g̃ ∈ S̃p(W)). (211)

Proof. By Proposition 5.12 the left hand side of (210) is equal to
Θ(g̃1)Θ(g̃2)Θ(g̃1g̃2) C (g1, g2)T (g̃1g̃2).

Lemma 5.18 shows that Θ(g̃1)Θ(g̃2)Θ(g̃1g̃2) C (g1, g2) = 1.
This verifies (210).The equality (211) follows from Lemma 5.18 and Lemma 5.21:

T (g̃)∗ = Θ(g̃)t(g)∗ = Θ(g̃−1)t(g−1) = T (g̃−1).
Lemma 5.24.
The map T : S̃p(W)→ S∗(W) is injective and continuous.

Proof. The injectivity of T follows from the injectivity of t : Sp(W)→ S∗(W), which is obvious. Let
Spc(W) = {g ∈ Sp(W); detg− 6= 0}.

Lemma 2.8 shows that Sp(W) = ⋃
h∈Sp(W) Spc(W)h. (212)
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Let S̃pc(W) ⊆ S̃p(W) be the preimage of Spc(W). Then
S̃p(W) = ⋃

h̃∈S̃p(W)
S̃pc(W)h̃.

By Lemma 5.23, we have
T (g̃) = T (g̃h̃−1)\T (h̃) (g̃ ∈ S̃pc(W)h̃)

Thus for φ ∈ S(W),
T (g̃)\φ = T (g̃h̃−1)\(T (h̃)\φ).

By Lemma 5.11, the map
S(W) 3 φ→ T (h̃)\φ ∈ S(W)

is continuous. Hence it will suffice to check that the restriction of T to S̃pc(W) is continuous. But this is obvious.
5.7. The conjugation property

Let L2(W) denote the Hilbert space of the Lebesgue measurable functions φ : W→ C, with the norm given by
‖ φ ‖22= ∫W |φ(w)|2 dµW(w).

Lemma 4.24 shows that for any g̃ ∈ S̃p(W) and any φ ∈ S(W)
‖ T (g̃)\φ ‖22= (T (g̃)\φ)∗\(T (g̃)\φ)(0) = φ∗\T (g̃)∗\T (g̃)\φ(0) = φ∗\φ(0) =‖ φ ‖22 .

Hence, the continuous linear map
S(W) 3 φ→ T (g̃)\φ ∈ S(W)

extends by continuity to an isometry L2(W) 3 φ→ T (g̃)\φ ∈ L2(W).
Furthermore, the formula

ω1,1(g)φ(w) = φ(g−1w) (g ∈ Sp(W), φ ∈ L2(W)).
defines a unitary representation ω1,1 of the symplectic group Sp(W) on L2(W).
Proposition 5.25.
For any φ ∈ L2(W) and g̃ ∈ S̃p(W) in the preimage of g ∈ Sp(W), T (g̃)\φ\T (g̃−1) = ω1,1(g)φ.

Proof. Since T (g̃)\ is a bounded operator, we may assume that φ ∈ S(W). Lemma 4.9 says that
t(g)\δw = δwg\t(g) (w ∈ W).

Therefore
T (g̃)\δw = δwg\T (g̃) (w ∈ W).

Since,
φ = ∫W φ(w)δw dµW(w) and ∫W φ(w)δgw dµW(w) = ω1,1(g)φ,

we see that
T (g̃)\φ = (ω1,1(g)φ)\T (g̃).
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5.8. The Weyl transform and the Weil representation

Pick a complete polarization W = X⊕ Y (213)
and recall that our normalization of measures is such that dµW(x + y) = dµX(x)dµY(y). Recall the Weyl transform

K : S∗(W)→ S∗(X× X), (214)
K(f)(x, x ′) = ∫Y f(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y),

This is an isomorphism of linear topological spaces, which restricts to an isometry
K : L2(W)→ L2(X× X). (215)

Each element K ∈ S∗(X× X) defines an operator Op(K ) ∈ Hom(S(X),S∗(X)) by
(Op(K )(v))(u) = K (u⊗ v) (u, v ∈ S(X)). (216)

Since the map
S(X)× S(X) 3 (u, v)→ u⊗ v ∈ S(X× X)

is continuous, (216) defines a continuous injection
Op : S∗(X× X)→ Hom(S(X),S∗(X)). (217)

Conversely, if S ∈ Hom(S(X),S∗(X)), then
S(v)(u) (u, v ∈ S(X))

defines a continuous linear map on S(X)⊗S(X ) = S(X×X). Hence the map (217) is bijective and thus a linear topologicalisomorphism.A straightforward computation shows that Op ◦ K transforms the twisted convolution of distributions (when it makessense) into the composition of the corresponding operators. Also,
(Op ◦ K(f))∗ = Op ◦ K(f∗) (f ∈ S∗(W)) (218)

and tr Op ◦ K(f) = ∫XK(f)(x, x) dµX(x) = f(0) (219)
if Op ◦ K(f) is of trace class, [17, Theorem 3.5.4] (More precisely the same proof works). Hence, the map

Op ◦ K : L2(W)→ H.S.(L2(X)) (220)
is an isometry, which is a well known fact [17, Theorem 1.4.1]. (Here H.S.(L2(X)) stands for the space of the Hilbert-Schmidt operators on L2(X).)Let U(L2(X)) denote the group of the unitary operators on the Hilbert space L2(X).
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Theorem 5.26.
Let ω = Op ◦ K ◦ T . Then

ω : Sp(W)→ U(L2(X))
is an injective group homomorphism. For each v ∈ L2(X), the map

S̃p(W) 3 g̃→ ω(g̃)v ∈ L2(X)
is continuous, so that (ω, L2(X)) is a unitary representation of the metaplectic group. The function Θ coincides with the
character of this representation:∫

S̃p(W) Θ(g̃)Ψ(g̃)dg̃ = tr ∫S̃p(W) ω(g̃)Ψ(g̃)dg̃ (Ψ ∈ C∞c (S̃p(W)),
where the integral on the left is absolutely convergent. (Here dg̃ stands for any Haar measure on S̃p(W).) Moreover,

ω(g̃) Op ◦ K(φ)ω(g̃−1) = Op ◦ K(ω1,1(g)φ) (g̃ ∈ S̃p(W), φ ∈ L2(W)).
Proof. We see from the discussion in Section 5.7 that the left multiplication by ω(g̃) is an isometry on H.S.(L2(X)).This implies that ω(g̃) is a unitary operator.We see from (217) that for any two function v1, v2 ∈ S(X) there is φ ∈ S(W) such that∫

X ω(g̃)v1(x)v2(x)dµX(x) = T (g̃)(φ) (g̃ ∈ Sp(W)).
Hence Lemma 5.24 shows that the left hand side is a continuous function of g̃. Since the operators ω(g̃) are uniformlybounded (by 1), we see that the left hand side is a continuous function of g̃ for any v1, v2 ∈ L2(X). This implies thestrong continuity of ω, see [40, Lemma 1.1.3] or [41, Proposition 4.2.2.1].Lemmas 5.23 and 5.24 show that the ω : Sp(W)→ U(L2(X)) is an injective group homomorphism.It is not difficult to check that the function

det(Ad(g)− 1)detg− (g ∈ Sp(W))
is locally bounded. Furthermore, as shown by Harish-Chandra [11, Section 8], the function

| det(Ad(g)− 1)|−1/2
F (g ∈ Sp(W)) (221)

is locally integrable. Hence the function,
|Θ(g̃)| = | detg−|−1/2

F (g̃ ∈ S̃p(W))
is locally integrable. (We would like to thank Alan Roche for the reference, [11].)Notice that for any Ψ ∈ C∞c (S̃p(W)), ∫

S̃p(W) T (g̃)Ψ(g̃)dg̃ ∈ S(W). (222)
Indeed, since the Zariski topology on Sp(W) is noetherian the covering (141) contains a finite subcovering (see forexample [12, Exercise 1.7(b)]). Hence, there are elements h̃1, h̃2, . . ., h̃m in S̃p(W) such that

S̃p(W) = m⋃
j=1 S̃pc(W)h̃j .
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Therefore Lemma 5.23 and a standard partition of the unity argument reduces the proof of (150) to the case whenΨ ∈ C∞c (S̃pc(W)). In this case (150) is equal to ∫
sp(W) χx (w)ψ(x)dx (223)

where ψ ∈ C∞c (sp(W)) and dx is a Haar measure on sp(W). The function (223) is equal to the pullback of a Fouriertransform ψ̂ of ψ from sp∗(W) to W via the unnormalized moment map
τ : W→ sp∗(W), τ(w)(x) = 〈xw,w〉 (x ∈ sp(W), w ∈ W). (224)

Since ψ̂ ∈ S(sp(W)) and since τ is a polynomial map with uniformly bounded fibers,
ψ̂ ◦ τ ∈ S(W).

This verifies (222). Hence, we may compute the trace as follows:
tr ∫S̃p(W) ω(g̃)Ψ(g̃)dg̃ = (∫

S̃p(W) T (g̃)Ψ(g̃)dg̃) (0) = (∫S̃pc (W) T (g̃)Ψ(g̃)dg̃) (0)
= ∫

S̃pc (W) T (g̃)(0)Ψ(g̃)dg̃ = ∫S̃p(W) Θ(g̃)Ψ(g̃)dg̃.
The last formula is a direct consequence of Proposition 5.25.
We end this Section by recalling some well known formulas for the action of ω(g̃) for some special elements g̃ ∈ S̃p(W).
Proposition 5.27.
Let M ⊆ Sp(W) be the subgroup of all the elements that preserve X and Y. Let Mc := {g ∈ M : detg− 6= 0}. Set

ζ(g̃) := Θ(g̃) | det( 12 (c(g|X) + 1))|−1
F (g̃ ∈ M̃c).

Then (ζ(g̃))2 = (s(det(g|X)))−1 | det(g|X)|−1
F (g̃ ∈ M̃c), (225)

the function ζ : M̃c → C× extends to a continuous group homomorphism

ζ : M̃→ C×

and
ω(g̃)v(x) = ζ(g̃)v(g−1x) (g̃ ∈ M̃, v ∈ S(X), x ∈ X). (226)

Proof. Set n = dim X. Fix an element g ∈ Mc . Observe that
det(g|Y − 1) = det((g|X)−1 − 1) = det((g|X)−1) det(1− g|X).

Then it follows from Definition 5.15 that
Θ2(g) = γ(1)4n s(detg−) | detg−|−1

F= γ(1)4n s(det(g|X − 1) det(g|Y − 1)) | det(g|X − 1)−1 det(g|Y − 1)|−1
F= γ(1)4n s(det(g|X − 1)) s(det(g|Y − 1) | det(g|X − 1)|−1

F | det(g|Y − 1)|−1
F= γ(1)4n s(det(g|X − 1)2) s(det(−(g|X)−1)) | det(g|X − 1)|−2

F | det(g|X)|F= γ(1)4n s((−1)n) (s(det(g|X)))−1 | det(g|X − 1)|−2
F | det(g|X)|F= γ(1)4n (s(−1))n (s(det(g|X)))−1 | det(g|X − 1)|−2
F | det(g|X)|F.
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Also,
| det( 12 (c(g|X) + 1))|−1

F = | det((g|X)(g|X − 1)−1)|−1
F = | det(g|X − 1))|F | det(g|X)|−1

F .

Hence
(ζ(g̃))2 = γ(1)4n (s(−1))n(s(det(g|X)))−1 | det(g|X)|−1

F = γ(1)2n γ(−1)2n (s(det(g|X)))−1 | det(g|X)|−1
F= (s(det(g|X)))−1 | det(g|X)|−1

F .

This verifies (225).Let x, x ′ ∈ X and let y ∈ Y. Then
K(t(g))(x, x ′) = ∫

Y t(g)(x − x ′ + y)χ( 12 〈y, x + x ′〉)dµY(y)
= ∫

Y χ( 12 〈c(g)(x − x ′), y〉)χ( 12 〈y, x + x ′〉)dµY(y)
= δ0( 12c(g)(x − x ′)− x − x ′) = δ0( 12 ((c(g)− 1)x − (c(g) + 1)x ′))
= | det( 12 (c(g|X) + 1))|−1

F δ0(g−1x − x ′).
Therefore

K(T (g̃))(x, x ′) = ζ(g̃)δ0(g−1x − x ′).
Thus we have (226) for g̃ ∈ M̃c . Since ω is a representation of M̃, the remaining claims follow.
Proposition 5.28.
Suppose g ∈ Sp(W) acts trivially on Y and on W/Y. Then det((−g)− 1) 6= 0 and

ω(g̃)v(x) = ξ0 χc(−g)(2x) v(x) (v ∈ S(X), x ∈ X), where ξ20 = (s(2))2n.
Proof. Since −g acts as minus the identity on Y and on W/Y, det((−g) − 1) 6= 0 and z = c(−g) ∈ sp(W) is welldefined. We have

z(w) = (−g)+((−g)−)−1(w) (w ∈ W).
Since g acts trivially on Y and on W/Y, we get, for every x ∈ X and every y ∈ Y:

g(x + y) = x + y+ yx , where yx ∈ Y.
It gives (−g)−(x + y) = −2x − 2y− yx . Hence

((−g)−)−1(x + y) = −12 (x + y) + 14yx .
We obtain

z(x + y) = (−g)+(−12 (x + y) + 14yx ) = 12yx .In particular, we have
z : X→ Y→ 0.
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Also, det(z− 1) 6= 0 and c(z) is well defined. On the other hand, we have (z− 1)(x+y) = −(x+y)+ 12yx . It follows that
(z − 1)−1(x + y) = −(x + y)− 12yx .

Hence,
c(z)(x + y) = (z + 1)(−(x + y)− 12yx

) = −12yx − (x + y)− 12yx ,that is,
c(z)(x + y) = −(x + y)− yx . (227)

We have c(z) ∈ Sp(W). Indeed, for any w,w ′ ∈ W, writing w = x + y and w ′ = x ′ + y′, with x, x ′ ∈ X and y, y′ ∈ Y,we have
〈c(z)(w), c(z)(w ′)〉 = 〈−w − yx ,−w ′ − yx′〉 = 〈w,w ′〉+ 〈x, yx′〉+ 〈yx , x ′〉.

However, since g is in Sp(W), we have
〈x, x ′〉 = 〈gx, gx ′〉 = 〈x + yx , x ′ + yx′〉 = 〈x, x ′〉+ 〈x, yx′〉+ 〈yx , x ′〉,

which gives
〈x, yx′〉+ 〈yx , x ′〉 = 0.

We obtain
K(t(c(z)))(x, x ′) = ∫Y χz(x − x ′)χ( 12 〈y, x + x ′〉)dµY(y) = χz(x − x ′)δ0( 12 (x + x ′)) = 2n χz(x − x ′) δ0(x + x ′).

We have dim ((c(z)− 1)(W)) = dimW = 2n, and,
det (c(z)− 1) = (−2)2n.

We get
Θ2(c(z)) = γ(1)4n (s(−2))2n 2−2n = γ(1)4n (s(−1)s(2))2n 2−2n = γ(1)4n (s(−1))2n γ(2)4n

γ(1)4n ,
since s(−1) = γ(1)4, and γ(1)8 = 1. Hence, Θ2(c(z)) = γ(2)4n. (228)
Thus

K(T (c̃(z)))(x, x ′) = 2n ξ ′0 χz(x − x ′)δ0(x + x ′), where (ξ ′0)2 = γ(2)4n.
Proposition 5.27 shows that

ω((−̃1))v(x) = ζ(−̃1)v(−x).
We have (

ζ(−̃1))2 = s((−1)n)−1 = (s(−1))−n = γ(1)−4n.
Since (s(2))2n = 22n (γ(2)2

γ(1)2
)2n

,

the proof is complete.
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Proposition 5.29.
Suppose g ∈ Sp(W) acts trivially on X and on W/X. Then det((−g)− 1) 6= 0 so that z = c(−g) ∈ sp(W) is well defined
and z : Y→ X→ 0. Assume z(Y) = X. Then

ω(g̃)v(x) = ±( s(2)2
)n

γ(q) ∫X χz−1 (x − x ′)v(x ′)dµX(x ′) (v ∈ S(X), x ∈ X),
where z−1 : X→ Y is the inverse of z : Y→ X. (The explicit computation of γ(q) may be found in [31, Appendix].

Proof. The existence of z and its properties are verified as in the proof of Proposition 5.28. In particular, for all x ∈ Xand y ∈ Y, we have
g(x + y) = x + y+ xy, where xy ∈ X.

Similarly to the proof of Proposition 5.28, we get
z(x + y) = z(y) = 12xy. (229)

and
c(z)(x + y) = −(x + y)− xy, (230)

that is,
c(z)(w) = −w − 2z(w), for every w ∈ W. (231)

Let
q(y, y′) = 12 〈zy, y′〉 (y, y′ ∈ Y).

Then, in terms of Lemma 5.8 and the identification (182),
q∗(x, x ′) = −2〈z−1x, x ′〉 (x, x ′ ∈ X).

Hence, by the definition of K (214), the assumption that z annihilates X and maps Y into X and Lemma 5.8, we obtain
K(t(c(z)))(x, x ′) = ∫

Y χ( 14 〈−z(x − x ′ + y), x − x ′ + y〉)χ( 12 〈y, x + x ′〉)dµY(y)
= ∫

Y χ( 14 〈−zy, y〉)χ( 12 〈y, x + x ′〉)dµY(y)
= ∫

Y χ( 12q(y, y))χ(−〈y,−12 (x + x ′)〉)dµY(y)
= γ(q)χ(−12q∗(−12 (x + x ′),−12 (x + x ′)))
= γ(q)χ(〈z−1(−12 (x + x ′)),−12 (x + x ′)〉) = γ(q)χz−1 (x + x ′).

Therefore
K(T (c̃(z)))(x, x ′) = Θ(c̃(z))γ(q)χz−1 (x + x ′).

But Θ(c̃(z))2 = ±γ(2)4n (see Eqn. (228)), where dim W = 2n. Furthermore, by Proposition 5.27,
K(T (−̃1))(x ′, x ′′) = ζ(−̃1) δ0(x ′ − x ′′),

where (ζ(−̃1))2 = γ(1)−4n. Hence, the formula for ω(g̃) follows.
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