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1. Introduction

The Weil representation is a magnificent structure which keeps appearing in a variety of places throughout Mathe-
matics and Physics. This is evident from a simple google or mathscinet search for “oscillator representation”, “Weil
representation”, “Howe correspondence” or “local theta correspondence”. The last two terms refer to a correspondence
of irreducible representation for certain pairs of groups, conjectured to exist in [16], proven to exist over the reals in [19],
over p-adic fields (p odd) in [39] and essentially proven not to exist over finite fields in [1]. A concise description of
the Weil representation may be found in [37]. Anyone interested in a short and complete presentation should read that
paper and stop right there. That work is really hard to improve upon. In this article we take the opposite approach. We
dissect the Weil representation into small pieces, study how they work, and put them back together, in effect checking
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that the formulas of [37, Theorem C] are correct, thus reversing Thomas’ proofs and skipping most of the literature on
which it is based. Hence the title of this article. The methods we use are elementary, i.e. contained in a graduate
curriculum of an average university in the USA. In contrast, a reader well versed in Algebraic Geometry will certainly
enjoy [6, 7] or [8]. In the real case one should also mentions some classics, such as [24] or [4].

The Weil representation concerns a symplectic group defined over a field or over the adeles (or, more recently, over a
ring [2, 9, 21], or a finite abelian group [32]). The field could be finite or local. We always assume that the characteristic
is not 2, skip the case of the complex numbers as not interesting, and the adeles, the rings and the finite abelian groups
as very interesting but requiring more energy, which we have just exhausted. Here is a brief description of what we do.

Let F be a finite field of odd characteristic and let W be a finite dimensional vector space over F equipped with a
non-degenerate symplectic form (, ). The symplectic form induces a twisted convolution lj on the space L%(W), making
it into an associative algebra with identity over C. One may think of it as of “the essential part” of the group algebra
of the Heisenberg group attached to (W, (, )). For any subspace X C W, define a measure px on W by

/X W) disx(x) 2= (X723 i),

xeX

where |X] is the cardinality of X and ¢y: X — C is a function. Fix a non-trivial character x of the additive group F. Then
the twisted convolution (with respect to x) of two functions ¢, y: W — C is defined as

sutw) = [ o)btw = o) w) dimla)  (w € W) (n

The algebra H.S.(L%(X)) of the Hilbert-Schmidt operators on L?(X) may be identified with L%(X x X) by assigning the
integral kernel K € L?(X x X) to each operator Op(K) € H.S.(L?(X)) by setting

Op(K)v(x) := /XK(X,X’)V(X’) dux(x').

Suppose that X is a part of a complete polarization W = X @ Y. Let K: L2(W) — L?(X x X) be the corresponding the
Weyl transform:

’ ’ 1 ’
KM ) = [ o= + g0+ X)) dosty).
Then we have the following sequence of algebra isomorphisms:

LZW) 5 12X x X) B H.S.(L2(X)). )

Let Sp(W) denote the symplectic group, that is the isometry group of the form {, ). The main result of [37, Theorem C]
gives an explicit formula for a map T: Sp(W) — L?(W) such that the resulting composition

w: SpW) 5 L2W) 5 12(X x X) B H.S.(L2(X)), 3)
is an injective group homomorphism of the symplectic group into the group U(L?(X)) of the unitary operators on L?(X),
w : Sp(W) — U(L*(X)), (4)

which has the following “conjugation property”

(w(g)OpoK(p)w(g™)) (W) =¢(g"'w) (g €SpW), ¢ € L}W)). )
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A less explicit formula for T(g) occurred already in [15, Theorem 2.9]. The missing ingredient was the description of the
trace tr(w(g)), which was done in [36] and led to [37, Theorem C]. A proof of the existence of w satisfying (4) and (5) is
also available in [5, Theorem 2.4]. In Section 3 we check, via a straightforward but non-trivial computation, that the w
given in [37, Theorem C] is indeed a group homomorphism.

Our approach is the following. For any g € Sp(W), the left and right radicals of the bilinear form (w, w') — ((g—1)w, w’)
coinciding with Ker(g — 1), we get a non-degenerate bilinear form B, on the quotient W/Ker(g —1). Let dis(B,) denote
its discriminant. We set

(g) := [Ker(g — )" y(1)"" =™ dis(By), (6)

where
1) = [ xxiduto.
F
Then we define T(g) by
T(g) := ©(9) Xc(g) Lig-1yw"

where for u € (g — )W

Xeo ) = (3 (clg)u, ), 0)

c(g): (g —1)W — W/Ker(g — 1) denoting the Cayley transform, and I;_1)w is the indicator function of (g — 1)W.

Our first main result (Theorem 3.8) asserts that

T(g1)bT(g2) = T(g1g2), for any g1, g2 € Sp(W). (8)

Let w := OpoK o T. Our second main result (Theorem 3.10) asserts that w is an injective group homomorphism from
Sp(W) to U(L%(X)), that the function © coincides with the character of the resulting representation, and that Eqn. (5)
holds true.

In the case F = R, the reals, one has to deal with the “smog overspreading the infinite field” [15, page 2]. In particular
the first two Hilbert spaces which occur in (2) have to be replaced by the spaces of tempered distributions. Hence, the
algebra structure breaks down, but enough of it survives to make sense out of the formulas like

T(g1)8T(g2) = T(g1§2), 9

where g1, g, € §)(W) a double cover of Sp(W) (see below). The resulting representation w of éT)(W) appeared first in
[35] as a natural development in Quantum Mechanics, [38]. Explicit formulas for w(§), § € Sp(W), may be found in [33,
Theorem 5.3] and for T(§) in [26]. Furthermore, if one thinks of w(§) as of a pseudo-differential operator, then its Weyl
symbol, see [14], is T(§).

Our approach consists of defining first, for g € Sp(W),
©%(g) = y(1)?" 7Y (det(g —1: W/Ker(g — 1) — (g = 1)W)) ", (10)
setting next

Sp(W) := {(g.4); g € Sp(W), & e C*, & = 8%(g)},

and finally
0(g):=¢& for § =(g,&) & Sp(W).

Let x(r) = exp(2mir) for r € R. Define x.) as in (7). Then we set

T(g) := ©(9) Xc(g) Hig-yw.
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where pig_1)w is an appropriately normalized Haar measure on (g — 1)W, and prove that the formula (9) is satisfied.

Similar difficulties as for the reals occur when F is a p-adic field, with some new ones, see Section 5 for details. The
representation w was constructed in [42] and the explicit formulas for w(g), § € §E)(W) may be found in [31]. Our
construction in the p-adic case occurs to be a mixed version of the finite and the reals cases, as shows the definition of
0(g)? (see Definition 5.15).

Checking the equality (8) (or (9)) requires some effort. First we compute the twisted convolution of the unnormalized
Gaussians xc(g) Ig—nw (or Xc(g) Hg—1w) and obtain a cocycle C(gs,gz). This is straightforward, but not easy in the
sense that one has to keep track of various determinants, which are explained in Section 2. Then we “quess” the
normalization factor ©(g) (or ©(§)) and verify (8) (or (9)). This second step is more difficult. “Guessing” the normalizing
factor, which happens to be the distribution character of the Weil representation, was done for us by Teruji Thomas
in the finite case and others in the remaining two cases. We show that the normalized Gaussians form a group by a
direct computation involving the cocycle. The point is that this computation is the same in all three cases (finite, real
and p-adic) and avoids the holomorphic continuation to the oscillator semigroup studied in [18, 27] or [29]. In a sense,
we replace analytic difficulties by some convoluted linear algebra of Section 2. Our methods are equivalent, but not
equal, to those used in [24, sec. 1.4-1.7] where the authors describe the cocycle C(g+, g2)/|C(g1, g2)| and give a formula
for the Weil representation acting in some Schrodinger model. Proving that C(g4, g2)/|C(g1, g2)| is a cocycle relies on
Kashiwara's description of Maslov index associated to three maximal isotropic subspaces of W. We deduce this fact
from the associativity of the twisted convolution of the Gaussians. Thus our “convoluted linear algebra” replaces the
beautiful theory of Maslov index. (Another justification for the title of our article.)

Weil's construction covers the cases of all locally compact non-discrete fields (including the reals) and adeles and gives
applications to the theory of automorphic forms. Hence the name “Weil representation”, taking away some of the credit
from David Shale - a student of Erza Segal. Possibly in an attempt to find a middle ground Roger Howe proposed
the name “the oscillator representation”, [15, page 1]. The names “Segal-Shale-Weil representation”, [22], “metaplectic
representation”, [30], and “spin representation of the symplectic group”, [23] have also been used. Since, as the reader
will see, understanding the Fourier transform of a Gaussian is the only prerequisite to follow our reverse engineering
process, a name like “Gauss-Fourier-Segal-Shale-Weil representation” is another option. (In fact many researchers have
been (and most likely will be) fascinated by the Gaussians and wrote volumes about them, see for example [28].) We
chose to use the name “Weil representation”, because it is the shortest one.

2. Linear algebra preliminaries

The first aim of this Section is to collect various results, valid for arbitrary commutative fields of characteristic not
equal to 2, that we will use in each of the three next sections. It is the object of the subsections 2.1 to 2.4. The two
other subsections are devoted to determinants over the reals, and over a p-adic field, respectively; the main result is
Lemma 211 (resp. Lemma 2.23), which will be used in the proof of Lemma 4.17 (resp. Lemma 5.16).

2.1. General results on quadratic forms

Let F be a commutative field of characteristic not equal to 2. Let U be a finite dimensional vector space over F. Suppose
g is a non-degenerate symmetric bilinear form on U. Then the formula

bu)(v) = q(u,v)  (u,vel) ()
defines a linear isomorphism ®: U — U*, where U* is the vector space dual to U. The form ¢* dual to g is given by
g (ut,v) = vi(@ (") (v, v e Un).
Let Q be the matrix obtained from any basis vy, uz, ..., u, of U by

Q:ij = q(ui, uj) (1<ij<n). (12)
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Lemma 2.1.
If Q is the matrix corresponding to q and a basis u, uy, . .
basis u3, u%, ..., u} of U™

., u, of U, as above, then Q" corresponds to q* and the dual

Proof. Suppose ®(u) = u*. Then for any v € U,
u*(v) = qlu,v) = ) ui(u)qlui, uj)ui(v).
ij=1
Thus
ut = (Zu?‘(u)q(ui,uj)) u;.
=1\ i=1

Therefore

u*(uj) = ui(u)q(u;, uj) 1<j<n)

In matrix form the above equations may be written as

(U™ (ur), u¥(uz), ..., u™(u,))

Hence,
(U (ur), u*(ug), .., u™(u,) Q7
Thus
u= Z ui(u)
j=1 i
Therefore,

n n

= (ui(u), u3(u), ..., u; ().

(Ui (u), u3(u), - . up(u)).

up=Y Y ut(u)(Q )i

=1 i=1

g u) =) Y u ) )ijut(u).

j=1 i=

In other words,
q*(uf, uj
2.2. Symplectic spaces

Let W be a finite dimensional vector space over F with a
subspace. We shall identify W with the dual W* by

w¥(w) = (w, w*

Then

U* = W/U* and (U/V)* = V+/U*,

1

) =(Q7");

non-degenerate symplectic form ( , ) and let U C W be a

Y (w,wt EW). (13)

(14)

where the orthogonal complements are taken in W, with respect to the symplectic form (, ).

Lemma 2.2.
Let V4,V, C W be two subspaces and let w € W be such

that Vi 0 (V2 + w) # 8. Then for any v € V1 N (V2 + w),

V1ﬂ(V2+W)=V1ﬂV2~|—V.

1504
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Proof. There are vectors v; € V4 and v, € V, such that

V=vi=Vv+ w.

Then
V1ﬂ(V2+W)—V:V1ﬂ(V2+W)—V1 §V1—v1:\/1
and
Vin(Vo+w)—v=Vin(Va+w)—(va+w) C(Va+w)—(va+w)=V,.
Hence,

V1ﬂ(V2+W)—V§V1ﬂV2.

Conversely, let Vi 3 vj =v; € V,. Then
vitv=vi+veViandvi+v=vi+v,+weVy+w.

Therefore
VinVo+v CVin(Va+w). O

Let Sp(W) denote the isometry group of {, ):
SpW) = {g € GLW) : (gw, gw’) = (w,w') VYw,w" € W}.
Let dim(W) = 2n. Then there is a group isomorphism
Sp(W) =~ Sp,,(F) := {A € GL,(F) : AVA=J}, (15)

where A" means the transpose of A, and

The Lie algebra of Sp,,(F) is equal to
s, (F) = {X € gl (F) : X'/ + /X = 0}.

Matrices which belong to Sp,,(F) are called symplectic matrices. It clearly follows from (15) that the square of the
determinant of any symplectic matrix is 1. In fact, the determinant itself is always 1. Indeed, the determinant of any
antisymmetric matrix can be expressed as the square of a polynomial in the entries of the matrix. This polynomial Pf is
called the Pfaffian. The following identity holds true: Pf(A'J'A) = det(A) Pf(J). Since A'JA =/, we get det(A) = 1.

2.3. The Cayley transform

For g € Sp(W), we set
g i=g=+1, (16)

and define the Cayley transform by

c(g): g W g w— g'w+Ker(g™) € W/Ker(g™). (17)
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Then the bilinear form
<C(g)u/' ul/> — <g+W/’ g—WH> (u/ — g—W/’ u// — g—W//’ W/’ W// E W) (18)
on the space g~W is well defined and symmetric.

Lemma 2.3.
For any g € Sp(W) the map
9" : Ker(g™) — Ker(g™)
is bijective.
Also, for any u = g~w, with w € W, the preimage of c(g)u € W/Ker(g~) under the quotient map W — W/Ker(g~) is
equal to g*tw + Ker(g™).

Proof. Since g* commutes with g—, g+ preserves Ker(g~). Suppose w € Ker(g~) and g*w = 0. Then
g w=0and g*w =0,

which implies w = 0. The second statement is obvious. O

Notation 2.4.
For g1,g2 € Sp(W), let
Urm W, UzimgsW and Un i= (giga) W,

Ki:=Kerg;, K;:=Kerg; and Kj:=Ker(gig) .

Lemma 2.5.
Let g1,g, € Sp(W) and let w,v € W be such that

velUn(U+w).

Then for any v’ € Uy N U,

(c(g)(u"+v), u" + V) + (c(g2)w—u" —Vv),w—u —v) + 2{u" +v,w)
= ((c(g1) + c(g2))u’, u") = 2(u’, ¢(g1)v — c(g2)(w — v) = w) +(c(g1)v, v) + {c(g2)(w — v), w — v) + 2(v, w).

Proof. Notice that all the terms in the above expression make sense. Also,
(clga)(u" +v),u" +v) = (c(g)u’, u") + 2(c(gr)u’, v) + {c(g1)v, v)

and
(clga)w —u"=v),w—u" —v) = (c(ga)(w —v),w —v) = 2(c(g2)(w — v), u") + (c(g2)u’, u).

Hence

{c(gr)(u" + V), u" + V) +{c(g)(w—u —Vv),w—u" —V)
= ((c(g1) + c(g2))u’, u") +{c(ga)v, v) + (c(g2)(w — v), w — v) + 2(c(g1)u’, v) — 2(c(ga)(w — v), U').

Furthermore
(c(g)u’,v) = ({c(ga)(w —v),u") = —(u, c(g1)v) + (U, c(ga)(w — v)) = —(u’, c(g1)v — c(g2)(w — v))

and the desired equality follows. O
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Notation 2.6.
For two elements g1, g, € Sp(W), let U := Uy NU,, and let q4, 4, denote the following symmetric form on U:

’ ”n 1 ’ " ’ ” ! "
Gg1.0,(u",0") = 5 ({elgr)u’, u") + (clga)u’,u")) (v, 0" € V). (19)
Let V C U be the radical of qg4,,4, and let g4, 4, be the corresponding non-degenerate form on the quotient U/V.

Lemma 2.7.
Let g1, g2, U and V be as in Notation 2.6. Then

(@) dim(K; N K3) + dim V = dim K3,

(b) dim W — dim U — dim V = dim K; + dim K; — dim Ky,
(c) dim Uy 4+ dim U; — dim Uy, = dim U + dim V;

(d) V=g5Ki = (97" = 1)Kz

Proof. It is easy to check that the kernel of the following map
We WS (wy,wy) = (a,b,c) eWDOWW

where

a=giw—gywz, b=gywi+g;wy andc = giws +giw,,

is equal to
{lw,—w); w e KinKy} (20)

and that the set of the pairs (wy, wy) such that @ =0 and ¢ = 0 is equal to

{(=g2w2, w2); wy € Kip}. (21)

Let u € U. Then there are wy, w, € W such that u = g7 wy = g5 ws. In particular the element “a” is zero. The condition
that u € V means that

giws + giw, € Ut (22)

Since Ut = K + K>, there are elements x; € K; and x, € K, such that
giwi + giws = x1 + xa.

Lemma 2.3 shows that there are unique elements y; € Kj and y, € K5 such that gjys = —x; and gFys = —x,. Let
w; = wq +yq and wh = wy + yo. Then

+.o + o =
giwi+g;w, =0 and u=gyw; =gyw,.

Therefore V is equal to the projection on the “b component” of the set (21).

Hence, dim V is equal to the dimension of the set (21) minus the dimension of the kernel (20):
dim V = dim K12 - dlm(K1 n Kz)

This verifies (a).

18507
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Since
dim Ut = dim(K + K3) = dim K; + dim K; — dim(K; N K3)

and since dim Ut = dim W — dim U, (b) follows from (a).
We have

dim U + dim U, — dim Uy, = (dim W — dim Kj) + (dim W — dim K3) — (dim W — dim K73)
= dim W + dim Ky, — dim K; — dim K5 = dim U + dim V,

because of (b). It proves (c).

As we already noticed,

V = {g7(—gm2) + gy wa; wy € Kiz} = {g7 (—g7 'w2) + gy e wa € Kia}
B {(9171 — 1)W2 + g;WZ; wy € K12} = {29£W2, wy € K12}
= {gyw wy € Kig} = {(g7" — NYwa w; € Kiz}.

This verifies (d). O

Lemma 2.8.
Let g € Sp(W). Then there is a direct sum decomposition

W=XeWydY oW,
such that the subspaces X and Y are isotropic,

X+Y)"=Wo+ Wi, XeWodY =W,
X® W, =1Im(g™), X&W; =Ker(g™), and X = Ker(g~) N Ker(g™)",

where Im(g~) = g~W. Furthermore, there are unique elements
go € Sp(Wp), T € Hom(Wy, X), S € Hom(Y, X)
such that for x € X, wp € Wy, y € Y and wy € W,
gIx+wo +y +wi) = (x+ Two + Sy) + (gowo — goT7y) + y + wa,
where T* € Hom(Y, W) is the conjugate of T with respect to the pairing ( , ), and the map
WodYSwy+y— (Two+ Sy)+ ((go—Nwo — THy) e X W,

is invertible.

In particular if g1 € End(W) is defined by
gix+wo+y+w)=—x—gy' wo—y—w,

then g1 € Sp(W) and Ker(g1g~) = Ker(gg7) = 0.
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Proof. Clearly X = Ker(g~) N Ker(g~)* is an isotropic subspace. Let Y C W be another isotropic subspace such
that the restriction of the symplectic form to the sum X + Y is non-degenerate. Define W = (X + Y)*. Then we have
W=XeWaY.

Also,
X @ W = X" = Ker(g™) + Ker(g™)*" 2 Ker(g").

Set Wy = Ker(g~) N W’. Then the above inclusion implies that Ker(g~™) = X & W;. Let Wy = Wi N W', Then
W=W,®&W, and Im(g7)=Ker(g7)" =X W,.

Since g acts as the identity on Wy, g preserves W;. Then g|W1i acts as the identity on X. Also, the stabilizer of X in

Sp(W) is a parabolic subgroup. Hence the formula for g follows from the well known structure of these subgroups.

Clearly the element gq belongs to Sp(W). Let w = x + wy + y + wq as in the lemma.

Suppose g1gw = w. Then
x=—x—Twy—Sy, wo=—wy+9gg T'y, y=—y and wy = —w.

Since the characteristic of the field F is not 2, we see that w = 0.

Suppose ggiw = w. Then
x=—x—Tgy'wo—Sy, wo=—wo+ T'y, y=—y and w = —w.

Again, since the characteristic of the field F is not 2, we see that w = 0. O

2.4. More lemmas

Assume from now on till the end of this subsection that Ky = Ker g; = {0}.

In this case U = g;W. Then
K;N Ky, =K nkK; ={0}.

Hence there is a subspace W, C W such that

W=K,eW, oK. (23)
Pick a subspace U" C W such that
W=UegU.
Then U = K3+ and dim U’ = dim K,. Fix a basis wj1, wpy2, ... of K3 and let Wi,1, Wy, ... be the dual basis of U" in

the sense that
(w;, W;> = 0y (b < i,j).
Define an element h € GL(W) by

—1

hlkpew, = (g7 =195, hwi=(g7" =1)"'w], b < i. (24)
Let us extend the basis w; of K; to a basis of W so that w; € Ki; if i < aand w; € W, if a < i < b. Then

hw; = w; (i <a). (25)

1508
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Lemma 2.9.
The following equalities hold:

det(((g192)wi, hw))aci)) = det((3(c(g1) + €(92))g7 Wi, G5 Wj)a<ij<b)
= det({(g192)" Wi, Wj)a<i;) det(h).

Moreover, we have
det((w;, (g7 " — 1)hw;)iy) = (=1)"" Y det((g5 wi, w;)ij<)-

Proof. Notice that both c(g4) and c(g2) are well defined on the space U and

1 _ 1 _ _ _ _ _
91 5(c(g1) + clg2))gz = 5(91*92 +9193)+ 97K = (9192)” + g7 K.
Suppose a < i,j < b. Then (27) shows that

((g192)"wi, hw;) = ((g192) Wi (g7 — 1) "g5 w;)
=(97"(g192) Wi, g3 w))
1
= (9797 5(c(g1) + c(92))92 wi, 92 w;)
(

3(c(g1) + ¢(92)g5 Wi, g7 wj).

Suppose j < b < i. Then (g1g2)"w; = g7 w;. Hence,

((g192)" wi hwy) = (gywi (97" = 1) g7 wy)
= (Wi, g3 w;)
= (97" = Ywi, w;)
= (=g5'g;wi, w;)
= (0, w;)
=0.

If b <i,j, then
((g192)"wi, hw;) = (g7 wi, hw;).

Notice that

det((gy wi, hw))peij) = det((wi, (97" — 1)hw;)peiy) = det((wi, w))peij) = 1.

The first equality in (26) follows from relations (28), (29), (30) and (31).
Since h preserves the subspace K, it makes sense to define h € GL(W/K3,) by

hw+Kp)=hw  (weW).

Then
det({(g192)"wi, hwj)a<i;) = det({(g192)"wi, Wj)a<i f) det(h).

But (25) implies det(h) = det(h). Hence the second equality in (26) follows.

(26)

(27)

(28)

(30)

31
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e
Also, if j < b < i, then
(wi, (97" = Dhw;) = (wi, g7 w;) =0
because K5 L U. Hence,

det((w;, (g7" — Nhw;):,) = det((wi, (97" — 1)hw;)i<p) det((wi, (97" — 1)hw;)per,)

= det((wi, (g7 = 1)hw;)i <b)
det({wi, g5 w;)ij<b)

dim Kiz+din Wa det((g5 wi, wi)i j<b)

Y det((gy wi, wi)ij<n),

—1)
1)

This verifies (26). O

Corollary 2.10.

With the above notation we have

dim U det({(g1g2)" Wi, W)a<i,)
det({(gy wi, w;)i;) det({(gs wi, w;)ij<p) ™

det((3 (clg1) + c(g2)gs Wi, 93w Joct ) = (1)

2.5. Determinants over the reals

Consider two vector spaces U’, U” over R of the same dimension equipped with positive definite bilinear symmetric forms

”

B', B” respectively. Let uf, uj, ..., ul, be a B'~orthonormal basis of U" and let uf, uj, ..., u) be a B”-orthonormal basis
of U”. Suppose L: U — U” is a linear bijection. Denote by M the matrix of L with respect to the two ordered basis:

Lup=Y Myu!  (j=12...n).
i=1

Then (det(M))? does not depend on the choice of the orthonormal basis. (Indeed, if we change the orthonormal bases
in the two spaces, we get two matrices P = (P!)~" and Q = (Q')™", so that the new matrix is M’ = PMQ. Thus
det(M’) = det(P) det(M) det(Q). Since (det(P))? = (det(Q))? = 1, we see that (det(M'))?> = (det(M))2.) Thus we may
define (det(L))? := (det(M))>.

We shall also need a notion of a determinant for a linear map between two vector spaces (under some additional
assumptions of course). For that reason we fix an element / € Sp(W) and the corresponding positive definite symmetric
bilinear form B, that is,

B(w, w') = (J(w), w') (w,w eW). (32)
Then every subspace of W has a B-orthonormal basis.

For a subset S C W let S*58 C W be the B-orthogonal complement of S. It is easy to see that
St = j1st = st (33)
For an element h € End(W) define h*# € End(W) by
(hw,w') = {w, h*w') (w,w e W). (34)
Then (Ker h#)+ = hW.

1511
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Consider an element h € End(W) such that Ker h = Ker h*. (In our applications h will be equal to g~, where g € Sp(W).
Then g# = g7' —1 = —g~"'g~ has the same kernel as g~.) Let L = J='h. Denote by L* the adjoint to L with respect to
B, (B(Lw,w') = B(w, L*w’)). Then L* = Jh¥. Hence Ker L = KerL*. Since B is anisotropic, L maps (Ker L)*8 = LW
bijectively onto itself. Thus it makes sense to talk about det(L|w), the determinant of the restriction of L to LW. If
Wi, Wa, ..., Wy is @ B-orthonormal basis of (Ker L)'8, then

det(B(LW,‘, Wj)1§i,j§m)

det(L =
et(tluw) det(B(w:, wj)1<ij<m)

= det(B(LWl, Wj)1§[,j§m) = det((hW[, Wj>1S[.j§m)' (35)

Under the condition Ker h = Ker h#, we define det(h : W/Ker h — hW) to be the quantity (35).

Suppose U C W is a subspace and x € Hom(U, W) is a linear map such that the formula
(xu,u") (u,u" € U)

defines a symmetric bilinear form on U with the radical V C U. The form B induces a positive definite form on the
quotient U/V. Pick a B-orthonormal basis uy +V,...,ux +V € U/V and set

det((x , )U/V) = det((xu,-, uj>1§i,j§k)~ (36)
It is easy to see that the quantity (36) does not depend on the choice of the B-orthonormal basis.

Lemma 2.11.
Fix two elements g1, g, € Sp(W) and assume that Ky = {0}. Then

det((g192)~: W/Kiz — Upa)
det(gy : W — W) det(g; : W/K; — U)

= (=1)*"Y det((%(f(gﬂ +c(g2) . Juw) (det(gy : Kiz = V)™

Proof. Let W, C W be the B-orthogonal complement of Ki; + K. Then (23) holds, because B is anisotropic. Let
Wy, Wa, . .. be a basis of W such that wy, ws, ..., w, is a B-orthonormal basis of K2, w,11, Wai2, ..., W, is a B-orthonormal
basis of W, and w11, Wp42, ... is a B-orthonormal basis of K. Let Q € GL(W) be such that

Ow,, Ow;, . . .is a B-orthonormal basis of W,
QWi:W,' l.fle,
Ow; Lg Ko +W, it b <.

Define the matrix elements Q;; by

Qw; = Z Qj,[WjA
)

Then

Q/,i = ji lf l S b
Hence,

det(Q) = det((Q;i)1<j.i) = det((Q;i)p<;i) = det((Qji)a<;.i)
and
1= det(/q) = det(B(/71 Ow;, Qw;)1<ij) = det((Qw;, Ow, <)) = (det(Q))2 det({wi, wj)i<i)).

Therefore

det((Qj,i)a</,i)2 det({wi, wjhi<ij) = 1. (37)
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Let uq, uy, ..., up be B-orthogonal basis of U such that uq, uy, ..., us span V. Define the matrix elements (g5 )« by

b
gowi =) (¢)kiux  (1<i<b).
k=1

Since g5 Ki2 =V, we see that
(G =0ifi<a<k.

Hence
det(((g3 )r.ihzkicn) = det(((g2 )x.ih1<k,ica) det(((92 )xia<k,izs)- (38)

Also,

(det(g; : Kiz = V))* = (det(((g2 )x)i1<kiza))’ and (39
(det(gy : W2 — UV))? = (det(((g2 )eda<k.izs))’-

Define h € GL(W) as in (24). Then (26) shows that

det({(g192)"wi, W;)a<i;) det(h) = det((3(c(g1) + c(g2))92 Wi, 92 Wj)a<ijcb)- (40)
Furthermore, by (26),

det(h) = det((g7" — 1) (g7" — 1)h) = det(g;" —1)7" det((g;" — 1)h) (41)
= det(gy" —1)7" det((wi, (g7 — 1)hw;)i<iy) det((we, wi)iciy) ™
= det(gy" —1)7'(=1)""Y det((g; wi, w;)i <s) det((wi, wii<ij)™

Also,

det((3(c(g1) + €(92))g5 Wi, 95 WjYa<ij<b) = det((3(c(g1) + c(g2))ui, Ur)acki<b) det(((97 )ii)a<,i<s)’-
By (35),

det((g192)” : W/Ki2 = Uy) = det({(g192)” Owi, QW )aci)) = det((Q;j)a<i;)’ det({(g192)” Wi, W) )a<i)-

Define an element g € GL(W) by
gw; = J'u; ifi < b,
gw; =w; if b < i

Then gwi, gw,, ..., qw, is a B-orthonormal basis of J'U = KZLB so that
det(g; : W/K; — U) = det((g; qwi, qw;)ij<o)-

Define the coefficients g;; by

qw; = Z qI’WI
)

Then
so that
det(q) = det((q;)1<i;) = det((q;.)1<ij<b)-
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Also,
g qwi =) 4ugyw =) qu.gzw;  ((<b).
j

j<b
Therefore,
det((g; qwi, qw;)ij<p) = det(q)” det({gy wi, w;)ij<)-

71 of the inverse map g~ by

Define the coefficients q;;
w; = q~' (qwi) Z q:; qw;.

Since, the gw; form an orthonormal basis of W,
q;; = B(qg7"qwi, qw;) = B(wi, qw;) = B(qw;, wi),
so that
<UI', W,‘> ij S b,
q;} =1 Bw;,wy) if j> b,

In particular, ;] =0if j < b < i so that
det(q)™" = det(q™") = det((q;; )i <) = det((u;, wi)ij<b)-
Thus
det({g5 wi, w;)i <p) det(gs : WIK;y — U) = (det((g5 wi, wj)ij<p))’ det(q)? (42)
= (det(( i (92 kit wy)ijsp))’ det(q)’ = (det((g2 )xi)riss) det({ux, wi) <b))* det(q)?
-
= (det((g2 )i)risp))® = (det(gs = Kiz = V) (det(gy : W — U/V)),

where the last equality follows from (38) and (39). The formula (37) follows from (37) - (42) via a straightforward
computation:

det((g1gz)*: W/K12 — U12)
det(gy: W — W) det(g; : W/K; — U)

_det((Qi))a<i ) det({(g192)” Wi W))a<ij)

T det(g7: W — W) det(g5 : W/K, — U)
det((Q:j)a<ij)? det((Z(c(g1) + c(g2))uk, Ur)ackics) det((g(27)ki)a<k,i<b)?

det(h) det g; det(g; : W/K; — U)

_ (=) Y det((Qi)o<i )” det((3(c(gr) + c(g2))ur, Ur)acki<b) det(((g3 )k i)a<k,i<h)’
det(g(1 — 1)1 det({g5 wi, w;)i,j<p) det({wi, w;)1<i;)~" det g7 det(g; : W/K; — U)
(=)™ Y det((3(c(g1) + c(g2))uk, U)ok i<n) det(((g7 )k i)acki<s)’

h det((g5 wi, w;)i j<b) det(gs : W/K; — U)

(=1 Y det((3(c(g1) + c(g2)) » Jun) (det(gy : Wo = U/V))?
det({g5 wi, w;)ij<p) det(g; : W/K; — U)

_(=1)ImY det((5(c(g1) + c(g2) . Jun) (det(gy : Wo — UJV))?

- (det(g5 : Kiz — V))? (det(g W, — U/V))2

(=Y det(($(c(g1) + ¢(g2) » Jun)

- (det(g; : Kiz = V))?

(Here the second equality follows from (40) and (42), and the third one from (41).) O

1514

Brought to you by | University of Oklahoma Libraries
Authenticated
Download Date | 11/4/17 3:03 AM



A.-M. Aubert, T. Przebinda

2.6. Determinants over p-fields

Let F be a commutative p-field in the terminology of [43, Def 2, page 12], that is, F is a local non Archimedean field
with finite residue field. Hence F is a finite extension of either the p-adic field Q, or of F,((t)) (the fraction field of the
ring F,[[t]] of formal power series in one indeterminate t with coefficient in F,).

Denote by | |r the module on F, as in [43, page 4]. Then op = {¢ € F : |a|r <1} is the ring of integers of F, and we
have of = {a € F : |a|p = 1} as in [43, page 12].

Being locally compact, F has a real-valued Haar measure: the unique translation invariant measure pr with the properties
du(ax) = |alpdu(x) (x €F, a € FX),

ur(op) = /H y du(x) =1.

Let r € Z. One has

(0 o) = / dus(x) = q". 3)
Ixlp<q”
Then Eqgn. (43) gives
/ duse(x) = / dyas(x) — / dus(x) = ¢"(1 — ). (44)
[xlr=q" IXlp<q” IX|p<q™!
More generally, let r, R € Z with r < R. One gets
[ duse(x) = [ dss(x) — ] dus() = a" — . (45)
q <|x[p<qR [x[p<qR Ix|r<q”

Letr=(r,r2,....1,) €EZ" and R=(R,R,, ..., R,) € Z" where r; < R; for every i € {1,...,n}. We set
B(r,R) :={x=(x1,x2,...,x) €F" : ¢" < |x]s < ¢ fori=1,...,n}.

It follows from (45) that

n

wen (B(r, R) = [ ](@® = ) (46)

i=1

The following Lemma relates the volume of the linear image of the set in F” to the volume of the set itself.

Lemma 2.12.
Let L: F" — " be an invertible linear transformation then

pen (L(B)) = | det(L)|s pen(B),  for all B € B(F"). (47)

Proof. Call B(r,R)! := {x' : x € B(r,R)} a cell in F". (Here x' means the transpose of x.) We will first check that
the relation (47) for every cell B(r,R)". The matrix representing L can be written as a product of elementary matrices,
and since determinant preserves products, it is sufficient to show that the relation (47) holds for elementary matrices.

Letie {1,...,n}, let y € F* and let E;(y) be the elementary matrix obtained by multiplying by y the i-th row of the
identity n x n matrix. We have det(E;(y)) = y and

Ei(y) - Br,R) = {(x1, ... xict, yxi, Xipt, - Xa)' 1 % < |xilp < g for k=1,...,n}
= fovx) g < nde < g for k£ i Jyll < Dnile < Jylf ]
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since |yxi|r = |ylF - |X:|p- Hence

n

uen (Ed(y) - B R)) = lyle - [ (g™ = g"*) = | det(Ei(y))]s - pan (B(r, R))-

k=1

Leti,j € {1,...,n}. Let E;; be the elementary matrix corresponding to the interchange of row i with row j. We have
det(E[,j) = —1 and

q"* < Pule < g% fork £,
Eij-B(r,R) =1 (x,....x) : 1" < |xj|z < g
g < Ixile < g5
Hence |det(Ew)|]F =1 and [J]Fn(E[’j . B(I’, R)t) = IJ]FI7(B(r, R)t)

Let E;y; be the elementary matrix obtained by replacing row i by the sum of row i and row j. By multiplying by the
matrix E;; if necessary, we may assume that i = 1. We have Eqyj(x1, ..., x,)" = (x1 +x;, X2 .., x,)". Hence det(E;y;) = 1.
We can view " as the Cartesian product F x F"~'. For every X' = (x2,...,X,)! € F"7", let

B(r,R)}, := {z €F : (z,x,...,x,) € B(r, R)’}
and similarly

(Eryj - B(r.R)")y = {z +x; €F @ (z+ x5, %,...,x:) € Eqy; - Br, R)'} .

We have
(Evj - B(r,R))w ={z€F : (z,x,...,x)" € B(r,R)'} + x
that is,
(Evy; - B(r, R)")y = B(r,R)}, + x;.

Thus, for all x' € F*~', (Eqy; - B(r,R)')x is a translation of B(r, R)!, and since, the measure pr is translation-invariant,
we have pg((Eqy;j - B(r, R)')«) = pr(B(r,R)%). On the other hand, by Fubini's Theorem, we get

e (Eqg; - B(r, R)") = / tr(((Ery; - B(r, R) )y )dppa-1 (X) = /}FM prB(r, R).) dpga (X') = pen (B(r, R)).

Fr—1

Every open set in F” can be written as a countable union of cells in F" and therefore, by the countable additivity of the
Haar measure on FF, the measure pp satisfies the relation (47) is for any open set. Then the regularity of pp implies
that (47) holds for any Borel set. O

Lemma 2.12 shows that Lemma 4.2 is still valid on the local nonarchimedean field F with the pullback L*(uy) defined as
in Eqn. (174) up to replacing the absolute value | | by | |r, that is, we obtain here:

L*(py) = | det(D)[5" Hi=1(v)-

Let W be a finite dimensional vector space over F and let L C W be a lattice, [43, page 28] Let W* = Hom(W, F) be
the dual vector space and let

L.={w" €W w'(w)€opforallwe L}

This is the lattice dual to L.
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Lemma 2.13.
For any subspace U C W, the restriction map

W s w" - w'|y e U
induces the following short exact sequence
0—>£*OUJ‘—>£*—>(£OU)*—>O,

where U+ C W* is the annihilator of U. In particular we have the isomorphisms of lattices

(L, +UHUt =L, /L, nUt = (LN U)..
Proof. By [43, Theorem 1, page 29], there is a basis w1,..., Wy, ... of W such that wq,...,w, is a basis of U and
L =opws +opwy +.... Hence, LNU = ogwq + - +opw,,. Let wy,..., wy, ... be the dual basis of W* (w/(w;) = §;).
Then L, = ogwj +---+opw,, +... and (LN U), = opwj +- - 4+ opw,,. Hence the restriction map is surjective. The rest
is obvious. O
Recall the notion of a norm, [43, page 24], and the norm associated to a lattice

Nz (w) = inf{|x|z" : x € F*, xw € L} (weWw),

[43, page 28]. Then £ = {w € W: N;(w) < 1}. The following fact is stated in [43, page 29]

Lemma 2.14.
Let N be a norm on W. The N = N, if and only if

L={weW: Nw)<1} (48)

and
{N(w): weW}={xlgp: xeF}. (49)

Let N be a norm on W. As in [43, p. 26], we shall say that two subspaces W, W” of W are N-orthogonal to each other
whenever W = W @ W”, and N(w' + w”) = sup(N(w'), N(w")) for all w" € W’ and all w” € W".

Lemma 2.15.
Let V C W be a subspace. Then

N(LJr\/)/\/(W + V) = -Lnf{NL(W + V) Lve V} (W S W) (50)
Proof. [43, Theorem 1, page 29] implies that there is a subspace V' C W which is N.-orthogonal to V and such that
W=VeV (51)

and
L=LNV®LNV. (52)

Let N(w + V) denote the right hand side of (50). For w € W let w’ € V' denote the V'-component of w, according to
the decomposition (51). Then clearly

Nw+V) =N (w)  (weW).
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In particular N is a norm on W/V. Also, the range of N coincides with the range of N;. Hence Lemma 2.14 implies that
N = N, where £ = {w+V € W/V: N(w + V) < 1}. The condition N(w + V) < 1 means that Nz(w’) < 1, which is
equivalent to w’ € L. Thus

L={w+VeWNV: wecL}

But (52) shows that the condition w’ € L is equivalent to w € L + V. (Indeed, if w' € L then w € L + V. Conversely,
suppose w € L + V. Then there is wy € £ and v € V such that w = wy + v. Hence, w’ = wj. But wj € LNV’ by (52).
Thus w' € L.) Therefore

L'=(L+V)V. O

Corollary 2.16.
Under the identifications of Lemma 2.13, the following equalities hold for any w* € W*:

Nicavy, (W*u) = N(L*+UL)/UL(W* + UJ‘) = inf{Ng, (W +w): wj € UJ‘} = max{|w*(u)lp: v e LnU}L
(The second equality means that the norm on the quotient is the usual quotient norm.)

Proof. The first equality amounts to the last identification of Lemma 2.13. The second equality follows from Lemma
215 with W, £ and V replaced by W*, £, and U respectively. The third equality follows from the fact that

Ne, (w¥) = max{|w*(w)|r : w € L}. (53)

One may verify the equality (53) as follows. The right hand side of (53) defines a norm on W* whose range coincides
with the range of | |r. The set of the w* such that the right hand side is less or equal than 1 coincides with the set of
the w* such that w*(w) € op for all w € L. But this is £,. Hence Lemma 2.14 implies (53). O

Let £ C W be a lattice. We know from [43, Theorem1, page 29|, that there is a basis wy, wa, ... of W such that
L =o0gws +0pwy + ... (54)

In particular the spaces Fwy, Fws,, ... are Ng-orthogonal and 1 = Ng(wq) = Nz(wz) = ... . Thus we may define a basis
of W to be N,-orthonormal if the condition (54) holds.

Let w;, w3, ... be the dual basis of W*. Then
L. =opw; +opw) +....

Hence the basis wy, wj, ... is N, -orthonormal.

Suppose W' is another finite dimensional vector space over IF with a lattice £’ and an N /-orthonormal basis wy, w5, . ...
Given h € Hom(W, W), there is the corresponding matrix

M(h) =[], blw) =Y huw].
i

The determinant det(M(h)) does depend on the choice of the bases, but the quantity det(M(h))(o5)? does not. Hence
we may define
det(h : W — W) = det(M(h))(03)? € F*/(03)? (55)

and
|det(h : W = W)|z = | det(M(h))|r € R. (56)
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. __________________________________________________
Lemma 2.17.
Let h € Hom(W, W’) and let h* € Hom(W"*, W¥) be the adjoint map. Then

det(h : W — W) = det(h* : W* — W*).

Proof. Let wf, wj,--- € W* be the basis dual to wy, wy,... and let wj*, ws*,--- € W'* be the basis dual to wj,
w5, .... Then,

h(w;) = Z h;w} if and only if h*(w}") = Zhﬂwi*'
! i

because
hy = w;*(Z hj-,-w;) = Wj*(h(w,-)) = h*(w;* (wi).
i

Hence, the matrix M(h*) is the transpose of the matrix M(h) and the claim follows. O

Lemma 2.18.
For any T € End(W) any Haar measure p on the additive group W and any measurable set B C W

p(T(B)) = | det(T)[r p(B).
Proof. This is a direct consequence of Lemma 2.12. O

Lemma 2.19.
Suppose wy, wa, ... is an Ng-orthonormal basis of W and T € End(W) is such that Twy, Tws, ... is also an Ng-
orthonormal basis of W. Then | det(T)|r = 1.

Proof. Since, by the assumption, T(£) = L, the map T preserves the Haar measure on W. Hence, Lemma 2.18 shows
that | det(T)|r = 1. O

From now on we assume that the space W is equipped with a non-degenerate symplectic form (, ). We shall identify
W with the dual W* by
w(u) = (u, w) (u,w e W). (57)

Then, for a subspace U C W the annihilator U+ coincides with the {, )-orthogonal complement. We shall say that the
lattice L is self-dual in the sense that £ = L,. Let us fix a self-dual lattice £L C W.

For any two subspaces V C U C W, N shall denote the quotient norm of N,:
N(u +V)=inf{Ng(u+v): veV} (ue V). (58)
For an element h € End(W) define h*# € End(W) by
(hw,w') = {w, h*w') (w,w eW).
Then (Im h)*t = Kerh#. Hence, if Kerh = Kerh* then we have the following short exact sequence

0— (Imh)* > W — Imh — 0. (59)

In the next Lemma, we shall consider Im h as the quotient W/(Im h)*, and N will be the corresponding quotient norm as
defined in (58).
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Lemma 2.20.
Suppose h € End(W) is such that Ker h = Ker h*. Let uy, ..., uy be an N-orthonormal basis of Im h and let wy + Kerh,
.., wx + Kerh be the dual basis of W[Kerh. Let M = M(h) be the matrix of the induced bijection h: W/Kerh — Im h
with respect to these two ordered basis,
hW,' = ZMi’i U/'.
)

Then
det(/\/l(h)) = det((hW,', Wj>1§i,j§k)~

Also, we may choose the elements wy, ..., wy so that the spaces Fw;, ..., Fwy, Ker h are N-orthogonal.

Proof. Since
(hWi, W/> = <Z M[','U[, W/> = MI",',
l

the formula for the determinant follows. The last statement follows from Lemma 2.15 and Corollary 2.16. O

Notice that if uf, ..., u} is another N-orthonormal basis of Im h, with dual basis w; + Kerh, ..., w; + Kerh, then

det((hW{, W;>1§;_/‘§k) = det((hW[, Wj>1§i,j§k) 02,

where a € F* is the determinant of the transition matrix from uq, ..., ug to v, ..., uj (which is also the determinant of
the transition matrix from the corresponding dual basis). We know from Lemma 2.19 that |a|r = 1. Hence without any
ambiguity we may define

det(h: W/Kerh — Im h) = det((hw;, w;)1<i j<k) (05)° (60)

as an element of F*/(0%)?. Also, without any ambiguity we may define
| det(h: W/Kerh — Im h)|r = | det({hwi, w;)1<ij<k)|r (61)

as a positive real number.

Similarly, if U C W is a subspace and x € Hom(U, W) is such that the bilinear form
(xu, u") (u,u” € V)

is symmetric, with the radical V C U, we define

det((x , Jun) = det((xus, uj)i<ijer) (03)° (62)
and

[det({(x , Yun)lr = [ det((xui, uj)r<ij<k)lr, (63)
where uy +V, u +V, ..., is an N-orthonormal basis of U/V.
Lemma 2.21.
If wi, wo, ... is a Ng-orthonormal basis of W, then

| det({wi, wihi<ij)lr = 1.
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Proof. Since (w;, w;) € o,
| det({w;, wihi<ij)lr < 1.

Since the lattice £ is self-dual the same inequality holds for the dual basis. The product of the two matrices is 1. Hence
the equality follows. O

With the notation of (60), suppose Kerh = 0. Let hy; be the matrix coefficients of h with respect to the basis wy, wy,

hW,' = th'iwk.
k

Then
(th', Wj> = Z hk,i<Wk, Wj>
k
and
det((hii)1<k,i) = det(h)

is the usual determinant of h. Hence, by Lemma 2.21, the determinant defined in (60) satisfies the following equation
det(h : W — W) = det(h) (o). (64)

More generally, suppose K,V C W are two subspaces of the same dimension and h € Hom(K, V) is a bijection. Choose
an N-orthonormal basis of F, an N-orthonormal basis of V and let hy; denote the corresponding matrix coefficients of
h. Then, by Lemma 2.21,

det((he.)r<k) (0F)

does not depend on the choice of the bases. Therefore we may define
det(h : K — V) = det((h)1<k.) (0%)? (65)

as an element of F*/(0)? and
|det(h : K = V)|r = |det((hk)1<k.)|r (66)

as an element of R*. Notice that, via the identification (57), the definitions (65) and (66) are consistent with (55) and
(56). Also, Lemma 2.17 may be rephrased as

Lemma 2.22.
Let h € End(W) and let K C W be a subspace. Then
W ((hK)) € K, (67)
det(h : K — hK) = det(h* : W/(hK)* — W/K?) (68)
and
|det(h : K = hK)[r = | det(h* : W/(hK)* — W/K')]p. (69)
Proof. The point is that W/K* = K*, W/(hK)* = (hK)* and h* = h*. O

In the next Lemma, we keep the notation defined in Notation 2.4 and Notation 2.6, that is, for g1, g» € Sp(W),
U= U1 n U2 = g1_W n gZ_W and U12 = (g1gz)_W,

Ki =Kergy, K;=Kerg;, and Kj =Ker(gi1g2)".

==Y

Brought to you by | University of Oklahoma Libraries
Authenticated
Download Date | 11/4/17 3:03 AM



A reverse engineering approach to the Weil representation

1522

Lemma 2.23.
Fix two elements g1, g, € Sp(W) and assume that Ky = {0}. Then

det((g1g2)”: W/Kiz — Uya)
det(gy : W — W) det(g; : W/K; — U)

= (=1)*"Y det((%(C(sh) +¢(g2)) , Ju) (det(gy : Kiz = V)~

and
| det((g1g2)”: WKz — Uqo)lr

[det(g; : W — W)[g| det(g; : W/K; — U)Jz

= |det((1§(c(g1) +c(g2)) , Jun)lr | det(gy : Kiz = V)|

Proof. Clearly (70) follows from (70). We shall verify (70). Let W, C W be the N,-orthogonal complement of K3 + K.
Then (23) holds. Let wy, ws, ... be a basis of W such that wy, wy, ..., w, is a Ng-orthonormal basis of Kz, wyi1, Way2,
.., Wp is a N;-orthonormal basis of W, and wy1, Wpio, ... is @ Ng-orthonormal basis of K. Then wy, ws, ..., w, is

N-orthonormal basis of Ki; + W,. Theorem 1 on page 29 in [43] implies that we may extend it to an N -orthonormal
basis of W:

’ ’
W1, W, Wyq, Wy o -

Define an element Q € GL(W) by

w! ifi>b.

i

0w = {W; if i < b,

Then
Owq, Qws, ... is a Ng-orthonormal basis of W,
Ow;=w; ifi <b,
FOwp1 +FOwpyo + ... is Ng-orthogonal to Ky + Wa.

We see from Lemma 2.21 that
| det((Qw:, Qwj)i<i )lr = 1.

Hence, we may replace one of the w; by a suitable (or)*-multiple of it so that

det((Qw;, Ow;)i<i)) = 1. (70)

Define the matrix elements Q;; by

Qw; = Z Qj,[WjA
)

Then

In particular the matrix ((Q;)1<j.i) looks as follows

| x
((Qpih<ji) = ( 0 ((Q;.)b<;i) ) '

where | is the identity matrix of size b. Hence,

det(Q) = det((Q;.i)1<j.0) = det((Q;i)p<)i) = det((Q;i)a<ii)-

Therefore (70) implies
det((Q1)o<yi)” det((wi, wihi<iy) = 1. (71)
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Let uq1,uy, ..., up be a Ng-orthogonal basis of U such that uy, uy, ..., u, span V. (The existence of such a basis follows
from [43, Theorem 1, page 29].) Define the matrix elements (g5 )« by

b
gowi=Y (g7)ite (1 <i<b).
k=1

Since g; Ki2 =V, we see that
(g2)i=0ifi<a<k.

Hence
det(((g7 )k.i)1<ki<o) = det(((92 )k.i)1<ki<a) det(((g2)k,i)a<k,i<b)-

Define h € GL(W) as in (24). Then (26) shows that

_ 1 - _
det({(g192)" Wi, Wj)a<iy) det(h) = det((5(c(g1) + c(g2))g2 Wi, G2 Wi)a<ijsb)-
Furthermore, by (26),

det(h) = det((g7" — 1) (g7" — 1)h) = det(g;" —1)7" det((g;" — 1)h)
= det(g7" — 1) det((w;, (g7 — 1) hwjhiciy) det((we, wihiciy) ™
= det(gy" — 1)7'(=1)""Y det((g; wi, ;)i <b) det((wi, wir<ij)™

Also,
det((clg1) + clg20)93 1, 93w Yot <o) = det((3(c(g1) + (g2, urdockca) det((93 ok o)’

By (60),
det((g192)" : W/Ki2 = Upz) = det(((g192)” Owi, QW))a<i)) (05)° = det((Qi )a<i )’ det(((g192)” wi, wy)a<i)) (05)°.
We see from Lemma 2.20 that there are elements gw; € W, i < b, such that
(uj,qwi) =0 (j,i<b) (72)
and the spaces FgW;, ..., Fqw,, K, are N-orthogonal. Define an element g € GL(W) by

q(w;) =qw; if i < b,
gw)=w; ifb<i.

Then
det(g; : W/K; — U) = det((g5 qwi, qw;)i <p) (05 ). (73)

Define the coefficients g;; by

qw; = Z q;.iW;-
)

Then
ql',,' = 0j,i it b <i
so that
det(q) = det((q;)1<i;) = det((q;i)1<ij<b)-
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Also,

g2 qwi

Therefore,

det((g5 qwi, qw;)ij<p) = det(q)” det({(g5 wi, w; )i j<b)-

Define the coefficients qi‘f

Then, by (72),

Hence,

=Y q.9;w
i

of the inverse map ¢~' by

w; =

q;j1 = {

(i < b).

= Z 4,92 W;

j<b

(74)

qu] qw;.

"(qwi)

(U/, Wi) lfj S b,
8. ifi>b.

det(q)”" = det(q™") = det((q;; )ij<b) = det({u}, Wi cp)-

Thus

det((g; wi, wj)ij<b) det(gy

L W/K; — U) =

= (det((

= (det((g
= (det((g
= (det(g; :

(det({g5 wi, w;)i<b)) det(q)* (05)?
b

(92 )il W))ij<n))” det(q)” (05)
k=1

ki)’ det((ur, wii b))’ det(q)’ (07)?
Deizb))’ (05 )
Kiz = V))* (det(g;

2)
2 )k,

: Wa = UNV))? (05)°,

where the first equality follows from (73) combined with (74), and the last equality follows from (72). Now the formula
(70) may be verified via a straightforward computation, where we ignore the factor (05)? for convenience:

det((g1g2)~

: W/Ky; — Uy)

det(gy

: W — W)det(g; : W/K; — U)

 det((Qsj)a<i))” det({(g192)” Wi, Wj)a<i )

- det(gy

: W — W)det(g; :

W/K, — U)

det((Q)a<i)* det((3(c(g1) + c(g2))u, ur)acki<s) det(((g3)kiack.i<s)?

det(h) det g; det(g; :

W/K; — U)

_ (1) Y det((Qy)a<i, ) det((3(c(g1) + c(g2))ur, ur)acki<s) det(((g2 )k iack.i<s)?

 det(g;"

= 1)7" det({gs wi, w;)ij<b) det({wi, wj)i<i))

~Tdetg; det(g; : W/K; — U)

_ (=) Y det((3(c(g1) + c(g2))uk, Urda<ki<b) (det((gy )ii)a<kizb))’

det({g5 w;, wj)ij<p) det(gs : W/K; — U)
_(=1)ImY det((5(c(g1) + c(g2)

Juw) (det((g3)x, 1)a<k,i§b)2

(det(g; :

Ki2 = V))*(det(g; :

_ (=1)EmY det((5(c(g1) + c(g2)

W, — U/V))?

Yuv)

(det(g; :

Ki; = V))?

(Here the first equality follows from (72), the second equality from (72) and (72), the third from (72), the forth from (71)

and the fifth from (75).)
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N
3. The Weil representation over a finite field of odd characteristic

Let F be a finite field of odd characteristic and let x : F — C* be a non-trivial character of the additive group F. In this
Section we provide an elementary construction of the corresponding the Weil representation, [5].

3.1. The Fourier transform

Let U be a finite dimensional vector space over F. Define a measure py on U by

jU o(u) duo(u) = (U2 gu),

ueU

where |U| is the cardinality of U and ¢ : U — C is a function. For E a subset of U let denote by I¢ the indicator
function of E, that is, the normalized characteristic function of E:

e () |[E|7" ifu€eE;
u) =
. 0 otherwise.

Define the Fourier transform F by

f¢(u*)=[U¢(U)X(—u*(U))duu(U) (v e ).

Then pys is the measure dual to yy in the sense that

ou) = /U Fou)x(u”(u)) dpy-(u”) (v € U).
We record by the way the following, easy to verify, formula
Fly = [VI|U[7 "Iy, (75)

where V C U is a vector subspace with the orthogonal complement V+ C U*.

3.2. Gaussians on F”

For a symmetric matrix A € GL(F") define the corresponding Gaussian y4 by

Vi) = X(FA) (X € F),

where we view the x as a column vector. Also, let

Y(A) = fYA(O) = / X(%XtAX) d[J]Fn(X).

n

Lemma 3.1.
If we identify F" with the dual (F")* by

t

yx)=x'y  (x,y €F"),
then
Fya=v(A)y_s.
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Proof. Notice that : : !
“x'Ax = —(x =AY Ax — ATy) — y'ATy + X'y,
2 2 2

Hence,

! 1
Fyaly) = /F yalX)x(—=x"y) dpsn (x) = /F X(i(x — ATy A(x — ATy)) d g (X)X(—Ey’A*w)
:/ X(%fox) dmg,,(x)x(_%ywy). 0
]Fn

Lemma 3.2.
Suppose n =1. Then

(a) v(a) = y(ab®)  (a,b € FX),
(b) ¥(=a) = ¥(a) = y(a)'  (a €F"),
(c) the function
a — s(a) = y(a)y(—1) (a € F¥)

coincides with the unique non-trivial character of the group F* /(F*)?.

Proof. Part (a) and the first equation in (b) are obvious. Let us extend the character s to IF by letting s(0) = 0. Then,
since %a # 0, we see from (75) that

) = [+ s)uxl5 o) duety)

= [ xGo) dusto) + [ stubctzay) ducty

| stomGondusts) = [ st yhxtz0) duety)
= sta™) [ stydet59) duety) = stami).

Also,

0

(W)s2d (3 (y — 2)) s y) dus(e)

sly2)x(5 y — 7)) dis(y) de(o)

%)

(W)x(3(y — 1)2) dps(y) die(2)

s(y)x((y — 1)2) dur(z) dug(y)

s(v) ( [oxtty =12 doster - uwz) i (y)

X F

- / SWIFo(y — 1) due(y) — [F]"2 / s(y) dusly) = (1),
F B

because the restriction of pp to F* is a Haar measure on F* and s is a non-trivial character of the abelian group F*.
Since s(1) =1, we see that

y(y(1) =1.
In particular |y(1)] = 1. Therefore the first computation in this proof shows that |y(a)| = 1 for all a € F*. This implies
the second equality in (b). Finally
s(a) = y(a)y()™" = v(a)y(-1),

as claimed in (c). O
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Corollary 3.3.
For arbitrary n > 1 and a symmetric matrix A € GL(F"),

y(A) = y(1)" s(det(A)).

Proof. There is g € GL(F") and a diagonal matrix D = diag(a4, a, .. ., a,) € GL(F") such that A = g'Dg. Hence,

v = [ Gt an duent) = [ 5508 due

n ,I n
= [ TxGapd dueatd =[ vta) = [Jorthsta)
B j=1 j=1 j=1
V([ o)) = y1)7s(det(D) = y(1)'s(det(A).

=1

O
3.3. Gaussians on a vector space
Let y(g) = y(Q), where Q is defined as in Eq. (12).
Lemma 3.4.
If g is a non-degenerate symmetric bilinear form on U, then
1 * 1 * * * * *
[ xGate et e dte) = viae(=50°(w w7 € U,
Proof. Let x; = u}(u) and let y; = u*(u;). Then
1 * 1 t t 1 t -1 1 * * *
Ux(iq(u,U))x(—u (u)) duy(u) = g X(5XQx)x(=xy) dug» (x) = ¥(Q)x(=5y"Q7y) = v(q)x (=54 (u", u)).
where the second equality follows from Lemma 3.1 and the last one follows from Lemma 2.1. O

Corollary 3.5.

Let g be a symmetric form on U with the radical V. Denote by G the induced non-degenerate form on U/V. Then, for
any u* € U*,

J Gt et o) duate) = V@ =57 00,

where we identify V+ = (U/V)*.
Proof. The left hand side is equal to
1
] [ (2 q(u + v, 1+ V(= (0 + v)) din(v) dpiulu + V)
unN Jv 2
1 ~ *
- / xCaw+v,u+v) ( / Xt +v)) din(v) | diun(u + V)
u/Nv 2 \Y
1 ~ * *
- [U XAV V) (e )V P ) dainfu + V)

= VI (0 M@ 53 (0 )
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|
3.4. Gaussians on a symplectic space

Lemma 3.6.
Suppose x € Hom(U, W/U4) is such that

(xu,v) = (xv,u) (u,vel).
Set
qu,v) = %(xu, v) (u, v el).

Let V be the radical of q and let § be the induced non-degenerate form on U/V. Then
(@) V = Ker(x),

(b) for any w € V* there is u € U such that xu + (w + Ut) = 0;

(¢) for any w e W

[ G ' et 5 w)) o) = VI Py@s e 5 )
U

where u € U is such that xu + (w + Ut) = 0.

Proof. Part (a) is obvious. Part (b) means that Ker(x)* = Im(x), which is true.

We know from Corollary 3.5 that the left hand side of (c) is equal to
12, 1.1
IVIEV(@)e (W)X (=537 (5w, 5 w)).
Hence we may assume that w € V1. Recall the map ¢: U/V — (U/V)* = VL/UL:
1
Su+ V) +V)=g( +V,u+V)= §<XU/' u).

Suppose u € U is such that (u + V) = %w + U+, Then, by the above,

1 1

(u', §W> = §<XUI' u) = (u

,—%xu) (u" € V).

Therefore, xu + 3w € U*. In other words, xu + (w + U*) = 0 and we see that

~ 1 1 1 1y 1
q (EW-i-U '§W+U )—(u,iw),
so that T ] ]
- Y 1 7 1 - __
2q(2w+U,2W+U) 4(u,w).
The formula (c) follows. O
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3.5. Twisted convolution of Gaussians

Recall the twisted convolution of two functions ¢, : W — C:

saw) = [ Gt — Gl dimle) (v € W), (76)

Let ]
Xe(g)(U) :X(Z<C(9)U' u)) (uegW).

More generally, for x and U as in Lemma 3.6, let
o) = x(G o) (e )
By a Gaussian we understand the following function,
I-w(W)Xeig (W) (w € W). (77)
The goal of this subsection is to verify the following proposition.

Proposition 3.7.
For any g4, g, € Sp(W),

(HUWXC(%)) h (]IUZXC(QZ)) = C(g1, 92) Luy, Xc(g192):

h
wnere |K12|1/2 )
1092 = i i)

Proof. Notice first that, by the definition of the twisted convolution (76),

(HU1XC(91)) h (]IUZXC(QZ)) (w)=0

if (Uy N (Uy 4+ w) = @. Therefore we may assume that there is v € Uy such that w — v € U,. Lemmas 2.2 and 2.5 plus a
straightforward computation show that

1/2
(o) 5 () 09 = s [ Xetgeaton (= 50" clgy + clgalty = w) = w) dn (')

Kelgn (VIXetg) (v = W)X(%(V, w)).

Since V1 = Ker(c(g1) + ¢(g2))* is the image of c(g1) + c(g2), we see from Lemma 3.6 that the expression (78) is not zero
if and only if there is u € U such that

(c(g1) + c(g2))u + (c(g1)v + c(g2)(v — w) — w) € U*. (78)

Let
Uu=giv=gyv2, v=g;w and w —v = g, ws. (79)

Then,
gTV1+g;V2+gTW1—g;W2—WEUL=K1+K2.
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Hence, Lemma 2.3 shows that, without changing v or w — v, we may choose w; and w; in (79) so that
givi+g3va+(gf)wi —giwo —w =0. (80)

Multiplying (80) by g7 we get

9191vi+9195v2+ 9197 w1 — gy gy wa — gy w = 0.
Since, g7 (g7)vi = (g7)g7 vi = (97)g5 v2, we see that

919:v2+ 91952+ gigiwi —grgswa—gyw =0.
But, by (79), gy wy = w — g5 wa. Hence,

gigzv2+91g3va+giw—gigowo—gygzwo—gyw =0.

Thus
(9792 +9793)(v2a — wa) + 2w = 0.
Therefore
w = (g192)" (w2 — v2). (81)
Hence, w € (g1g2)~W.

Conversely, suppose w = (g1g2)~wp for some wy € W. Then
W = g1 92w + g, Wo.
Let wy = gowp and let wy, = wy, so that

v=g,w and w —v = g, wy,

as in (79). Then,
c(gi)v + c(g2)(v —w) —w = gfwi — giws = (97 g2 — g5 — (g192) )wo =0 € U*.

Therefore (78) holds with u = 0. Thus we have the indicator function I(g,4,)-w in the formula of Proposition 3.7.

Furthermore, with v as in Lemma 3.6 (b),

— (U, c(gr)v + c(g2)(v — w) — w) + (c(g1)v. v) + (c(g2) (v — w), v — w) + 2(v, w) (82)
= (g2v2, —giwi + g3 wa + w) + (g7 wi, gy wi) + (g3 w2, gy w2) + 2(gy wi, w)

=(g2v2, —giwi + giw, + w) + (g wi, w — g3 w2) + (g3 w2, g3 w2) + 2w — gy wo, w)

=(g2v2, —giwi + g3 ws + w) + (g7 wi, w — g; w2) + (g3 w2, g3 w2) + 2(w, g3 w2)

=(gyv2, g3 w2 + w) + (g7 wi, g3 v2) + (g7 wa, w — g5 wa) + (g3 wa, g3 wa) + 2{w, g5 wa).

Notice that

(giwi, g3v2) = (giwr, grwvi) = ((g7" — 1)giwi, vi)
= —(97"97 (g7 w1, vi) = —(g7" g7 grwai, ) = —(g7 ' g7 (W — g7 wa), v1)
—((1+ g7 (w — gawa), vi) = —=(w — gy wa, gTv1) = (g w1, w — gy wy).
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Hence, (82) is equal to

(g2v2, g3 wa +w) +(gfvi, w — gy wa) + (g wi, w — gy wa) + (g3 w2, g3 wa) + 2(w, gy w2)
=(g7v2, g3 wa + w) +(gi w1 + givi, w — gy wa) + (g3 w2, g3 w2) + 2(w, gy wa). (83)

Now we compute g¥w; + g7 vq from (80) and substitute in (83) to see that (83) is equal to

(g2v2, gz wa +w) +(w+ gywa — g3 va, w — g5 wa) + (g5 wa, g5 wa) + 2w, g; ws) (84)
= (922, g3 w2) + (g3 v2, W) + (g3 w2, w) — (g3 v2, W) — (W, g3 w2)

—(g3 w2, g3 w2) +(g3v2, g3 w2) + (g3 w2, g3 w2) + 2w, g5 ws)
= (922, g3 w2) + (g3 va, W) + (g3 w2, w) — (g3 v2, W) + (g3 v2, g3 W2) + (W, g3 w2)
= (92— 97" V2, w2) + (g7 va, w) + (g3 wa, w) — (g3 v, W) + (95" — ga)va, w2) + (w, g5 ws)

= (g2v2, w) +(gz w2, w) — (g3 v2, W) — (g3 w2, W) = (2(wz — v2), w).
But we know from (81) that w = (g1g2)~ (w2 — v2). Hence, (84) is equal to

(2(w2 = v2), (g1G2)" (w2 — v2)) = ((g192)” (W2 — v2) + 2(wz2 — v2), (g192) ™ (w2 — v2))
=((9193)(w2 = v2), (9192)” (w2 — v2)) = (c(g1g2)w, w).

(Notice that the computation (82) - (85) may be simplified as follows. We already know from (81) that w = (g1g2)"wo
for some wy € W. Hence, we may choose wy = gawp, v = g7 gawp and w; = wy in (79). Then

c(gi)v +c(g2)(v —w) —w =0
and therefore it will suffice to show that
(clgr)v,v) +(c(g2)(w — V), w = v) + 2{v,w — v) = (c(g1g2)w, w). (85)
The left hand side of (85) is equal to

(g wr, gywr) + (g3 w2, g5 w2) + 2(g7 w1, g5 w2)
= ((g9192 + g2)wo, (9192 — g2)wo) + (g3 wo, g5 wo) + 2((g192 — g2)wo, g5 Wo)
= 2(wo, g192w0) = ((9195 )wo, (9192)" wo),

which coincides with the right hand side.) Therefore Lemma 3.6 shows that for w € V4,

[ Hetosctonla e 50 clgne + clgally = w) = wh) diasu) e (Dt = wbe(5 )

= |V|1/ZV(‘?QLQZ)Xc(ng)(W)'

By combining this with (78) we see that

N
(Hg;ch(m) : (Hg;wxc(g)) = e Yore e wXeigon
But Lemma 2.7 implies
|U|1/2|V|1/2 B |K12|1/2
W2~ K22
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3.6. Normalization of Gaussians

Let B be a non-degenerate bilinear form on a finite dimensional vector space over F. Define the discriminant of B as
dis(B) = s(det(A)), (86)
where A is the matrix obtained from a basis uy, uy, ..., u, of the space by
Aij = Blui, uy) (1<i,j<n).

Clearly the discriminant does not depend on the choice of the basis.

For any g € Sp(W) the formula
(g~w,w') (w,w € W)

defines a bilinear form whose left and right radicals coincide with Ker(g~). Hence we get a non-degenerate bilinear
form By on the quotient W/Ker(g~). Then, for g # 1,

dis(By) = s(det({g™wi, wj)1<ij</)),

where wy + Ker(g™), wa + Ker(g™), ..., w, + Ker(g™) is a basis of W/Ker(g~). For completeness set dis(B;) = 1.
For g € Sp(W) define
() = [Ker(g7)["? y(1)*™ ¥ dis(By), (87)

T(g) = ©(9) Lg-w Xc(g)-

Theorem 3.8.
For any g4, g, € Sp(W),

T(g1)87(92) = T(g192)-

Proof. Proposition 3.7 implies that we'll be done as soon as we show that

€]
Clgr, g2) = % (9192 € Sp(W)). (88)

Also, we see from Proposition 3.7 that the absolute values of both sides of (88) are equal. Hence, (88) is equivalent to

. 0
Vidigrg1) = % (9192 € Sp(W)), (89)

where
6(g) = y(1)"™ 9 Wdis(By) (g9 € Sp(W)).

Since the twisted convolution is associative, the function C(g+, g2) is a cocycle:

C(g1,92)C(g192, 93) = C(g1,9293)C(92,93) (91,92, g3 € Sp(W)).

Recall the non-degenerate symmetric form §g, 4, defined in Notation 2.6. Hence, by the formula for C(g1,g;) in
Proposition 3.7, the function y(Gy, q4,) is also a cocycle:

Y(qg1,gz)y(ég1gz.g3) = V(qg1,gzg3)y(agz,g3) (91,92, g3 € Sp(W)).
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Let
0(g192)

C'(g1,92) = 8(91)0(g2) (91,92 € Sp(W)).

This is also a cocycle. Fix two elements g,, g3 € Sp(W). We have seen in Lemma 2.8 that there is g4 € Sp(W) such
that K; = Ker g7 = {0} and K, = Ker(g1g2)~ = {0}. Assume that (89) holds when K; = {0} . Then

N V(091,90 g192.95) _ C'(g1.92)C'(9192, g3) ,
V(@g3.95) = 2 = - = C'(g2, 93)-
9293 V(@g1.9295) C'(g1,92953)

Hence, in order to verify (89) we may assume that Ky = {0}. Then Corollary 2.10 implies

dis(By,q,)

fe( A ;i _1\dim U 4+ H — o(—1)\dimU
dis(Gg,.q,) = dis(By,q,)s(—1) dis(By,) dis(By,) = s(—1) dis(Bg1)dls(Bgz)'

But, it follows from Lemma 2.7 that
V(1 )dim Uqp

_ —dim U—dim V
y(’l)dim Uy y(’l)dim U, — y“)( . (90)

On the other hand, we see from Corollary 3.3 that
Y(qg1,gz) _ V(1 )dim U—dim V di-s(qg1,gz) — S(_1)dim Uy“ )7dim U—dim V dls(qg1,gz)'

because y(1)? = s(—1). Therefore (90) implies (89). O

3.7. The conjugation property

Let w1 denote the permutation representation of Sp(W) on L%(W):

wii(g)p(w) = ¢(g~'w) (g € Sp(W), ¢ € LA(W)).

Also, let
P*(w) = g(—w)  (weW, ¢ eL*W).

Proposition 3.9.
For any ¢ € L2(W) and g € Sp(W) we have

(@) T(Mhe = ¢iT(1) = ¢,
(b) T(g)aghT(g™") = wia(9)¢,
(0 T(g)=T(g™")

Proof. Since,
T(1) = W[

part (a) is easy to check. We see from (87) that the equality (c) is equivalent to
(1)~ 4" Wdis(By) = y(1)*" 9 W dis(B,-1),

which is the same as
s(=1)"m9 W = dis(B,) dis(B,-1).
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But the last equality holds because

dis(B,-1) = dis(—By) = s(=1)"" "W dis(B,).

Thus it remains to prove the equality (b), which is equivalent to

T(9)hlLy, = IguohT(g)-

The left hand side of (91) evaluated at w’ is equal to

)

W 20(g),-w(w' — Wb (g’ — o) ' — wo) -+ 2w’ — g, w')

and the right hand side is equal to

W1 200Gy’ — gz (c(g)’ — gwo), w' — g} + (g, w).

Since,

w —gwy =W —wy) —g wp

both sides have the same support. Also,

’

c(g)(w

— gwp), W — gwp) + 2(gwo, w') — ({c(g)(w — wp), W' — wp) + 2(w — wp, w'))

c(g)(w' — wo) — g~ wo, (W — wo) — g~ wo) — (c(g)(w' — wp), w' — wo) + 2(gF wo, W)

+

(
=
=
= (c(g)g”wo, g wo) — 2(c(g)g~wo, W' — wo) + 2(g " wo, W)
= (g wo, g wo) — 2(g " wo, W' — wo) + 2(gFwo, w')
=(g"
= ((g™" — g)wo, wo) + 2(gwo, wo) = 0.

Therefore the two sides of (91) are equal.

3.8. The Weyl transform and the Weil representation

Pick a complete polarization
W=XeaY

)

c(g)(w' — gwo), w' — gwo) — (c(g)(w — wo), W' — wo) +2(g " wo, W)
)
)

wo, g~ wo) + 2(g wo, wo) = (97" — 1)g " wo, wo) + 2(g" wo, wo)

(92)

and recall that our normalization of measures is such that dpw(x + y) = dpx(x)dpy(y). Recall the Weyl transform

K: L2(W) = L2(X x X),

K9 x) = [ $lr =¥ + (Gl x+ ) dinty).

Each element K € L?(X x X) defines an operator Op(K) € Hom(L?(X), L?(X)) by

Op(K)v(x) = /XK(X,X')V(X') dpx(x').

1534
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A straightforward computation shows that Op o KC transforms the twisted convolution of functions into the composition of
the corresponding operators. Also,

tr Op o K(¢) = /X’C(¢)(X,X) dux(x) = ¢(0) and (Op o K(¢))" = Op o K(¢"). (99)

Hence, the map

Op o K: L2(W) — H.S.(L%(X)) (96)
is an isometry. (Here H.S.(L%(X)) stands for the space of the Hilbert-Schmidt operators on L?(X).) Let U(L?(X)) denote
the group of the unitary operators on the Hilbert space L%(X).
By combining (92) - (96) with Theorem 3.8 and Proposition 3.9 we deduce the following theorem.

Theorem 3.10.
Let w=0poKoT. Then
w: Sp(W) — U(LZ(X))

is an injective group homomorphism. The function © coincides with the character of the resulting representation:

O(g) =trw(g) (g9 € Sp(W)).

Moreover,
w(g) OpoK(¢) w(g™") = OpoK(wir(g)d) (g € SpW), ¢ € L*(W)).

We end this Section by recalling some well known formulas for the action of w(g) for some special elements g € Sp(W).

Proposition 3.11.
Let M C Sp(W) be the subgroup of all the elements that preserve X and Y. Then the restriction to X defines a group
isomorphism M = g — g|x € GL(X) and

wlgvix) = s(det(gl)vlg™x) (g €M, v e L2(X), x € X). (97)

Proof. Fix an element g € M. Let x1, x2, ..., xx be elements of X such that the vectors x4 + Ker(g~)|x, x2 + Ker(g™)|x,
... X + Ker(g™)|x form a basis of the vector space X/Ker(g~)|x. Pick y1, y2, ..., yx in Y so that (x;, y;) = 1. Then the
vectors y1 + Ker(g7)|y, y2 + Ker(g7)|y, - .., yx + Ker(g™)|y form a basis of the vector space Y/Ker(g7)|y. Let wy := x4,
oo Woi i= Yg. Then wy +Ker(g™), ..., wy +Ker(g~) for a basis of W/Ker(g~). Furthermore g defines an endomorphism
g7 |xsker(g-)lx Of the space X/Ker(g~)|x and

AmOIRerta N det((g™xi, y;)r<ij<k) det((g™yi, X hi<ijck)
AnIRerta N det((g™xi, yj)r<ijer) det((yi, (g~ = )X hi<ijck)
JAmCIRereIN det((g™xi, yj)i<ij<k) det((gT g7 X;, yid<ijk)
1)dimXIKerlgTIN - (det((g~x;, Uj)1gi./sk))2 det(g ™" [x/ker(g)ix)-

det((g™wi, Wih<ij<ok) = (=

But det(g" |x/kerg-)x) = det(glx')- Therefore

8(g) = [Ker(g )| - y(1)" 7% -5 (1)Ko det(ql5")

lg=W|
_ Y
lg=Y|
Y]

= lg-Y] "S (det(g|;1)) :

1
7 N — N —
— ( |W| ) . y(1)2dlmg X, S ((_ndtm(X/Ker(g )Ix) det(g|;1))

. (S(_»]))dim g~ X, s ((_1)dim(X/Ker(g’)|X) det(g|;1))
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Let x,x" € X and let y € Y be such that x —x"+ y € gW. Then x —x’ € g~ X and y € g~Y. Moreover,
1 ’ ! 1 ’
70@)x =X+ y).x =X+ y)) = 5{c(g)lx = x), y).

Hence, (75) shows that

vy
[ ot = anetux st = (B[ G v dgi— 0y dugiy

VRS .
= (%) (197Y1) % Tkerg-ix (%(x+x’—c(g)(x—x')) ,

because the annihilator of g~V in X coincides with Ker(g~)|x. But the condition x + x" — ¢(g)(x — x’) € Ker(g~)|x means
that X' = g~ 'x. Indeed, if x — x' = g~ %, then

O0=g (x+x —clg)x =x)) =g (x+x = g"%) = g~ (x +xX) = g7 (x —x) = 2(gx" — x).

Therefore,
CRIAET
K(T(g))lx. x) = ©(g) (QW) (lg7Y1)? dolg™~"x — )
1
Y] 1 ( lg~Y] ) 2 oY E T
= s (det Y|)? o X —X
= |¥]s (det(gl")) dolg™'x — )
and the formula for w(g) follows. O

Proposition 3.12.
Suppose g € Sp(W) acts trivially on Y and on W|Y. Then det((—g) — 1) # 0 and

WGV = X @) (v € LX), x € X).

Proof. Since —g acts as minus the identity on Y and on W/Y, det((—g) — 1) # 0 and z := c(—g) € sp(W) is well
defined. Furthermore

z: X—=>Y—=0.
Hence,
’ 1 ’ ’ 1 ’
[t =x ety x 0 dinte) = [ e =¥+ ) dinta)
’ 5 1 ’ 5 7
= el = )Y [280(5 06 + X)) = xe(20)]Y ]2l + )
Moreover,
O(—g) = y(1)""™s(det(~2) = s(=1)""Ms((~2)""") = s(=1)"".
Thus
K(T(=g))x,x') = s(=1)""Nx, (20| V]2 8o(x + x).
Therefore,

w(=g)v(x) = s(=1)""Mx, (2x)v(—x).

Since, by Proposition 3.11,
w(=1v(x) = s(=1)""My(=x),

the formula for w(g) follows. O
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Proposition 3.13.
Suppose g € Sp(W) maps X bijectively onto Y and Y onto X and g> = —1. Then

wlg)vix) = y(1)m jx X(gx W) dis(¥) (v € LX), x € X).

(Thus w(g) is a Fourier transform on L?(X).)

Proof. The formula
(gx.x") (x, x" € X)
defines a non-degenerate symmetric bilinear form on X. Hence, there is a basis xy, x2, ..., x, of X and scalars a; € F*
such that
(gX,‘,Xj) = Gjé,‘,j (1 S l,] S n).
Set y; = —a;'x;, 1 <j < n. Then yq, ya, ..., Y, is a basis of Y and (x;, y;) = &;; for all 1 < i, j < n. We have

g xi=—ay;—x; and g yi=a; x;—x;— Y.

Set A = diag(ay, @z, ..., a,). Then, with I =1,,

) A
det(g‘):det(_/LA_I ) = det

1o\ [=1a —] A ]
—AI) (—A—I):det( 0 —2|):2 #0.

Thus Ker(g~) # 0 so that g~W = W. Moreover, with w; = x; and w,; = y; for i =1,2,..., n, we have

t
0| ) o1\ .
(20 -z (0) -2

dis(B,) = s(2").

—1 AT
—-A =21

det ((97Wi' Wj>1gi,,'g2n) = det (
Thus

Hence,
0(g) = v(1)*" s(2") = s(=1)" s(2") = s(=2)".
Since g* = g~ (—g), we see that ¢(g) = —g. Further,
((elg)x =X +y)x =X +y) = (=gx =X+ y). x =X+ y) = (=g (x =X), x =) + (=gy, y).

Therefore,

’ 1 ! ’ 1 ’
J ot =5+ G x4 50 dislg) = ol =) [ s el 5 g5+ ) i)
= X-gx =X V(@) xg(x + X') = ¥(@) x((gx. X)),
where § is the following symmetric bilinear form on Y

’ 1 ’ ’
q(y,y)=§<—gy,y> (y.y €Y).

Since,
. 1\"
detttys yhresen) = (3 )
we see that
1 n
A = v1)ys [t
@ =vy's ()
Therefore,

KT x) = (=2 y(1)'s (=3 ) xt(ax ) = v(0) g ). 0
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4. The Weil representation over R

Let x(r) = exp(2mir), r € R. This is a non-trivial character of the additive group R. In this Section we provide a
construction of the corresponding Weil representation, [35] [42].

4.1. The Fourier transform

Let U be a finite dimensional vector space over R and let B be a positive definite scalar product on U. We normalize
the Lebesgue measure py on U so that the volume of the unit cube (with respect to B) is 1. The formula

®(u)(v) = B(u,v) (u,vel)
defines a linear isomorphism ¢ : U — U*. The form B* dual to B is given by
B*(u*,v*) = v (u*)  (ut, vt e U).

This is a symmetric positive definite bilinear form on U*. Denote by py~ the corresponding Lebesqgue measure.

Let S(U) be the Schwartz space on U, [13, Definition 7.1.2]. For ¢ € S(U) let

f¢(u*)=/U¢(U)X(—U*(U))dllu(U) (" e )

be the Fourier transform of ¢. Then, as is well known, F¢ € S(U*) and

o) = [ Foww e i) (@ € ),

see [13, Theorem 7.1.5].

Let S*(U) denote the space of the tempered distributions on U, [13, Definition 7.1.7]. When convenient we shall identify
any bounded locally integrable function f : U — C with the tempered distribution fuy. In particular, S(U) C S*(U).
Then the Fourier transform

F 1 S(U) - S(U)

extends to
F :S*(U) - S*(U"),

[13, Definition 7.1.9].

Let V C U be a non-zero subspace. The form B restricts to V and determines the Lebesque measure py. We may view
py as a tempered distribution on U by

g = [s0dnw) (€S
In the case when V is zero we define iy = pg to be the unit measure at 0. In other words gy = dp is the Dirac delta at 0,

to(@) = do(¢) = ¢(0) (¢ € C(U)).

Also, for future reference, let 9, € S(U) be the Dirac delta at v € U,
0u(¢) = ¢lu) (¢ € C(U)).
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For an arbitrary subspace V C U, let V1 C U* be the annihilator of V. Then,
Fuv = pye, (98)

see [13, Theorem 7.1.25].

The quotient space U/V may be identified with the B-orthogonal complement of V in U. Hence it inherits the natural
scalar product.

Consider two real vector spaces U/, U” of the same dimension equipped with scalar products B’, B” respectively.
Let v}, ub, ..., u), be a B'-orthonormal basis of U and let uf,u,...,u], be a B”-orthonormal basis of U”. Suppose
L: U — U” is a linear bijection. Denote by M the matrix of L with respect to the two ordered basis:

Lup=Y Myu!  (j=12...n).

Then | det(M)| does not depend on the choice of the orthonormal basis. Thus we may define | det(L)| = | det(M)]| (see
Section 2.5).

Lemma 4.1.
With the above notation we have

[ (L") duur (') | det(L)] = [ S dur(u”)  (d € SU). (99)

Proof. Since [; [} -~ f; dx,---dxydx; =1 and by definition of yn, g (0, 1u} + [0, 1ub + - +[0,1]us) =1,

/¢U)duu(U)—// j¢x1u1+x2u2 ) ) d d,

and similarly for U”. Therefore the right hand side of (99) equals

[.]. /‘“ZX"" oot = [T [T 0TS Mg axaxdennn

i=1 j=1
:/ j / ¢(ZX;L(U;))dx;~- dx;, dx}| det(M)|
—o00 J—0 —00 j=1

which coincides with the left hand side. O

Lemma 4.2.
Suppose X is a finite dimensional vector space over R with a positive definite symmetric bilinear form and L: X — U is
a surjective linear map. Let

L:X/LT(V) > UV

be the induced bijection. Then
L (uy) = | det(D)| "y,

where the pullback L*(uy) is defined as in [13, Theorem 6.1.2]

15398
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Proof. Let X’ C X be the orthogonal complement of Ker(L). Denote by L’ the restriction of L to X’ and by L” the

1540

restriction of L to X' N L~'(V). Then
U':X »Uand I”: X' NnL' (V) >V

are bijections.

According to [13, Theorem 6.1.2], for a test function ¢ we have
L) = [ [ gl 170 do) doc o) | det )]
Ker(L) JV

Lemma 4.1 shows that the right hand side of (100) is equal to

[ j S0 + ) dipr1 o (y) diskeriy () | det(L")] | det(L) " = / 6(2) dit-1q0)(2) | det(L”)| | det(L')|”"
Ker(L) JL7=1(V) L=1(V)

Since | det(L”)|™" | det(L’)| = | det(L)|, we are done.
4.2. Gaussians on R"”
Let B be the usual dot product on R”,
Bx.y) =x'y =xiy1 +xy2+ - +xy,  (x,y ER").

Then dpgn (x) = dx is the usual Lebesque measure on R”, see [34, Theorem 10.33].

For a symmetric matrix A € GL(R") define the corresponding Gaussian ya by
1 t n
valx) = X(ix AXx) (x € R").

Also, let

Y(A) = Fya(0) = /R ) X(%X'AX) dx.

(100)

As customary, we shall identify R"” with the dual (R")* via the dot product. In these terms we have the following theorem,

[13, Theorem 7.6.1].

Theorem 4.3.
For any symmetric matrix A € GL(R"),
o 3 san(A)

—F—V_a1
detA]

Fya=

where sgn(A) is the number of the positive eigenvalues of A (counted with the multiplicities) minus the number of the

negative eigenvalues of A (counted with the multiplicities). In particular,

o HsgniA)

v(A) = JTdetA

Remark 4.4.
Eqn.(101) follows also from [42, Chap. | Théoréme 2 and Chap. Il § 26].

(101)
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Remark 4.5.
Eqn.(101) implies that

v(A) = £y(1)"" y(detA), (102)
which can be viewed as the analog on R of Corollary 3.3.

Indeed, by applying Eqn.(101) to both 1 and det A, we get

e%fsign(detA)

V/IdetA] '

y(1)=e% and y(detA) =

where sign(det A) is the sign of the determinant of A. Hence we are reduced to compare the congruence modulo 4 of
sgn(A) with those of n — 1 + sign(det A). Let p (resp. g) denote the number of the positive (resp. negative) eigenvalues
of A. We have sgn(A) = p —q and n = p + q. It follows that

n — 1+ sign(det A) — sgn(A) = 2g — 1 + sign(detA) =0 (mod 4),
since sign(det A) = (—1)9.
Remark 4.6.
It is easy to see from (102) that
2
1
(M) = (@ € R¥). (103)

v(1)

4.3. Gaussians on a vector space

Let U be a finite dimensional vector space over R with a symmetric positive definite bilinear form B. Suppose g is a
non-degenerate symmetric bilinear form on U. Let y(q) = y(Q), where Q is the matrix obtained from any B-orthonormal
basis uq, uy, u, of U by

Qi.j = q(Ui, U/') (1 S l,/ S n).
Also, we define y(0) = 1.

Lemma 4.7.
If g is a non-degenerate symmetric bilinear form on U, then

[ xGato = @) dine) = o= 30w 0w e L)

Proof. Fix a B-orthonormal basis uq, uy, ..., u, of U and let u}, u3, ..., u% be the dual basis of U*. This is a
B*-orthonormal basis. As we have seen in the proof of Lemma 3.4, if Q is the matrix corresponding to g, as above, then
Q7" corresponds to g*.

Let x; = uj(u) and let y; = u*(u;). Then

1 1 1 1
[ xGate, it dite) = [ x5 Ondxi=x's) dx = MQIX(~54'0"'y) = viahe(—5a"(w" v,

where the second equality follows from Theorem 4.3. O
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4.4. Gaussians on a symplectic space

Let W be a finite dimensional vector space over R with a non-degenerate symplectic form { , ). Fix a positive definite

compatible complex structure J on W. In other words, J € sp(W), J* = —1 and the form

B(w,w') = (J(w), w) (w,w € W)

(104)

is positive definite. As explained in Section 4.1, this leads to a normalization of the Lebesgue measures on any subspace

of U C W and on any quotient U/V, where V is a subspace of U.
We shall identify W with the dual W* by

Then
U* = W/U' and (UV) = ViU,

where the orthogonal complements are taken in W, with respect to the symplectic form (, ).

Lemma 4.8.
Suppose x € Hom(U, W/U4) is such that

(xu,v) = (xv,u) (u,vel).

Set
q(u,v) = %(xu, v) (u,vel).

Let V be the radical of q and let § be the induced non-degenerate form on U/V. Then
(@) V = Ker(x),
(b) The element x determines a bijection

x: UV — VHUL,

with the inverse
x T VvHUY S Uy

(c) Let x~': V+ — U/V be the composition of x~' with the quotient map V* — V+/U*. Define

o) = xlgtuu)  (wEU),

X W) = Xl wow))  (we V),

Then, for any ¢ € S(W),

[ st wh) ) dim ) dosfeh = 2270 @) [ s w10 s w1

— 20y () / Kot (w + UY) / (w + v) dage (v) di e (w + UY).
vijut ud

Also, for any ¢ € S(W/UL),

[ ettt whgtw + U) dingus (o + U dinto)
U Jwut

— 29y () / X (W)b(w + UL) dptya o (w + UY).
ViUt -

(105)

(106)

(107)

(108)

(109)

(110)
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Proof. Part (a) is obvious. Part (b) means that Ker(x)* = Im(x), which is true. For ¢ € S(W) we have,

J [ tabet= 5w tw) dinytu) dis(u) = [ Fivas)Gw)otm) do(w)
U Jw W

/W Fygbio) W) $(2w) iy (w) 207 W

@) [ v-ar(0)620) dins ()29

)/\/i qu*(%w)qﬁ(w) dpns (w) dim W—dim v+

Nall

¥

M) [ s 0)0) s () 257
This verifies (109). For ¢ € S(W/U') we have,

J et o moto + U dogs (o + U )

U Jwjut

— [ [ el Vet + v wot + U digos -+ U din ) dota + V)
unv Jv Jwjut

= L vt Vet v 0+ U dins o+ U do ) i+ V)

2dlm w/ut

/ / Va(u + Vx({u, w)pw + UY) duy,ur (w + Ut) dpgp(u + V) 24" wiut
unN Jviut

v(d) / Vg (w + U)(2w + UY) sy (w + ) 290 WUt
VL/UL

1 ) .
v(d) j Vg (Bw + UL + UL) dpngos (w -+ U*) 20m WU —dim v -
VUt 2

V(Z])[ XX71(W —+ Ul)(i)(W + UL)dHW/Ui(W + UL)zdim V.
VL/UL -

This verifies (110). O
By a Gaussian on the symplectic space W we shall understand any non-zero constant multiple of the tempered distri-

bution
XxHu € S*(W) (111)

where the function x, is defined in Lemma 4.8. In these terms Lemma 4.8 says that the Fourier transform of a Gaussian
is another Gaussian.

4.5. Twisted convolution of Gaussians

Recall the twisted convolution of two Schwartz functions ¢, ¢ € S(W):

wdlw) = [ lu)ptw - x50 w) dinte)  (w € W) (12)

It is easy to see that the above integral converges and that Yhi¢p € S(W). Also, the twisted convolutions

Bf19(8) = 9w — wolx (5 (o, W) and B, (w) = Blw — wol(5(w, o) (113

Brought to you by | University of Oklahoma Libraries
Authenticated
Download Date | 11/4/17 3:03 AM

1543



A reverse engineering approach to the Weil representation

1544

are well defined for any continuous function ¢.
Let
t(g) = Xclg)Hg~w- (114)

For any ¢ € S(W), the twisted convolution t(g)h¢ is a continuous function given by the following absolutely convergent
integral

(918000 = | ()l = (50 w)) diprwla) (v € W) (115)
)

Lemma 4.9.
For any g € Sp(W),

1(g)8(0wo®) = Oguolilt(g)lig) (¢ € S(W), wo € W).
Proof. The left hand side evaluated at w € W is equal to

[ b t9lw — a5 w)) dit o)
g~W

— [ o) = = o o, w = el () dy-wla)
g—W

= [ ol = u = wol(G(clghu u) + 20, w = u) + 2, wh) diy ()
i

and the right hand side is equal to

(tlg)ad) v — gwolx( (o, w)) = [ e u)lw — guo — ulx(3 {u, w — gwo)) dy-wlu)x({gwo, w)

Xelg)(U — g™ wo)p(w — gwo — (u — g~ wo))

=
[
1 _ 1
X(5{u =g~ wo, w — gwo)) duig-w(u)x(5{gwo, w))
1
= [ otw—u = wax((clgu — g woh,u — g wo)
g~W 4
+2(u — g~ wo, w — gwp) + 2(gwo, w))) dug-w(u).
A straightforward computation shows that

(c(g)(u— g wp), u— g~ wp) +2(u — g wo, w — gwp) + 2(gwp, w) — ({c(g)u, u) + 2{wo, w — u) + 2(u, w)) = 0.

Hence, the two sides are equal. O

Let

St — O
0y = lim=20 — 2

Then, for any ¢ € S(W) and wy € W,

Aulip(w) = mi{wo, w)d(w) + 0w, * P(w) (116)
P0uy (W) = —i(wo, w)P(w) + Ou, * P(w)

where 0, * p(w) = %d)(w — twp)|s=o is the directional derivative in the direction of —
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Corollary 4.10.
For any g € Sp(W),

t(9)h(0woliP) = dguolilt(9)g) (¢ € SW), wo € W).

Proposition 4.11.
For any g € Sp(W) and ¢ € S(W), t(g)h¢ € S(W). Moreover the map

SW) = ¢ — t(g)ip € SW)

is continuous.

Proof. We see from Corollary 4.10 with the formulas (116) that for any wy, w € W,

27ti{wo, w)(t(g)ap)(w) = Ouy(t(g)1¢) (W) — (£(9)1) 0w, (W) = 1(9)H(0g-1, i — PlIOug ) (W)

and similarly

20w, * (H(g)19) (W) = 1(9)1(Tg-14, 10 + BHOw, ) ().

Hence, for any polynomial coefficient differential operator P on W there is a polynomial coefficient differential operator
0 on W such that

P(t(g)hd) = t(9)hO(¢) (¢ € SW)). (117)
Notice also that by the definition (115)

I gV < s0p [ [$w — u)] dp-w(u) < o0 (118)
weW Jg—W

and that the right hand side is a continuous seminorm on S(W). The proposition clearly follows from these two facts. [

In particular Proposition 4.11 shows that for any two elements g1,g2 € Sp(W) there is a tempered distribution
t(g1)ht(g2) € S*(W) such that

(t(g1)8t(g2))tg = t(g1)8(t(g2)¢) (¢ € S(W)). (119)

In order to verify Proposition 4.13 below, we shall need an explicit formula for the function t(g)h¢ of Proposition 4.11.
This is provided by the following Lemma.

Lemma 4.12.
Fix an element g € Sp(W). Let U= g~W. The map

Usu—(,(1-clg)u) €U =W/U" =WJ/Ker(g") (120)
is bijective.

Fix a complement Z of U in W so that
W=UesZ

We shall denote the elements of U by u and elements of Z by z. In particular every w € W has a unique decomposition
w=u+2z.

Then, for any ¢ € S(W) and any w' =u"+2' € W,

! ’ 1 ’ ’ ’ 1 ’ ’
t(g)8d(w) = Xetq) (U )x (5w’ w")) /ch(g)(U)¢(u +2)x(=5{u. (1 = clg))u" + 2) duy(u). (121)
In particular, (120) implies that t(g)hp € S(W).
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Proof. Suppose { , (1 —c(g))u) = 0. Then (1 — c(g))u € Kerg~. There is ug € W such that u = g~ug. Therefore

0=g (1—clg)u=g (1—c(g))g uo=9g (g7 )uo—g gFuo
=g (g )uo—9g g uo=1(9" —9g7)g up = —29 up = —2u.

This verifies (120).
The left hand side of (121) is equal to
! ! 1 !
tg)i(w) = [ xeap(@)(w = a5 {u,w) dofu)
U
= [ xeta-+ otz — upxttu+ o' w)) diau)
= [ e oG cla )’ = (o' ) )

= x50 W) [ a9 = el 0w = clghe') dofo),

which coincides with the right hand side. O

In the following proposition we use Notation 2.4 and Notation 2.6.

Proposition 4.13.
Fix two elements g1, g> € Sp(W). Let U} C Uy be the orthogonal complement of U with respect to the positive definite
form B, so that

Uy =U,@U.

Then the map
L: Uy + Uy 3 4 uz — c(gi)uf — clga)uy — ufy — upy + Ut € WU+

is well defined, surjective and L= (V*/U*) = Uy,. Denote by
L: (U 4 Up)/Usz 3 uy 4 us + Upy = c(gr)uy — c(ga)us — ug — up + V5 € WVE = (W/UL) (VUL

the induced bijection and set
Clg1,92) = V(Gg,,,)2"" V| det(D)| "

Then C is a cocycle, with C(g1,1) = C(1,g2) =1, and

t(g1)ht(g2) = C(g1, g2)t(g192)- (122)

Here, and elsewhere in this paper, the determinant of the zero map on a zero vector space is by definition equal 1.

Proof. Since V:/U" = (c(g1) + ¢(g2))U, the map [ is well defined. Suppose v} € U; and u, € U, are such that
L(u} + up) € VH/UL. Then there is u € U such that

(c(g1) + clga))u + clgn)us — c(ga)uz — uf — vz € U™
Letu=gyvi =g;vo, v=uj =giwy, and w —v = up = g;w. Then

(c(g1) + c(g2))u + c(g1)v + c(g2)(v — w) —w € U*,

1546
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Hence, the computation (79) - (81) shows that w = (g1g2)~ (w2 — v2) € Usp. Therefore L= (V+/U*) C Uy,

The map L is surjective. Indeed, for every w € W, set u, = g, wy with wy = —% g5;'w. Then
L(uz) = —c(ga)uz — uq + Ut = —g3ws — gowy + Ut = =2g,w, Ut = w + Ut

Lemma 2.7 (b) shows that dim((Us + U,)/Usz) = dim((W/U*)/(V-/UY)). Thus L= (V4/UL) = Uy,

Here is a direct proof of this last equality. We already know that L='(V+/Ut) C Uso. Therefore it will suffice to
show that L(U;2) € V4/U*. This is true, because one can show (as was done in the first part of the proof), that for
u=1(g192)"w = uq + uy = (uj + ') + uy, with uy = g7 gow and u, = g; w, one has:

L(u) = c(g1)g7 gaw — c(g2)g5 w — (c(g1) + c(g2))u’ — (ur + uz) + U™
(g7)g2w — gFw — u — (c(g1) + c(g2))u’ + U*
= (g192)"w — u — (c(g1) + c(g2))u’ + U*

u—u—(c(g1)+ clg2))u’ + Ut € VHU .

The computation (81) - (85) shows that, if u} + us € Uy, then

<C(g1)u%' U;> + (C(gZ)UZI U2> + 2<U;, U2> + ((0(91) + C(gz))_1 L(U; + Uz), L(U; + U2)> = (c(g1gz)(uq + Uz), uq + U2>

so that

4 1 4 4 4
XC(91)(u1)XC(gz)(u2)X(§<u1'u2>)X(c(g1)+c(gz))*1(L(u1 + U2)) = Xe(grgo) (U7 + U2). (123)

Any u1 € U; has a unique decomposition vy = v} + u, where vy € Uj and u € U. With this notation, Lemma 4.12
shows that for any ¢ € S(W),

gttt 500) = | g )(g2I0ten) o, o) (124)
= [ ] ot v e o)~ 1)
et 2= 302, U ) + ) dp 02) s, (1)
= [, ] o todetyto syt e g = )
et 2D (2 0 ) s + 15) s () o () o)

The formula (110) applied with x = ¢(g1) + c(g2) shows that

[ xaontndesatudet5 . et e (elg) = 1) di) (125)

7’ 1 4 !’
= Xe(gn)(U7) LXc(g1)+c(gz)(U)X(§<U' c(gr)uy — c(ga)uz — vy — uz)) duy(u)

= 2% VG g1.92)Xetgn) (41) et setgon 1 v+ 02 )(€(g) s = elg2)uz — = ).

Furthermore, Lemma 4.2 shows that, for v} + uy € Uy,

Pyt (c(gr)uy — c(g2)uz — uf — ua) = L¥(pyaun)(uy + u2) = |det([)|_1uu12(u; + u3). (126)
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The formula (122) follows directly from (123) - (126).
We see from (113) that

t(g1)8(t(g2)89)(w) = (t(g1)8(t(92)1¢))a0- (0) = (t(g1)h(t(g2)8(#HS-w)))(0)
= ((t(g1)5t(92))8(#80-w))(0) = ((t(g1)t(92))1)E0-w)(0) = (t(g1)t(g2))i(w).

Therefore
(t(g1)nt(g2))tid = t(g1)b(t(g2)a¢).

Hence, t(g1)ht(g2) coincides with the composition of t(g1) and t(g,) as elements of the associative algebra End(S(W)).
Therefore the function C is a cocycle. O

4.6. Normalization of Gaussians and the metaplectic group

For a subset S C W let S8 C W be the B-orthogonal complement of S and for an element h € End(W) let h* € End(W)
be as in (34). In particular, (Ker h#)t = hW.

Lemma 4.14.
Let h € End(W) and let K CW be a subspace. Then

h#((hK)l) C Kt (127)
and

|det(h : K — hK)| = | det(h* : W/(hK)* — W/K™)]|. (128)

Proof. The inclusion (127) follows directly from (34).

Let wq, ..., w, be a B-orthonormal basis of K and let uy, ..., u, be a B-orthonormal basis of hK. Since J is a B-isometry,
Jwa, ..., Jw, € JK and Juy, ..., Ju, € JhK are B-orthonormal basis. Define a matrix (hi)1<k.i<a by

hwi=) hgue  (1<i<a).
k=1

Then
|det(h : K — hK)| = | det((hi)1<k.i<a)l- (129)

We see from (33) that
JhK = (hK)**8 and JK = K+15.

Therefore

| det(h™ : W/(hK)* — W/K™)| = | det((h} )1<k.i<a). (130)
where

W ju €y hiw+K+  (1<i<a)
k=1
But,
hji = th,iB(U/' ug) =— ) heilue, Juj) = =(hw;, Juj)
k=1 k=1
= —(wi, h*Juy) = —(wi, ) hif Jwi) = — thﬁjwi,jwk) =) hi B(wi,wi) = h,.
k=1 k=1 k=1

Hence, (128) follows from (129) and (130). O
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Lemma 4.15.
Fix two elements g1, g, € Sp(W) and assume that Ky = Kerg; = 0. Then

z—dim V| det(l)| = |det(gz_ K12 — V)|_1.

Proof. Since, by Lemma 2.7 (c), V = g5 Kiz = (g7" — 1)Ky, the right hand side of the equation we need to prove
makes sense. Also,

' _ 1.
2-dmV) det(l)| = |det(§L)|
and a straightforward computation shows that

. 1
L: Wi 3w+ Urz = 5(clgn) = w + V5 = (g7) " w+ V€ WVE,

N =

Hence,

|det(=L)|™" = | det(gy : W/VE — W/Uyy)l.

1
2
Notice that g7 —1 = g¥. Since V = g5 K12 and Uy; = K5, Lemma 4.14 shows that

| det(gy : WV — W/Uy,)| = | det(g7" —1: Kiz — V).

1

Since the restrictions of g7 and g, to Kj; are equal, we are done. O

Consider an element h € End(W) such that Ker h = Ker h*. (In our applications h will be equal to g~, where g € Sp(W).
Then g% = g7' —1 = —g~'g~ has the same kernel as g~.) Let L = J~'h. Denote by L* the adjoint to L with respect
to B (i.e. B(Lw,w') = B(w, L*w')). Then [* = Jh¥*. Hence Ker L = Ker L*. Therefore L maps (Ker )8 = LW bijectively
onto itself. Thus it makes sense to talk about det(L|;w), the determinant of the restriction of L to LW. If wq, wy, ..., wy
is a B-orthonormal bais of (Ker )18, then

det(L|LW) = det(B(LW[, Wj)1§i,j§m) = det((hwi, Wj>1§i,j§m)~ (131)

Under the condition Ker h = Ker h¥, we define det(h : W/Ker h — hW) to be the quantity (131).

Since

B(_IW,,/WI) = <]le,jW/> = (_IW,‘, W]> = B(W[, Wj),

Jwi, Jwa, ..., Jwy, is a B-orthonormal basis of AW (=/LW). Further, if the coefficients h;; are defined by

hW,' = Zh/,_/Wj,
i

then
det((hwi, wihi<ijem) = det((d  hiidwi, Wihi<i j<m)
K
= det((hx.)1<ki<m) det({(Jwe, wihi<k jem) = det((hy)1<kicm) det(B(wi, w1k j<m) = det((hiii<k.i<m)-
Thus |det(h : W/Kerh — hW)| = |det((hk:)1<ki<m)| coincides with the absolute value of the determinant defined

previously in Section 4.1. In particular,
det(h : W/Ker h — hW) = sgn(det(h : W/Ker h — hW))| det(h : W/Ker h — hW)|. (132)

Hence, if we identify R*/(R*)? with {£1} via the sgn, then det(h : W/Ker h — hW) is equal to the discriminant of the
bilinear form induced by (h , ) on the quotient W/Kerh times |det(h: W/Ker h — hW)|.
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Definition 4.16.
For g € Sp(W) define

©%(g) = V(17" TV det(g™ : WiKer(g") = g~ W)
= V(1) (y(det(g ™ W/Ker(g) — g~ W))”.

(Here the second equality follows from (103).)

Lemma 4.17.
We have

2
G~ Clgn g (91,92 € SpW), (13)

Proof. Both sides of the equality (133) are cocycles. Hence, Lemma 2.8 shows that we may assume that K; = {0}.
In terms of the notation of Lemma 2.11 we have

—dim Uy + dim W + dim U = dim Kj; + dim U = dim V + dim U = —dim (U/V) + 2dim U.

Hence,
Y“ )2(7dim Urz+dim Wdim U) _ y(1 )4 dim U y(1 )72dim(U/V) — (_1 )dim U y(1 )72dlm(U/V). (134)

Therefore the equality (37) is equivalent to

y(1)72%" Y2 det((g1g2)~ : W/Kiz = Unp)
y(1)=2dmWdet(gy : W — W)y(1)~2dim U det(g; : W/K; — U)

= y(1)724nCm det((%(c(gﬂ +c(g2)) . Jun) det(gy : Kiz > V)72

(135)

By Remark 4.5, we get
- i ggn(d 1 -
V(dgy.g,) = €450 0192)| det((i(f(%) +c(g2)) . Jun) '
and
sgn(Gg,.9,) =P — 4,

where p is the dimension of the maximal subspace of U/V on which the form {(c(g1) + c(g2) , ) is positive definite and ¢
is the dimension of the maximal subspace of U/V on which the form {c(g1) + c(g2) , ) is negative definite. Hence,

Wag,sn)? = 79 det( S clgr) + clg2) . Jon)l”

P9 det( S (clg1) + lg2)) . Jom)”

. 1 -
i#*7 det({5(c(g1) + c(g2)) + Ju) 1
. 1
= ("M det((5(c(g1) + c(g2)) » Jun) -
This, together with Lemma 4.15, shows that the right hand side of (135) is equal to
2

Vg (270 det(D)])

which, by Proposition 4.13, coincides with C(g1, g2)~2. O
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Definition 4.18.
Let

Sp(W) = {(9, €); g € Sp(W), & € C*, & = ©7(g)}.
where ©%(g) is defined by Definition 4.16.

Lemma 4.19.
Sp(W) is a group with the multiplication defined by

(91, &1)(92, $2) = (9192, 6182C(91.92)) (91,92 € Sp(W)) (136)
the identity equal to (1,1) and the inverse given by
(9.9 =979  (g€SpW)).

Proof. Lemma 4.17 shows that the right hand side of (136) belongs to é?)(W), A standard computation, as in [20,
page 366], shows that Sp(W) is a group with the multiplication given by (136), the identity equal to (1, C(1,1)~") and

(9.9 =(g7". Clg™". 9.
Since, by Proposition 413, C(1,1) = 1, it remains to check that
Clg g e =4
But, as in the proof of Lemma 4.15,
Clg™' g) =2"""Y|det(D)|" = | det(g™ : W/Ker(g") — g~ W)| = |©°(g)|”" = [&] ™~
This completes the proof. O

Notice that the map
Sp(W) 3 (9.¢) = g € Sp(W)

is a group homomorphism with the kernel consisting of two elements. Thus §[/)(W) is a central extension of Sp(W) by
the two element group Z/2Z:
1 — Z[2Z — Sp(W) — Sp(W) — 1. (137)

Proposition 4.20.
The extension (137) does not split.

Proof. Pick a two-dimensional symplectic subspace W; C W and let W, = W{-, so that
W=W, W,
Define an element g € Sp(W) by
gwi + wa) = —wi +w, (wy € Wy, wy € W,).

Then
@z(g) = det(—2: W; — W1)‘1 = (i/2)2
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and
Clg.g)=2"-1-1=2%

Let § = (g, i/2). Then § € Sp(W) and
9> = (g (i/2°C(g, g)) = (1,=1) and §* = (1,1).

Thus the subgroup of gf)(W) generated by § is cyclic of order 4. The subgroup of Sp(W) generated by g is cyclic of
order 2. Hence the extension (137) does not split over that subgroup. O

Corollary 4.21.
Up to an equivalence of central group extensions, as in [20, sec. 6.10] (137) is the only non-trivial central extension of
Sp(W) by Z/2Z.

Proof. Since, as is well known (see [25, Theorems 5.10 and 11.1 (b)]),
H2(Sp(W), Z/2Z) = Hom(Z, Z/27),

the claim follows. O

Let

¢'(w) = ¢(=w) and u*(¢) = u(¢*) (¢ € SW), u e S (W), w e W)

Lemma 4.22.
For any g € Sp(W), t(g)* = t(g™").

Proof. By the definition (114),

tg)" = (Xetobgw)" = Xetgitigw = X-ctg)g~w-
Since g~W = (g~" — 1)W, it will suffice to check that for any w € W
—clg)g™w =c(g™')g"w.
The left hand side is equal to —g*w. The right hand side is equal to
—cg™)g = Ngw =—(g7' = Ngw = —g*w. m
Definition 4.23._
For g = (g, &) € Sp(W) define

0(g) =< and T(g)=0(9)t(9). (138)

Lemma 4.24.
With the notation of (138), the following formulas hold

TEOET(32) = T(3:1G2)  (G1.32 € Sp(W)), (139)

T@ =T@E") (g €SpW). (140)
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L
Proof. By Proposition 4.13 the left hand side of (139) is equal to

0(3§1)0(g2) B
WC(QLQZ)T(%gZ).

Lemma 4.19 shows that 0(51)0(32)
g1 g2
—————==C(g1, =1
015 99
This verifies (139).

The equality (140) follows from Lemma 4.19 and Lemma 4.22:
T(§) =0(g)tg) =0 g ) =T(@G™"). O

Notice that Sp(W) is a connected Lie group. As such it has a unique connected double cover (up to an isomorphism of
covers). See [3, sec. 16.30]. This way we may view Sp(W), the metaplectic group, as a connected Lie group.

Lemma 4.25.
The map T : Sp(W) — S*(W) is injective and continuous.

Proof. The injectivity of T follows from the injectivity of ¢ : Sp(W) — S*(W), which is obvious. Let
Spe(W) = {g € Sp(W); detg™ # 0}.

Lemma 2.8 shows that
SpwW) = [ J Sp(Wh. (141)
heSp(W)

Let Sp' (W) C Sp(W) be the preimage of Sp°(W). Then

Spw) = | J Sp (Wh.

heSp(w)

By Lemma 4.24, we have -
T(g) = T(gh™"aT(h) (g € Sp (W)h)
Thus for ¢ € S(W),
T(g)h¢ = T(Gh™(T (h)ag)-

By Proposition 4.11, the map

SW) 3 ¢ = T(h)zp € SW)

—~c
is continuous. Hence it will suffice to check that the restriction of T to Sp (W) is continuous. But this is obvious. [
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4.7. The conjugation property

Let L?(W) denote the Hilbert space of the Lebesgue measurable functions ¢ : W — C, with the norm given by

I 6 2= [W ()12 diw(w).

Lemma 4.24 shows that for any § € gE)(W) and any ¢ € S(W)

I T(3)8¢ 113= (T(§)8) 6(T(§)8¢)(0) = ¢*1T(3)"5T (§)a(0) = ¢*t(0) = ¢ |5 -

Hence, the continuous linear map

SW) = ¢ — T(gh¢ € SW)

extends by continuity to an isometry
L*(W) > ¢ — T(g)aep € LX(W).

Furthermore, the formula
wi1(9)p(w) = ¢(g'w) (g € Sp(W), ¢ € L*(W)).

defines a unitary representation wy 1 of the symplectic group Sp(W) on L%(W).

Proposition 4.26. .
For any ¢ € L2(W) and § € Sp(W) in the preimage of g € Sp(W), T(§)hhT(G7") = wi1(g)¢.

Proof. Since T(g) is a bounded operator, we may assume that ¢ € S(W). Lemma 4.9 says that

H(g)hdw = duglit(g) (W W)

Therefore
T()80 = uhT() (W € W).
Since,
6= [ oo, dinw) and [ $(w)d. disslw) = w11(9)0,
w W
we see that

T(g)h¢ = (wi1(g)P)T ().

4.8. The Weyl transform and the Weil representation

Pick a complete polarization
W=XaY

(142)

and recall that our normalization of measures is such that duw(x + y) = dux(x)dpv(y). Recall the the Weyl transform

K: S* (W) = S*(X x X),

7 ’ 1 ’
K0x) = [ =+ g5+ ) dinty),
This is an isomorphism of linear topological spaces, which restricts to an isometry

K LAW) — L2(X x X).

(143)

(144)
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Each element K € §*(X x X) defines an operator Op(K) € Hom(S(X), S*(X)) by

Op(K)v(x) = [ K (x, X)v(x') dpx(x). (145)
Schwartz Kernel Theorem, [13, Theorem 5.2.1], implies that

Op : §*(X x X) = Hom(S(X), S*(X)) (146)

is an isomorphism of linear topological vector spaces. A straightforward computation shows that Op o K transforms the
twisted convolution of distributions (when it makes sense) into the composition of the corresponding operators. Also,

(Opo K(f)" = OpoK(f)  (f €S (W) (147)

and
tr Op o K(f) = /XIC(f)(x,x) dux(x) = £(0) (148)

if Op o K(f) is of trace class, [17, Theorem 3.5.4]. Hence, the map
Op oK : L2(W) = H.S.(L*(X)) (149)

is an isometry, which is a well known fact [17, Theorem 1.4.1]. (Here H.S.(L?(X)) stands for the space of the Hilbert-
Schmidt operators on L?(X).)

Let U(L?(X)) denote the group of the unitary operators on the Hilbert space L%(X).

Theorem 4.27.
Let w=0poKoT. Then
w: Sp(W) — U(LZ(X))

is an injective group homomorphism. For each v € L?(X), the map
SPW) 3 § — w(g)v € LX)

is continuous, so that (w, L2(X)) is a unitary representation of the metaplectic group. The function © coincides with the
character of this representation:

L 0(3)¥(g) dg = tr L W@V@)dg (Y e CR(SpW)),
Sp(W) Sp(W)

where the integral on the left is absolutely convergent. (Here d§ stands for any Haar measure on §F/)(W).) Moreover,
w(g)OpoK(¢) w(g™") = OpoK(wii(g)$) (g € Sp(W), ¢ € LX(W)).

Proof. We see from the discussion in Section 4.7 that the left multiplication by w(§) is an isometry on H.S.(L%(X)).
This implies that w(§) is a unitary operator.

We see from (146) that for any two function v4, v, € S(X) there is ¢ € S(W) such that

[X (@) () dixlx) = T@)S) (G € Sp(W)).
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Hence Lemma 4.25 shows that the left hand side is a continuous function of §. Since the operators w(g§) are uniformly
bounded (by 1), we see that the left hand side is a continuous function of § for any v4,v, € L?(X). This implies the
strong continuity of w, see [40, Lemma 1.1.3] or [41, Proposition 4.2.2.1].

Lemmas 4.24 and 4.25 show that the w : Sp(W) — U(L?(X)) is an injective group homomorphism.
It is not difficult to check that the function

det(Ad(g) — 1)
detg~

(9 € Sp(W))

is locally bounded. Furthermore, as shown by Harish-Chandra [10, Lemma 53, page 504], the function
|det(Ad(g) = 1)|"* (g € Sp(W))

is locally integrable. Hence the function,

10(g)| = |detg~ |2 (g € Sp(W))

is locally integrable.

Notice that for any ¥ € Cf"(gf)(W))
[ T@via)dg e s (150)
Sp(W)

Indeed, since the Zariski topology on Sp(W) is noetherian the covering (141) contains a finite subcovering (see for
example [12, Exercise 1.7(b)]). Hence, there are elements Ay, hy, ..., h, in Sp(W) such that

Sp(W) = [ JSp' (W)h,.

j=1

Therefore Proposition 4.11, Lemma 4.24 and a standard partition of the unity argument reduces the proof of (150) to the
case when W € CZ(Sp (W)). In this case (150) is equal to

/ e 7 W) (x) dx (151)
sp(W)

where ¢y € C(sp(W)) and dx is a Lebesque measure on sp(W). The function (151) is equal to the pullback of a Fourier
transform 121 of ¢ from sp*(W) to W via the unnormalized moment map

T: W = sp"(W), 7(w)(x) = (xw, w) (x €sp(W), weW). (152)
Since () € S(sp(W)) and since 7 is a polynomial map with uniformly bounded fibers,
JoteSW).

This verifies (150). Hence, we may compute the trace as follows:

tr /ﬁ(w) w(§)¥(§) dg = ( ]gp(w) T()%() dg) 0 = ( [S?(W) T(G)%(3)d3 ) ()

=/~c T(é)(O)W(é)@:/~ 0(g)¥(g) dg.
Sp‘(W)

Sp(W)

The last formula is a direct consequence of Proposition 4.26. O

Brought to you by | University of Oklahoma Libraries
Authenticated
Download Date | 11/4/17 3:03 AM



A.-M. Aubert, T. Przebinda

We end this Section by recalling some well known formulas for the action of w(g§) for some special elements § &€ §E)(W).

Proposition 4.28.
Let M C Sp(W) be the subgroup of all the elements that preserve X and Y. Let M = {g € M : detg~ # 0}. Set

dets %(9) = 0@) det(5(c(gh) + I (g < K

Then N
(detx"())” = det(glx)™" (5 € M), (153)

the function det;m: M¢ — C* extends to a continuous group homomorphism
dety "2 M — C*

and
w(@)v(x) = dety"2(@G)vig %) (§ €M, veSKX), x €X). (154)

Proof. Set n = dim X. Fix an element g € M¢. Then

©%(g) = det(ig”)™" = (=1)" det(g|x — 1) det(gly — 1)™" = det(g|x — 1)"" det(1 — gly)™’
= det(g|x —1)7" det(1 — (g|x) ") = det(g|x — 1) det(g]x)-

Also,

[det(3 (clgh) + D) = [detl(ghlgh — 1)) = |detlgh — )| det(gh| "
This verifies (153).
Let x,x’ € X and let y € Y. Then
! ’ 1 ’
K(t(g)(x,x') = / Hg)x — X"+ y)x(5{y, x +x7)) duvly)
Y
= [t (elglix =¥ ety x + X di)
Y
= Bulgelg)lx — ) —x —¥) = Bo(5((clg) — x — (clg) + 1))

1
= | det(5(c(glx) + ) do(g™"x = x).

Therefore

K(T(@)(x, ) = detx"(§)do(g~"x = x).
Thus we have (154) for § € MC. Since w is a representation of M, the remaining claims follow. O
Proposition 4.29.

Suppose g € Sp(W) acts trivially on Y and on W/Y. Then det((—g) — 1) # 0 and

w(G)v(X) = £Xc(—g)(2X)V(x) (v e S(X), x €X).

18557
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Proof. Since —g acts as minus the identity on Y and on W/Y, det((—g) — 1) # 0 and z := c(—g) € sp(W) is well
defined. We have

2w) = (=9)*((=9)) ' (W) (weW).

Since g acts trivially on Y and on W/Y, we get, for every x € X and every y € Y:
gix+y)=x+y+y,, wherey,e.

It gives (—g)~(x + y) = —2x — 2y — y,. Also, (—g) "y = —2y, so that ((—g)") "'y = —Jy. Hence,

(=97 )" (x4 ) = =30+ g+ (=) g) = 3+ y) + 10

We obtain ! ]
2 +y) = (=9)" (=5 +y) + ),
that is,
1
z(x + y) = z(x) = igx‘ (155)
In particular, we have
z:X—=Y—=0.

Also, det(z — 1) # 0 and c¢(z) is well defined. On the other hand, we have (z — 1)(x + y) = —(x + y) + %yx and
(z—="1)y = —y. It follows that

=170 9) =~ -+ 9) = S
Hence,
e+ 9) = @41 (<t o= 0] = —300 6+ )= o
that is,
(2)(W) = —w — 2z(w), for every w € W. (156)

We have c(z) € Sp(W). Indeed, for any w,w’ € W, writing w = x +y and w' = x" + ¢, with x,x’ € Xand y,y" € Y,
we have

(c@)(w). c@)(W)) = (=w = ys, =" — yu) = (W, W) + (X, y) + (Y. X).

However, since g is in Sp(W), we have

(. x) = (g%, 9x') = (x + g X'+ yw) = (X)) + (6 yw) + (Y X),

which gives
(X, ) + (yx,x') = 0.

Hence,

K (t(c(2)))(x, ') = jY Xeelx = X2 (g, x + X)) dimlg)

N

= X2, (X — x')50(1§(x + X)) = 2" x_2.(x — x") do(x + x')
RUHeANK) = [ ool = 3Gy +X) dindy)

= x_.(x— X')(So(%(x +x')) = 2"x_,(x — x")do(x + x').
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Moreover,

since dim ((c(z) — 1)(W)) = dimW = 2n, and,
det(c(z) = 1) = (=2)*".
Thus

K(T(c(@))x, x') = £i"x—2(x = x)do(x + X).

Since Proposition 4.28 shows that
w((—T1)v(x) = x£i"v(—x),

the proof is complete. O
Proposition 4.30.

Suppose g € Sp(W) acts trivially on X and on W/X. Then det((—g) — 1) # 0 so that z = ¢(—g) € sp(W) is well defined
and z: Y — X — 0. Assume z(Y) = X. Then

o2 santz v

w(g)v(x) = im /X)(Z_w (x = x"YW(xX') dux(x) (v e S(X), x € X),
where z7': X — Y is the inverse of z: Y — X.

Proof. The existence of z and its properties are verified as in the proof of Proposition 4.29. In particular, for all x € X
and y €Y, we have

gix+y)=x+y+x, wherex, €X

Similarly to the proof of Proposition 4.29, we get

zu+w=4w:%@. (157)
and
c(2)x+y)=—(x+y)—x,, (158)
that is,
c(z)(w) = —w —2z(w), for every w € W. (159)
From (157)and (158), we obtain
(c(2)(w), w) = (—w = 2z(w), w) = =2(z(w), w). (160)
With notation (107), it gives
Xt = x (et w) =x (=5 (et w) ) =zt (161)

Let !
qWJ3=§&%M) (yy €Y).

15598
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Then, in terms of Lemma 4.7 and the identification (105),
q*(x,x') = =2(z7"x,x") (x.x" € X)

and )
o % san(z.)ly

" Jdet(lz: Y o X)[12°

v(q)

Indeed, using notation of Eqn.(11),
7 ’ ! 1 ’ ! 1
(Y oY) = )Y = aly. ¥) = 5(zy.y") = (¥’ —52y).
Hence, ®(y) = x if and only if —3zy = x. Thus ®~"(x) = =2z~ "x. Therefore
G (x,x) = X (7 (x)) = (7" (x), x') = (=227"x, ).
Hence, by the definition of K (143), the assumption that z annihilates X and maps Y into X and Lemma 4.7, we obtain
’ 1 ’ ’ 1 ’
AN A) = [ G (=2l =+ 9)x =X + (5 gox-+ 1)) din ()
1 1 )
= /X(;(—Zy,w)x(i(y,x +x)) dv(y)
Y
1 1 ,
= [ x50ty 9=y, =505+ X)) (0
v
= W50 (2 b X), s (X))
=Y\q)x Zq > 75
] o] , /

= V(77 (=5 (x + X)), =5 (x + X)) = V(@) (x +X).
Therefore

K(T(c@)x. x') = O(c@)V(a)x 1 (x +x).

But @(E(\ZJ)) =+ (é)n (where dim W = 2n), so that

i ) o Msan(z. v o Hson(z, )y

O(c(2)vlq) = + (5 [det(lz: Y S X2 = detlz: Y > X7

Furthermore, by Proposition 4.28,
K(T(=1)(x",x") = £i"6p(x — x").

Hence, the formula for w(g) = w(g(\lz)(:i)) follows. O

5. The Weil representation over a p-adic field

Let F be a p-adic field, i.e. a finite extension of Q,. (In fact our argument works for all non Archimedean fields of
characteristic other than 2 till the statement (221) below. Hence our additional assumption.)

Let x(r), r € F, be a character of the additive group F such that the kernel of x is equal to of. In this Section we
provide a construction of the corresponding the Weil representation, [42].

1560
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5.1. The Fourier transform

Let U be a finite dimensional vector space over F and let £ be a lattice in U. We normalize the Haar measure py on
U so that the volume of the lattice £ is 1. Let £Lx C U* be the dual lattice. Denote by uy« the corresponding Haar
measure.

Let S(U) be the Schwartz-Bruhat space on U, i.e, the space of complex-valued locally constant functions with compact
support on U. (Recall that a function ¢ on U is called locally constant if for each u € U there is an open neighborhood
U of u such that ¢ is constant on U.) For ¢ € S(U) let

Fotu) = [ oue-u@dite) (@ €U (162

be the Fourier transform of ¢. Then, as is well known, F¢ € S(U*) and

ou) = /U Fo(u™)x(u*(u)) dpy+(u”) — (u™ € U7), (163)

see [43, Corollary 1, page 107].

As a linear topological space, S(U) is the inductive limit of the finite dimensional subspaces spanned by the characteristic
functions of finite collections of open compact subsets.

Let S*(U) denote the linear topological dual of S(U). It corresponds to the space of the tempered distributions on U in
the real case. When convenient we shall identify any bounded locally integrable function f: U — C with the tempered
distribution fuy. In particular, S(U) C S*(U). Then the Fourier transform

F: S(U) — S(U")

extends to
F:S8*(U) - S*(U").

In fact, if we identify U** = U then the Fourier transform (162) is given by

Fiplu) = /U (i )x(=u(u)) dpy-(u”) (¢ € S(UY), u el) (164)

and the inverse (163) by
() = jfzp W) dule) (€S, u* € ). (165)

Therefore

F()(P) =1(F(¢)  (feS(), ¢ €SU)).
Indeed, if f € S(U), then

F(fpo)(d) = (FHiu-)()

= [ flomt-ur ) 1) s
- [ oot o)

Let V C U be a non-zero subspace. Then £ NV is a lattice in V which determines the Haar measure py. We may view
py as a tempered distribution on U by

() = / S dinly) (¢ € S(U)).
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In the case when V is zero, py = g is the unit measure at 0. In other words py = 0y is the Dirac delta at 0,
to(¢) = do(¢) = ¢(0) (¢ € S(U)).
Also, for future reference, let 9, € S(U) be the Dirac delta at u € U,
0u(¢) = p(u) (¢ € C(U)).
For an arbitrary subspace V C U, let V1 C U* be the annihilator of V. Then,
Fuv = pyL. (166)

Indeed, the formula (164) implies that (166) holds if V = {0}.

The quotient space U/V contains the lattice (£ + V)/V, which determines the normalization of the Haar measure pyy.
Then for ¢ € S(U) we have ¢ € S(U/V) defined by

dlu+V) = /V¢(u + v) duy(v).

Since (166) holds for the Fourier transform on U/V, with (U/V)* = V! and the left hand side being the evaluation of the
Fourier transform of a test function at zero, we have, with ¢ = Fi,

W(FG) = (@) = / B(v) din(v) = $(0) = ] Foblu) dus (")
\% V4L
- j B0+ Vx(— () dpo{u + V) dpgs (1)
vt Junv
- [ ] [ B+ v) din(Vx(—u* () disop (o + V) digs (1)
V4 unN Jv
= [ [ otonxt=uto dmte) dns (0

— [ Fotu) dus (v
V4
= iy (F(9) = e (F2(¢) = pve (),
where the last equality follows from the fact that F2¢s(u) = (—u), which is a simple consequence of (164) and (163).

This completes the proof (166).

Consider two vector spaces U’, U” over F of the same dimension equipped with lattices L', L” respectively. Let
uy, ub, ..., u;, be a L'-orthonormal basis of U and let uf, u}, ..., u) be a L”-orthonormal basis of U”. Suppose L: U —

U” is a linear bijection. Denote by M the matrix of L with respect to the two ordered basis:
n
Lup=Y Myu!  (j=1,2...,n).
i=1

Then | det(M)|r does not depend on the choice of the orthonormal basis. Thus we may define | det(L)|r = | det(M)|r (see
Section 2.6).

Lemma 5.1.
With the above notation we have

| #twndm@idewi = [ o)) oS0 (167)
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Proof. This follows from Lemma 2.18. Indeed, let ¢ be the indicator function of £”. Then the right hand side of the
equation (99) is equal to 1. Hence we need to show that

j P(L(u') dpy (u') [ det(L)|z = 1.

v

However, ¢ o L is the indicator function of L=(£”). Thus the problem is to check that
pu(L7(L")) [ det(L)]s = 1.

Fix an L'-orthonormal basis v}, u),... of U and an £”-orthonormal basis u?, uj,... of U”. Let T be the endomorphism
of U’ defined by

T ) =uf  (j=1.2,...) (168)

Then
T(L’1 (L") =L

Hence, by Lemma 2.18,
pu (LHL") [ det(T) e = pu(T(LT(L) = pu (L) = 1.

But (168) implies that | det(T)|r = | det(L)|r. Hence the claim follows. O

Let X and U be two finite dimensional vector spaces over F equipped with lattices and the corresponding normalized
Haar measures px and py. Let L: X — U be a surjective linear map. Suppose f is a bounded function on U so that
fuy € S§*(U). Define L*(fuy) := (f o L)ux. Thus for a test function ¢ € S(U),

L (fuo)(¢) = /Xf(L(X))¢(X) du(x). (169)

Choose a subspace X’ C X complementary to Ker(L) so that X = Ker(L)@®X’. Let pkerry and pxs denote the corresponding
normalized Haar measures on Ker(L) and X’ respectively. Then (169) may be rewritten as

/ / f(Lx" 4+ X")P(x" + x") dpkerty (X”) dpxe (x'). (170)
X" JKer(L)
Let L’ denote the restriction of L to X’. Then L’ : X’ — U is a bijection and Lemma 5.1 shows that (170) may be rewritten
as
[ oL duw. (171)
U JKer(L)
where

L(¢)(u) = ot O(L"" (u) + X") dpery (x") | det(L) |5 (172)

Notice that L, : S(X) — S(U) is a continuous map. Hence we have the notion of a pullback of a distribution
L)) = f(L(¢) (¢ €S(X), feS () (173)

which is consistent with [13, Theorem 6.1.2].
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Lemma 5.2.
Let X and U are two finite dimensional vector space over F equipped with lattices and the corresponding normalized
Haar measures px and py. Let L: X — U be a surjective linear map. Let

L:X/L7(V) - UV

be the induced bijection. Then
L(uy) = |det(L)|]§1po1(v).

Proof. Let X’ C X be the orthogonal complement of Ker(L). Denote by L’ the restriction of L to X’ and by [” the
restriction of L to X' N L~'(V). Then
U':X —sUand "X nL' (V) >V

are bijections.

According to (173), for a test function ¢ € S(X) we have

C@) = [ [ gl U0 dino) dicarslo) | det(L) (174)

Ker(L) JV
Then the right hand side of (174) is equal to
[ [t ) b 9) o) | detL e [ et = [ 0le) s 2 det(L) e | der(L)
Ker(L) J17=1(v) L=1(v)
Since | det(L")|z" | det(L’)|r = | det(L)|g, we are done. O
5.2. Gaussians on [F”
Let B be the usual dot product on F”,
B(x,y) = x'y = x1y1 + xay2 + -+ + XY, (x,y € F").

Then the Haar measure associated to the lattice ofp C F”, dupn(x) = dxidxz...dx,, is the n-fold direct product of

Lebesque measure dx; on F, such that foF dx; = 1.

For a symmetric matrix A € GL(F") define the corresponding Gaussian y4 by
1 t n
va(x) = X(ix Ax) (x € F").

Also, let
1
Y(A) = Fya(0) = / X(ixtAx) dx.
F”

In particular, taking n =1, we have
1 t X
v(a) = X(ix Ax) dx, for a € F*.
F

Let yw be the gamma factor defined by Weil in [42, n°14 cor. 2]. It is related to y by the equality

V(A = | det(A)5" yw(A). (175)
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e
We set
yw(q) :== yw(0Q),

if g is a quadratic form with associated symmetric matrix Q as in Eq. (12). Then yw defines a unitary character of the
Witt group of F. The scalar yy/(a) is the gamma factor attached to the quadratic form x +— ax? (a € F). It depends
only on the class of @ modulo (F*)2. In particular, we have

yw(a?) = yw(1) forall a € F*. (176)

Of course Eqn. (176) would not be true with y instead of yy: we get y(a?) = |a|3"yw(1). Note that yw (1) and y(1) are
equal.

Recall the Hilbert symbol (, ): for any a, b € F*,

(@.b) {1 if 2 = ax? + bx? has a non-zero solution (x, y,z) € T3,
a,b) =

—1 otherwise.

It is related to the above y factor as follows:

Proposition 5.3.
For any a,b € F*, we have

v(ab) y(1)
a,b)y=——"""-". 177
0= apvib) 1)
Proof. 1t follows from [42, n°25 prop. 3 and n°28 prop. 4] that
yw(ab) yw(1)
a,b)= ———F—.
0= @y b)
Then the equality (177) is an immediate consequence of the equality y(a) = yw(a)|a|™"2. O
Corollary 5.4.
The function ,
1,1 YMa)
a — s(a) :=|alg V()2
is a character of F* [(F*)?.
Remark 5.5. ,
The function a — ;i;’))z is a character of F*. However it does not have trivial restriction to (K*)?.
Remark 5.6.
The character s will play a similar role to that of the character s which was defined in Lemma 3.2 in the case of finite
fields, and of a — M in the case of R.
In these terms we have the following theorem due to Weil.
Theorem 5.7.
For any symmetric matrix A € GL(F"),
Fya= V(A v_a, (178)
and
Y(A) = £y(1)" " v(det(A)). (179)
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Proof. We have (see [42, Chap. | Théoréme 2 and Chap. Il § 26))
yw(A) = £y(1)"" yw(det A). (180)
Hence, from Eqn. (175) we obtain
v(A) = £y(1)"" y(detA). (181)
Then the first equation in the statement of the theorem follows from [42, Eqn. (17) and Théoréme 2, I. § 14] applied to

the character of second degree x — ya(x). O

5.3. Gaussians on a vector space

Let U be a finite dimensional vector space over F with a lattice £ C U. Suppose g is a non-degenerate symmetric
bilinear form on U. Let y(q) = y(Q), where Q is the matrix obtained from any N.-orthonormal basis uq, uy, ..., u, of U
by

Q['j = q(Ul‘, U/') (1 S l,] S n).

Also, we define y(0) = 1.

Lemma 5.8.
If g is a non-degenerate symmetric bilinear form on U, then

[ xGato o= @) dine) = vae=30° @) W e V)

Proof. Fix a N;-orthonormal basis uy, us, ..., u, of U and let ui, uj, ..., u; be the dual basis of U*. This is a
N,,-orthonormal basis. As we have seen in the proof of Lemma 3.4, if Q is the matrix corresponding to g, as above, then
Q7" corresponds to g*.

Let x; = uj(u) and let y; = u*(u;). Then

1 . 1 1 _ 1T . . .
[ xGate et duted = [ (G 0ax(oxy) dx = WO)xt=34'0"') = Madxi=30°(w, )
where the second equality follows from Theorem 5.7. O

5.4. Gaussians on a symplectic space

Let W be a finite dimensional vector space over F with a non-degenerate symplectic form (, ). We shall identify W
with the dual W* by
w¥(w) = (w, w*) (w, w* € W). (182)

The identification (182) provides to the following isomorphisms
U* = W/U* and (U/V)* = VUL, (183)

where the orthogonal complements are taken in W, with respect to the symplectic form (, ). Let {ey,...,e,, e_n, ..., e_1}
be a symplectic basis of W, that is:

(ei,ej) =(e_i,e_;)=0 and (e;e_;)=0; forall1<ij<n.
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[
Let £L:=3 "

j=—n OF€;. Then L is a self-dual lattice in W, i.e,

{weW, (uw)eopforallue L} =L

Moreover,

{{w1, w2); wi,wy € L} = op.

As explained in Section 5.1, £ leads to a normalization of the Haar measures on any subspace of U C W and on any
quotient U/V, where V is a subspace of U.

Lemma 5.9.
Suppose x € Hom(U, W/U") is such that

(xu,v) = (xv,u) (u, v el).

Set :
q(u,v) = §<XU' v) (u,v el).

Let V be the radical of q and let G be the induced non-degenerate form on U/V. Then
(@) V = Ker(x),
(b) The element x determines a bijection

x: UV = ViU,

with the inverse
x T VvHUt S Uy

(c) Let x™': VX — U/V be the composition of x~' with the quotient map V+ — V+/UL. Define
1
Xx(u) :X(Z<XU,U)) (v el
1
X1 (W) = X(;(WW, w)  (we V.

Then, for any ¢ € S(W),

[ [ ettt wot) dio) ds o (184)
U JwW
= 20y(q) [ 1 ()60 d: ()

AVAS

= 280y() [ sl U [l ) s ) s+ U).
VLUt Ut

Also, for any ¢ € S(W/UL),

[ xetenet5tu whtw + U) dingus -+ U dino) (185)
U Jwjut

— 26(g) [ Xt (W)lw + UL dpnye s (w + UY).
VL/UL
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Proof. Part (a) is obvious. Part (b) means that Ker(x)* = Im(x), which is true. For ¢ € S(W) we have,

J [ tabet= 5w tw) dinytu) dis(u) = [ Fivas)Gw)otm) do(w)
U Jw W

/W Fygbio) W) $(2w) iy (w) 207 W

@) [ v-ar(0)620) dins ()29

)/\/i qu*(%w)qﬁ(w) dpns (w) dim W—dim v+

Nall

¥

v(q) / X1 (W) (W) diwyi (w) dim V.

This verifies (184). For ¢ € S(W/U') we have,

J et o moto + U dogs (o + U )

U Jwjut

— [ [ el Vet + v wot + U digos -+ U din ) dota + V)
unv Jv Jwjut

= L vt Vet v 0+ U dins o+ U do ) i+ V)

2dlm w/ut

/ / Va(u + Vx({u, w)pw + UY) duy,ur (w + Ut) dpgp(u + V) 24" wiut
unN Jviut

v(d) / Vg (w + U)(2w + UY) sy (w + ) 290 WUt
VL/UL

1 ) .
v(d) j Vg (Bw + UL + UL) dpngos (w -+ U*) 20m WU —dim v -
VUt 2

V(Z])[ XX71(W —+ Ul)(i)(W + UL)dHW/Ui(W + UL)zdim V.
VL/UL -

This verifies (185). O
By a Gaussian on the symplectic space W we shall understand any non-zero constant multiple of the tempered distri-

bution
Xtiu € S*(W) (186)

where the function x, is defined in Lemma 5.9. In these terms Lemma 5.9 says that the Fourier transform of a Gaussian
is another Gaussian.

5.5. Twisted convolution of Gaussians

Recall the twisted convolution of two Schwartz functions ¢, ¢ € S(W):
1
hp(w) = /WLP(U)cﬁ(W —ux(5{u,w)) dpw(u) (W € W). (187)
It is easy to see that the above integral converges and that Yhi¢p € S(W). Also, the twisted convolutions

Bf19(8) = 9w — wolx (5 (o, W) and B, (w) = Blw — wol(5(w, o) (188)
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are well defined for any continuous function ¢.
Let
t(g) = Xc(g)Hg~w- (189)

For any ¢ € S(W), the twisted convolution t(g)h¢ is a continuous function given by the following absolutely convergent
integral

(918000 = | ()l = (50 w)) diprwla) (v € W) (190)
)

Lemma 5.10.
For any g € Sp(W),
1(g)8(0wo®) = Oguolilt(g)lig) (¢ € S(W), wo € W).

Proof. The left hand side evaluated at w € W is equal to

[ b t9lw — a5 w)) dit o)
g~W

— [ o) = = o o, w = el () dy-wla)
g—W

= [ ol = u = wol(G(clghu u) + 20, w = u) + 2, wh) diy ()
i

and the right hand side is equal to

(tlg)ad) v — gwolx( (o, w)) = [ e u)lw — guo — ulx(3 {u, w — gwo)) dy-wlu)x({gwo, w)

WXC(g) u—g wo)p(w—gwo— (u— g wp))

-/,
[
x(%(u — g~ wo, W — gwy)) d/Jg’W(U)X(%<gW0' w))
= [ 6w v~ walx(3(clg)u — g wah,u — g w)
g~W
+2(u — g~ wo, w — gwp) + 2(gwo, w))) dug-w(u).

A straightforward computation shows that

(c(g)(u— g wp), u— g~ wp) +2(u — g wo, w — gwp) + 2(gwp, w) — ({c(g)u, u) + 2{wo, w — u) + 2(u, w)) = 0.
Hence, the two sides are equal. O

Lemma 5.11.
Fix an element g € Sp(W). Let U = g~W. The map

Usu—{(,(1—=c(g)u) e U =W/U'=W/Ker(g) (191)

is bijective.
Fix a complement Z of U in W so that
W=UeaZ
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We shall denote the elements of U by u and elements of Z by z. In particular every w € W has a unique decomposition
w=u+z.

Then, for any ¢ € S(W) and any w' =u'+2' € W,

(189(0') = o (50" W) [ xao W)l + 2= (1 = cloa’+2) do ()
In particular, (192) and (191) imply that t(g)hep € S(W) and that the map
S(W) 3 ¢ — t(g)ip € S(W)

is continuous.

Proof. Suppose {, (1 —c(g))u) = 0. Then (1 — c(g))u € Kerg~. There is ug € W such that u = g~ug. Therefore

0=g (1—c(g)u=9g (1—c(g)g uo=9 (g )uo—9g g up=g (g7 )uo—g g uo
=(9" —g7)g uo=—2g"ug = —2u.
This verifies (191).

The left hand side of (192) is equal to

1
(g)i(w) = [ xeap(@)w — uh{u,w') dsfu)
U
1
= [ xtu+ ol = upxttu+ o' w)) dia o)
= [ e e elg )’ = (5 a+ o' ) )
1 1

= x50 W) [ o 9 = (50w = clghe') dofo),

which coincides with the right hand side. O

In particular Lemma 5.11 shows that for any two elements g1, go € Sp(W) there is a tempered distribution t(g1)bt(g2) €
S*(W) such that

(t(g1)bt(g2))a = t(ga)u(t(g2)ad) (& € S(W)). (192)

Proposition 5.12.
Fix two elements g1, g> € Sp(W). Let U} C Uy be the orthogonal complement of U with respect to the positive definite
form B, so that

Uy =U,@U.

Then the map
L:U, +U; 3 u) + up — c(gr)uy — c(ga)us — uy — up + Ut € WJUL

is well defined, surjective and L='(V*/U*) = Uy,. Denote by
L: (U4 Up)/Upa 3 ug 4 s + Upy = c(gr)uy — c(ga)us — ug — us + V5 € WV = (W/UL) (VU

the induced bijection and set
C(91,92) = V(qg,.9,)2°" V| det([)[5".
Then C is a cocycle, with C(1,1) =1, and

t(gn)ht(g2) = C(g1,g2)t(g192)- (193)
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Proof. Since V/U" = (c(g1) + ¢(g2))U, the map [ is well defined. Suppose v} € U; and u, € U, are such that
L(u} + up) € VE/UL. Then there is u € U such that

(c(g1) + c(g2))u + c(g1)u’ — c(g2)uz — v — uy € U,

Let
U=givi=gyv, VUi =giw, w—vVv=uy;=g,w,.
Then
(c(g1) + clg2))u + clgn)v + c(g2)(v —w) —w € U™

Hence, the computation (79) - (81) shows that w = (g1g2)~ (wa—v2) € Uyp. Therefore L=1(V1/UL) C Uy, But (191) implies
that L is surjective and Lemma 2.7 (b) shows that dim((U1 + U;)/Us2) = dim((W/U4)/(VE/UL)). Thus L=1(VE/UL) = Uy,

The computation (81) - (85) shows that, if u} + us € Uy, then
(clga)uy, uh) + (c(ga)uz, uz) + 2(uy, uz) + ((c(g1) + c(g2) " L(uh + u2), L(u + u2)) = (c(g192)(u] + u2), ur + u2)
so that
’ 1 ’ ’ !
Xt(gq)(U‘I)XC(gz)(uz)X(E(u‘l'u2>)X(c(g1)+c(g2))*1(L(u‘l + U2)) = Xe(gig0) (U + U2). (194)

Any vy € U; has a unique decomposition vy = uj + u, where v} € U} and v € U. With this notation, Lemma 5.11
shows that for any ¢ € S(W),

(g0t g039)0) = | e (un)tlg2ldtan) i o) (195)
= [ xontunbesaadet e e s clga) = 1))
Uy Ju,

et 2D 32, U )+ 05) D 02 i, ()

— [ [ [ xeotehimtontstu e (ua elg) = )
U q U,

1
Xetg) (U2)X (=5 (U2, uy))puz + u') di, (u2) dpy (uh) dpu (u)

The formula (185) applied with x = ¢(g+1) + ¢(g2) shows that
1 , 1
/UXC(g1)(u1)XC(gz)(u)X(§<uru1>)X(§<u2r(C(gZ) — 1u)) dpy(u) (196)

’ 1 ’ ’
= Xelgn (U7) /UXc(g1)+c(9z)(“)X(§<Ur c(g1)uy — c(ga)uz — Uy — uz)) duy(u)
= 2 VY(‘?%VQZ)XC(%)(ufl)(X(c(g1)+c(g2))‘1 Hvi/ui)(c(gﬂua — c(ga)uy — uf — u).

Furthermore, Lemma 5.2 shows that, for v} + u; € Uy,
pye gt (c(gr)uf — c(g2)uz — vy — uz) = L¥ (e jue)(uy + uz) = |det([)|’1pu12(uﬂ + uy).

The formula (193) follows directly from (194) - (197).
We see from (188) that

t(g1)5(t(g2)19) (w) = (t(g1)8(t(92)1¢))10- (0) = ((g1)(t(g2)8(#HO-w)))(0)
= ((t(g1)5t(92))8(#10-w))(0) = ((t(g1)1(92))P)E0-w)(0) = (¢(g1)t(g2))ip(w).

Therefore

(t(g1)ht(g2))tid = t(g1)h(t(g2)be).

Hence, t(g1)ht(g2) coincides with the composition of t(g1) and t(g,) as elements of the associative algebra End(S(W)).
Therefore the function C is a cocycle. O
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5.6. Normalization of Gaussians and the metaplectic group
For an element h € End(W) define h* € End(W) by

(hw,w'y = (w, h*w)  (w,w" €W). (197)
Then (Ker h#)* = hW.

Lemma 5.13.
Fix two elements g1, g, € Sp(W) and assume that Ky = Kergy = 0. Then

274V det(l) = det(g; : Kin — V).
Proof. Since, by Lemma 2.7 (c), g; Ki2 =V, the right hand side of the equation we need to prove makes sense. Also,
—dim V 7 1
2 det(L) = det(iL)

and a straightforward computation shows that

1+ 1
5L W/Ua 3w+ U = 5(e(g1) - Nw+V*E =g7'w +VE e WvE

Hence,
1.
det(iL)’1 = det(g7: W/V* — W/Us).
Notice that g7 —1 = g¥. Since V = g7 K12 and Uy; = Kb, Lemma 2.22 shows that
det(g7 : W/VE — W/Uyp) = det(g7" —1: Kiz — V).

1

Since the restrictions of g7 and g, to Ky, are equal, we are done. O

Let B be a non-degenerate (not necessarily symmetric) bilinear form on a finite dimensional vector space over F. Define
the discriminant of B as

, vw(det(A))
dis(B) = ———, 198
(B)= " (198)
where A is the matrix obtained from a basis uq, uy, ..., u, of the space by
AL,/:B(U“U/) (1 Sl,jgn)
Clearly the discriminant does not depend on the choice of the basis.
We have
dis(B)? = s(det(A)). (199)

For any g € Sp(W) the formula
(g~ w,w') (w,w € W)

defines a bilinear form whose left and right radicals coincide with Ker(g~). Hence we get a non-degenerate bilinear
form By on the quotient W/Ker(g~). Then
yw(det((g~wi, wihi<ij<r))

v(1) '
where wq + Ker(g™), wy + Ker(g™), ..., w, + Ker(g™) is a basis of W/Ker(g™).
For g € Sp(W) define

dis(B,) =

O(g) = y()"" 9™ dis(By). (200)
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Lemma 5.14.
Let g1, g2 € Sp(W). Assume that Ky = Ker g7 = {0}. Then

. ,  Olgiga)’
VW(qgj.gz) - 9(91)29(92)2' (201)

where Gg4,.q, is the non-degenerate symmetric form defined in Notation 2.6.

Proof. Let h be the element in GL(W) defined in Eqn. (24). Then since s is a character, it follows from Eqns. (199)
and (26) that

s(det(((g192)"wi, hwj)oci) = dis(g, g,)” s(det({g7 wi, hw))p<i,))- (202)

But
s(det({(g192) Wi, Wj)aci)) = dis(Bg,g,)”.

Therefore (202) may be rewritten as
dis(By,q,)° s(det(h)) = dis(dg,.q,)* (203)
Notice that
dis(By,)* = s(detgy) = s(det(g1(g7" — 1)) = s(det(g;" — 1)) = s(det(g7' —1))~".

Then, from (26), we obtain
dis(B,,) % s(det(h)) = s(—1)"™Y dis(B,,)*.

Therefore
s(det(h)) = s(—1)"""Y dis(B,,)? dis(By,)*. (204)

By combining (203) and (204) we see that

dis(Bg,4,)?

e[ 2 _ o 2 o(_qydimU g 2 g 2 _ (_q)dimU
dis(§g,.4,)° = dis(Bg,g,)" s(—1) dis(Bg, )" dis(Bg,)” = s(—1) dis(B,, 7 dis(By,)”

We see from (180) that
yW(qg1,gz)2 — Y(1 )Zdim U-2dim V dis(égq,gz)z — 5(71)d1m Uy(1)—2dl|n U-2dim V dis((7g1,g2)zr
because y(1)* = 5(—1), which follows from the equality y(1)y(—1) = 1. Therefore (205) implies (201). O

Definition 5.15.
For g € Sp(W) define

©%(g) == y(1)*™ 72 (v(det(g™ : W/Ker(g™) — g~ W))? = 6%(g)| det(g™ : W/Ker(g™) — g~ W[5,

where
6°(g) = y(1)**"9 WV s(det(g™ : W/Ker(g™) — g~ W)).

(Here s was defined in Lemma 5.4.)
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Lemma 5.16.
We have

2
G~ Clgn g (91,92 € SpW), (20)

Proof. Both sides of the equality (205) are cocycles. Hence, Lemma 2.8 shows that we may assume that K; = {0}.
Therefore the equality (70) is equivalent to

det((g1g2)~: W/Kiz — Upy)
det(g; - W — W) det(g; : WK, — U)

= (=1 det((%(f(éh) +c(g2)) . Ju) (det(gy = Kiz = V)~

(206)

In particular

| det((g192)~: W/Ki2 = Upo)[e
| det(gy: W — W)g| det(g; : W/K; — U)|

= [det(({clgn) + clg2) . Junle | detlgs s Kiz = VI

This, together with Lemma 5.13, shows that the right hand side of (207) is equal to

[det((3 (clgn) + elg2)) . Jumle (274 ¥ detDe)

which, by Proposition 5.12, coincides with |C(g1, g2)|~2. Hence, the absolute values of the two sides of (205) are equal.
Hence, (205) (without the absolute values) follows from Lemma 5.14. O

Definition 5.17.
Let

Sp(W) := {(g. 9); g € Sp(W), § € C*, & = ©7(g)},
where ©%(q) is as in Definition 5.15.

Lemma 5.18.
Sp(W) is a group with the multiplication defined by

(91, 61)(92, &2) = (9192, &6 C(g1,92)) (91,92 € Sp(W)) (207)
the identity equal to (1,1) and the inverse given by
(9.97"=(g79  (g€SpW)).

Proof. Lemma 5.16 shows that the right hand side of (207) belongs to é\f)(W). A standard computation, as in [20,
page 366], shows that Sp(W) is a group with the multiplication given by (207), the identity equal to (1, C(1,1)~") and

(9.4)" =(g7".Clg7". g)7'&7.
Since, by Proposition 512, C(1,1) = 1, it remains to check that
Clglg) ¢ =4
But, as in the proof of Lemma 5.13,
Clg™" g) = 2"V det(D)|z" = |det(g™: W/Ker(g") = g~ W)[& = [©°(g)[z" = |&]z".

This completes the proof. O
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Notice that the map
Sp(W) 3 (g,¢) = g € Sp(W)

is a group homomorphism with the kernel consisting of two elements. Thus §B(W) is a central extension of Sp(W) by
the two element group Z/2Z:
1 — Z[2Z — Sp(W) — Sp(W) — 1. (208)

Proposition 5.19.
The extension (208) does not split.

Proof. Pick a two-dimensional symplectic subspace Wy C W and let W, = W{, so that
W=W,oW,.
Define an element g € Sp(W) by
glwi + wa) = —wi +w;, (wy € Wi, wy € W,).
Then g~ |w, = (@ — 1)1, and g~ |w, = 0. Hence Ker(g~) = W, and g~ (W) = W;. We get

y(1)!

©%(g) = y(1)* s(det(g™: Wy — W;))|detg™: Wy — Wy))|z" = y(1)'s(4) | — 45" = A

We have g?> — 1 =0, and Eqn. (205) gives

1)? =
Let g = (g, |y_(2)|]F) Then g € Sp(W), and

3’ = (9°.0%(9) Clg.9) = (¢>,v(1)") and §*=(g",0%(g*) C(g° %) = (g".1).

Thus the subgroup of é\f)(W) generated by § is cyclic of order 4. The subgroup of Sp(W) generated by g is cyclic of
order 2. Hence the extension (208) does not split over that subgroup. O

Corollary 5.20.
Up to an equivalence of central group extensions, as in [20, sec. 6.10] (208) is the only non-trivial central extension of
Sp(W) by Z[2Z.

Proof. Since, as is well known (see [25, Theorems 5.10 and 11.1 (b)),
H2(Sp(W), Z/2Z) = Hom(Z, 7,/27),

the claim follows. O

Let
" (w) = B(—w) and u*(@) = u(¢") (¢ € SW), u € S'(W), wE W),

1575
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Lemma 5.21.
For any g € Sp(W), t(g)* = t(g™").

Proof. By the definition (189),

tg)" = (Xc(g)/Jg*W)* = Xclg)Hg=W = X—c(g)Hg—W-
Since g™W = (g~" — 1)W, it will suffice to check that for any w € W
—c(g)g w =clg"")g w.
The left hand side is equal to —g*™w. The right hand side is equal to

+

—c(g7Ng™" = Ngw = (g7 = N)gw = —g*w.

Definition 5.22._
For g = (g, &) € Sp(W) define
0(g) = ¢ and T(g) = ©(9)(g)-

Lemma 5.23.
With the notation of (138), the following formulas hold

T(@)hT(32) = T(6132) (31,92 € Sp(W)),
T@) =T@E™") (g €SpW).
Proof. By Proposition 5.12 the left hand side of (210) is equal to

0(g1)0(3g2) L
WC(91.92)T(9192)~

Lemma 5.18 shows that o o
(§1)©(32)
————==C(g1, =1
0(3:32) (g1,92)

This verifies (210).
The equality (211) follows from Lemma 5.18 and Lemma 5.21:

T(3) =0(g)tlg) =0(F tlg™) =T

Lemma 5.24.
The map T : Sp(W) — S*(W) is injective and continuous.

(209)

(210)

(211)

Proof. The injectivity of T follows from the injectivity of ¢ : Sp(W) — S*(W), which is obvious. Let

Sp (W) = {g € Sp(W); detg™ # 0}

Lemma 2.8 shows that
SpwW) = [ J Sp(Wh.

heSp(W)

(212)
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Let §E)C(W) - §B(W) be the preimage of Sp°(W). Then

Spw) = | J Sp (Wh.

heSp(w)

By Lemma 5.23, we have
T(g)=T(gh™"aT(h) (5 €Sp (W)h)
Thus for ¢ € S(W),
T(g)he = T(Gh™B(T (h)g)-
By Lemma 5.11, the map

SW) 3 ¢ = T(h)sp € SW)

—~C
is continuous. Hence it will suffice to check that the restriction of T to Sp (W) is continuous. But this is obvious.

5.7. The conjugation property

Let L?(W) denote the Hilbert space of the Lebesqgue measurable functions ¢p: W — C, with the norm given by

16 1= [ 166 dim(w).
W
Lemma 4.24 shows that for any § € §E)(W) and any ¢ € S(W)

I T(@)8e 3= (T(@)be) BT (9)8)(0) = ¢*0T (3) BT (9)86(0) = ¢"hp(0) = & |3 -

Hence, the continuous linear map
SW)3 ¢ = T(g)hp € SW)

extends by continuity to an isometry
L*(W) 3 ¢ = T(g)he € LX(W).

Furthermore, the formula
wi1(g)p(w) = d(g™'w) (g € Sp(W), ¢ € L*(W)).

defines a unitary representation ws 1 of the symplectic group Sp(W) on LZ(W).

Proposition 5.25. -
For any ¢ € L2(W) and § € Sp(W) in the preimage of g € Sp(W), T(§)hhT(G7") = wi1(g)¢.

Proof. Since T(g)j is a bounded operator, we may assume that ¢ € S(W). Lemma 4.9 says that

t(g)hdw = duglit(g) (W EW).

Therefore
T(§)h0w = 0uwghT(g)  (w e W).
Since,
6= [ oo, dintw) and [ $(w)d disylw) = w11(9)0,
W w
we see that

T(g)h¢ = (wi1(9)PMT(9)-

O
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5.8. The Weyl transform and the Weil representation

Pick a complete polarization
W=XgY (213)

and recall that our normalization of measures is such that duw(x + y) = dux(x)dpv(y). Recall the Weyl transform

K: S (W) = S*(X x X), (214)

K0x) = [ =+ ghel50x ) dinty),
This is an isomorphism of linear topological spaces, which restricts to an isometry
K: L2(W) = LA(X x X). (215)
Each element K € §*(X x X) defines an operator Op(K) € Hom(S(X), S*(X)) by
Op(K)W)(u) = Ku®v)  (u,veSKX). (216)

Since the map
SX) x S(X) 2 (u,v) 2 u®v e SXxX)

is continuous, (216) defines a continuous injection
Op : §*(X x X) = Hom(S(X), S*(X)). (217)
Conversely, if S € Hom(S(X), §*(X)), then

S(v)(u) (u, v € S(X))

defines a continuous linear map on S(X)®@S(X) = S(X x X). Hence the map (217) is bijective and thus a linear topological
isomorphism.

A straightforward computation shows that Op o KC transforms the twisted convolution of distributions (when it makes
sense) into the composition of the corresponding operators. Also,

(Opo K(f)" = OpoK(f)  (feS (W) (218)

and

tr Opo K(f) = /XIC(f)(x,x) dux(x) = £(0) (219)

if Op o K(f) is of trace class, [17, Theorem 3.5.4] (More precisely the same proof works). Hence, the map
Op o K: L2(W) — H.S.(L*(X)) (220)

is an isometry, which is a well known fact [17, Theorem 1.4.1]. (Here H.S.(L?(X)) stands for the space of the Hilbert-
Schmidt operators on L?(X).)

Let U(L2(X)) denote the group of the unitary operators on the Hilbert space L2(X).
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Theorem 5.26.
Let w=OpoKoT. Then
w: Sp(W) = U(L%(X))

is an injective group homomorphism. For each v € L2(X), the map
SPW) 2 § — w(g)v € LX)

is continuous, so that (w, L2(X)) is a unitary representation of the metaplectic group. The function © coincides with the
character of this representation:

0(9)¥(g)dg = tr/ w@W(@ dg (Ve C2(SpW),

Sp(W) Sp(W)

where the integral on the left is absolutely convergent. (Here d§ stands for any Haar measure on §|3(W).) Moreover,
w(g)Op o K(¢) w(§ ") = OpoK(wia(9)$) (5 € SpW), ¢ € L(W)).

Proof. We see from the discussion in Section 5.7 that the left multiplication by w(§) is an isometry on H.S.(L%(X)).
This implies that w(§) is a unitary operator.

We see from (217) that for any two function v4, v, € S§(X) there is ¢ € S(W) such that

/Xw(é)w ()v2(x) dux(x) = T(3)(@) (g € Sp(W)).

Hence Lemma 5.24 shows that the left hand side is a continuous function of §. Since the operators w(g) are uniformly
bounded (by 1), we see that the left hand side is a continuous function of § for any vy, v, € L%(X). This implies the
strong continuity of w, see [40, Lemma 1.1.3] or [41, Proposition 4.2.2.1].

Lemmas 5.23 and 5.24 show that the w : Sp(W) — U(L?(X)) is an injective group homomorphism.
It is not difficult to check that the function

det(Ad(g) — 1)

detg- (g € Sp(W))

is locally bounded. Furthermore, as shown by Harish-Chandra [11, Section 8], the function

|det(Ad(g) = D" (g € Sp(W)) (221)
is locally integrable. Hence the function,

10(9)] = detg [s"* (g € Sp(W))

is locally integrable. (We would like to thank Alan Roche for the reference, [11].)
Notice that for any ¥ € C;”(g[/)(W)),

[ 1@ dg € st 22)
Sp(W)

Indeed, since the Zariski topology on Sp(W) is noetherian the covering (141) contains a finite subcovering (see for
example [12, Exercise 1.7(b)]). Hence, there are elements hi, hy, ..., By in Sp(W) such that

SpW) = [JSp' (Wi
j=1
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Therefore Lemma 5.23 and a standard partition of the unity argument reduces the proof of (150) to the case when
Y e CZ(Sp (W)). In this case (150) is equal to

[ W) dx 223)
sp(W)

where ¢y € C®(sp(W)) and dx is a Haar measure on sp(W). The function (223) is equal to the pullback of a Fourier
transform QJ of ¢ from sp*(W) to W via the unnormalized moment map

T: W = sp" (W), t(w)(x) = (xw, w) (x € sp(W), weW). (224)
Since () € S(sp(W)) and since 7 is a polynomial map with uniformly bounded fibers,
JoteSW).

This verifies (222). Hence, we may compute the trace as follows:

tr /év w(g)¥(g)dg = ([g“ T(Q)W(é)dé) 0) = (/g[(w) T(g9)¥(9)dg | (0)
P

p(W) p(W)

=/~C T(é)(O)W(Q)d§=/~ 0(g)¥(g) dg.
Sp (W) Sp(W)

The last formula is a direct consequence of Proposition 5.25. O

We end this Section by recalling some well known formulas for the action of w(§) for some special elements § € §E)(W).

Proposition 5.27.
Let M C Sp(W) be the subgroup of all the elements that preserve X and Y. Let M := {g € M : detg™ # 0}. Set
. . 1 - = o e
¢(9) = ©(q) | det(5(clgh) + MIs" (g € M).

Then B
(€(3))* = (s(det(g]x))) " | det(g]x)[5" (g € MY, (225)

the function {: M¢ — C* extends to a continuous group homomorphism
(: M — C*
and

W@V =¢@vlgTx) (G EM, veSX), xeX). (226)

Proof. Set n = dim X. Fix an element g € M°. Observe that

det(gly — 1) = det((g]x) ™" — 1) = det((g]x)™") det(1 — g|x).
Then it follows from Definition 5.15 that

©%(g) = y(1)" s(detg™) [ detg™ 5"

v(1)*" s(det(g]x — 1) det(gly — 1)) | det(g|x —1)" det(gly — 1)[;"
y(1)"" s(det(g|x — 1)) s(det(gly — 1) | det(g|x — 1)[z" | det(g]y — 1)I5"
y(1)"" s(det(g]x — 1)°) s(det(—(g]x) ")) | det(g|x — 1)[z* | det(g|x)|=
y(1)*" s((=1)") (s(det(g[x)))™" | det(glx — 1)[z* | det(g]x)|z

= y(1)*" (s(=1))" (s(det(g]x))) " | det(g|x — 1)[z* | det(g|x)]z-
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Also,

Idet(%(C(glx) + M) =1 det((glx)(glx = )" = |det(glx —1))]e | det(g]x)[z"-

Hence

(@)% = y()*" (s(=1))"(s(det(g|x))) ™" | det(g|x)[z" = y(1)*" ¥(=1)*" (s(det(gx))) " | det(g|x)|;"
= (s(det(g[x)))~" | det(g|x)[5"-

This verifies (225).
Let x,x’ € X and let y € Y. Then
’ ’ 1 ’
K(t(g))(x, x) = /Yt(g)(x =X +yhx(5{y. x +x7) duvly)
= [ (G {elgllr = X0 (G lgox-+ 1) du(y)
Y
= Bulgelg)lx —x) —x —x) = Bo(5((elg) — x — (clg) + 1)x)

= [ det(3 (clgh) + 1]z dolg~"x — ).

Therefore

K(T(@)(x, X) = £(§)do(g " x = X).
Thus we have (226) for § € M¢. Since w is a representation of M, the remaining claims follow. O
Proposition 5.28.

Suppose g € Sp(W) acts trivially on Y and on W|Y. Then det((—g) — 1) # 0 and
w(g)v(x) = &o Xc(-g)(2x) v(x) (veSX), xeX), where &= (s(2))*".

Proof. Since —g acts as minus the identity on Y and on W/Y, det((—g) — 1) # 0 and z = c(—g) € sp(W) is well
defined. We have

z(w) = (=9)"((=9))'(w) (wEW).

Since g acts trivially on Y and on W/Y, we get, for every x € X and every y € Y:
gx+y)=x+y+ys wherey, €Y.

It gives (—g)~(x + y) = —2x — 2y — y,. Hence

(=97 ) (x4 4) = —5(x +9) + g0

We obtain
2t y) = (g (5 b+ 4) + 3y = 5
y)=1(—g 5 y 4£Ix = Zyx-

In particular, we have
z:X—>Y—=0.
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Also, det(z—1) # 0 and ¢(z) is well defined. On the other hand, we have (z—1)(x+y) = —(x +y) + %yx. It follows that

= 1)t ) =~ +9) — g0

Hence,
e+ 9) = 1) 04 9) = 500 ) = =50 = (k)= o

that is,
cZ)x +y) =—(x+y) = yx. (227)

We have c(z) € Sp(W). Indeed, for any w,w’ € W, writing w = x + y and w’ = X' + ¢’, with x,x’ € X and y,y" €Y,
we have

(c@)w), c(2)(W)) = (=w =y, =w' = yw) = (W, W) + (x, yu) + (Y X).

However, since g is in Sp(W), we have

(x) =(gx,9x') = (x + yu. X' + yw) = (0, X) + (x y) + (g X),

which gives
(X yv) + (yx,x) = 0.

We obtain
’ ’ 1 ! ! 1 ’ n ’ !
K(t(c(2))(x, x') = /YXz(X =X x5y x +x7) duv(y) = xzlx = x)do(5 (x + X)) = 2" xz (x = x) o(x + x').
We have dim ((¢(z) — 1)(W)) = dimW = 2n, and,
det(c(z) — 1) = (=2)*".

We get

2 _ 4n _ 2n ~A=2n __ 4n _ 2n ~A=2n __ 4n _ 2n V(2)4n
0%(c(2)) = v(1)™ (s(=2))7" 277" = y(1)" (s(=1)s(2))7 277" = y()"" (s(=1)"" =z

v
since s(—1) = y(1)*, and y(1)® = 1. Hence,
©%(c(2) = v(2)". (228)
Thus -
K(T(c(2))(x, ) = 2" & x.(x — x')oo(x + x'),  where (&)* = y(2)*".
Proposition 5.27 shows that N .
w((=N)v(x) = {(=T)v(—x).
We have ,
(¢=0) = s(=1)7" = =) = v ™
Since ,
o Y@\
e =2 (M)
the proof is complete. O
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Proposition 5.29.
Suppose g € Sp(W) acts trivially on X and on W/X. Then det((—g) — 1) # 0 so that z = c(—g) € sp(W) is well defined
and z:Y — X — 0. Assume z(Y) = X. Then

2 n
o == () via) [ty din) e S0, xeX),

where z7' : X — Y is the inverse of z: Y — X. (The explicit computation of y(q) may be found in [31, Appendix].

Proof. The existence of z and its properties are verified as in the proof of Proposition 5.28. In particular, for all x € X
and y €Y, we have

gix +y)=x+y+x, wherex, €X

Similarly to the proof of Proposition 5.28, we get

1
zx+y) = 2(y) = 5x. (229)
and
c(2)x+y)=—-(x+y)—x,, (230)
that is,
c(z)(w) = —w —2z(w), for every w € W. (231)
Let

7 1 7’ 7
qly,y’) = i(zyry) (y.y €Y).

Then, in terms of Lemma 5.8 and the identification (182),
g (x,x') = =2(z7"x,x') (x,x" € X).

Hence, by the definition of K (214), the assumption that z annihilates X and maps Y into X and Lemma 5.8, we obtain

KA x) = [ ozt g)x = + (o + ) dinty)
= /x(%(—zy, y>)x(%(y,X +x')) duv(y)
Y
— [ (Gt ety =3+ XD diny)
Y
= v(q)x(*%q*(f%(x +x), —%(x +x)))
= VIl (5 + X)) =3+ X)) = Vgt + )
Therefore
K(T(c@))x, x') = O(c@) (g1 (x + X).
But (5)(2(\21))2 = +y(2)" (see Eqn. (228)), where dim W = 2n. Furthermore, by Proposition 5.27,
K(T(=N)(,x") = {(=1) Golx’ = x"),

where ({(=1))> = y(1)~*". Hence, the formula for w(§) follows. O
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