MATH. 2443, AN EXTRA CREDIT TEST

TOMASZ PRZEBINDA

1. Express the decimal 12.34 as a fraction $\frac{a}{b}$.
$12.34=\frac{1234}{100}=\frac{617}{50}$.
2. Express the difference $\frac{x^{2}}{x^{3}-1}-\frac{1}{x^{3}-1}$ as a fraction $\frac{f(x)}{g(x)}$ with no cancellations.

$$
\frac{x^{2}}{x^{3}-1}-\frac{1}{x^{3}-1}=\frac{x^{2}-1}{x^{3}-1}=\frac{(x-1)(x+1)}{(x-1)\left(x^{2}+x+1\right)}=\frac{x+1}{x^{2}+x+1} .
$$

3. Find all real numbers x such that $\cos (x)=0$.
$x=k \pi \quad(k \in \mathbb{Z})$.
4. Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a point $x \in \mathbb{R}$ such that the derivative $f^{\prime}(x)$ does NOT exist.
$f(x)=|x|$, at $x=0$.
5. State the Fundamental Theorem of Calculus.

Here is one of several equivalent versions of that theorem.
Suppose f is a continuous, real valued function, defined on the interval $[a, b]$. Then for any $x \in(a, b)$

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

6. Which of the following statements is true:
(1) $\int_{-\pi}^{\pi} \cos x d x=\sin (x)+C$,
(2) $\quad \int_{-\pi}^{\pi} \cos x d x=0$.

Only statement (2) is true.

